KR101595730B1 - 알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법 - Google Patents

알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법 Download PDF

Info

Publication number
KR101595730B1
KR101595730B1 KR1020140132366A KR20140132366A KR101595730B1 KR 101595730 B1 KR101595730 B1 KR 101595730B1 KR 1020140132366 A KR1020140132366 A KR 1020140132366A KR 20140132366 A KR20140132366 A KR 20140132366A KR 101595730 B1 KR101595730 B1 KR 101595730B1
Authority
KR
South Korea
Prior art keywords
compound
alpha
formula
mmol
silylamine
Prior art date
Application number
KR1020140132366A
Other languages
English (en)
Inventor
박재욱
김정준
정욱
이영호
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020140132366A priority Critical patent/KR101595730B1/ko
Priority to US15/327,064 priority patent/US20170210765A1/en
Priority to PCT/KR2015/010352 priority patent/WO2016053017A1/ko
Application granted granted Critical
Publication of KR101595730B1 publication Critical patent/KR101595730B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/083Syntheses without formation of a Si-C bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C281/00Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
    • C07C281/06Compounds containing any of the groups, e.g. semicarbazides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0208Bimetallic complexes, i.e. comprising one or more units of two metals, with metal-metal bonds but no all-metal (M)n rings, e.g. Cr2(OAc)4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

본 발명은 알파-실릴아민 화합물의 제조방법에 관한 것으로, 보다 상세하게는 금속 착화합물 촉매 하 온화한 조건에서 출발물질로 알파-실릴메틸 아자이드 화합물로부터 질소에 치환기가 없는 알파-실릴이민 중간체를 거쳐 다양한 알릴보레이트 화합물과의 반응을 통해 다양한 알파-실릴아민 화합물을 원-팟으로 제조하는 방법에 관한 것이다.

Description

알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법{Method for preparing of α-silylamines from α-silylmethyl azides}
본 발명은 알파-실릴아민 화합물의 제조방법에 관한 것으로, 보다 상세하게는 금속 착화합물 촉매 하 온화한 조건에서 출발물질로 알파-실릴메틸 아자이드 화합물로부터 질소에 치환기가 없는 알파-실릴이민 중간체를 거쳐 다양한 알릴보레이트 화합물과의 반응을 통해 다양한 알파-실릴아민 화합물을 원-팟으로 제조하는 방법에 관한 것이다.
작용기를 많이 포함하고 있는 아민 화합물들(densely functionalized complex amine compounds)은 독특한 생화학적 활성으로 인해 유기합성화학(synthetic organic chemistry)에서 중요한 구조적 요소이다. 특히 고치환된 알파-실릴아민의 경우 아미노산의 유사체(amino acid mimics)와 같은 구조적인 특이성과 생화학적인 작용으로 인해 많은 관심을 받고 있다. 게다가 실릴기는 다양한 반응에서 중요하게 쓰이는 중간체로 쉽게 바뀔 수 있는 유용한 전구체로 사용될 수 있다(하기 참조).
Figure 112014093989041-pat00001
상기 반응식에 나타낸 바와 같이, 알파-실릴아민은 세릭 암모늄 나이트레이트 (ceric ammonium nitrate, CAN)과 같은 산화제 조건에서 이미늄 이온으로 바뀔 수 있다. 또한 UV를 쬐어주거나 금속 촉매를 사용하여 광촉매 조건에서 아미닐(aminyl) 라디칼을 형성할 수도 있다. 그리고 알파-실릴아민은 이산화탄소와 같은 친전자체와 반응할 수 있는 음이온을 플루오르 음이온 활성제(fluoride ion activator)와 반응을 통해서 만들 수 있다. 동시에, 알파-실릴아민은 중성적인 환경 (neutral condition)에서 안정하고, 긴 합성 과정에서 영향을 받지 않고 계속 유지 시킬 수 있다.
최근에 금속 촉매를 기반으로 하여 최적의 화학적인 효율성(optimal chemical efficiency)을 가지면서 삼차원적으로 다양한 헤테로고리 화합물을 합성할 수 있는 개념적으로 새로운 분기적 합성 전략(conceptually new divergent strategy)을 발전시키는데 많은 관심을 보이고 있다. 최근 입체선택성이 결정된 N,O-아세탈(stereodefined N,O-acetal)을 이용하여 질소 원자를 포함한 고리 화합물의 분기적 합성에 대한 분기를 만들어 내는 다양성 창조 요소(diversity-generating element)로서의 활용이 보고되었다. 화학적인 반응성인 관점에서 볼때, N,O-아세탈은 이미늄 이온으로써의 전구체로 활용될 수 있다. 알파-실릴아민의 카멜레온과 같은 반응성과 이미 전술한 안정성을 고려해볼 때, 알파-실릴아민이 반응의 후반부에 아민 화합물의 구조를 다양하게 만들 수 있는 요소로 사용이 될 수 있다.
이와 같은 반응성 기반 합성전략(reactivity-driven strategy)은 새로운 분기적인 합성 방법에 새로운 가능성을 열어줄 수있다. 유기 화학 및 의약 화학분야에서 아민 화합물의 중요성을 고려해볼 때, 이 합성 전략은 목표 지향적 합성 전략(target-oriented synthesis)과 다양성 지향적 합성 전략(diversity-oriented synthesis) 모두에 중요하게 활용될 수 있다. 이러한 잠재적인 중요성에도 불구하고, 이러한 반응성 기반 분기적 합성 전략(reactivity-driven divergeny synthesis)은 유기합성 분야에서 논의되지 않았는데, 이것은 고치환되고, 입체화학적으로 복잡한 알파-실릴아민을 쉽게 합성할 수 없었기 때문이다.
실제로, 알파-실릴아민에 대한 연구는 단지 구조적으로 매우 간단한 화합물에 대한 연구만 진행되어 왔다. 일반적으로 알파-실릴아민은 이민 화합물(imine compounds)에 실릴 음이온이나 그 유도체를 첨가하는 방법을 통해서 아래와 같이 합성되었다.
Figure 112014093989041-pat00002
상기 반응의 활용의 폭 (scope of this reaction)은 엔올화가 가능한 수소(no enolizable hydrogen)를 가지지 않은 이민 화합물에 대한 제한이 있었다. 더욱이, 실릴 음이온을 형성하는 반응의 조건이 상당히 가혹한 조건이 많이 요구되고, 때로는 여러 단계를 거쳐야만 만들 수 있는 경우도 있었다.
본 발명자들은 종래 합성법과 달리, N-치환되지 않은 알파-실릴이민(N-unsubstituted α-silylimine)을 거쳐서 알킬 음이온을 첨가하는 방법이 더욱 효율적이고 적합한 방법이 될 것이라고 예상하고, 실험한 결과 알파-실릴이민에 알릴 친핵체를 첨가하면 부분입체 이성질 선택성 및 거울상 이성질 선택성을 가질 수 있는 화학적인 변환(transformation)을 통해 치환기나 입체 중심을 많이 갖는 알파-실릴아민 화합물이 제조됨을 발견하고 본 발명을 완성하였다.
그러나 이러한 방법을 통해서 알파-실릴아민을 만드는 방법에 대해서는 거의 연구가 진행되지 않았다. 이것은 아마도 치환되지 않은 알파-실릴이민을 그것의 카르보닐 전구체로부터 합성하는 방법이 문제가 있었기 때문이다.
한국 등록특허 10-1422388
Acc. Chem. Res. 2013, 46, 457-470 J.Med. Chem. 2013, 56, 388-405 J. Am. Chem. Soc. 2012, 134, 4011-4014 Angew. Chem. 2012, 124, 12221-12224 Angew. Chem. Int. Ed. 2012, 51, 12055-12058 Synlett 2012, 23, 2875-2879
본 발명의 목적은 금속 착화합물 촉매 존재 하 알파-실릴메틸 아자이드 화합물과 알릴보로네이트 또는 알레닐보로네이트 화합물을 광 반응시켜 알파-실릴아민 화합물을 원-팟으로 제조하는 방법을 제공하는 것이다.
본 발명은 금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3의 보로네이트 화합물을 광 반응시켜 하기 화학식 1의 알파-실릴 아민 화합물을 제조하는 방법을 제공한다:
[화학식 1]
Figure 112014093989041-pat00003
[화학식 2]
Figure 112014093989041-pat00004
[화학식 3]
Figure 112014093989041-pat00005
(R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이고;
R'와 R''가
Figure 112014093989041-pat00006
로 연결되어 고리를 형성하는 경우Y가
Figure 112014093989041-pat00007
이고 Z는
Figure 112014093989041-pat00008
이거나, Y가
Figure 112014093989041-pat00009
이고 Z는
Figure 112014093989041-pat00010
이고;
R' 및 R''가
Figure 112014093989041-pat00011
인 경우 Y가
Figure 112014093989041-pat00012
이고 Z는
Figure 112014093989041-pat00013
이고;
R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
본 발명의 일 실시예에 있어서, 금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3-a의 알릴보로네이트 화합물을 광 반응시켜 하기 화학식 1-a의 알파-실릴 아민 화합물을 제조하는 방법일 수 있다:
[화학식 1-a]
Figure 112014093989041-pat00014
[화학식 2]
Figure 112014093989041-pat00015
[화학식 3-a]
Figure 112015115468465-pat00127
(R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이고;
R' 및 R''가
Figure 112014093989041-pat00017
이거나, R'와 R''가
Figure 112014093989041-pat00018
로 연결되어 고리를 형성할 수 있으며;
R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
본 발명의 일 실시예에 있어서, 금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3-b의 알레닐보로네이트 화합물을 광 반응시켜 하기 화학식 1-b의 알파-실릴 아민 화합물을 제조하는 방법일 수 있다:
[화학식 1-b]
Figure 112014093989041-pat00019
[화학식 2]
Figure 112014093989041-pat00020
[화학식 3-b]
Figure 112014093989041-pat00021
(R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이다.)
본 발명의 일 실시예에 있어서, 상기 금속 착화합물 촉매는 루테늄 착화합물 촉매일 수 있다.
본 발명의 일 실시예에 있어서, 상기 루테늄 착화합물 촉매는 하기 구조로 표시될 수 있다:
Figure 112014093989041-pat00022
(R11 및 R12는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이고;
R13은 NR14R15, OR16, C(=O)NR17R18, C(=O)OR19이고;
R14 내지 R19는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
본 발명의 일 실시예에 있어서, 상기 루테늄 착화합물 촉매는 하기 구조로 표시될 수 있다.
Figure 112014093989041-pat00023
본 발명의 일 실시예에 있어서, 상기 광 반응은 가시광선의 조사 하에 수행될 수 있다.
본 발명의 일 실시예 있어서, 상기 화학식 3의 보로네이트 화합물은 하기 화학식 4 내지 6으로 표시되는 보로네이트 화합물로부터 선택될 수 있다:
[화학식 4]
Figure 112014093989041-pat00024
[화학식 5]
Figure 112014093989041-pat00025
[화학식 6]
Figure 112014093989041-pat00026
(R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
본 발명의 일 실시예 있어서, 상기 화학식 4 또는 5의 보로네이트 화합물을 사용하는 경우 광 반응은 상온 내지 50℃에서 실시될 수 있다.
본 발명의 일 실시예 있어서, 상기 화학식 6의 보로네이트 화합물을 사용하는 경우 트리(C1-C10)알킬보레인을 더 가할 수 있다.
본 발명의 일 실시예 있어서, 상기 루테늄 촉매 존재 하, 상온 내지 50℃에서 화학식 2의 실릴메틸 아자이드 화합물과 트리(C1-C10)알킬보레인의 혼합물에 가시광선 조사 후 -78℃ 내지 상온에서 상기 화학식 6의 보로네이트 화합물을 가할 수 있다.
본 발명의 알파-실릴아민 화합물의 제조방법은 금속 착화합물 촉재 하 온화한 조건에서 알파-실릴메틸 아자이드 화합물로부터 질소가 치환되지 않은 알파-실릴이민 중간체를 거져 다양한 알릴보로네이트 화합물과 반응하여 다양한 알파-실릴아민 화합물을 제조할 수 있었다.
또한, 본 발명의 제조방법에서 알릴보로네이트 화합물의 알릴 친핵체의 첨가반응을 통해 기존에는 만들 수 없었던 높은 부분입체 이성질 선택성(diastereoselectivity)과 거울상 이성질 선택성(enantioselectivity) 및 이중결합의 기하구조를 포함하는 다양한 입체중심(multiple stereocenters)과 치환기(functional groups)를 가진 알파-실릴아민 화합물을 원-팟으로 제조할 수 있었다.
또한, 본발명의 제조방법을 통해 제조된 알파-실릴아민 화합물은 실릴기를 활용하여 세릭 암모늄 나이트레이트 (ceric ammonium nitrate, CAN)과 같은 산화제 조건에서 이미늄 이온을 거치는 산화성 고리화 반응(iminium ion-mediated oxidative cyclization)에 사용될 수 있다.
본 발명자들은 알파-실릴아민 화합물을 효율적으로 제조할 수 있는 방법을 개발하기 위해 연구한 결과, 금속 착화합물 촉매 하 알파-실릴메틸 아자이드 화합물과 알릴보로네이트 또는 알레닐보로네이트 화합물을 광 반응시켜 기존에는 만들 수 없었던 높은 부분입체 이성질 선택성(diastereoselectivity)과 거울상 이성질 선택성(enantioselectivity) 및 이중결합의 기하구조를 포함하는 다양한 입체중심과 치환기를 갖는 알파-실릴아민 화합물을 제조하는 방법을 개발하기에 이르렀다.
본 발명은 금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3의 보로네이트 화합물을 광 반응시켜 하기 화학식 1의 알파-실릴 아민 화합물을 제조하는 방법을 제공한다:
[화학식 1]
Figure 112014093989041-pat00027
[화학식 2]
Figure 112014093989041-pat00028
[화학식 3]
Figure 112014093989041-pat00029
(R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이고;
R'와 R''가
Figure 112014093989041-pat00030
로 연결되어 고리를 형성하는 경우Y가
Figure 112014093989041-pat00031
이고 Z는
Figure 112014093989041-pat00032
이거나, Y가
Figure 112014093989041-pat00033
이고 Z는
Figure 112014093989041-pat00034
이고;
R' 및 R''가
Figure 112014093989041-pat00035
인 경우 Y가
Figure 112014093989041-pat00036
이고 Z는
Figure 112014093989041-pat00037
이고;
R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
본 발명의 제조방법은 금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3-a의 알릴보로네이트 화합물을 광 반응시켜 하기 화학식 1-a의 알파-실릴 아민 화합물을 제조하는 방법을 포함한다:
[화학식 1-a]
Figure 112014093989041-pat00038
[화학식 2]
Figure 112014093989041-pat00039
[화학식 3-a]
Figure 112015115468465-pat00128
(R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이고;
R' 및 R''가
Figure 112014093989041-pat00041
이거나, R'와 R''가
Figure 112014093989041-pat00042
로 연결되어 고리를 형성할 수 있으며;
R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
또한, 본 발명의 제조방법은 금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3-b의 알레닐보로네이트 화합물을 광 반응시켜 하기 화학식 1-b의 알파-실릴 아민 화합물을 제조하는 방법을 포함한다:
[화학식 1-b]
Figure 112014093989041-pat00043
[화학식 2]
Figure 112014093989041-pat00044
[화학식 3-b]
Figure 112014093989041-pat00045
(R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이다.)
상기 금속 착화합물 촉매는 루테늄 착화합물 촉매일 수 있으나, 이에 한정되지는 않는다.
바람직하게, 상기 루테늄 착화합물 촉매는 하기 구조로 표시된다:
Figure 112014093989041-pat00046
(R11 및 R12는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이고;
R13은 NR14R15, OR16, C(=O)NR17R18 또는 C(=O)OR19이고;
R14 내지 R19는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
보다 바람직하게, 상기 루테늄 착화합물 촉매는 하기 구조로 표시된다.
Figure 112014093989041-pat00047

본 발명의 반응을 간략하게 하기 반응식 1에 도시하였다.
[반응식 1]
Figure 112014093989041-pat00048

상기 광 반응은 가시광선의 조사 하에 수행되는 것으로, 질소에 치환기가 없는 이민 중간체를 형성할 수 있으며, 형성된 질소에 치환기가 없는 알파-실릴이민 중간체는 알릴 또는 알레닐 친핵체와 반응하여 다양한 알파-실릴아민 화합물을 제조할 수 있다. 이때 가시광선의 조사는 본 발명의 실시예와 같이 30W 가정용 형광등 이용 하에 수행될 수 있으나, 가시광선을 조사할 수 있는 것이라면 제한되지 않는다. 질소에 치환기가 없는 알파-실릴이민 중간체의 형성은 질소와 같은 불활성 기체 하에 상온 내지 50℃의 온도에서 적절한 시간동안 수행할 수 있다.
상기 화학식 2의 알파-실릴메틸 아자이드 화합물로부터 생성된 알파-실릴이민 중간체와 화학식 3의 보로네이트 화합물과의 첨가반응에 의한 알파-실릴아민 화합물의 제조는 질소 가스와 같은 불활성 기체 하에 -78℃ 내지 상온에서 수행될 수 있다.
상기 화학식 3의 보로네이트 화합물은 알릴 또는 알레닐 보로네이트 화합물로, 보다 바람직하게는 하기 하기 화학식 4 내지 6으로 표시된다:
[화학식 4]
Figure 112014093989041-pat00049
[화학식 5]
Figure 112014093989041-pat00050
[화학식 6]
Figure 112014093989041-pat00051
(R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
상기 화학식 4 또는 5의 알릴 또는 알레닐보로네이트 화합물을 사용하는 경우 질소에 치환기가 없는 알파-실릴이민 중간체의 형성은 상온 내지 50℃의 온도에서 적절한 시간동안 수행되고, 생성된 알파-실릴이민 중간체와 화학식 4 또는 5의 알릴 또는 알레닐보로네이트 화합물과의 첨가반응에 의한 알파-실릴아민 화합물의 제조는 상온에서 적절한 시간동안 수행된다.
또한, 상기 화학식 6의 알릴보로네이트 화합물을 사용하는 경우 트리(C1-C10)알킬보레인을 추가로 가할 수 있고, 보다 바람직하게는 상기 루테늄 촉매 존재 하 상온 내지 50℃에서 화학식 2의 실릴메틸 아자이드 화합물과 트리(C1-C10)알킬보레인의 혼합물에 가시광선 조사하여 질소에 치환기가 없는 알파-실릴이민 중간체를 형성한 후 -78℃ 내지 상온, 더욱 바람직하게는 -78℃에서 상기 화학식 6의 보로네이트 화합물을 가하여 알파-실릴아민 화합물을 제조할 수 있다.
상기 반응에 사용되는 화학식 1의 알파-실릴메틸 아자이드 화합물과 화학식 3의 보레이트 화합물의 당량비는 다양하게 사용할 수 있지만, 바람직하게는 1: 1.1 내지 2.0이고, 더욱 바람직하게는 1: 1.5이다. 상기 반응에 사용되는 유기 용매는 테트라하이드로퓨란, 톨루엔, 벤젠, 에틸아세테이트 등이나, 바람직하게는 테트라하이드로퓨란을 사용한다. 상기 반응에 사용되는 금속 착화합물 촉매량은 1 내지 3mol%이나, 사용되는 화학식 1의 알파-실릴메틸 아자이드 화합물의 종류에 따라 다르게 사용되며 바람직하게는 1.5 내지2 mol%이다.
본 발명의 알파-실릴아민 화합물을 제조하기 위한 반응은 알파-실릴메틸 아자이드로부터 형성된 질소에 치환기가 없는 알파-실릴이민 화합물과 보레이트 화합물과의 첨가 반응으로, 상기 보레이트 화합물의 구조에 따른 부분입체 선택적 첨가 반응 및 비대칭적 첨가 반응을 포함한다.
이하, 실시예를 통하여 본 발명의 구성을 보다 구체적으로 설명하지만, 하기의 실시예들은 본 발명에 대한 이해를 돕기 위한 것으로서, 본 발명의 범위가 여기에 국한된 것은 아니다.
실시예 1 내지 7 : 알파-수소를 갖는 실릴 아자이드로부터 생성된 질소에 치환기가 없는 이민과 알릴보레이드 화합물 사이의 첨가 반응
본 실시예에서는 하기 구조의 루테늄 착화합물 A를 촉매로 이용하여, 알파-수소를 갖는 실릴아자이드로부터 질소에 치환기가 없는 알파-실릴이민 중간체의 합성과 동시에 알릴보레이트 화합물의 연속적인 첨가반응을 수행하여 알파-실릴아민 화합물을 제조하였다.
Figure 112014093989041-pat00052
(A)
[실시예 1] 알파-실릴아민 화합물 1의 제조
루테늄 촉매 A (5.1 mg, 0.005 mmol)를 질소 대기 하에서 THF (0.25 mL)에 넣고 10분간 교반시켜 루테늄 촉매 A를 녹였다. 트리메틸실릴메틸 아자이드(Trimethylsilylmethyl azide) (32.3 mg, 0.25 mmol)와 알릴 보로닉산 피나콜 에스터(allylboronic acid pinacol ester) (68.2 μL, 0.375 mmol)를 THF (0.25 mL)에 녹인 용액을 상기 촉매 용액에 가하였다. 상기 반응 혼합물을 상온에서 30W의 형광등 조사 하에 3시간 동안 교반하였다. 교반이 완료되면 클로로포름(1 mL)을 가하여 반응을 종료시키고, 5분간 더 교반하였다. 그런 다음, 분별깔때기에 옮겨 1N HCl로 pH가 1이 될 때까지 산성화시킨 다음, 수층을 분리하였다. 그리고 수층은 0℃에서 6N NaOH로 pH가 10이 될 때까지 중화시켰다. 수층을 디에틸에테르 (5 x 5 mL)로 추출한 뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건 하에 농축하였다.
상기 농축된 용액은 추가적인 정제과정 없이 바로 디클로로메테인 (CH2Cl2, 5 mL, 0.05 M)에 녹이고, 트리에틸아민(triethylamine, 70 μL, 0.50mmol)과 파라-톨루엔설포닐 클로라이드(p-toluenesulfonyl chloride, 71.5 mg, 0.375 mmol)을 가하였다. 상기 반응 혼합물을 상온에서 12시간 교반하였다. 교반이 완료되면 물 (3 mL)를 가하여 반응을 종료시킨 뒤, 디클로로메테인 (3 x 3 mL)을 가하여 추출을 하였다. 모은 유기층은 Na2SO4로 물을 제거한뒤, 여과 후에 감압 조건에서 농축을 시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 13 cm, 전개액 - hexane: ethyl acetate = 80:20)로 정제시켜 고체의 알파-실릴아민 화합물 1 (61.7 mg, 0.208 mmol, 83% yield)을 수득하였다. Rf = 0.56 (hexane: EtOAc = 80: 20). 녹는점 109℃.
1H NMR (300 MHz, CDCl3):δ = 0.00 (s, 9H), 2.01-2.24 (m, 2H), 2.42 (s, 3H), 2.89 (dt, J = 9.6, 2.6 Hz, 1H), 4.31 (d, J = 9.6 Hz, 1H), 4.77-4.88 (m, 1H), 4.93 (dt, J= 10.2, 0.9 Hz, 1H), 5.53 (dddd, J = 17.1, 10.1, 7.8, 6.9 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H); 13C NMR (75 MHz, CDCl3): δ = -2.7, 21.7, 36.1, 43.7, 118.3, 127.5, 129.7, 135.1, 138.6, 143.4; IR: (cm-1) v 3273, 3071, 2958, 2893, 1640, 1597, 1496, 1321, 1252, 1162, 1094; HRMS(FAB+) calcd for C14H24NO2SiS: 298.1297, found: 298.1299.
[실시예 2] 알파-실릴아민 화합물 2의 제조
루테늄 촉매 A (35.6 mg, 0.035 mmol)을 질소 대기 하에서 THF (1.75 mL)에 넣고 10분간 교반 교반시켜 루테늄 촉매 A를 녹였다. 다이메틸페닐실릴메틸 아자이드(dimethylphenylsilylmethyl azide) (334.8 mg, 1.75 mmol) 와 알릴 보로닉산 피나콜 에스터(allylboronic acid pinacol ester) (0.48 mL, 0.375 mmol)를 THF (1.75 mL)에 녹인 용액을 상기 촉매 용액에 가하였다. 상기 반응 혼합물을 상온에서 30W의 형광등 조사 하에 3시간 동안 교반하였다. 교반이 완료되면 클로로포름 (3 mL)을 가하여 반응을 종료시키고, 5분간 더 교반하였다. 그런 다음, 분별깔때기에 옮겨 1N HCl로 pH가 1이 될 때까지 산성화시킨 다음, 수층을 분리하였다. 그리고 수층은 0℃에서 6N NaOH로 pH가 10이 될 때까지 중화시켰다. 수층을 디에틸에테르 (5 x 5 mL)로 추출한뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건에서 농축하였다. Preparative TLC(PTLC, 10 cm x 15 cm, 전개액- hexane: isopropylamine = 95: 5)를 통해 정제시켜 알파-실릴아민 화합물 2 (291.6 mg, 1.42 mmol, 81% yield)를 얻었다. Rf=0.34 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.34 (s, 6H), 1.17 (br s, 2H), 1.85-2.03 (m, 1H), 2.30-2.48 (m, 2H), 4.95-5.12 (m, 2H), 5.56-5.81(m, 1H), 7.30-7.44 (m, 3H), 7.52-7.63 (m, 2H); 13C-NMR (75 MHz, CDCl3): δ = -5.3, -5.0, 38.7, 40.2, 117.1, 128.1, 129.4, 134.3, 137.2, 137.2; IR: (cm-1) v 3370, 3070, 2957, 2900, 1637, 1428, 1248, 1114, 998; HRMS(ESI+) calcd for C12H20NSi: 206.1360, found: 206.1359
[실시예 3] 알파-실릴아민 화합물 3의 제조
루테늄 촉매 A (5.1 mg, 0.005 mmol)을 질소 대기 하에서 THF (0.25 mL)에 넣고 10분간 교반 교반시켜 루테늄 촉매 A를 녹였다. 메틸다이페닐실릴메틸 아자이드(methyldiphenylsilylmethyl azide) (63.3 mg, 0.25 mmol)와 알릴 보로닉산 피나콜 에스터(allylboronic acid pinacol ester) (68.2 μL, 0.75 mmol)를 THF (0.25 mL)에 녹인 용액을 상기 촉매 용액에 가하였다. 상기 반응 혼합물을 상온에서 30W의 형광등 조사 하에 3시간 동안 교반하였다. 교반이 완료되면 클로로포름 (1 mL)을 가하여 반응을 종료시키고, 5분간 더 교반하였다. 그런 다음, 반응물은 감압 조건하에서 농축시킨 다음, 헥산 (2 mL)에 녹인 후 분별깔때기에 옮겨 1N HCl로 pH가 1이 될 때까지 산성화시킨 다음, 수층을 분리하였다. 그리고 수층은 0℃에서 6N NaOH로 pH가 10이 될 때까지 중화시켰다. 수층을 디에틸에테르 (5 x 5 mL)로 추출한뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건에서 농축하였다. Preparative TLC (PTLC, 10 cm x 15 cm, 전개액- hexane: isopropylamine = 95: 5)를 통해 정제시켜 알파-실릴아민 화합물 3 (46.1 mg, 0.172 mmol, 69% yield)를 얻었다. Rf = 0.68 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.64 (s, 3H), 1.65 (br s, 2H), 2.04 (ddd, J = 13.8, 11.3, 8.7 Hz, 1H), 2.44 (ddd, J = 14.0, 5.4, 1.7 Hz, 1H), 2.85 (dd, J = 11.3, 2.9Hz, 1H), 5.02-5.12 (m, 2H), 5.74 (dddd, J = 19.1, 14.0, 5.9, 5.7 Hz, 1H), 7.32-7.47 (m, 6H), 7.58-7.66 (m, 4H); 13C NMR(75 MHz, CDCl3): δ = -6.3, 38.5, 39.2, 117.4, 128.2, 128.2, 129.7, 129.7, 135.1, 135.2, 135.3, 137.0; IR: (cm-1) v 3355, 3069, 3049, 2998, 2974, 2921, 1823, 1637, 1487, 1305, 1252, 1191, 1113, 1029, 998; HRMS (FAB+) calcd for C17H22NSi: 268.1522, found: 268.1521.
[실시예 4] 알파-실릴아민 화합물 4의 제조
트리메틸실릴메틸 아자이드 (32.3 mg, 0.25 mmol), 루테늄 촉매 A (5.1 mg, 0.005 mmol), 그리고 알레닐 보로닉 산 피나콜 에스터 (allenyl boronic acid pinacol ester, 134 μL, 0.750 mmol)을 50℃에서 30W의 형광등 조사 하에 5시간 동안 교반하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고체의 알파-실릴아민 화합물 4 (49.1 mg, 0.166 mmol, 67% yield)를 얻었다. Rf = 0.31 (hexane: EtOAc = 90: 10). 녹는점 104 ℃.
1H NMR (300 MHz, CDCl3):δ = 0.04 (s, 9H), 1.94 (t, J = 2.7Hz, 1H), 2.17 (dt, J = 17.1, 3.0 Hz, 1H), 2.32 (ddd, J = 17.1, 6.6, 2.7 Hz, 1H), 2.42 (s, 3H), 2.87 (ddd, J = 9.9, 6.6, 3.0 Hz, 1H), 4.77 (d, J = 10.2 Hz, 1H), 7.28 (d, J = 8.1Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H); 13C NMR(75 MHz, CDCl3):δ = -2.8, 21.1, 21.7, 41.9, 71.5, 81.4, 127.4, 129.8, 138.4, 143.6; IR: (cm-1) v 3306, 3063, 2957, 2925, 2854, 1724, 1651, 1599, 1494, 1327, 1289, 1252, 1184, 1094; HRMS(FAB+) calcd for C14H22NO2SiS: 296.1141, found: 296.1139.
[실시예 5] 알파-실릴아민 화합물 5의 제조
다이메틸페닐실릴메틸 아자이드 (47.8 mg, 0.25 mmol), 루테늄 촉매 A (5.1 mg, 0.005 mmol), 그리고 알레닐 보로닉 산 피나콜 에스터 (allenyl boronic acid pinacol ester, 134 μL, 0.750 mmol)을 50℃에서 30W의 형광등 조사 하에 3시간 동안 교반하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 알파-실릴아민 화합물 5 (40.9 mg, 0.201 mmol, 80% yield)를 얻었다. Rf = 0.61 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3):δ = 0.37 (s, 6H), 1.41 (br s, 2H), 2.00 (t, J = 2.6Hz, 1H), 2.16 (ddd, J = 16.8, 9.9, 2.6 Hz, 1H), 2.40 (ddd, J = 16.8, 3.9, 2.7 Hz, 1H), 2.53 (dd, J = 9.9, 3.9Hz, 1H), 7.36-7.44 (m, 3H), 7.53-7.62(m, 2H); 13C NMR(75 MHz, CDCl3): δ = -5.1, -5.1, 24.7, 40.4, 70.2, 83.3, 128.1, 129.6, 134.2, 136.5; IR: (cm-1) v 3304, 3069, 2049, 2957, 2899, 1489, 1488, 1427, 1250, 1113, 998; HRMS(ESI+) calcd for C12H18NSi: 204.1203, found: 204.1203.
[실시예 6] 알파-실릴아민 화합물 6의 제조
메틸다이페닐실릴메틸 아자이드 (63.3 mg, 0.25 mmol), 루테늄 촉매 A (5.1 mg, 0.005 mmol), 그리고 알레닐 보로닉 산 피나콜 에스터 (allenyl boronic acid pinacol ester, 134 μL, 0.750 mmol)을 50℃에서 30W의 형광등 조사 하에 3시간 동안 교반하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로 알파-실릴아민 화합물 6 (56.5 mg, 0.213 mmol, 85% yield)를 얻었다. Rf = 0.76 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.65 (s, 3H), 1.57 (br s, 2H), 2.02 (t, J = 2.7 Hz, 1H), 2.25 (ddd, J = 16.8, 7.5, 2.5 Hz, 1H), 2.49 (ddd, J = 16.8, 3.3, 2.8 Hz, 1H), 2.97 (dd, J = 10.5, 3.6 Hz, 1H), 7.33-7.49 (m, 6H), 7.61-7.71 (m, 4H); 13C NMR (75 MHz, CDCl3): δ = -6.3, 24.7, 39.4, 70.3, 83.2, 128.2, 129.9, 129.9, 134.6, 134.8, 135.1, 135.2; IR: (cm-1) v 3364, 3293, 3069, 3048, 2957, 2922, 1489, 1487, 1428, 1253, 1191, 1113, 998; HRMS(ESI+) calcd for C17H20NSi: 266.1360, found: 266.1360.
[실시예 7] 알파-실릴아민 화합물 7의 제조
트리메틸실릴메틸 아자이드 (32.3 mg, 0.25 mmol), 루테늄 촉매 A (5.1 mg, 0.005 mmol), 그리고 3,3-다이메틸알릴 보로닉산 피나콜 에스터 (3,3-Dimethylallylboronic acid pinacol ester) (83 μL, 0.375 mmol)을 50℃에서 30W의 형광등 조사 하에 5시간 동안 교반하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고체의 알파-실릴아민 화합물 7 (56.4 mg, 0.173 mmol, 69% yield)를 얻었다. Rf = 0.49 (hexane: EtOAc = 90: 10). 녹는점 153 ℃.
1H NMR (500 MHz, CDCl3): δ = 0.02 (s, 9H), 0.88 (s, 3H), 0.94 (s, 3H), 2.40 (s, 3H), 2.95 (d, J = 10.0 Hz, 1H), 4.25 (d, J = 10.0 Hz, 1H), 4.93-5.21 (m, 2H), 5.68 (dd, J = 17.5, 10.5 Hz, 1H), 7.26 (d, J = 8.0Hz, 2H), 7.72 (d, J = 8.0Hz, 2H); 13C NMR (125MHz, CDCl3): δ = 0.1, 21.7, 25.5, 27.2, 41.8, 55.0, 112.9, 127.1, 129.6, 139.8, 143.0, 146.0; IR: (cm-1) v 3302, 3081, 3062, 2967, 2933, 1639, 1598, 1497, 1380, 1252, 1155, 1094; HRMS (ESI+) calcd for C16H27NO2SSiNa: 348.1424, found: 348.1425.
상기 실시예 1 내지 7로부터 알파-수소를 갖는 실릴 아자이드로부터 생성된 질소에 치환기가 없는 이민과 알릴보레이드 화합물 사이의 첨가 반응에 의해 높은 수율로 알파-실릴아민 화합물이 생성됨을 확인하였다.
실시예 8 내지 14 : 알파-수소를 갖는 실릴 아자이드로부터 생성된 질소에 치환기가 없는 이민과 알릴보레이드 화합물 사이의 부분 입체 선택적 첨가 반응
본 실시예에서는 루테늄 착화합물 A를 촉매로 이용하여, 알파-수소를 갖는 실릴아자이드로부터 질소에 치환기가 없는 알파-실릴이민 중간체의 합성과 동시에 알릴보레이트 화합물의 부분 입체 선택적 첨가반응을 수행하여 알파-실릴아민 화합물을 제조하였다.
[실시예 8] 알파-실릴아민 화합물 8의 제조
트리메틸실릴메틸 아자이드 (38.8 mg, 0.30 mmol), 루테늄 촉매 A (6.1 mg, 0.006 mmol), 그리고 시스-크로틸보로닉 산 피나콜 에스터 (cis-crotylboronic acid pinacol ester) (81.9 mg, 0.45 mmol)을 상온에서 30W의 형광등 조사 하에 5시간 동안 교반하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고체의 알파-실릴아민 화합물 8 (77.6 mg, 0.249 mmol, 83% yield)를 얻었다. Rf = 0.24 (hexane: EtOAc = 90: 10). 녹는점 129 ℃.
1H NMR (300 MHz, CDCl3): δ = 0.01 (s, 9H), 0.90 (d, J = 7.2 Hz, 3H), 2.18-2.30 (m, 1H), 2.41 (s, 3H), 2.86 (dd, J = 9.9, 4.2 Hz, 1H), 4.35-4.51 (m, 1H), 4.73-4.92 (m, 2H), 5.55 (ddd, J = 17.1, 10.2, 8.7 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H); 13C NMR (75MHz, CDCl3): δ = -1.2, 17.9, 21.7, 41.8, 49.6, 115.4, 127.3, 129.7, 138.9, 141.7, 143.3; IR: (cm-1) v 3281, 2961, 2851, 1597, 1496, 1319, 1253, 1158, 1094; HRMS(FAB+) calcd for C15H26NO2SiS: 312.1454, found: 312.1451.
[실시예 9] 알파-실릴아민 화합물 9의 제조
트리메틸실릴메틸 아자이드 (38.8 mg, 0.30 mmol), 루테늄 촉매 A (6.1 mg, 0.006 mmol), 그리고 트랜스-크로틸보로닉 산 피나콜 에스터 (trans-crotylboronic acid pinacol ester) (86.2 mg, 0.45 mmol)을 상온에서 30W의 형광등 조사 하에 5시간 동안 교반하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고체의 알파-실릴아민 화합물 9 (76.9 mg, 0.247 mmol, 82% yield)를 얻었다. Rf = 0.24 (hexane: EtOAc = 90: 10). 녹는점 142 ℃.
1H NMR (300 MHz, CDCl3): δ = -0.03 (s, 9H), 0.89 (d, J = 6.9 Hz, 1H), 2.38-2.50 (m, 4H), 2.87 (dd, J = 9.6, 3.6 Hz, 1H), 4.21-4.39 (m, 1H), 4.90-5.08 (m, 2H), 5.62 (ddd, J= 17.1, 10.5, 6.9 Hz, 1H), 7.24-7.31 (m, 2H), 7.74 (d, J = 8.4Hz, 2H); 13C NMR (75 MHz, CDCl3):δ = -1.7, 17.9, 21.7, 40.1, 49.7, 115.5, 127.3, 129.7, 138.9, 140.8, 143.2; IR: (cm-1) v 3277, 2961, 1598, 1496, 1321, 1290, 1253, 1094; HRMS(FAB+) calcd for C15H26NO2SiS: 312.1454, found: 312.1451.
[실시예 10] 알파-실릴아민 화합물 10의 제조
트리메틸실릴메틸 아자이드 (34.9 mg, 0.27 mmol), 루테늄 촉매 A (5.4 mg, 0.0054 mmol), 그리고 트랜스-2-노네닐보로닉 산 피나콜 에스터 (trans-non-2-enylboronic acid pinacol ester) (102.1 mg, 0.405 mmol)을 상온에서 30W의 형광등 조사 하에 3시간 동안 교반하는 것을 제외하고는 상기 실시예 3과 동일한 방법으로 알파-실릴아민 화합물 10 (47.1 mg, 0.207 mmol, 77% yield)를 얻었다. Rf = 0.49 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.05 (s, 9H), 0.87 (t, J = 6.6 Hz, 3H), 1.18-1.49 (m, 12H), 2.03-2.21 (m, 2H), 4.92-5.12 (m, 2H), 5.63 (dq, J = 10.4, 8.7 Hz, 1H); 13C NMR (75 MHz, CDCl3): δ= -2.1, 14.3, 22.9, 27.6, 29.5, 32.1, 32.3, 45.0, 48.0, 116.2, 140.9; IR: (cm-1) v 3370, 2956, 2926, 2856, 1467, 1247, 912; HRMS(ESI+) calcd for C13H30NSi: 228.2142, found: 228.2142.
[실시예 11] 알파-실릴아민 화합물 11의 제조
트리메틸실릴메틸 아자이드 (32.3 mg, 0.25 mmol), 루테늄 촉매 A (5.1 mg, 0.005 mmol), 그리고 시나밀 보로닉 산 피나콜 에스터 (cinnamyl boronic acid pinacol ester) (91.6 mg, 0.375 mmol)을 상온에서 30W의 형광등 조사 하에 3시간 동안 교반하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 알파-실릴아민 화합물 11 (41.4 mg, 0.189 mmol, 76% yield)를 얻었다. Rf = 0.49 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3): δ = -0.15 (s, 9H), 1.23 (br s, 2H), 2.49 (d, J = 8.7 Hz, 1H), 3.27 (t, J = 9.0 Hz, 1H), 5.10-5.25 (m, 2H), 6.01 (dt, J = 17.4, 9.6 Hz, 1H), 7.15-7.34 (m, 5H); 13C NMR (75 MHz, CDCl3): δ = -2.7, 45.7, 55.5, 116.5, 126.7, 128.2, 128.8, 140.5, 143.4; IR: (cm-1) v 3371, 3027, 2953, 1688, 1493, 1452, 1247, 992; HRMS(FAB+) calcd for C13H22NSi: 220.1522, found: 220.1524.
[실시예 12] 알파-실릴아민 화합물 12의 제조
트리메틸실릴메틸 아자이드 (172.3 mg, 1.33 mmol), 루테늄 촉매 A (27.0 mg, 0.025 mmol), 그리고 트랜스-2-옥텐-4-일 산 피나콜 에스터 (trans-oct-2-en-4-yl boronic acid pinacol ester) (476.4 mg, 2.0 mmol)을 상온에서 30W의 형광등 조사 하에 6시간 동안 교반하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 알파-실릴아민 화합물 12 (201.3 mg, 0.190 mmol, 71% yield)를 얻었다. Rf = 0.46 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.06 (s, 9H), 0.85-0.93 (m, 3H), 0.97 (d, J = 6.9 Hz, 3H), 1.23-1.40 (m, 6H), 1.93-2.15 (m, 3H), 2.56 (dquint, J = 9.6, 6.9 Hz, 1H), 5.21 (tt, J = 10.4, 1.5 Hz, 1H), 5.40 (dt, J = 10.8, 7.2 Hz, 1H); 13C NMR (75 MHz, CDCl3): δ = -2.1, 14.2, 19.8, 22.6, 27.6, 32.3, 36.1, 47.0, 130.3, 134.0; IR: (cm-1) v 3447, 2957, 2928, 2859, 1459, 1372, 1247, 836; HRMS(ESI+) calcd for C12H28NSi: 214.1986, found: 214.1986.
[실시예 13] 알파-실릴아민 화합물 13의 제조
다이메틸페닐실릴메틸 아자이드 (191.3 mg, 1.0 mmol), 루테늄 촉매 A (20.4 mg, 0.02 mmol), 그리고 시스-크로틸보로닉 산 피나콜 에스터 (273 mg, 1.5 mmol)을 상온에서 30W의 형광등을 쬐어주면서 3시간 동안 교반하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 알파-실릴아민 화합물 13 (164.2 mg, 0.748 mmol, 75% yield)를 얻었다. Rf = 0.30 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.37 (s, 3H), 0.37 (s, 3H), 0.94 (d, J = 6.9 Hz, 3H), 1.07 (br s, 2H), 2.30-2.41 (m, 1H), 2.43 (d, J = 4.2 Hz, 1H), 4.90-5.09 (m, 2H), 5.77 (ddd, J = 17.1, 10.5, 6.3 Hz, 1H), 7.34-7.43 (m, 3H), 7.55-7.68 (m, 2H); 13C NMR (75 MHz, CDCl3): δ = -3.9, -3.3, 15.0, 40.7, 45.8, 114.0, 128.0, 129.3, 134.3, 138.2, 143.3; IR: (cm-1) v 3371, 3069, 3050, 2960, 2872, 1821, 1635, 1454, 1374, 1248, 1191, 1060, 988; HRMS(FAB+) calcd for C13H22NSi: 220.1522, found: 220.1524.
[실시예 14] 알파-실릴아민 화합물 14의 제조
다이메틸페닐실릴메틸 아자이드 (53.5 mg, 0.28 mmol), 루테늄 촉매 A (5.7 mg, 0.006 mmol), 그리고 트랜스-크로틸보로닉 산 피나콜 에스터 (76.5 mg, 0.42 mmol)을 상온에서 30W의 형광등을 쬐어주면서 3시간 동안 교반하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 알파-실릴아민 화합물 14 (49.3 mg, 0.225 mmol, 80% yield)를 얻었다. Rf = 0.30 (CH2Cl2: MeOH = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.37 (s, 6H), 1.00 (d, J = 6.6 Hz, 3H), 1.24 (br s, 2H), 2.23-2.40 (m, 2H), 4.92-5.09 (m, 2H), 5.61-5.77 (m, 1H), 7.31-7.42 (m, 3H), 7.52-7.61 (m, 2H); 13C NMR (75 MHz, CDCl3): δ = -4.0, -3.5, 18.7, 42.1, 46.1, 115.0, 128.0, 129.2, 134.2, 138.4, 142.3; IR: (cm-1) v 3371, 3069, 2959, 2927, 1637, 1487, 1458, 1248, 1112, 998; HRMS(FAB+) calcd for C13H22NSi: 220.1522, found: 220.1523.
상기 실시예 8 내지 14로부터 알파-수소를 갖는 실릴 아자이드로부터 생성된 질소에 치환기가 없는 이민과 알릴보레이드 화합물 사이의 부분 입체 선택적 첨가 반응에 의해 높은 수율로 알파-실릴아민 화합물이 생성됨을 확인하였다.
하기 표 1에 실시예 1 내지 14에서 사용된 알파-실릴아자이드 화합물, 알릴보레이트 화합물 및 생성된 알파-실릴아민 화합물의 구조를 나타내었다.
실시예 반응물 생성물
알파-실릴아자이드 화합물 알릴보레이트 화합물 알파-실릴아민 화합물
1
Figure 112014093989041-pat00053
Figure 112014093989041-pat00054
Figure 112014093989041-pat00055
2
Figure 112014093989041-pat00056
Figure 112014093989041-pat00057
Figure 112014093989041-pat00058
3
Figure 112014093989041-pat00059
Figure 112014093989041-pat00060
Figure 112014093989041-pat00061
4
Figure 112014093989041-pat00062
Figure 112014093989041-pat00063
Figure 112014093989041-pat00064
5
Figure 112014093989041-pat00065
Figure 112014093989041-pat00066
Figure 112014093989041-pat00067
6
Figure 112014093989041-pat00068
Figure 112014093989041-pat00069
Figure 112014093989041-pat00070
7
Figure 112014093989041-pat00071
Figure 112014093989041-pat00072
Figure 112014093989041-pat00073
8
Figure 112014093989041-pat00074
Figure 112014093989041-pat00075
Figure 112014093989041-pat00076
9
Figure 112014093989041-pat00077
Figure 112014093989041-pat00078
Figure 112014093989041-pat00079
10
Figure 112014093989041-pat00080
Figure 112014093989041-pat00081
Figure 112014093989041-pat00082
11
Figure 112014093989041-pat00083
Figure 112014093989041-pat00084
Figure 112014093989041-pat00085
12
Figure 112014093989041-pat00086
Figure 112014093989041-pat00087
Figure 112014093989041-pat00088
13
Figure 112014093989041-pat00089
Figure 112014093989041-pat00090
Figure 112014093989041-pat00091
14
Figure 112014093989041-pat00092
Figure 112014093989041-pat00093
Figure 112014093989041-pat00094
실시예 15 내지 20 : 알파-수소를 갖는 실릴 아자이드로부터 생성된 질소에 치환기가 없는 이민과 알릴보레이드 화합물 사이의 비대칭적 첨가 반응
본 실시예에서는 루테늄 착화합물 A를 촉매로 이용하여, 알파-수소를 갖는 실릴아자이드로부터 질소에 치환기가 없는 알파-실릴이민 중간체의 합성과 동시에 알릴보레이트 화합물의 비대칭적 첨가반응을 수행하여 알파-실릴아민 화합물을 제조하였다.
[실시예 15] 알파-실릴아민 화합물 (R) -15의 제조
Figure 112014093989041-pat00095
루테늄 촉매 A (15.3 mg, 0.015 mmol)을 질소 대기 하에서 THF (0.25 mL)에 넣고 10분간 교반 교반시켜 루테늄 촉매 A를 녹였다. 트리메틸실릴메틸 아자이드 (102.0 mg, 0.75 mmol)와 트리에틸보레인(triethylborane, 1M solution in hexane, 0.9 mL, 0.9 mmol)을 THF (0.75 mL)에 녹인 용액을 상기 촉매 용액에 가하였다. 상기 반응 혼합물을 상온에서 30W의 형광등 조사 하에 1시간 동안 교반한 다음, -78℃로 냉각시켰다. (-)-Ipc2B(allyl)borane (1M solution, 1.13 mL, 1.13 mmol)과 THF (0.75 mL)을 혼합하고 -78℃로 냉각시켰다. 상기 반응 혼합물을 -78℃로 유지한 채 보레인 용액이 있는 쪽으로 double-ended needle을 이용하여 옮긴 후 -78℃에서 10시간 동안 교반을 한 다음, 클로로포름 (1 mL)을 첨가하여 반응을 종료시켰다. 그런 다음, 반응물을 분별깔때기에 옮긴 뒤에 1N HCl로 pH가 1이 될 때까지 산성화시킨 다음, 수층을 분리하였다. 그리고 수층은 0℃에서 6N NaOH로 pH가 10이 될 때까지 중화시켰다. 수층을 디에틸에테르 (5 x 5 mL)로 추출한뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건 하에 농축하였다.
농축된 용액은 추가적인 정제과정 없이 디클로로메테인 (CH2Cl2, 15 mL, 0.05 M)에 녹인 뒤 다이-터트-부틸 다이카보네이트 (Boc2O, 246 mg, 1.13 mmol)를 가하였다. 상기 반응 혼합물을 상온에서 18시간 교반한 다음, 물(10 mL)을 가하여 반응을 종료시킨뒤, 디클로로메테인 (3 x 10 mL)을 가하여 추출하였다. 모은 유기층은 Na2SO4로 물을 제거한 뒤, 여과 후 감압 조건에서 농축시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 13 cm, 전개액 - hexane: diethyl ether = 90:10)를 통해 정제시켜 알파-실릴아민 화합물 (R) -15 (109.9 mg, 0.452 mmol, 60% yield)을 수득하였다. Enantiomeric excess 값은 (R) -16을 통해 측정하였다. Rf = 0.28 (hexane: Ether = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.04 (s, 9H), 1.41 (s, 9H), 1.90-2.13 (m, 1H), 2.25-2.38 (m, 1H), 3.00-3.27 (m, 1H), 3.95-4.31 (m, 1H), 4.95-5.08 (m, 1H), 5.79 (ddt, J = 16.8, 9.9, 6.9 Hz, 1H); 13C NMR (75 MHz, CDCl3): δ = -3.0, 28.6, 36.3, 40.5, 79.0, 116.6, 136.7, 156.4; IR: (cm-1) v 3448, 3343, 2978, 2931, 2900, 1700, 1640, 1498, 1366, 1250, 1174; HRMS(FAB+) calcd for C12H26NO2Si: 244.1727, found: 244.1725. [α]D 20 +28.3 (c 1.2, CHCl3).
[실시예 16] 알파-실릴아민 화합물 (R) -16의 제조
Figure 112014093989041-pat00096
루테늄 촉매 A (15.3 mg, 0.015 mmol)을 질소 대기 하에서 THF (0.25 mL)에 넣고 10분간 교반 교반시켜 루테늄 촉매 A를 녹였다. 트리메틸실릴메틸 아자이드 (102.0 mg, 0.75 mmol)와 트리에틸보레인(triethylborane, 1M solution in hexane, 0.9 mL, 0.9 mmol)을 THF (0.75 mL)에 녹인 용액을 상기 촉매 용액에 가하였다. 상기 반응 혼합물을 상온에서 30W의 형광등 조사 하에 1시간 동안 교반한 다음, -78℃로 냉각시켰다. (-)-Ipc2B(allyl)borane (1M solution, 1.13 mL, 1.13 mmol)과 THF (0.75 mL)을 혼합하고 -78℃로 냉각시켰다. 상기 반응 혼합물을 -78℃로 유지한 채 보레인 용액이 있는 쪽으로 double-ended needle을 이용하여 옮긴 후 -78℃에서 10시간 동안 교반을 한 다음, 클로로포름 (1 mL)을 첨가하여 반응을 종료시켰다. 그런 다음, 반응물을 분별깔때기에 옮긴 뒤에 1N HCl로 pH가 1이 될 때까지 산성화시킨 다음, 수층을 분리하였다. 그리고 수층은 0℃에서 6N NaOH로 pH가 10이 될 때까지 중화시켰다. 수층을 디에틸에테르 (5 x 5 mL)로 추출한뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건 하에 농축하였다.
상기 농축된 용액은 추가적인 정제과정 없이 파라-톨루엔설포닐 클로라이드 를 이용하여 상기 실시예 1의 방법으로 N-파라-톨루엔설포닐 치환된 알파-실릴아민 화합물 (R) -16 (41% yield)을 제조하였다.
Enantiomeric excess (87%) of was deteremined by HPLC on a Chiralcel OD column (hexane: 2-propanol = 98: 2; flow rate = 1.0 mL/min; UV = 254 nm); retention time = 15.3 min ( R ), 18.8m in ( S ); [α]D 20 +8.9 (c 0.81, CHCl3)
[실시예 17] 알파-실릴아민 화합물 (R) -17의 제조
Figure 112014093989041-pat00097
루테늄 촉매 A (5.1 mg, 0.005 mmol)을 질소 대기 하에서 THF (0.25 mL) 에 넣고 10분간 교반시켜 루테늄 촉매 A를 녹였다. 다이메틸페닐실릴메틸 아자이드 (47.8 mg, 0.25 mmol) 와 트리에틸보레인(triethylborane, 1M solution in THF, 0.30 mL, 0.30 mmol)을 THF (0.25 mL)에 녹인 용액을 상기 촉매 용액에 가하였다. 상기 반응 혼합물을 상온에서 30W 의 형광등 조사 하에 1시간 동안 교반한 다음, -78℃로 냉각시켰다. (-)-Ipc2B(allyl)borane (1M solution, 0.38 mL, 0.38 mmol)과 THF (1.6 mL)을 혼합하고 -78℃로 냉각시켰다. 상기 반응 혼합물을 -78℃로 유지한 채 보레인 용액이 있는 쪽으로 double-ended needle을 이용하여 옮긴 후 -78℃에서 10시간 동안 교반을 한 다음, 클로로포름 (1 mL)을 첨가하여 반응을 종료시켰다. 그런 다음, 반응물을 분별깔때기에 옮긴 뒤에 1N HCl로 pH가 1이 될 때까지 산성화시킨 다음, 수층을 분리하였다. 그리고 수층은 0℃에서 6N NaOH로 pH가 10이 될 때까지 중화시켰다. 수층을 디에틸에테르 (5 x 5 mL)로 추출한뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건 하에 농축하였다. Preparative TLC (PTLC, 10 cm x 15 cm, 전개액- hexane: isopropylamine = 95: 5)를 통해 정제하여 알파-실릴아민 화합물 (R) -17 (31.8 mg, 0.155 mmol, 62% yield)를 얻었다. Rf=0.34 (CH2Cl2: MeOH = 90: 10). [α]D 22 +11.6 (c 0.43, CHCl3).
[실시예 18] 알파-실릴아민 화합물 (R) -18의 제조
Figure 112014093989041-pat00098
알파-실릴아민 화합물 (R) -17 (28.7 mg, 0.14 mmol)과 트리에틸아민(39 μL, 0.28 mmol)을 THF (0.7 mL, 0.2 M)에 녹인 용액에 벤질클로로포메이트(benzylchloroformate) (21 μL, 0.21 mmol)을 가하였다. 상기 반응 혼합물을 상온에서 5시간 동안 교반한 다음, 물(3 mL)을 가하여 반응을 종료시킨뒤, 디클로로메테인 (3 x 3 mL)을 가하여 추출하였다. 모은 유기층은 Na2SO4로 물을 제거한 뒤, 여과 후 감압 조건에서 농축시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 15 cm, 전개액 - hexane: ethyl acetate = 90: 10)를 통해 정제시켜 알파-실릴아민 화합물 (R) -18 (34.0mg, 0.10 mmol, 72% yield)을 얻었다. Rf = 0.38 (hexane: EtOAc = 90: 10).
1H NMR (300 MHz, CDCl3): δ = 0.36 (s, 6H), 2.04 (dt, J = 14.4, 8.1 Hz, 1H), 2.36-2.51 (m, 1H), 3.49 (td, J = 10.2, 4.2 Hz, 1H), 4.43 (d, J = 10.2Hz, 1H), 4.92-5.13(m, 4H), 5.63-5.88 (m, 1H) ,7.30-7.42 (m, 8H), 7.50-7.59 (m, 2H); 13C NMR (75 MHz, CDCl3): δ = -4.7, -4.3, 36.4, 40.9, 66.8, 117.0, 128.2, 128.2, 128.7, 129.8, 134.2, 136.2, 156.9; IR: (cm-1) v 3424, 3330, 3069, 3033, 2960, 1954, 1882, 1816, 1699, 1505, 1428, 1375, 1250, 1113, 1059; HRMS(ESI+) calcd for C20H25NO2SiNa: 362.1547, found: 362.1546.
[실시예 19] 알파-실릴아민 화합물 (R) -19의 제조
Figure 112014093989041-pat00099
트리메틸실릴메틸 아자이드 (129.2 mg, 1.00 mmol), 루테늄 촉매 A (20.4 mg, 0.020 mmol), 그리고 (R)-트랜스-2-옥텐-4-일 산 피나콜 에스터 (trans-oct-2-en-4-yl boronic acid pinacol ester) (357.3 mg, 1.5 mmol)을 상온에서 30W의 형광등 조사 하에 6시간 동안 교반하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 알파-실릴아민 화합물 (R) -19 (170.7 mg, 0.80 mmol, 80% yield)를 얻었다. Rf = 0.46 (CH2Cl2: MeOH = 90: 10). Enantiomeric excess 값은 (R) -20을 통해 측정하였다. [α]D 20+30.0 (c 0.50, CHCl3).
[실시예 20] 알파-실릴아민 화합물 (R) -20의 제조
Figure 112014093989041-pat00100
알파-실릴아민 화합물 (R) -19 및 파라-톨루엔설포닐 클로라이드를 이용하여 상기 실시예 1의 방법으로 N-파라-톨루엔설포닐 치환된 알파-실릴아민 화합물 (R) -20 (140.7 mg, 0.383 mmol, 83% yield)를 얻었다. Rf = 0.45 (hexane: EtOAc = 90: 10). m.p.108 ℃.
1H NMR (500 MHz, CDCl3): δ = 0.11 (s, 9H), 0.98 (d, J = 6.5 Hz, 3H), 2.41 (s, 3H), 2.50-2.62 (m, 1H), 3.20-3.32 (m, 1H), 3.62 (dd, J = 16.0, 6.5 Hz, 1H), 3.99 (dd, J = 16.0, 6.5 Hz, 1H), 4.63 (d, J = 10.5 Hz, 1H), 4.76 (d, J = 17.0 Hz, 1H), 5.07-5.21 (m, 2H), 5.39 (ddd, J = 17.0, 10.0, 8.4 Hz, 1H), 5.91 (ddd, J = 17.0, 10.0, 6.5 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H); 13C NMR (75 MHz, CDCl3): δ = 0.1, 19.7, 21.7, 39.9, 51.5, 57.0, 114.1, 115.6, 127.8, 129.4, 136.4, 139.1, 142.8, 144.1; IR: (cm-1) v 3428, 2957, 2929, 1645, 1320, 1253, 1160, 1095, 1015, 837; HRMS(ESI+) calcd for C19H33NO2SSiNa: 390.1893, found: 390.1891.
Enantiomeric excess (89%) was deteremined by HPLC on a Chiralcel ID column (hexane: 2-propanol = 98: 2; flow rate = 0.6 mL/min; UV = 254 nm); retention time = 25.7 min ( R ), 27.6min ( S ); [α]D 20+30.0(c 0.37, CHCl3).
상기 실시예 15 내지 20으로부터 알파-수소를 갖는 실릴 아자이드로부터 생성된 질소에 치환기가 없는 이민과 알릴보레이드 화합물 사이의 비대칭적 첨가 반응에 의해 높은 수율로 알파-실릴아민 화합물이 생성됨을 확인하였다.
[실시예 21] 알파-실릴아민 화합물로부터 아자고리 화합물(azacycle) 34의 제조 I
Figure 112014093989041-pat00101
화합물 31의 제조
i) 중간체 S1의 제조
루테늄 촉매 A (61.1 mg, 0.060 mmol)를 질소 대기 하에서 THF (4.0 mL)에 넣고 10분간 교반시켜 루테늄 촉매 A를 녹였다. 트리메틸실릴메틸 아자이드(Trimethylsilylmethyl azide) (517 mg, 4.0 mmol)와 트랜스-크로틸보로닉 산 피나콜 에스터(trans-crotylboronic acid pinacol ester) (1.09 g, 6.0 mmol)를 THF (4.0 mL)에 녹인 용액을 상기 촉매 용액에 가하였다. 상기 반응 혼합물을 상온에서 30W의 형광등 조사 하에 3시간 동안 교반하였다. 교반이 완료되면 클로로포름(3 mL)을 가하여 반응을 종료시키고, 5분간 더 교반하였다. 그런 다음, 분별깔때기에 옮겨 1N HCl로 pH가 1이 될 때까지 산성화시킨 다음, 수층을 분리하였다. 그리고 수층은 0℃에서 6N NaOH로 pH가 10이 될 때까지 중화시켰다. 수층을 디에틸에테르 (5 x 10 mL)로 추출한 뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건 하에 농축하였다.
상기 농축된 용액은 추가적인 정제과정 없이 바로 디메틸 포름아미드 (DMF, 16 mL, 0.25 M)에 녹였다. 이 용액에 알릴 브로마이드 (0.38 mL, 4.4 mmol)와 포타슘 카보네이트 (K2CO3, 1.1 g, 8.0 mmol)를 가해주었다. 반응물은 상온에서 12시간 동안 교반하고, 10 mL의 물을 가하여 반응을 종료시켰다. 그런 다음, 반응물을 분별깔때기에 옮기고, 유기층과 수층을 분리한 후에 수층은 디클로로메테인 (3 x 10 mL)로 추출하였다. 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건에서 농축하였다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 13 cm, 전개액 - hexane: ethyl acetate = 80:20)로 정제시켜 화합물S1 (609 mg, 3.09 mmol, 77% yield)를 수득하였다. Rf = 0.62 (hexane: EtOAc = 80: 20).
1H NMR (300 MHz, CDCl3): δ = 0.05 (s, 9H), 1.06 (d, J = 6.8 Hz, 3H), 1.68-1.80 (m, 2H), 2.28-2.43 (m, 4H), 2.69 (dt, J = 13.2, 2.9 Hz, 1H), 3.50-3.58 (m, 1H), 5.08-5.19 (m, 2H), 5.56-5.73 (m, 2H), 5.83-6.01 (m, 1H), 7.24 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H); 13C NMR (75 MHz, CDCl3): δ = -1.0, 18.6, 40.0, 53.2, 53.4, 113.9, 115.8, 137.8, 143.5; IR: (cm-1) v 3449, 3078, 2960, 2929, 1736, 1642, 1454, 1418, 1373, 1248, 1099, 996; HRMS(ESI+) calcd for C11H24NSi: 198.1673, found: 198.1672.
ii) 중간체S2의 제조
화합물S1 (600 mg, 3.04 mmol)을 디클로로메테인 (CH2Cl2, 32 mL, 0.05 M)에 녹인 뒤 다이-터트-부틸 다이카보네이트 (Boc2O, 1.09 g, 5.01 mmol)를 가하였다. 상기 반응 혼합물을 상온에서 18시간 교반한 다음, 물(30 mL)을 가하여 반응을 종료시킨뒤, 디클로로메테인 (3 x 30 mL)을 가하여 추출하였다. 모은 유기층은 Na2SO4로 물을 제거한 뒤, 여과 후 감압 조건에서 농축시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 13 cm, 전개액 - hexane: EtOAc = 90:10)를 통해 정제시켜 화합물 S2 (817 mg, 2.75 mmol, 90% yield)을 수득하였다. Rf = 0.75 (hexane: EtOAc = 90:10).
1H NMR (300 MHz, CDCl3): δ = 0.08 (s, 9H), 0.98 (d, J = 6.6 Hz, 3H), 1.41 (s, 9H), 2.26-2.48 (m, 1H), 2.80-2.97 (m, 1H), 3.34 (dd, J = 15.2, 7.4 Hz, 0.7H), 3.44-3.60 (m, 0.3H), 3.98 (dd, J = 15.0, 5.9 Hz, 0.7H), 4.05-4.13 (m, 0.3H), 4.86-5.21 (m, 4H), 5.64 (ddd, J = 17.1, 10.2, 8.9 Hz, 1H), 5.71-5.88 (m, 1H); 13C NMR (75 MHz, CDCl3): δ = 0.1, 19.1, 28.9, 38.8, 56.3, 78.9, 113.9, 116.6, 135.8, 144.0, 155.4; IR: (cm-1) v 3079, 2979, 2934, 2903, 1813, 1759, 1688, 1640, 1457, 1248, 1120; HRMS(ESI+) calcd for C16H31NO2SSiNa: 320.2016, found: 320.2021.
iii) 화합물 31의 제조
화합물S2 (803 mg, 2.7 mmol)과 Grubbs catalyst (1st generation, 44.4 mg, 5.4 mmol)을 디클로로메테인 (54 mL, 0.05 M)에 녹이고 상온에서 12시간 동안 교반시켰다. 상기 반응 혼합물을 감압 조건에서 농축시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 13 cm, 전개액 - hexane: EtOAc = 90:10)를 통해 정제시켜 화합물 31 (551 mg, 2.04 mmol, 76% yield)을 수득하였다. Rf = 0.53 (hexane: EtOAc = 90:10).
1H NMR (300 MHz, CDCl3): δ = 0.01 (s, 9H), 0.98-1.10 (m, 3H), 1.45 (s, 9H), 2.32-2.48 (m, 1H), 3.39-3.70 (m, 2H), 4.10-4.39 (m, 1H), 5.45-5.59 (m, 1H), 5.70-5.73 (m, 1H); 13C NMR (75 MHz, CDCl3): δ = -1.9, -1.8, 21.7, 21.8, 28.7, 30.5, 30.7, 42.1, 43.0, 47.1, 48.7, 79.2, 79.3, 122.8, 123.4, 130.5, 131.1, 155.7, 155.9; IR: (cm-1) v 3079, 2979, 2934, 2903, 1813, 1688, 1640, 1457, 1372, 1248, 1120, 1073; HRMS(ESI+) calcd for C14H27NO2SSiNa: 292.1703, found: 292.1703.
화합물 32의 제조
화합물 31 (500 mg, 1.86 mmol)과 Pd/C (22.4 mg)를 메탄올 (18.6 mL, 0.1 M)에서 녹이고 상온, 수소 대기 하에서 6시간 동안 교반하였다. 상기 반응 혼합물을 여과 후에 감압 조건에서 농축을 시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 15 cm, 전개액 - hexane: ethyl acetate = 90:10)로 정제시켜 화합물 32 (393 mg, 1.45 mmol, 78% yield)를 수득하였다. Rf = 0.59 (hexane: EtOAc = 90: 10).
1H NMR (300 MHz, CDCl3): Rotamer A: δ = 0.07 (s, 9H), 1.03 (d, J = 6.9 Hz, 3H), 1.43 (s, 9H), 1.53-1.76 (m, 4H), 1.95-2.06 (m, 1H), 2.59 (td, J = 12.7, 3.0 Hz, 1H), 3.38-3.47 (m, 1H), 4.21 (d, J = 11.4 Hz, 1H); Rotamer B: δ = 0.07 (s, 7.2 H), 1.03 (d, J = 6.9 Hz, 2.4H), 1.43 (s, 7.2H), 1.53-1.76 (m, 3.2H), 1.95-2.06 (m, 0.8H), 2.74-2.85 (m, 0.8H), 3.38-3.47 (m, 0.8H), 3.88 (d, J = 12.8 Hz, 0.8H); 13C NMR (75 MHz, CDCl3): δ = -1.5, 21.7, 22.4, 41.3, 42.4, 117.9, 124.9, 125.9, 127.1, 129.8, 134.9, 138.6, 143.1; IR: (cm-1) v 2977, 2934, 1699, 1423, 1253, 1166, 941; HRMS(ESI+) calcd for C14H29NO2SSiNa: 294.1860, found: 294.1860
아미드 화합물 33의 제조
화합물 32 (370 mg, 1.36 mmol)를 디클로로메테인 (CH2Cl2, 19.4 mL, 0.07 M)에 녹인 다음 트리플루오로 아세트산 (Trifluoroacetic acid, 2.1 mL, 27.2 mmol)을 드랍와이즈(dropwise)로 가하였다. 천천히 상온으로 온도를 올린 다음, 2시간 동안 교반한다. 20 mL의 물을 가해 반응을 종료 시킨 다음6N NaOH 를 가하여 반응물을 중화시켰다. 용액을 분별깔때기에 옮긴 다음, 유기층과 수층을 분리한다. 수층은 디에틸에테르 (3 x 20 mL)로 추출한 뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건 하에 농축하였다. 농축된 용액은 추가적인 정제과정 없이 디클로로메테인 (CH2Cl2, 27.2 mL, 0.05 M)에 녹인 뒤 EDC·HCl (391.1 mg, 1.94 mmol)과 트리에틸아민 (0.26 mL, 1.84 mmol), 3,4-디메톡시페닐 아세트산 (dimethoxyphenyl acetic acid, 266.8 mg, 1.36 mmol)을 0℃에서 가하였다. 상기 반응 혼합물을 상온에서 24시간 교반한 다음, sat. NH4Cl (25 mL)을 가하여 반응을 종료시킨뒤, 디에틸에테르 (3 x 25 mL)을 가하여 추출하였다. 모은 유기층은 Na2SO4로 물을 제거한 뒤, 여과 후 감압 조건에서 농축시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 12 cm, 전개액 - hexane: ethyl acetate = 60:40)를 통해 정제시켜 화합물 33 (353 mg, 1.01 mmol, 74% yield)을 수득하였다. Rf = 0.44 (hexane: EtOAc = 60:40).
1H NMR (300 MHz, CDCl3): Rotamer A: δ = 0.08 (s, 9H), 0.99 (d, J = 7.2 Hz, 3H), 1.13-1.44 (m, 1H), 1.45-1.68 (m, 3H), 1.76-1.96 (m, 1H), 2.78-2.96 (m, 1H), 3.66 (br s, 2H), 3.73-3.82 (m, 1H), 3.85 (s, 6H), 4.37 (d, J = 5.4 Hz, 1H), 6.70-6.87 (m, 3H); Rotamer B: δ = 0.08 (s, 2.7H), 0.88 (d, J = 6.9 Hz, 0.9H), 1.13-1.44 (m, 0.3H), 1.45-1.68 (m, 0.9H), 1.76-1.96 (m, 0.3H), 2.27-2.41 (m, 0.3H), 3.62 (br s, 0.6H), 3.73-3.82 (m, 0.3H), 3.85 (s, 1.8H), 4.67 (dd, J = 13.2, 2.1 Hz, 0.3H), 6.70-6.87 (m, 0.9H); 13C NMR (150 MHz, CDCl3): δ = -0.9, -0.8, 19.8, 20.1, 20.3, 21.7, 28.2, 29.1, 29.2, 40.4, 40.9, 41.0, 45.7. 49.7, 53.4, 55.9, 56.0, 56.1, 111.7, 111.8, 112.1, 112.9, 128.6, 148.0, 149.4, 169.5, 170.1; IR: (cm-1) v 2953, 2870, 2835, 1626, 1590, 1515, 1451, 1261, 1237, 1190, 1153, 1030; HRMS(ESI+) calcd for C19H31NO3SiNa: 372.1965, found: 372.1959.
아자고리 화합물 34의 제조
세릭 암모늄 나이트레이트(Ceric ammonium nitrate) (164.5 mg, 0.30 mmol)이 들어있는 플라스크를 질소 기체로 채우고, 아미드 화합물 33 (35.0 mg, 0.10 mmol)을 MeOH(4.0 mL, 0.025M)에 녹인뒤 세틱 암모늄 나이트레이트가 들어있는 플라스크로 옮겼다. 상온에서 12시간 교반 후에 디클로로메테인 (5 mL)을 가하였다. 그리고 이 용액을 sat. NaCl (3 x 5 mL)로 씻어주었다. 모은 유기층은 Na2SO4로 물을 제거한뒤, 여과 후에 감압 조건에서 농축을 시켰다. 농축 후에 남아있는 용액을 씰 튜브(seal tube)에 옮긴 다음 질소를 채운 다음, 1,2-디클로로에테인 (ClCH2CH2Cl, 4.0 mL, 0.025 M)에 녹인 뒤 BF3OTf2 (50 μL, 0.40 mmol)를 드랍와이즈(dropwise)로 가하였다. 반응 혼합물을 80℃에서 24 시간 교반시킨 다음, 물(5 mL)을 가하여 반응을 종료시켰다. 반응 혼합물을 디클로로메테인 (3 x 5 mL)을 가하여 추출을 하고, 모은 유기층은 Na2SO4로 물을 제거한뒤, 여과 후에 감압 조건에서 농축을 시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 15 cm, 전개액 - CH2Cl2: MeOH = 95: 5)를 통해 정제하여 아자고리 화합물 34 (20.8 mg, 0.0754 mmol, 75% yield)을 수득하였다. (Rf = 0.82 (CH2Cl2: MeOH = 90:10).
1H NMR (300 MHz, CDCl3): major isomer, Rotamer A δ = 0.92 (d, J = 6.6 Hz, 3H), 1.21-1.59 (m, 5H), 1.63-1.84 (m, 2H), 1.94 (d, J = 11.7 Hz, 1H), 2.58-2.71 (m, 1H), 3.43-3.67 (m, 2H), 3.86 (s, 6H), 4.76 (d, J = 12.6 Hz, 1H), 6.59 (s, 2H); major isomer, Rotamer B δ = 0.92 (d, J = 6.6 Hz, 0.6H), 1.21-1.59 (m, 1H), 1.63-1.84 (m, 0.4H), 1.94 (d, J = 11.7 Hz, 0.2H), 2.18-2.29 (m, 0.2H), 3.43-3.67 (m, 0.4H), 3.86 (s, 1.2H), 4.90 (d, J = 11.1 Hz, 1H), 6.59 (s, 0.4H); minor isomer δ = 0.65 (d, J = 6.9 Hz, 0.45H), 1.21-1.59 (m, 0.75H), 1.63-1.84 (m, 0.3H), 2.02 (d, J = 5.7 Hz, 0.15H), 2.58-2.71 (m, 0.15H), 3.43-3.67 (m, 0.3H), 3.91 (s, 0.9H), 4.56 (br s, 0.15H), 6.52 (s, 0.3H); 13C NMR (75 MHz, CDCl3): major isomer δ = 19.6, 25.8, 34.8, 36.1, 38.9, 45.2, 56.1, 56.3, 68.2, 110.3, 111.2, 123.9, 124.7, 147.0, 148.8, 168.6; minor isomer δ = 111.1, 14.3, 22.5, 31.5, 37.0, 43.9, 56.3, 107.8, 109.6, 125.1, 148.5, 148.8; IR: (cm-1) v 2925, 2854, 1741, 1649, 1561, 1518, 1460, 1377, 1252, 1119; HRMS(ESI+) calcd for C16H21NO3Na: 298.1414, found: 298.1415.
[실시예 22] 알파-실릴아민 화합물로부터 아자고리 화합물(azacycle) 36의 제조 II
Figure 112014093989041-pat00102
아미드 화합물 35의 제조
화합물 32 (135.7 mg, 0.500 mmol)를 디클로로메테인 (CH2Cl2, 7.1 mL, 0.07 M)에 녹인 다음 트리플루오로 아세트산 (Trifluoroacetic acid, 0.77 mL, 10.0 mmol)을 드랍와이즈(dropwise)로 가하였다. 천천히 상온으로 온도를 올린 다음, 2시간 동안 교반한다. 10 mL의 물을 가해 반응을 종료 시킨 다음6N NaOH 를 가하여 반응물을 중화시켰다. 용액을 분별깔때기에 옮긴 다음, 유기층과 수층을 분리한다. 수층은 디에틸에테르 (3 x 10 mL)로 추출한 뒤, 모은 유기층을 Na2SO4로 물을 제거하고, 여과 후에 감압 조건 하에 농축하였다. 농축된 용액은 추가적인 정제과정 없이 디클로로메테인 (CH2Cl2, 10.0 mL, 0.05 M)에 녹인 뒤 EDC·HCl (143.8 mg, 0.75 mmol)과 트리에틸아민 (94 μL, 0.135 mmol), 티오펜 3-아세트산 (thiophene 3-acetic acid, 71 mg, 0.500 mmol)을 0℃에서 가하였다. 상기 반응 혼합물을 상온에서 24시간 교반한 다음, sat. NH4Cl (10 mL)을 가하여 반응을 종료시킨뒤, 디에틸에테르 (3 x 10 mL)을 가하여 추출하였다. 모은 유기층은 Na2SO4로 물을 제거한 뒤, 여과 후 감압 조건에서 농축시켰다. 실리카겔을 이용한 컬럼 크로마토그래피 (3 cm x 13 cm, 전개액 - hexane: ethyl acetate = 40:60)를 통해 정제시켜 화합물 35 (93.1 mg, 0.315 mmol, 63% yield)을 수득하였다. Rf = 0.83 (hexane: EtOAc = 40:60).
1H NMR (300 MHz, CDCl3): Rotamer A: δ = 0.05 (s, 9H), 0.98 (d, J = 6.9 Hz, 1H), 1.23-1.52 (m, 3H), 1.58-1.82 (m, 1H), 1.94-2.10 (m, 1H), 2.99 (ddd, J = 13.5, 11.1, 3.0 Hz, 1H), 3.63-3.80 (m, 3H), 3.96 (br s, 1H), 6.92-7.15 (m, 2H), 7.25-7.33 (m, 1H); Rotamer B: δ = 0.06 (s, 2.7H), 0.87 (d, J = 6.9 Hz, 0.9H), 1.23-1.52 (m, 0.9H), 1.58-1.82 (m, 0.3H), 1.94-2.10 (m, 0.3H), 2.41 (td, J = 12.9, 2.7 Hz, 0.3H), 3.63-3.80 (m, 0.6H), 4.70 (dt, J = 13.2, 1.9 Hz, 0.3H), 6.92-7.15 (m, 0.6H), 7.25-7.33 (m, 0.3H); 13C NMR (75 MHz, CDCl3): Rotamer A: δ = -0.6, 20.3, 21.8, 29.2, 29.2, 36.5, 46.1, 49.7, 121.8, 125.9, 135.9, 169.2; Rotamer B: δ = -0.7, 19.8, 20.4, 28.3, 25.8, 41.1, 53.6, 122.4, 125.9, 135.7, 169.8; IR: (cm-1) v 2952, 2870, 1627, 1447, 1431, 1301, 1249, 1133, 830; HRMS(ESI+) calcd for C15H25NOSSiNa:318.1318, found: 318.1318.
아미드 화합물 36의 제조
아미드 화합물 35 (29.5 mg, 0.10 mmol)와 세릭 암모늄 나이트레이트 (164.5 mg, 0.30 mmol)을 상온에서 18시간 교반시킨 것을 제외하고는 상기 실시예 21의 아자고리 화합물 34의 제조과정과 동일한 방법으로 아자고리 화합물 36 (13.8 mg, 0.062 mmol, 62% yield)을 얻었다. Rf = 0.33 (hexane: EtOAc = 40:60).
1H NMR (300 MHz, CDCl3): major isomer δ = 1.11 (d, J = 6.3 Hz, 3H), 1.33-1.78 (m, 5H), 1.88-2.01 (m, 1H), 2.58 (td, J = 12.5, 3.5 Hz, 1H), 3.48-3.69 (m, 2H), 4.15 (d, J = 10.2 Hz, 1H), 4.83-4.99 (m, 1H), 6.79 (d, J = 5.1 Hz, 1H), 7.23 (d, J = 5.1 Hz, 1H); minor iosmer δ = 0.69 (d, J = 6.9 Hz, 0.48H), 1.33-1.78 (m, 0.80H), 1.88-2.01 (m, 0.16H), 2.52-2.68 (m, 0.16H), 3.48-3.69 (m, 0.32H), 4.76-4.82 (m, 0.16H), 6.74 (d, J = 4.8 Hz, 0.16H), 7.23 (d, J = 5.1 Hz, 0.16H); 13C NMR (75 MHz, CDCl3): δ = 19.6, 25.7, 33.2, 34.7, 39.9, 44.9, 65.0, 125.2, 126.0, 130.6, 132.2, 167.1; IR: (cm-1) v 2925, 2853, 1640, 1463, 1436, 1412, 1378 1259, 1169, 1131; HRMS(ESI+) calcd for C12H16NOS: 222.0947, found: 222.0947.

Claims (11)

  1. 금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3의 보로네이트 화합물을 광 반응시켜 하기 화학식 1의 알파-실릴 아민 화합물을 제조하는 방법:
    [화학식 1]
    Figure 112014093989041-pat00103

    [화학식 2]
    Figure 112014093989041-pat00104

    [화학식 3]
    Figure 112014093989041-pat00105

    (R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이고;
    R'와 R''가
    Figure 112014093989041-pat00106
    로 연결되어 고리를 형성하는 경우Y가
    Figure 112014093989041-pat00107
    이고 Z는
    Figure 112014093989041-pat00108
    이거나, Y가
    Figure 112014093989041-pat00109
    이고 Z는
    Figure 112014093989041-pat00110
    이고;
    R' 및 R''가
    Figure 112014093989041-pat00111
    인 경우 Y가
    Figure 112014093989041-pat00112
    이고 Z는
    Figure 112014093989041-pat00113
    이고;
    R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
  2. 제 1항에 있어서,
    금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3-a의 알릴보로네이트 화합물을 광 반응시켜 하기 화학식 1-a의 알파-실릴 아민 화합물을 제조하는 방법:
    [화학식 1-a]
    Figure 112015115468465-pat00114

    [화학식 2]
    Figure 112015115468465-pat00115

    [화학식 3-a]
    Figure 112015115468465-pat00129

    (R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이고;
    R' 및 R''가
    Figure 112015115468465-pat00117
    이거나, R'와 R''가
    Figure 112015115468465-pat00118
    로 연결되어 고리를 형성할 수 있으며;
    R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
  3. 제 1항에 있어서,
    금속 착화합물 촉매 존재 하에서 하기 화학식 2의 알파-실릴메틸 아자이드 화합물과 화학식 3-b의 알레닐보로네이트 화합물을 광 반응시켜 하기 화학식 1-b의 알파-실릴 아민 화합물을 제조하는 방법:
    [화학식 1-b]
    Figure 112014093989041-pat00119

    [화학식 2]
    Figure 112014093989041-pat00120

    [화학식 3-b]
    Figure 112014093989041-pat00121

    (R1, R2 및 R3는 각각 독립적으로 (C1-C20)알킬이다.)
  4. 제 1항에 있어서,
    상기 금속 착화합물 촉매는 루테늄 착화합물 촉매인 것을 특징으로 하는 방법.
  5. 제 4항에 있어서,
    상기 루테늄 착화합물 촉매는 하기 구조로 표시되는 것인 방법.
    Figure 112014093989041-pat00122

    (R11 및 R12는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이고;
    R13은 NR14R15, OR16, C(=O)NR17R18 또는 C(=O)OR19이고;
    R14 내지 R19는 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
  6. 제 5항에 있어서,
    상기 루테늄 착화합물 촉매는 하기 구조로 표시되는 것인 방법.
    Figure 112014093989041-pat00123

  7. 제 1항에 있어서,
    상기 광 반응은 가시광선의 조사 하에 수행되는 것을 특징으로 하는 방법.
  8. 제 1항에 있어서,
    상기 화학식 3의 보로네이트 화합물은 하기 화학식 4 내지 6으로 표시되는 보로네이트 화합물로부터 선택되는 것을 특징으로 하는 방법:
    [화학식 4]
    Figure 112014093989041-pat00124

    [화학식 5]
    Figure 112014093989041-pat00125

    [화학식 6]
    Figure 112014093989041-pat00126

    (R4, R5 및 R6은 각각 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
  9. 제 8항에 있어서,
    상기 화학식 4 또는 5의 보로네이트 화합물을 사용하는 경우 반응온도는 상온 내지 50℃에서 실시되는 것을 특징으로 하는 방법.
  10. 제 8항에 있어서,
    상기 화학식 6의 보로네이트 화합물을 사용하는 경우 트리(C1-C10)알킬보레인을 더 가하는 것을 특징으로 하는 방법.
  11. 제 10항에 있어서,
    상기 루테늄 촉매 존재 하, 상온 내지 50℃에서 화학식 2의 실릴메틸 아자이드 화합물과 트리(C1-C10)알킬보레인의 혼합물에 가시광선 조사 후 -78℃ 내지 상온에서 상기 화학식 6의 보로네이트 화합물을 가하는 것을 특징으로 하는 방법.
KR1020140132366A 2014-10-01 2014-10-01 알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법 KR101595730B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140132366A KR101595730B1 (ko) 2014-10-01 2014-10-01 알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법
US15/327,064 US20170210765A1 (en) 2014-10-01 2015-01-10 Process for preparing alpha-silylamine compounds from alpha-silylmethyl azide compounds
PCT/KR2015/010352 WO2016053017A1 (ko) 2014-10-01 2015-10-01 알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140132366A KR101595730B1 (ko) 2014-10-01 2014-10-01 알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법

Publications (1)

Publication Number Publication Date
KR101595730B1 true KR101595730B1 (ko) 2016-02-22

Family

ID=55445546

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140132366A KR101595730B1 (ko) 2014-10-01 2014-10-01 알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법

Country Status (3)

Country Link
US (1) US20170210765A1 (ko)
KR (1) KR101595730B1 (ko)
WO (1) WO2016053017A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291787A1 (en) * 1987-05-08 1988-11-23 Merrell Dow Pharmaceuticals Inc. Novel substituted silyl alkylene amines
KR101422388B1 (ko) 2013-01-16 2014-07-23 포항공과대학교 산학협력단 질소에 치환기가 없는 이민의 촉매적 제조 방법 및 생성된 이민의 이용

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291787A1 (en) * 1987-05-08 1988-11-23 Merrell Dow Pharmaceuticals Inc. Novel substituted silyl alkylene amines
KR101422388B1 (ko) 2013-01-16 2014-07-23 포항공과대학교 산학협력단 질소에 치환기가 없는 이민의 촉매적 제조 방법 및 생성된 이민의 이용

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Acc. Chem. Res. 2013, 46, 457-470
Angew. Chem. 2012, 124, 12221-12224
Angew. Chem. Int. Ed. 2012, 51, 12055-12058
J. Am. Chem. Soc. 2012, 134, 4011-4014
J.Med. Chem. 2013, 56, 388-405
Synlett 2012, 23, 2875-2879

Also Published As

Publication number Publication date
US20170210765A1 (en) 2017-07-27
WO2016053017A1 (ko) 2016-04-07

Similar Documents

Publication Publication Date Title
Li et al. Stereocontrolled creation of adjacent quaternary and tertiary stereocenters via a catalytic diastereoselective and enantioselective conjugate addition
US9446995B2 (en) Synthesis of therapeutic and diagnostic drugs centered on regioselective and stereoselective ring opening of aziridinium ions
Yang et al. P-stereogenic PNP pincer-Pd catalyzed intramolecular hydroamination of amino-1, 3-dienes
Csillag et al. Stereoselective synthesis of pinane-type tridentate aminodiols and their application in the enantioselective addition of diethylzinc to benzaldehyde
JP5736313B2 (ja) 8−[{1−(3,5−ビス−(トリフルオロメチル)フェニル)−エトキシ}−メチル]−8−フェニル−1,7−ジアザ−スピロ[4.5]デカン−2−オン化合物の合成のためのプロセスおよび中間体
Enders et al. Enantioselective Synthesis of β‐Amino Sulfones by aza‐Michael Addition to Alkenyl Sulfones
Liao et al. A new concise stereoselective method for the preparation of a β-hydroxyfurfurylamine derivative and synthesis of 1-deoxyazasugar isomers
Shin et al. Stereoselective synthesis of enantiomerically pure d-threo-PDMP; manipulation of a core 2, 3-diamino alcohol unit
KR101595730B1 (ko) 알파-실릴메틸 아자이드 화합물로부터 알파-실릴아민 화합물을 제조하는 방법
Kammler et al. Asymmetric synthesis of a tricyclic core structure of the securinega alkaloids virosecurinine and allosecurinine
Bishop et al. On the development of catalytic carba-6π electrocyclizations
Forcher et al. A stereoselective access to a ferrocene-based planar chiral triazolium salt
Dieltiens et al. Ring-closing metathesis and ring-closing metathesis–isomerisation approach to 1-phosphonylated 2-benzazocines
Ruff et al. A combined vinylogous Mannich/Diels–Alder approach for the stereoselective synthesis of highly functionalized hexahydroindoles
CN107216332A (zh) 叔丁基‑7‑羟甲基‑7,8‑二氢4h吡唑并二氮杂卓5(6h)甲酸基酯的合成方法
Bach et al. The Paternò-Büchi reaction of α-alkyl-substituted enecarbamates and benzaldehyde
Brewster et al. Enantiopure bicyclic piperidinones: stereocontrolled conjugate additions leading to substituted piperidinones
Couture et al. A new route to ene carbamates, precursors to benzoindolizinones through sequential asymmetric hydrogenation and cyclization
Ferrara et al. Intramolecular Cycloaddition/Rearrangement of Alkylidenecyclopropane Nitrones from Palladium (0)‐Catalyzed Alkylation of Amino Acid Derivatives
Moreno et al. Total synthesis and stereochemistry of cytoblastin
CN110790708B (zh) 一种艾利西平中间体的制备方法
EP1210324B1 (en) Substituted cyclopentenes, their preparation and their use for chiral scaffolds
WO2017105439A1 (en) Cinchonine-derived catalysts and methods of using same
Morales-Solís et al. Stereodivergent Synthesis of the Four Stereoisomers of Diethyl 4-Hydroxyphosphopipecolate from Ethyl (R)-4-Cyano-3-hydroxybutanoate
Cadwallader Epimeric L-Proline Derived Imidazolone Chiral Auxiliaries for the Stereoselective Alkylative Birch Reduction of Aromatic Esters and Benzonitriles

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee