KR101582261B1 - Escherichia coli strain ewg4 for producing d-galactonate and use thereof - Google Patents
Escherichia coli strain ewg4 for producing d-galactonate and use thereof Download PDFInfo
- Publication number
- KR101582261B1 KR101582261B1 KR1020140083933A KR20140083933A KR101582261B1 KR 101582261 B1 KR101582261 B1 KR 101582261B1 KR 1020140083933 A KR1020140083933 A KR 1020140083933A KR 20140083933 A KR20140083933 A KR 20140083933A KR 101582261 B1 KR101582261 B1 KR 101582261B1
- Authority
- KR
- South Korea
- Prior art keywords
- gene
- galactonate
- aradh
- ewg4
- coli
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/58—Aldonic, ketoaldonic or saccharic acids
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
본 발명은 D―갈락토네이트를 생산하는 대장균 균주 EWG4[E. coli BW25113 (DE3) ΔgalKΔdgoK/pET28a-aradH] 및 이의 용도에 관한 것으로, 더욱 상세하게는 D―갈락토네이트를 용이하게 대량으로 생산할 수 있는 대장균 균주 EWG4와 대장균 균주 EWG4의 용도에 관한 것이다.
The present invention generally, and more particularly, to facilitate the D- galacto carbonate go on D- galactosidase E. coli strain to produce carbonate EWG4 [E. coli BW25113 (DE3) Δ Δ galK dgoK / pET28a- aradH] and use thereof And to the use of E. coli strain EWG4 and E. coli strain EWG4 which can be produced in large quantities.
D-갈락토오스(D-galactose)는 자연에서 발견된 많은 탄수화물 중 하나이고, 특히 거대 홍조류에 25 ~ 35% 건조 중량으로 존재한다(특허문헌 1). 이것은 생물학적 및/또는 화학적 방법을 통해 다양한 바이오연료 및 플랫폼 화학물질의 생산에 활용되어 진다. 최근 보고서는 폴리머 합성, 제약 및 기타 석유 유사 화학물질의 유용한 전구체 화합물인 푸르푸랄(furfural) 내로 D-갈락토오스의 화학적 전환을 강조한 바 있다. D-galactose is one of many carbohydrates found in nature, especially in giant red algae with 25-35% dry weight (Patent Document 1). It is used for the production of a variety of biofuels and platform chemicals through biological and / or chemical methods. Recent reports have highlighted the chemical conversion of D-galactose into furfural, a useful precursor compound for polymer synthesis, pharmaceuticals and other petroleum-like chemicals.
D-갈락토오스 유도체인 D-갈락토네이트(D-galactonate)는 폴리에스테르 전구체, 식품첨가물, 약학적 중간체 및 화장품 원료로 사용되는 가치있는 유기산이다(특허문헌 2). D-갈락토네이트는 일반적으로 산소의 존재 하에서 pH 8-10 내에서 60℃로 알루미나(alumina) 담지된 금촉매를 거쳐서 D-갈락토오스의 대기의 산화를 통해 화학적으로 생산된다. 이런 반응은 4시간 내에 완료되지만 상기 반응의 pH 감도가 종종 락톤 중간체 축적을 야기하는 촉매 활성을 감소시킨다. D-galactonate, which is a D-galactose derivative, is a valuable organic acid used as a polyester precursor, a food additive, a pharmaceutical intermediate, and a cosmetic raw material (Patent Document 2). D-galactonate is chemically produced through oxidation of the atmosphere of D-galactose via an alumina supported gold catalyst at pH 8-10 in the presence of oxygen, generally at 60 < 0 > C. This reaction is complete within 4 hours, but the pH sensitivity of the reaction often reduces the catalytic activity causing lactone intermediate accumulation.
한편, D-갈락토오스로부터 D-갈락토네이트의 생물학적 전환은 지금까지도 여전히 완전하게 탐구되지 않았다. 일부 미생물들이 D-갈락토오스를 D-갈락토네이트로 전환할 수 있음에도 불구하고, 이런 미생물들에 대한 유전적 정보의 부족 및 이용가능한 제한적인 유전적 툴(tool)이 D-갈락토네이트 생산에 대한 추가적인 대사 공학을 지연시켰다. D-갈락토오스가 대사 작용될 수 있는 여러 루트가 있다. 대장균(Escherichia coli) 및 락토코커스 락티스(Lactococcus lactis)과 같은 미생물들은 레르와르 경로(Leloir pathway)를 통해 D-갈락토오스를 본질적으로 대사 작용을 할 수 있다. 상기 경로는 처음 D-갈락토오스 인산화와 관련되고, 뒤이어 유리딜리디포스페이트 글루코즈(uridylyldiphosphate-glucose; UDP-glucose) 유래 유리딜리모노포스페이트(uridylylmonophosphate; UMP)를 갈락토오스-1-포스페이트(galactose-1-phosphate)로의 전환이 관련된다. 마지막으로, 분비된 글루코즈-1-포스페이트(glucose-1-phosphate)는 해당경로로 들어간다. D-갈락토네이트는 레르와르 경로로부터 생산된다. 또다른 D-갈락토오스 대사는 아조토박터 비넬란디이이(Azotobacter vinelandii), 카울로박터 크레센투스(CauLobacter crescentus) 및 슈도모나스 플루오레센스(Pseudomonas fluorescens)에서 발견되는 디레이-도우돌오프 경로(DeLey-Doudoroff pathway)이다. 이런 경로에 있어서, D-갈락토오스에서 D-갈락토네이트로의 초기 환원은 갈락토오스 탈수소효소(galactose dehydrogenase enzyme; GalDH)에 의해 촉진되고, 그런 다음 2-케토-3-데옥시-갈락토네이트(2-keto-3-deoxy-D-galactonate)를 형성하도록 D-갈락토네이트 탈수가 잇따르고, 그런 다음 피루빈산염(pyruvate) 및 글리세르알데하이드 포스페이트(glyceraldehyde phosphate)를 분비하기 위해 절단되기 전에 인산화된다. 그러므로, D-갈락토네이트는 디레이-도우돌오프 경로로부터 생산될 수 있다. On the other hand, the biological conversion of D-galactonate from D-galactose has not yet been completely explored. Despite the fact that some microorganisms can convert D-galactose to D-galactonate, a lack of genetic information on these microorganisms and available limited genetic tools have led to the development of D-galactonate Delayed additional metabolic engineering. There are several routes by which D-galactose can be metabolized. Microorganisms such as Escherichia coli and Lactococcus lactis can inherently metabolize D-galactose through the Leloir pathway. This pathway was first associated with D-galactose phosphorylation, followed by uridyllylphosphate (UDP-glucose) uridylylmonophosphate (UMP) in the presence of galactose-1-phosphate . ≪ / RTI > Finally, secreted glucose-1-phosphate enters the pathway. D-galactonate is produced from the pathway of Lewar. Another D-galactose metabolite is the DeLey-Doudoroff pathway found in Azotobacter vinelandii, CauLobacter crescentus and Pseudomonas fluorescens. pathway. In this pathway, the initial reduction of D-galactose to D-galactonate is catalyzed by galactose dehydrogenase enzyme (GalDH), then 2-keto-3-deoxy-galactonate -keto-3-deoxy-D-galactonate), followed by phosphorylation before cleavage to secrete pyruvate and glyceraldehyde phosphate. Therefore, D-galactonate can be produced from the Draey-Dowdoll off pathway.
이와 같이, D-갈락토네이트 생산을 위한 적절한 생물학적 접근의 부족에 따라, D-갈락토네이트를 대량으로 생산할 수 있는 방법이 요구된다.
Thus, in accordance with the lack of a suitable biological approach for D-galactonate production, a method is needed which can produce D-galactonate in large quantities.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 D―갈락토네이트를 용이하게 대량으로 생산할 수 있는 대장균 균주 EWG4[E. coli BW25113 (DE3) ΔgalKΔdgoK/pET28a-aradH]를 제공한다. 또한 상기 대장균 EWG4를 제조하는 방법과 이의 용도를 제공한다.
In order to solve the above problems, the present invention provides an easy to produce a large amount of E. coli strain EWG4 [E. coli BW25113 (DE3) Δ Δ galK dgoK / pET28a- aradH] The Lactobacillus carbonate D- go. Also provided is a method for producing the E. coli EWG4 and uses thereof.
본 발명은 수탁번호 KCTC 12538BP로 기탁된, D-갈락토네이트 생산능이 있는 대장균 균주 EWG4[E. coli BW25113 (DE3) ΔgalKΔdgoK/pET28a-aradH]를 제공한다.The present invention provides E. coli strain EWG4 [ E. coli BW25113 (DE3) [Delta] galK [ Delta] dgoK / pET28a- aradH ] having D-galactonate production ability deposited with accession number KCTC 12538BP.
상기 대장균 균주 EWG4는 갈락토키나아제를 암호화하는 galK 유전자 및 2-데히드로-3-데옥시-갈락토네이트 키나아제(2-dehydro-3-deoxy-galactonate kinase)를 암호화하는 dgoK 유전자가 제거된 것일 수 있다.The Escherichia coli strain EWG4 may be obtained by removing the galK gene encoding galactokinase and the dgoK gene encoding 2-dehydro-3-deoxy-galactonate kinase have.
상기 galK 유전자는 서열번호 2의 염기서열로 구성될 수 있다.The galK gene may be composed of the nucleotide sequence of SEQ ID NO: 2.
상기 dgoK 유전자는 서열번호 3의 염기서열로 구성될 수 있다.The dgoK gene may be composed of the nucleotide sequence of SEQ ID NO: 3.
다만 상기 유전자는 상기 염기서열에 한정되지 않으며, 상기 서열에서 하나 또는 소수의 염기가 첨가, 결실 또는 치환된 서열로서 동일한 기능을 나타내는 염기서열을 가질 수 있다.However, the gene is not limited to the above-mentioned nucleotide sequence, and one or a few bases in the nucleotide sequence may be added, deleted or substituted to have a nucleotide sequence exhibiting the same function.
상기 대장균 균주 EWG4는 아라비노스 탈수소화효소 (arabinose dehydrogenase, aradh) 유전자를 포함할 수 있다. aradh 유전자는 서열번호 1로 구성되는 것이 가장 바람직하지만, 상기 염기서열에 한정되는 것은 아니며, 상기 서열에서 하나 또는 소수의 염기가 첨가, 결실 또는 치환된 서열로서 동일한 기능을 나타내는 염기서열을 가질 수 있다.
The E. coli strain EWG4 may contain an arabinose dehydrogenase (aradh) gene. The aradh gene is most preferably composed of SEQ ID NO: 1, but it is not limited to the above base sequence, and one or a few bases in the above sequence may have a base sequence showing the same function as an added, deleted or substituted sequence .
또한 본 발명은, 대장균에서 갈락토키나아제를 암호화하는 galK 유전자 및 2-데히드로-3-데옥시-갈락토네이트 키나아제를 암호화하는 dgoK 유전자를 제거시키는 단계(단계 1); 아라비노스 탈수소화효소 (arabinose dehydrogenase, aradh) 유전자와 E. coli 발현 벡터 pET28a를 제한효소로 처리하고 리가아제로 결합하여 pET28a-aradh를 제조하는 단계(단계 2); 및 상기 단계 2에서 제조된 pET28a-aradh를 상기 단계 1을 거친 대장균에 형질도입하는 단계(단계 3)를 포함하는 대장균 균주 EWG4의 제조방법을 제공한다.The present invention also provides a method for producing a galactolytic enzyme, comprising the steps of: (1) removing galK gene encoding galactokinase in E. coli and dgoK gene encoding 2-dehydro-3-deoxy-galactonate kinase; A step (step 2) of producing arabinose dehydrogenase (aradh) gene and E. coli expression vector pET28a with a restriction enzyme and ligating with a ligase to form pET28a- aradh ; And a step (step 3) of transfecting Escherichia coli obtained in
상기 galK 유전자는 서열번호 2의 염기서열로 구성될 수 있다.The galK gene may be composed of the nucleotide sequence of SEQ ID NO: 2.
상기 dgoK 유전자는 서열번호 3의 염기서열로 구성될 수 있다.The dgoK gene may be composed of the nucleotide sequence of SEQ ID NO: 3.
상기 aradh 유전자는 서열번호 1의 염기서열로 구성될 수 있다The aradh gene may be composed of the nucleotide sequence of SEQ ID NO: 1
다만 상기 유전자들은 상기 염기서열에 한정되지 않으며, 상기 서열에서 하나 또는 소수의 염기가 첨가, 결실 또는 치환된 서열로서 동일한 기능을 나타내는 염기서열을 가질 수 있다.
However, the genes are not limited to the above base sequence, and one or a few bases in the sequence may be added, deleted or substituted, and may have a base sequence exhibiting the same function.
상기 단계 1의 유전자를 제거시키는 단계는 유전자 파괴 카세트(gene disruption cassette)를 이용하여 유전자를 파괴시키는 방법으로 수행하는 것이 바람직하나, 이에 한정되지 않으며, 당업계에서 사용되고 있는 유전자 녹아웃 방법은 모두 사용가능하다.The step of removing the gene of
상기 제한효소는 NcoI 및 BamHI일 수 있다.
The restriction enzyme may be NcoI and BamHI.
또한, 본 발명은, 상기 대장균 균주 EWG4를 배양하여 배양액을 제조하는 단계: 및 상기 배양액으로부터 D-갈락토네이트를 회수하는 단계를 포함하는 D-갈락토네이트의 생산방법을 제공한다.The present invention also provides a method for producing D-galactonate comprising culturing the E. coli strain EWG4 to prepare a culture solution, and recovering D-galactonate from the culture solution.
상기 배양은 비연속 발효법으로 이루어질 수 있다.The cultivation may be performed by a non-continuous fermentation method.
상기 배양은 27 ~ 40℃에서 수행할 수 있고, 더욱 바람직하게는 30~ 37℃를 유지하는 것이 좋다.The cultivation can be carried out at 27 to 40 캜, more preferably 30 to 37 캜.
상기 배양은 pH 6 ~ 8에서 수행할 수 있고, 더욱 바람직하게는 pH 7로 유지하는 하는 것이 좋다.The culture can be carried out at a pH of 6 to 8, more preferably at a pH of 7.
상기 배양은 36시간 이상 배양시키는 것이 바람직하고, 36 내지 72 시간 동안 배양시키는 것이 더욱 바람직하나, 이에 한정되지 않는다. The culture is preferably performed for 36 hours or more, more preferably for 36 to 72 hours, but is not limited thereto.
상기 배양은 탄소원을 포함하는 배지에서 수행할 수 있다.
The culture may be performed in a medium containing a carbon source.
본 발명에 따르면, D-갈락토네이트 생산능이 우수한 재조합 대장균 균주 EWG4[E. coli BW25113 (DE3) ΔgalKΔdgoK/pET28a-aradH] 및 이를 용이하게 합성하는 방법을 제공할 수 있다.
In accordance with the present invention, D- go excellent ability of recombinant E. coli strains Lactobacillus carbonate production EWG4 [E. coli BW25113 (DE3) Δ Δ galK dgoK / pET28a- aradH] and may provide a method for easily synthesizing them.
도 1은 탄소원으로 D-갈락토오스 또는 D-갈락토네이트를 포함하는 고체 배지에서 E. coli BW25113 와일드 타입 균주와 galK 및/또는 dgoK 유전자가 파괴된 균주(ΔgalK, ΔgalKΔdgoK)의 생장 정도를 나타내는 것이다.
도 2는 EWG4[E. coli BW25113 (DE3) ΔgalKΔdgoK/pET28a-aradH]의 비연속 발효에 의한 D-갈락토네이트의 생산능을 나타내는 것이다.
Figure 2 shows the production ability of Lactococcus carbonate D- go by discontinuous fermentation in EWG4 [E. coli BW25113 (DE3) Δ Δ galK dgoK / pET28a- aradH].
이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적은, 특징, 장점은 이하의 실시예를 통하여 쉽게 이해될 수 있다. 여기서 소개되는 실시예는 본 발명이 속하는 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위하여 제공되는 것이다. 따라서 이하의 실시예에 의하여 본 발명의 권리범위가 제한되어서는 안 된다.
Hereinafter, the present invention will be described in more detail with reference to examples. The objects, features and advantages of the present invention can be easily understood through the following embodiments. It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. Therefore, the scope of the present invention should not be limited by the following examples.
실시예: Example:
EWG4 [EWG4 [
E. coli E. coli
BW25113 (DE3) ΔBW25113 (DE3) DELTA
galKgalK
ΔΔ
dgoKdgoK
/pET28a-/ pET28a-
aradHaradH
] 합성] synthesis
균주 및 플라스미드 합성Strain and plasmid synthesis
E. coli BW25113 (DE3)에 대한 유전자 결실(gene deletions)은 Liu et al. (Bioprocess Biosyst Eng 2014 37:383-391)에 의해 수행되었다. D-갈락토오스 대사의 첫 번째 단계를 촉진시키는 갈락토키나아제(galactokinase)를 암호화하는 유전자 galK(Galactose kinase gene, 서열번호: 2)를 E. coli BW25113에서 파괴시킨 균주인 ΔgalK::kan 돌연변이(E. coli BW25113 (DE3) ΔgalK::kan)는 내셔널 바이오리소스 프로젝트(National BioResource Project, NIG, Japan) (Baba et al., Mol Syst Biol 2006 2:0008)에서 구매하였다. 유전자 결실 실험은 원-스텝 불활성화 방법(Datsenko and Wanner, Proc Natl Acad Sci USA 2000 97:6640-6645)으로 수행되었다.Gene deletions for E. coli BW25113 (DE3) are described by Liu et al. (Bioprocess Biosyst Eng 2014 37: 383-391). Gene coding for lactic kinase (galactokinase) going to facilitate the first step of galactose metabolism D- galK: a (Galactose kinase gene, SEQ ID NO: 2) strains were destroyed in the E. coli BW25113 Δ galK :: kan mutant (E coli BW25113 (DE3) ΔgalK :: kan) was purchased from the National BioResource Project (NIG, Japan) (Baba et al., Mol Syst Biol 2006 2: 0008). Gene deletion experiments were performed with a one-step inactivation method (Datsenko and Wanner, Proc Natl Acad Sci USA 2000 97: 6640-6645).
플립파아제(flippase)를 운반하는 pCP20 플라스미드 처리에 의해 E. coli BW25113 (DE3) ΔgalK::kan의 카나마이신 저항성(kanamycin resistance)은 제거되었다. 그리고 나서 E. coli BW25113 (DE3) ΔgalK::frt 균주로부터 dgoK (2-dehyro-3-deoxygalactonate kinase gene, 서열번호 3) 유전자는 파괴(disruption)되었다. dgoK 파괴 카세트(disruption cassette)는 주형으로 pKD3와 다음의 프라이머(kdgoK 프라이머)를 이용하여 증폭시켰다: 포워드 프라이머(GCCTGAACGGAAAATCTCCGGCTGCGGTGTTAGCAGAAGTCATATGAATATCCTCCTTAGT, 서열번호 4, kdgok-F) 및 리버스 프라이머(GCATGAGCGATGCTCCTTATACCAGCCTGAAATGCCGTGTGTGTAGGCTGGAGCTGCTTCG, 서열번호 5, kdgok-R). 제조된 PCR 생성물은 측면에 FRT사이트와 dgoK의 5 및 3번째 끝단 영역과 상응하는 40개 염기쌍 등을 갖는 클로르암페니콜 저항성 유전자를 포함하고 있다. 제조된 PCR 생성물은 측면에 FRT사이트와 dgoK의 5 및 3번째 끝단 영역과 상응하는 40개 염기쌍 등을 갖는 클로르암페니콜 저항성 유전자를 포함하고 있다.The kanamycin resistance of E. coli BW25113 (DE3) ΔgalK :: kan was removed by treatment with pCP20 plasmid carrying flippase. Then, E. coli BW25113 (DE3) Δ galK :: from frt strain dgoK (2-dehyro-3-kinase deoxygalactonate gene, SEQ ID NO: 3) The gene was disrupted. dgoK destruction cassette (disruption cassette) was amplified using the primers (primer kdgoK) pKD3 as a template and the following: forward primer (GCCTGAACGGAAAATCTCCGGCTGCGGTGTTAGCAGAAGTCATATGAATATCCTCCTTAGT, SEQ ID NO: 4, kdgok-F) and reverse primer (GCATGAGCGATGCTCCTTATACCAGCCTGAAATGCCGTGTGTGTAGGCTGGAGCTGCTTCG, SEQ ID NO: 5, kdgok- R). The prepared PCR product contains a chloramphenicol resistance gene having, on the side, a FRT site and 40 base pairs corresponding to the 5 th and 3 rd end regions of dgoK. The prepared PCR product contains a chloramphenicol resistance gene having, on the side, a FRT site and 40 base pairs corresponding to the 5 th and 3 rd end regions of dgoK.
pKD46 플라스미드가 Red 재조합 발현 벡터로 사용되었고 E. coli BW25113 (DE3) ΔgalK::frt 내로 도입되었다. 그리고 나서 dgoK 파괴 카세트(disruption cassette)는 상동 재조합을 완성하기 위하여 E. coli BW25113 (DE3) ΔgalK::frt/pKD46 내로 도입되었다. 제조된 균주는 다음의 유전자형을 갖는다:E. coli BW25113 (DE3) ΔgalKΔdgoK::Cm/pKD46. pKD46 플라스미드는 42℃에서의 열처리를 통하여 균주로부터 제거되었고, 그리고 나서 pCP20이 균주 E. coli BW25113 (DE3) ΔgalKΔdgoK::Cm 내로 도입하였다. pCP20는 효모 FLP 재조합효소 유전자(flippase)를 운반하여 FLP효소 내로 전이하는 도움 플라스미드이다. FLP는 재조합효소 유전자(flippase) 인지점(FRT)을 인지하여 호스트 염색체에 삽입된 항생물질에 대한 내성 유전자를 측면에서 공격한다. FLP 역할로 인하여 항생물질 내성이 제거되어 FRT사이트에 DNA흔적이 남게 된다. (참조. Cherepanov and Wackernagel, 1995, Gene Vol. 158, p. 1-14 [Doi 10.1016/0378-1119(95)00193-A]). 열 유도 및 처리(heat induction and treatment) 이후, 얻어진 균주는 다음의 유전자형을 갖는다:E. coli BW25113 (DE3) ΔgalKΔdgoK.
The pKD46 plasmid was used as a red recombinant expression vector and introduced into E. coli BW25113 (DE3)? galK :: frt. The dgoK disruption cassette was then introduced into E. coli BW25113 (DE3) [Delta] galK :: frt / pKD46 to complete homologous recombination. The prepared strain has the following genotype: E. coli BW25113 (DE3) Δ Δ galK dgoK :: Cm / pKD46. The pKD46 plasmid was removed from the strain by heat treatment at 42 ° C and then pCP20 was introduced into strain E. coli BW25113 (DE3) Δ galK ΔdgoK :: Cm. pCP20 is a helper plasmid that carries the yeast FLP recombinase gene (flippase) and transduces it into the FLP enzyme. FLP recognizes the recombinant enzyme (flippase) recognition point (FRT) and attacks the resistance gene for the antibiotic inserted in the host chromosome. Due to the role of FLP, antibiotic resistance is removed and DNA traces remain on the FRT site. (See Cherepanov and Wackernagel, 1995, Gene Vol.185, p.1-14 [Doi 10.1016 / 0378-1119 (95) 00193-A]). Heat-induced and treated (heat treatment and induction) Then, the resulting strain has the following genotype: E. coli BW25113 (DE3) Δ Δ dgoK galK.
E. coli E. coli BW25113 (DE3) ΔBW25113 (DE3) DELTA galKgalK ΔΔ dgoKdgoK 의of 생장 표현형(growth phenotype) 테스트Growth phenotype test
단일 탄소 소스(sole carbons source)로서 D-갈락토오스 또는 D-갈락토네이트에 대한 E. coli BW25113 (DE3) ΔgalKΔdgoK의 생장 표현형(growth phenotype)을 테스트하였다. 균주들은 단일 탄소원(sole carbons source)으로서 D-갈락토오스 또는 D-갈락토네이트 2 g L-1을 포함하는 M9 고체 배지에서 테스트되었다. 하룻밤 동안(Overnight) 배양된 균주들은 OD600에서 0.1 AU, 0.01 AU 및 0.001 AU으로 희석시켰다. 희석된 배양물 부분 표본(5 μL)을 고체 배지 표면에 떨어뜨리고 생장이 관찰될 때 까지 37℃에서 배양하고 그 결과를 도 1에 나타내었다. 와일드 타입(wild type) 균주 BW25113은 갈락토오스 또는 갈락토네이트에서 생장을 나타내었다. galK-결실 균주는 갈락토오스에서만 생장을 나타내지 못했으나, 더블 돌연변이 ΔgalKΔdgoK 균주는 탄소원 모두에서 생장을 나타내지 못하였다. 바람직한 균주는 갈락토오스 및 갈락토네이트에서 생장하지 못하는 것이어야 하기 때문에, E. coli BW25113 (DE3) ΔgalKΔdgoK 가 D-galactonate 생산을 위한 호스트(host)로서 사용되었다.
E. coli BW25113 (DE3) for Lactobacillus carbonate D- or D- galactose go as a single carbon source (sole source carbons) of the galK Δ Δ dgoK The growth phenotype was tested. The strains were tested in M9 solid medium containing 2 g L < -1 > D-galactose or D-galactonate as a sole carbons source. The strains cultivated overnight (Overnight) were diluted to 0.1 AU, 0.01 AU and 0.001 AU at OD 600 . A diluted culture aliquot (5 μL) was dropped onto the solid medium surface and incubated at 37 ° C. until growth was observed. The results are shown in FIG. The wild type strain BW25113 showed growth in galactose or galactonate. The galK -deficient strain did not show growth only in galactose, but the double mutant? galK ? dgoK strain showed no growth in all carbon sources. E. coli BW25113 (DE3) [Delta] galK [ Delta] dgoK was used as the host for D-galactonate production, since the preferred strain should not be able to grow on galactose and galactonate .
pET28a-pET28a- aradharadh 합성 synthesis
Bioneer (South Korea)에 의해 합성된 아조스피릴룸 브라실렌스(Azospirillum brasilense)의 최적화된 코돈 aradh(GeneBank: ATCC29145.1, 서열번호 1)을 E. coli 발현 벡터 pET28a의 NcoI 및 BamHI 사이트에 연결하여 pET28a-aradh를 제조하였다. 그리고 이 플라스미드를 E. coli BW25113 (DE3) ΔgalKΔdgoK에 도입하여 형질전환시켜 EWG4를 제조하였다.
The optimized codon aradh (GeneBank: ATCC29145.1, SEQ ID NO: 1) of Azospirillum brasilense synthesized by Bioneer (South Korea) was ligated to the NcoI and BamHI sites of E. coli expression vector pET28a pET28a- aradh . This plasmid was introduced into E. coli BW25113 (DE3) ΔgalKΔdgoK and transformed to prepare EWG4.
실험예 1: 효소 활성 분석Experimental Example 1: Enzyme activity assay
AraDH 활성은 공지된 방법(Liu et al., Bioprocess Biosyst Eng 2014 37:383-391)을 이용하여 크루드 셀 추출물(crude cell extracts)으로부터 측정하였다. 효소 활성의 1단위는 분당 1 μmol의 슈가 기질을 슈가산으로 전환하는 효소의 양으로 정의된다. 비활성(specific activity)은 mg 단백질 당 효소 활성으로 계산되었다. 효소 활성 분석을 위하여, 포타슘 아세테이트 (100 mM, pH 5.0-7.0), 트리스-HCl (100 mM, pH 8.0-10.0) 및 글리신 (100 mM, pH 10-12.3) 버퍼들을 이용하여 AraDH의 최적의 pH를 pH 5.0 ~ 12.3으로 결정하였다. L-아라비노즈 또는 D-갈락토오스에 대한 AraDH의 활성은 거의 유사(2.4 ± 0.2 ~ 3.7 ± 0.2 U mg-1 protein)하였고, 효소는 보조인자로서 NADP+를 선호하는 경향을 나타내었다. D-갈락토오스에 대한 AraDH의 활성(2.4 ± 0.2 U mg-1)은 GalDH의 활성(1.2 ± 0.1 U mg-1 protein)에 비교할 때 상당히 높았다.
AraDH activity was measured from crude cell extracts using a known method (Liu et al., Bioprocess Biosyst Eng 2014 37: 383-391). One unit of enzyme activity is defined as the amount of enzyme that converts 1 μmol of sugar substrate per minute to sugar. Specific activity was calculated as enzyme activity per mg protein. For the enzyme activity analysis, the optimal pH of AraDH was determined using potassium acetate (100 mM, pH 5.0-7.0), Tris-HCl (100 mM, pH 8.0-10.0) and glycine (100 mM, pH 10-12.3) Was determined as pH 5.0 to 12.3. The activity of AraDH on L-arabinose or D-galactose was almost similar (2.4 ± 0.2 to 3.7 ± 0.2 U mg -1 protein), and the enzyme tended to favor NADP + as a cofactor. The activity of AraDH (2.4 ± 0.2 U mg -1 ) on D-galactose was significantly higher than that of GalDH (1.2 ± 0.1 U mg -1 protein).
실험예 2: D-갈락토네이트 생산성 및 수율 분석(비연속 발효 및 대사 산물 분석)Experimental Example 2: D-galactonate productivity and yield analysis (non-continuous fermentation and metabolite analysis)
EWG4의 D-갈락토네이트 생산성 및 수율을 평가하기 위해, 5L 스케일의 실험실 비연속 발효기를 사용하여 비연속 발효를 수행하였다. To evaluate the D-galactonate productivity and yield of EWG4, discontinuous fermentation was performed using a 5 L scale laboratory discontinuous fermentor.
비연속 발효(batch fermentation)는 2L의 M9 미니멀 솔트(minimal salt), 5 g L-1 트립톤, 32 g L-1 글루코스, 40 mg L-1 카나마이신 및 40 g L-1 D-갈락토오스 또는 L-아라비노즈를 포함하는 5 L 실험실 스케일 발효기에서 수행되었다. 비연속 발효를 시작하기 위하여 접종제 (100 mL overnight culture)는 발효 용기 안으로 이동시켰다(t = 0 h). 온도는 37℃, 교반속도 600 rpm 및 에어 플로(airflow) 0.5 vvm으로 유지하였다. pH는 3M H2SO4 또는 30% NH4OH를 첨가함으로써 7.0으로 유지되도록 하였다. OD600이 약 8.0 AU에 도달하였을 때, 0.5 mM IPTG를 첨가하였고, 온도는 30℃로 낮추었다. 용존 산소는 교반속도의 자동제어에 의해 20% 공기 포화(air saturation)에서 유지되도록 하였다. 거품 억제제(Antifoam A, Sigma, Korea)의 첨가에 따라 포밍(Foaming)은 최소화되었다.
Batch fermentation consisted of 2 L of M9 minimal salt, 5 g L -1 tryptone, 32 g L -1 glucose, 40 mg L -1 kanamycin and 40 g L -1 D-galactose or L - 5 L laboratory scale fermentor containing arabinose. Inoculant (100 mL overnight culture) was transferred into the fermentation vessel to start discontinuous fermentation (t = 0 h). The temperature was maintained at 37 DEG C, a stirring speed of 600 rpm and an airflow of 0.5 vvm. The pH was maintained at 7.0 by the addition of 3M H 2 SO 4 or 30% NH 4 OH. When the OD 600 reached about 8.0 AU, 0.5 mM IPTG was added and the temperature was lowered to 30 ° C. Dissolved oxygen was maintained at 20% air saturation by automatic control of stirring speed. Foaming was minimized by the addition of a foam inhibitor (Antifoam A, Sigma, Korea).
세포외 대사 산물은 Bio-Rad Aminex HPX-87H 컬럼(300ㅧ7.8 mm)이 장착된 Waters HPLC를 이용하여 분석하였다. 컬럼온도는 55℃로 유지시켰다. 용리액은 흐름 속도 0.4 mL min-1 로 펌핑되었고 피크는 Waters 2414 굴절률 디텍터를 이용하여 검출하였다. 분석 결과는 도 2에 나타내었다. EWG4의 비연속 발효는 24.0 g L-1 D-galactonate를 생성하였는 바, 이는 특이적 D-갈락토오스 탈수소효소인 GalDH를 운반(carrying)하는 균주보다 36% 더 높은 결과이다.
Extracellular metabolites were analyzed by Waters HPLC equipped with Bio-Rad Aminex HPX-87H column (300 ㅧ 7.8 mm). The column temperature was maintained at 55 占 폚. The eluent was pumped at a flow rate of 0.4 mL min <" 1 & gt ;, and the peaks were detected using a Waters 2414 refractive index detector. The results of the analysis are shown in Fig. Discontinuous fermentation of EWG4 produced 24.0 g L -1 D-galactonate, 36% higher than strains carrying Gal DH, a specific D-galactose dehydrogenase.
<110> MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION <120> ESCHERICHIA COLI STRAIN EWG4 FOR PRODUCING D-GALACTONATE AND USE <130> P14-0166/MJU <160> 5 <170> KopatentIn 2.0 <210> 1 <211> 950 <212> DNA <213> Azospirillum brasilense <400> 1 ccatggatgt ctgaccaggt ttctctgggt gttgttggta tcggtaaaat cgcgcgtgac 60 cagcacctgc cggcgatcga cgcggaaccg ggtttcaaac tgaccgcgtg cgcgtctcgt 120 cacgcggaag ttaccggtgt tcgtaactac cgtgacctgc gtgcgctgct ggcggcggaa 180 cgtgaactgg acgcggtttc tctgtgcgcg ccgccgcagg ttcgttacgc gcaggcgcgt 240 gcggcgctgg aagcgggtaa acacgttatg ctggaaaaac cgccgggtgc gaccctgggt 300 gaagttgcgg ttctggaagc gctggcgcgt gaacgtggtc tgaccctgtt cgcgacctgg 360 cactctcgtt gcgcgtctgc ggttgaaccg gcgcgtgaat ggctggcgac ccgtgcgatc 420 cgtgcggttc aggttcgttg gaaagaagac gttcgtcgtt ggcacccggg tcagcagtgg 480 atctgggaac cgggtggtct gggtgttttc gacccgggta tcaacgcgct gtctatcgtt 540 acccgtatcc tgccgcgtga actggttctg cgtgaagcga ccctgatcgt tccgtctgac 600 gttcagaccc cgatcgcggc ggaactggac tgcgcggaca ccgacggtgt tccggttcgt 660 gcggagtttg actggcgtca cggtccggtt gaacagtggg aaatcgcggt tgacaccgcg 720 gacggtgttc tggcgatctc tcgtggtggt gcgcagctgt ctatcgcggg tgaaccggtt 780 gaactgggtc cggaacgtga atacccggcg ctgtacgcgc acttccacgc gctgatcgcg 840 cgtggtgaat ctgacgttga cgttcgtccg ctgcgtctgg ttgcggacgc gttcctgttc 900 ggtcgtcgtg ttcagaccga cgcgttcggt cgttgaggat ccgacatcta 950 <210> 2 <211> 1149 <212> DNA <213> Escherichia coli <400> 2 atgagtctga aagaaaaaac acaatctctg tttgccaacg catttggcta ccctgccact 60 cacaccattc aggcgcctgg ccgcgtgaat ttgattggtg aacacaccga ctacaacgac 120 ggtttcgttc tgccctgcgc gattgattat caaaccgtga tcagttgtgc accacgcgat 180 gaccgtaaag ttcgcgtgat ggcagccgat tatgaaaatc agctcgacga gttttccctc 240 gatgcgccca ttgtcgcaca tgaaaactat caatgggcta actacgttcg tggcgtggtg 300 aaacatctgc aactgcgtaa caacagcttc ggcggcgtgg acatggtgat cagcggcaat 360 gtgccgcagg gtgccgggtt aagttcttcc gcttcactgg aagtcgcggt cggaaccgta 420 ttgcagcagc tttatcatct gccgctggac ggcgcacaaa tcgcgcttaa cggtcaggaa 480 gcagaaaacc agtttgtagg ctgtaactgc gggatcatgg atcagctaat ttccgcgctc 540 ggcaagaaag atcatgcctt gctgatcgat tgccgctcac tggggaccaa agcagtttcc 600 atgcccaaag gtgtggctgt cgtcatcatc aacagtaact tcaaacgtac cctggttggc 660 agcgaataca acacccgtcg tgaacagtgc gaaaccggtg cgcgtttctt ccagcagcca 720 gccctgcgtg atgtcaccat tgaagagttc aacgctgttg cgcatgaact ggacccgatc 780 gtggcaaaac gcgtgcgtca tatactgact gaaaacgccc gcaccgttga agctgccagc 840 gcgctggagc aaggcgacct gaaacgtatg ggcgagttga tggcggagtc tcatgcctct 900 atgcgcgatg atttcgaaat caccgtgccg caaattgaca ctctggtaga aatcgtcaaa 960 gctgtgattg gcgacaaagg tggcgtacgc atgaccggcg gcggatttgg cggctgtatc 1020 gtcgcgctga tcccggaaga gctggtgcct gccgtacagc aagctgtcgc tgaacaatat 1080 gaagcaaaaa caggtattaa agagactttt tacgtttgta aaccatcaca aggagcagga 1140 cagtgctga 1149 <210> 3 <211> 879 <212> DNA <213> Escherichia coli <400> 3 atgacagctc gctacatcgc aattgactgg ggatcgacca atctgcgcgc ctggctttat 60 cagggcgacc actgcctgga gagcaggcaa tcagaagcag gcgtcacgcg cctgaacgga 120 aaatctccgg ctgcggtgtt agcagaagtc acgaccgact ggcgtgaaga gaaaacgcca 180 gtggtaatgg caggaatggt tggcagcaac gtcggctgga aagttgcacc gtatttatct 240 gttcctgcct gtttttcgtc tattggcgaa caattaacgt cagttggcga caatatctgg 300 attattcccg gattatgtgt ctctcatgac gataaccaca atgtgatgcg cggcgaagaa 360 acacaattga tcggcgcgcg agctctggct ccttcctctc tttatgtcat gcccggaacc 420 cattgcaaat gggtgcaggc cgatagccag caaatcaacg attttcgcac cgtgatgacc 480 ggtgaattac atcatttact gttaaatcac tcattgattg gcgcaggttt gccgccgcag 540 gaaaactctg ccgatgcctt cacagctggc cttgagcgtg gtcttaatac gcccgccata 600 ttgccgcagc tttttgaagt tcgcgcctcg catgtgctgg gaacacttcc ccgcgaacag 660 gtcagcgaat ttctctctgg tttgttgatt ggcgcagagg tcgccagtat gcgcgactat 720 gtggcccatc aacacgccat cacccttgtc gccggaacat cgctgaccgc gcgctaccag 780 caagcctttc aggcgatggg ttgcgacgtg acggcggtgg cgggcgacac ggcatttcag 840 gctggtataa ggagcatcgc tcatgcagtg gcaaactaa 879 <210> 4 <211> 61 <212> RNA <213> Artificial Sequence <220> <223> forward primer for kdgok <400> 4 gcctgaacgg aaaatctccg gctgcggtgt tagcagaagt catatgaata tcctccttag 60 t 61 <210> 5 <211> 61 <212> RNA <213> Artificial Sequence <220> <223> reverse primer for kdgok <400> 5 gcatgagcga tgctccttat accagcctga aatgccgtgt gtgtaggctg gagctgcttc 60 g 61 <110> MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION <120> ESCHERICHIA COLI STRAIN EWG4 FOR PRODUCING D-GALACTONATE AND USE <130> P14-0166 / MJU <160> 5 <170> Kopatentin 2.0 <210> 1 <211> 950 <212> DNA <213> Azospirillum brasilense <400> 1 ccatggatgt ctgaccaggt ttctctgggt gttgttggta tcggtaaaat cgcgcgtgac 60 cagcacctgc cggcgatcga cgcggaaccg ggtttcaaac tgaccgcgtg cgcgtctcgt 120 cacgcggaag ttaccggtgt tcgtaactac cgtgacctgc gtgcgctgct ggcggcggaa 180 cgtgaactgg acgcggtttc tctgtgcgcg ccgccgcagg ttcgttacgc gcaggcgcgt 240 gcggcgctgg aagcgggtaa acacgttatg ctggaaaaac cgccgggtgc gaccctgggt 300 gaagttgcgg ttctggaagc gctggcgcgt gaacgtggtc tgaccctgtt cgcgacctgg 360 cactctcgtt gcgcgtctgc ggttgaaccg gcgcgtgaat ggctggcgac ccgtgcgatc 420 cgtgcggttc aggttcgttg gaaagaagac gttcgtcgtt ggcacccggg tcagcagtgg 480 atctgggaac cgggtggtct gggtgttttc gacccgggta tcaacgcgct gtctatcgtt 540 acccgtatcc tgccgcgtga actggttctg cgtgaagcga ccctgatcgt tccgtctgac 600 gttcagaccc cgatcgcggc ggaactggac tgcgcggaca ccgacggtgt tccggttcgt 660 gcggagtttg actggcgtca cggtccggtt gaacagtggg aaatcgcggt tgacaccgcg 720 gacggtgttc tggcgatctc tcgtggtggt gcgcagctgt ctatcgcggg tgaaccggtt 780 gaactgggtc cggaacgtga atacccggcg ctgtacgcgc acttccacgc gctgatcgcg 840 cgtggtgaat ctgacgttga cgttcgtccg ctgcgtctgg ttgcggacgc gttcctgttc 900 ggtcgtcgtg ttcagaccga cgcgttcggt cgttgaggat ccgacatcta 950 <210> 2 <211> 1149 <212> DNA <213> Escherichia coli <400> 2 atgagtctga aagaaaaaac acaatctctg tttgccaacg catttggcta ccctgccact 60 cacaccattc aggcgcctgg ccgcgtgaat ttgattggtg aacacaccga ctacaacgac 120 ggtttcgttc tgccctgcgc gattgattat caaaccgtga tcagttgtgc accacgcgat 180 gaccgtaaag ttcgcgtgat ggcagccgat tatgaaaatc agctcgacga gttttccctc 240 gatgcgccca ttgtcgcaca tgaaaactat caatgggcta actacgttcg tggcgtggtg 300 aaacatctgc aactgcgtaa caacagcttc ggcggcgtgg acatggtgat cagcggcaat 360 gtgccgcgg gtgccgggtt aagttcttcc gcttcactgg aagtcgcggt cggaaccgta 420 ttgcagcagc tttatcatct gccgctggac ggcgcacaaa tcgcgcttaa cggtcaggaa 480 gcagaaaacc agtttgtagg ctgtaactgc gggatcatgg atcagctaat ttccgcgctc 540 ggcaagaaag atcatgcctt gctgatcgat tgccgctcac tggggaccaa agcagtttcc 600 atgcccaaag gtgtggctgt cgtcatcatc aacagtaact tcaaacgtac cctggttggc 660 agcgaataca acacccgtcg tgaacagtgc gaaaccggtg cgcgtttctt ccagcagcca 720 gccctgcgtg atgtcaccat tgaagagttc aacgctgttg cgcatgaact ggacccgatc 780 gtggcaaaac gcgtgcgtca tatactgact gaaaacgccc gcaccgttga agctgccagc 840 gcgctggagc aaggcgacct gaaacgtatg ggcgagttga tggcggagtc tcatgcctct 900 atgcgcgatg atttcgaaat caccgtgccg caaattgaca ctctggtaga aatcgtcaaa 960 gctgtgattg gcgacaaagg tggcgtacgc atgaccggcg gcggatttgg cggctgtatc 1020 gtcgcgctga tcccggaaga gctggtgcct gccgtacagc aagctgtcgc tgaacaatat 1080 gaagcaaaaa caggtattaa agagactttt tacgtttgta aaccatcaca aggagcagga 1140 cagtgctga 1149 <210> 3 <211> 879 <212> DNA <213> Escherichia coli <400> 3 atgacagctc gctacatcgc aattgactgg ggatcgacca atctgcgcgc ctggctttat 60 cagggcgacc actgcctgga gagcaggcaa tcagaagcag gcgtcacgcg cctgaacgga 120 aaatctccgg ctgcggtgtt agcagaagtc acgaccgact ggcgtgaaga gaaaacgcca 180 gtggtactgg caggaatggt tggcagcaac gtcggctgga aagttgcacc gtatttatct 240 gttcctgcct gtttttcgtc tattggcgaa caattaacgt cagttggcga caatatctgg 300 attattcccg gattatgtgt ctctcatgac gataaccaca atgtgatgcg cggcgaagaa 360 acacaattga tcggcgcgcg agctctggct ccttcctctc tttatgtcat gcccggaacc 420 cattgcaaat gggtgcaggc cgatagccag caaatcaacg attttcgcac cgtgatgacc 480 ggtgaattac atcatttact gttaaatcac tcattgattg gcgcaggttt gccgccgcag 540 gaaaactctg ccgatgcctt cacagctggc cttgagcgtg gtcttaatac gcccgccata 600 ttgccgcagc tttttgaagt tcgcgcctcg catgtgctgg gaacacttcc ccgcgaacag 660 gtcagcgaat ttctctctgg tttgttgatt ggcgcagagg tcgccagtat gcgcgactat 720 gtggcccatc aacacgccat cacccttgtc gccggaacat cgctgaccgc gcgctaccag 780 caagcctttc aggcgatggg ttgcgacgtg acggcggtgg cgggcgacac ggcatttcag 840 gctggtataa ggagcatcgc tcatgcagtg gcaaactaa 879 <210> 4 <211> 61 <212> RNA <213> Artificial Sequence <220> <223> forward primer for kdgok <400> 4 gcctgaacgg aaaatctccg gctgcggtgt tagcagaagt catatgaata tcctccttag 60 t 61 <210> 5 <211> 61 <212> RNA <213> Artificial Sequence <220> <223> reverse primer for kdgok <400> 5 gcatgagcga tgctccttat accagcctga aatgccgtgt gtgtaggctg gagctgcttc 60 g 61
Claims (14)
E. coli strain EWG4 having D-galactonate-producing ability deposited with accession number KCTC 12538BP.
상기 대장균 균주 EWG4는 갈락토키나아제를 암호화하는 galK 유전자 및 2-데히드로-3-데옥시-갈락토네이트 키나아제를 암호화하는 dgoK 유전자가 제거된 것을 특징으로 하는 대장균 균주 EWG4.
The method according to claim 1,
The Escherichia coli strain EWG4 is obtained by removing the galK gene encoding galactokinase and the dgoK gene encoding 2-dehydro-3-deoxy- galactonate kinase.
상기 galK 유전자는 서열번호 2의 염기서열로 구성되는 것을 특징으로 하는 대장균 균주 EWG4.
The method of claim 2,
Wherein the galK gene is composed of the nucleotide sequence of SEQ ID NO: 2. EWG4.
상기 dgoK 유전자는 서열번호 3의 염기서열로 구성되는 것을 특징으로 하는 대장균 균주 EWG4.
The method of claim 2,
Wherein the dgoK gene comprises the nucleotide sequence of SEQ ID NO: 3.
상기 대장균 균주는 아라비노스 탈수소화효소 (arabinose dehydrogenase, aradh) 유전자를 포함하는 것을 특징으로 하는 대장균 균주 EWG4.
The method according to claim 1,
Wherein the Escherichia coli strain comprises an arabinose dehydrogenase (aradh) gene.
상기 aradh 유전자는 서열번호 1의 염기서열로 구성되는 것을 특징으로 하는 대장균 균주 EWG4.
The method of claim 5,
Wherein the aradh gene comprises the nucleotide sequence of SEQ ID NO: 1.
아라비노스 탈수소화효소 (arabinose dehydrogenase, aradh) 유전자와 E. coli 발현 벡터 pET28a를 제한효소로 처리하고 리가아제로 결합하여 pET28a-aradh를 제조하는 단계(단계 2);
상기 단계 2에서 제조된 pET28a-aradh를 상기 단계 1을 거친 대장균에 형질도입하는 단계(단계 3)를 포함하는 대장균 균주 EWG4의 제조방법.
Removing the galK gene encoding galactokinase in E. coli and the dgoK gene encoding 2-dehydro-3-deoxy-galactonate kinase (step 1);
A step (step 2) of treating arabinose dehydrogenase (aradh) gene and E. coli expression vector pET28a with a restriction enzyme and ligating with a ligase to prepare pET28a-aradh;
(Step 3) of transfecting Escherichia coli obtained in step 1 with pET28a- aradh produced in step 2 above.
상기 단계 1의 유전자를 제거시키는 단계는 유전자 파괴 카세트(gene disruption cassette)를 이용하여 유전자를 파괴시키는 방법으로 수행하는 것을 특징으로 하는 대장균 균주 EWG4의 제조방법.
The method of claim 7,
Wherein the step of removing the gene of step 1 is performed by a method of destroying a gene using a gene disruption cassette.
상기 제한효소는 NcoI 및 BamHI인 것을 특징으로 하는 대장균 균주 EWG4의 제조방법.
The method of claim 7,
Wherein the restriction enzymes are NcoI and BamHI.
상기 배양액으로부터 D-갈락토네이트를 회수하는 단계를 포함하는 D-갈락토네이트의 생산방법.
Culturing the strain of claim 1 to produce a culture medium; and
And recovering D-galactonate from the culture.
상기 배양은 비연속 발효법으로 이루어지는 것을 특징으로 하는 D-갈락토네이트의 생산방법.
The method of claim 10,
Wherein the culture is performed by a non-continuous fermentation method.
상기 배양은 27 ~ 40℃에서 수행하는 것을 특징으로 하는 D-갈락토네이트의 생산방법.
The method of claim 10,
Wherein the culturing is performed at 27 to 40 占 폚.
상기 배양은 pH 6 ~ 8에서 수행하는 것을 특징으로 하는 D-갈락토네이트의 생산방법.
The method of claim 10,
Wherein the culture is carried out at a pH of 6 to 8.
상기 배양은 탄소원을 포함하는 배지에서 수행하는 것을 특징으로 하는 D-갈락토네이트의 생산방법.
The method of claim 10,
Wherein the culture is carried out in a medium containing a carbon source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140083933A KR101582261B1 (en) | 2014-07-04 | 2014-07-04 | Escherichia coli strain ewg4 for producing d-galactonate and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140083933A KR101582261B1 (en) | 2014-07-04 | 2014-07-04 | Escherichia coli strain ewg4 for producing d-galactonate and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101582261B1 true KR101582261B1 (en) | 2016-01-04 |
Family
ID=55164415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140083933A KR101582261B1 (en) | 2014-07-04 | 2014-07-04 | Escherichia coli strain ewg4 for producing d-galactonate and use thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101582261B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5650436A (en) | 1986-12-23 | 1997-07-22 | Tristrata Technology, Inc. | Method of using galactonic acid or galactonolactone for treating wrinkles |
US20100124774A1 (en) | 2007-02-26 | 2010-05-20 | Gyung Soo Kim | Method of producing biofuel using sea algae |
KR20150006581A (en) * | 2013-07-09 | 2015-01-19 | 명지대학교 산학협력단 | Escherichia coli for high production of d-galactonate and use thereof |
-
2014
- 2014-07-04 KR KR1020140083933A patent/KR101582261B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5650436A (en) | 1986-12-23 | 1997-07-22 | Tristrata Technology, Inc. | Method of using galactonic acid or galactonolactone for treating wrinkles |
US20100124774A1 (en) | 2007-02-26 | 2010-05-20 | Gyung Soo Kim | Method of producing biofuel using sea algae |
KR20150006581A (en) * | 2013-07-09 | 2015-01-19 | 명지대학교 산학협력단 | Escherichia coli for high production of d-galactonate and use thereof |
Non-Patent Citations (4)
Title |
---|
[서열번호1] GENBANK: AB211983.1 |
[서열번호2] GENBANK: X02306.1 * |
GENBANK: AB211983.1 * |
논문: (PUBLISHED ONLINE: 3 JULY 2013) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150267231A1 (en) | Biotechnological 2-hydroxyisobutyric acid production | |
EA025990B1 (en) | Polypeptides having oxidoreductase activity and their uses | |
KR20090029256A (en) | Glycolic acid production by fermentation from renewable resources | |
CN111936629A (en) | Process for producing vanillin | |
Veldmann et al. | Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum | |
CN112176000A (en) | Process for producing aromatic alcohols | |
JP5320692B2 (en) | Yeast and method for producing L-lactic acid | |
CN114008197A (en) | Metabolic engineering for simultaneous consumption of xylose and glucose to produce chemicals from second generation sugars | |
JP2008278823A (en) | Gene-destructing strain, recombinant plasmid, transformant, and method for producing 3-carboxymuconolactone | |
JP6570514B2 (en) | Method for producing aniline derivative from carbon source by fermentation | |
CN114181877A (en) | Genetically engineered bacterium for synthesizing vanillin and application thereof | |
JP5142268B2 (en) | Improved gallic acid synthase and method for producing gallic acid | |
JP2012000059A (en) | FERMENTATIVE PRODUCTION OF MUCONOLACTONE, β-KETOADIPIC ACID AND/OR LEVULINIC ACID | |
JP5268064B2 (en) | Plasmid, transformant, and method for producing 3-carboxymuconolactone | |
CN101802200B (en) | Preparing method for (s)-3-hydroxybutyric acid and (s)-3-hydroxybutyrate ester using recombinant microorganism | |
KR102149044B1 (en) | Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid | |
KR20210015881A (en) | Method of manufacturing methacrylate | |
CN112375723B (en) | Engineering bacteria for producing maleic acid and construction method and application thereof | |
KR101541034B1 (en) | Escherichia coli for high production of d―galactonate and use thereof | |
KR101582261B1 (en) | Escherichia coli strain ewg4 for producing d-galactonate and use thereof | |
CN110157746B (en) | Method for synthesizing auxin by microorganisms | |
CN104245947A (en) | Novel oxidoreductases for enantioselective reactions | |
JP2008283917A (en) | Method for producing lactic acid | |
KR101533290B1 (en) | Escherichia coli for high production of d―galactonate and use thereof | |
CN105593368B (en) | Recombinant microorganism having increased ability to produce 2,3-butanediol and method for producing 2,3-butanediol using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20181218 Year of fee payment: 4 |