KR101581448B1 - High purity silicon carbide product manufacturing method - Google Patents

High purity silicon carbide product manufacturing method Download PDF

Info

Publication number
KR101581448B1
KR101581448B1 KR1020090131072A KR20090131072A KR101581448B1 KR 101581448 B1 KR101581448 B1 KR 101581448B1 KR 1020090131072 A KR1020090131072 A KR 1020090131072A KR 20090131072 A KR20090131072 A KR 20090131072A KR 101581448 B1 KR101581448 B1 KR 101581448B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
sintered body
sic
carbon source
coating
Prior art date
Application number
KR1020090131072A
Other languages
Korean (ko)
Other versions
KR20110074176A (en
Inventor
김영남
김민성
김명정
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020090131072A priority Critical patent/KR101581448B1/en
Publication of KR20110074176A publication Critical patent/KR20110074176A/en
Application granted granted Critical
Publication of KR101581448B1 publication Critical patent/KR101581448B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명은, (a) 탄화규소 (SiC) 소결체를 제작하는 단계; (b) 상기 탄화규소 소결체 상에 탄소원 (Carbon Source)을 코팅하는 단계; (c) 상기 코팅된 탄소원을 열처리하여 상기 탄소원 내의 탄소와 상기 탄화규소 소결체 내의 잔류 규소 (Si)를 반응시켜, 상기 탄화규소 소결체 상에 탄화규소 코팅층을 형성하는 단계를 포함하는 것을 특징으로 하는 고순도 탄화규소 제품 제조 방법에 관한 것이다. 이에 의해, 탄화규소 소결체의 형상에 구해받지 않고 탄화규소 코팅이 가능하며, 저가의 재료로 고순도 탄화규소 코팅이 가능하다.(A) fabricating a silicon carbide (SiC) sintered body; (b) coating a carbon source on the silicon carbide sintered body; (c) heat treating the coated carbon source to react the carbon in the carbon source with the residual silicon (Si) in the silicon carbide sintered body to form a silicon carbide coating layer on the silicon carbide sintered body. To a method of manufacturing a silicon carbide product. Thus, the silicon carbide coating can be performed without obtaining the shape of the silicon carbide sintered body, and high-purity silicon carbide coating can be performed with a low-cost material.

탄화규소, 소결체, 열처리, 코팅 Silicon carbide, sintered body, heat treatment, coating

Description

고순도 탄화규소 제품 제조 방법{HIGH PURITY SILICON CARBIDE PRODUCT MANUFACTURING METHOD}TECHNICAL FIELD [0001] The present invention relates to a high-purity silicon carbide product,

본 발명은 고순도 탄화규소 제품 제조 방법에 관한 것이며, 더욱 상세하게는, CVD 공법을 이용하지 않고 반응 소결로 고순도 코팅을 진행할 수 있는 고순도 탄화규소 제품 제조 방법에 관한 것이다.The present invention relates to a method for producing a high purity silicon carbide product, and more particularly, to a method for producing a high purity silicon carbide product capable of conducting a high purity coating by a reaction sintering process without using a CVD process.

탄화규소(SiC)는 합성재료로서 세라믹스 분야에서 가장 중요한 탄화물이다. 탄화규소는 입방 정(cubic) 결정구조를 갖는 β상과 육방정(hexagonal) 결정구조를 갖는 α상이 존재한다. β상은 1400-1800℃의 온도 범위에서 안정하고, α상은 2000℃ 이상에서 형성된다. Silicon carbide (SiC) is the most important carbide in the field of ceramics as a synthesis material. Silicon carbide has a β-phase having a cubic crystal structure and an α-phase having a hexagonal crystal structure. The? phase is stable in the temperature range of 1400-1800 占 폚, and the? phase is formed in 2000 占 폚 or more.

SiC의 분자량은 40.1이고, 비중은 3.21이며, 2500℃ 이상에서 분해된다. The molecular weight of SiC is 40.1, the specific gravity is 3.21, and decomposed at 2500 ℃ or higher.

탄화규소는 1970년대에 미국 G.E.의 Prochazka에 의해 boron 및 carbon의 첨가로 강압소결이 처음 성공한 이래로 SiC는 고온강도가 높고, 내마모성, 내산화성, 내식성, 크립저항성등의 특성이 우수하여 고온 구조재료로서 주목을 받는 재료이며, 현재 메카니컬 씰, 베어링, 각종 노즐, 고온 절삭공구, 내화판, 연마재, 제강시 환원제, 피뢰기 등에 광범위하게 사용되고 있는 고급 세라믹 소재이다. Since SiC was firstly successfully sintered by addition of boron and carbon by GE Prochazka in the 1970s, SiC has high temperature strength and excellent abrasion resistance, oxidation resistance, corrosion resistance and creep resistance, It is a high-grade ceramic material widely used for mechanical seals, bearings, various nozzles, hot cutting tools, fireproof plates, abrasives, reducing agents for steelmaking, and lightning arresters.

특히, 반도체용 탄화규소 부품의 경우 부품의 순도가 매우 중요하다. 탄화규소 부품 전체를 고순도로 제작하는 것이 가장 이상적인 경우이며, 이를 위해서는 고순도의 탄화규소 분체가 반드시 필요하다. 일부 업체에서는 고순도 탄화규소 분체를 만들기 위해 탄화규소 분체를 자체 생산하고 있으나, 이러한 고순도의 탄화규소 분체를 대량 생산하는 것은 매우 어렵다. Particularly, in the case of silicon carbide parts for semiconductors, the purity of components is very important. It is the ideal case to manufacture the entire silicon carbide component with high purity. For this purpose, high-purity silicon carbide powder is indispensable. Some companies produce silicon carbide powders to make high purity silicon carbide powders, but it is very difficult to mass produce such high purity silicon carbide powders.

결국, 탄화규소 부품을 고순도화하기 위해서는 저순도의 탄화규소 분체를 소결하여 형상을 만든 후, 그 위에 화학기상 증착 (CVD; Chemical Vapor Deposition) 공법으로 탄화규소를 코팅하는 방법을 적용하고 있으며, 일반적인 반도체용 고순도 탄화규소 부품의 경우 이러한 CVD-SiC 부품을 적용하고 있다.As a result, in order to improve the purity of the silicon carbide component, a method of sintering a low-purity silicon carbide powder to form a shape and then coating silicon carbide on the silicon carbide powder by a chemical vapor deposition (CVD) In the case of high-purity silicon carbide parts for semiconductors, such CVD-SiC parts are applied.

도 1은 종래 기술에 따라 제작된 고순도 탄화규소 부품의 나타내는 단면도이다.1 is a cross-sectional view of a high purity silicon carbide component made according to the prior art.

도 1을 참조하면, 종래의 기술에 따라 제작된 고순도 탄화규소 부품은 저순도의 SiC 분체를 소결하여 가공된 SiC 소결체 (100) 상에 SiC 부품을 고순도화하기 위하여 CVD 공법으로 SiC를 코팅한 고순도 CVD-SiC 막 (120) 으로 구성된다.Referring to FIG. 1, a high purity silicon carbide component manufactured according to the prior art is manufactured by sintering a low purity SiC powder, and a high-purity silicon carbide (SiC) layer coated on the sintered SiC body 100 by CVD And a CVD-SiC film 120.

이러한 CVD-SiC 막 (120)을 형성하는 데 있어 1000℃ 이상의 고온 및 감압하에서 SiCl4, SiHCl3, SiH2Cl2, SiH3Cl, 및 SiH4 등의 규소화합물과 CH4, CH2H6, C3H8 등의 탄소 함유 화합물을 반응시키는 방법, 또는 탄소와 규소를 동시에 함유하는 CH3SiCl3, (CH3)2SiCl2, (CH3)3SiCl, (CH3)4SiCl 등의 열분해를 통해 코팅을 진행하는 방법이 있다.In order to form the CVD-SiC film 120, a silicon compound such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 3 Cl, and SiH 4 and a silicon compound such as CH 4 , CH 2 H 6 , C 3 H 8 to react with carbon-containing compounds, such as, or CH 3 containing carbon and silicon at the same time SiCl 3, (CH 3) 2 SiCl 2, (CH 3) 3 SiCl, (CH 3) 4 SiCl , etc. And the coating is conducted through thermal decomposition of the coating solution.

이러한 기술은 균일한 코팅이 가능하며, 고순도화가 가능하다는 장점이 있다. 그러나 고가의 재료들을 이용해 반응을 진행해야 한다. 또한, 증착, 반응을 통하여 SiC 코팅이 진행되므로 시간이 많이 소요된다. 더욱이 복잡한 형상에서 표면을 균일하게 코팅하기 어려운 단점이 있다. These techniques have the advantage that uniform coating is possible and high purity can be achieved. However, the reaction must be carried out using expensive materials. In addition, since the SiC coating proceeds through deposition and reaction, it takes a long time. Furthermore, it is difficult to uniformly coat the surface in a complicated shape.

본 발명은 상술한 문제를 해결하기 위하여 안출된 것으로, 본 발명의 목적은 소결체의 형상에 구애받지 않고 저가의 재료로 고순도 SiC 코팅할 수 있는 고순도 탄화규소 제품 제조 방법을 제공하는 데 있다.It is an object of the present invention to provide a method of manufacturing a high-purity silicon carbide product which is capable of coating a high-purity SiC with a low-cost material without depending on the shape of the sintered body.

본 발명의 일 실시형태에 따른 고순도 탄화규소 제품 제조 방법은, (a) 탄화규소 (SiC) 소결체를 제작하는 단계; (b) 상기 탄화규소 소결체 상에 탄소원 (Carbon Source)을 코팅하는 단계; (c) 상기 코팅된 탄소원을 열처리하여 상기 탄소원 내의 탄소와 상기 탄화규소 소결체 내의 잔류 규소 (Si)를 반응시켜, 상기 탄화규소 소결체 상에 탄화규소 코팅층을 형성하는 단계를 포함하는 것을 특징으로 한다.A method for manufacturing a high purity silicon carbide article according to an embodiment of the present invention includes the steps of: (a) fabricating a silicon carbide (SiC) sintered body; (b) coating a carbon source on the silicon carbide sintered body; (c) heat-treating the coated carbon source to react the carbon in the carbon source with the residual silicon (Si) in the silicon carbide sintered body to form a silicon carbide coating layer on the silicon carbide sintered body.

여기서, 상기 (b) 단계의 탄소원은, 탄소 분체, CNT (Crbon Nano Tube), 및 수지류 중에서 선택될 수도 있다.Here, the carbon source of step (b) may be selected from carbon powder, carbon nanotube (CNT), and resin.

특히, 상기 (b) 단계는, 탄소원을 균일하게 코팅하는 단계일 수도 있으며, 상기 (c) 단계의 열처리는 1000℃ 이상 1500℃ 이하에서 진행되는 것일 수도 있다.In particular, the step (b) may be a step of uniformly coating the carbon source, and the step (c) may be performed at a temperature of 1000 ° C or higher and 1500 ° C or lower.

본 발명에 의해, 탄화규소 소결체의 형상에 구해받지 않고 탄화규소 코팅이 가능하다. 또한, 저가의 재료로 고순도 탄화규소 코팅이 가능하다.According to the present invention, silicon carbide coating can be performed without obtaining the shape of the silicon carbide sintered body. High-purity silicon carbide coating is also possible with low-cost materials.

이하에서는 첨부한 도면을 참조하여 바람직한 일 실시형태에 따른 고순도 탄화규소 제품 제조 방법에 대해서 상세히 설명한다. 다만, 실시형태를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다.Hereinafter, a method of manufacturing a high purity silicon carbide product according to a preferred embodiment will be described in detail with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid unnecessarily obscuring the subject matter of the present invention.

도 2는 본 발명의 바람직한 일 실시형태에 따른 고순도 탄화규소 분체 제조 방법의 블록도이다. 2 is a block diagram of a method for producing high purity silicon carbide powder according to a preferred embodiment of the present invention.

도 2를 참조하면, 반응 소결체 (100)를 제작한다 (S1). 여기서 반응 소결체 (100)는 저순도의 SiC 분체를 소결하여 제작된 소결체로서, 그 제작 과정은 종래 기술에 의한 것으로 본 명세서에서는 설명을 생략한다. 그 후, 이러한 소결체 (100) 상에 탄소원 (30)을 코팅한다 (S2). 더욱 상세하게는 탄소원 (30)으로서, 탄소 분체, CNT (나노 구조를 가진 탄소 동소체) (Carbon Nano Tube), 수지류를 소결체 상에 균일하게 코팅한다. 그 후, 코팅된 탄소원 (30)을 1000℃ 이상에서 열처리 한다 (S4). 이 경우, 1000℃ 이상 1500℃ 이하에서 열처리하는 것이 더욱 바람직하다. 왜냐하면, 1000℃ 이하에서는 잔류 Si와 Carbon이 반응을 일으키지 못하여 SiC 코팅이 이루어지지 못하고, 1500℃ 이상에서는 잔류 규소의 용출양이 많아져서 적절한 SiC 코팅층을 이루기 어렵기 때문이다. 이와 같이 열처리 된 탄소원은 소결체 (100)내부의 잔류 Si (10)와 반응하여 균일한 SiC 코팅층 (40)을 형성한다.Referring to FIG. 2, a reaction sintered body 100 is fabricated (S1). Here, the reaction sintered body 100 is a sintered body produced by sintering a low purity SiC powder, and its manufacturing process is based on the prior art, and a description thereof is omitted here. Thereafter, the carbon source 30 is coated on the sintered body 100 (S2). More specifically, as the carbon source 30, carbon powder, carbon nanotubes (CNT) (Carbon Nano Tube) and resins are uniformly coated on the sintered body. Thereafter, the coated carbon source 30 is heat-treated at 1000 DEG C or higher (S4). In this case, it is more preferable to perform the heat treatment at 1000 ° C or more and 1500 ° C or less. This is because SiC coating can not be performed because residual Si does not react with carbon at temperatures below 1000 ° C, and elution of residual silicon increases at temperatures above 1500 ° C, making it difficult to form a suitable SiC coating layer. The carbon source thus annealed reacts with the residual Si (10) in the sintered body (100) to form a uniform SiC coating layer (40).

도 3은 본 발명의 바람직한 일 실시형태에 따라 소결체 상에 SiC 가 코팅되는 구조를 도시하는 단면도이다.3 is a cross-sectional view showing a structure in which SiC is coated on a sintered body according to a preferred embodiment of the present invention.

도 3을 참조하면, 반응 소결된 SiC 소결체 (100) 위에 탄소원 (30)을 균일하 게 코팅한 후 1000℃ 이상의 온도에서 열처리를 진행한다. 이 경우, 반응 소결된 SiC 소결체 (100)의 경우 소결체 (100) 내부에 잔류 Si (20)가 존재하게 되는데, 열처리에 의해 소결체 내의 잔류 Si (20)와 탄소원 (30) 내의 탄소가 반응하여 균일한 SiC 코팅층 (40)을 형성한다. Referring to FIG. 3, the carbon source 30 is uniformly coated on the sintered SiC body 100, and then heat treatment is performed at a temperature of 1000 ° C or higher. In this case, the SiC sintered body 100 having the reaction sintered body 100 has the residual Si 20 inside the sintered body 100. The residual Si 20 in the sintered body reacts with carbon in the carbon source 30 by heat treatment, An SiC coating layer 40 is formed.

여기서 사용되는 탄소원 (30)들, 예를 들어, 탄소 분체, CNT, 수지류등은 저가의 소재들로서 제조 비용을 낮출 수 있다. 또한, 이와 같이 SiC 코팅층 (40)을 형성하는 방법은 소결체의 형상에 구애받지 않기 때문에, 어떠한 소결체의 형상에도 균일하게 코팅이 가능하다. The carbon sources 30 used herein, for example, carbon powder, CNT, resin, etc., are inexpensive materials and can reduce manufacturing cost. In addition, the method of forming the SiC coating layer 40 as described above does not depend on the shape of the sintered body, so that it is possible to uniformly coat any sintered body shape.

도 4는 본 발명의 일 실시형태에 따라 형성된 SiC 코팅층의 XRD 데이터를 나타내는 그래프이다.4 is a graph showing XRD data of a SiC coating layer formed according to an embodiment of the present invention.

여기서, XRD 그래프의 X축은 2θ 이며, Y축은 강도 (Intensity) 를 나타낸다. 그리고 표면층이 SiC라면 결정질마다 정확한 2θ값에서 피크 (Peak)가 나타나야 한다. 따라서 그래프에 도시된 바와 같이, SiC 코팅층의 결정 분석 결과 소결체의 표면에 코팅된 탄소원과 내부의 잔류 Si 에 의해 표면층에 SiC 로 합성된 것을 알 수 있다.Here, the X-axis of the XRD graph is 2?, And the Y-axis represents the intensity. If the surface layer is made of SiC, the peak should appear at an accurate 2? Value for each crystal. Therefore, as shown in the graph, it can be seen from the crystal analysis of the SiC coating layer that the carbon source coated on the surface of the sintered body and the residual Si in the interior thereof are synthesized as SiC on the surface layer.

전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the foregoing detailed description of the present invention, specific examples have been described. However, various modifications are possible within the scope of the present invention. The technical spirit of the present invention should not be limited to the above-described embodiments of the present invention, but should be determined by the claims and equivalents thereof.

도 1은 종래 기술에 따라 제작된 고순도 탄화규소 부품의 나타내는 단면도Figure 1 is a cross-sectional view of a high purity silicon carbide component made according to the prior art

도 2는 본 발명의 바람직한 일 실시형태에 따른 고순도 탄화규소 분체 제조 방법의 블록도2 is a block diagram of a method for producing a high purity silicon carbide powder according to a preferred embodiment of the present invention

도 3은 본 발명의 바람직한 일 실시형태에 따라 소결체 상에 SiC 가 코팅되는 구조를 도시하는 단면도3 is a cross-sectional view showing a structure in which SiC is coated on a sintered body according to a preferred embodiment of the present invention

도 4는 본 발명의 일 실시형태에 따라 형성된 SiC 코팅층의 XRD 데이터를 나타내는 그래프.4 is a graph showing XRD data of a SiC coating layer formed according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호 설명>Description of the Related Art [0002]

10: 잔류 Si 20: SiC10: Residual Si 20: SiC

30: 탄소원 40: SiC 코팅층30: carbon source 40: SiC coating layer

100: 저순도 SiC 소결체 120: 고순도 CVD-SiC100: low purity SiC sintered body 120: high purity CVD-SiC

Claims (4)

(a) 탄화규소 (SiC) 소결체를 제작하는 단계;(a) fabricating a silicon carbide (SiC) sintered body; (b) 상기 탄화규소 소결체 상에 탄소원 (Carbon Source)을 코팅하는 단계;(b) coating a carbon source on the silicon carbide sintered body; (c) 상기 코팅된 탄소원을 열처리하여 상기 탄소원 내의 탄소와 상기 탄화규소 소결체 내의 잔류 규소 (Si)를 반응시켜, 상기 탄화규소 소결체 상에 탄화규소코팅층을 형성하는 단계를 포함하고,(c) heat-treating the coated carbon source to react the carbon in the carbon source with the residual silicon (Si) in the silicon carbide sintered body to form a silicon carbide coating layer on the silicon carbide sintered body, 상기 (c) 단계의 열처리는 1000℃ 이상 1500℃ 이하에서 진행되는 고순도 탄화규소 제품 제조 방법.Wherein the heat treatment in the step (c) is performed at a temperature of 1000 ° C or more and 1500 ° C or less. 제 1항에 있어서,The method according to claim 1, 상기 (b) 단계의 탄소원은, 탄소 분체, CNT (Crbon Nano Tube), 및 수지류 중에서 선택되는 것을 특징으로 하는 고순도 탄화규소 제품 제조 방법.Wherein the carbon source of step (b) is selected from carbon powder, CNT (Crone Nano Tube), and resin. 제 1항 또는 제 2항에 있어서,3. The method according to claim 1 or 2, 상기 (b) 단계는,The step (b) 탄소원을 균일하게 코팅하는 단계인 것을 특징으로 하는 고순도 탄화규소 제품 제조 방법.Wherein the carbon source is uniformly coated. 삭제delete
KR1020090131072A 2009-12-24 2009-12-24 High purity silicon carbide product manufacturing method KR101581448B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090131072A KR101581448B1 (en) 2009-12-24 2009-12-24 High purity silicon carbide product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090131072A KR101581448B1 (en) 2009-12-24 2009-12-24 High purity silicon carbide product manufacturing method

Publications (2)

Publication Number Publication Date
KR20110074176A KR20110074176A (en) 2011-06-30
KR101581448B1 true KR101581448B1 (en) 2015-12-31

Family

ID=44404581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090131072A KR101581448B1 (en) 2009-12-24 2009-12-24 High purity silicon carbide product manufacturing method

Country Status (1)

Country Link
KR (1) KR101581448B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101326917B1 (en) * 2011-12-26 2013-11-11 엘지이노텍 주식회사 Method of fabricating silicon carbide
CN102557032A (en) * 2012-03-09 2012-07-11 桂林理工大学 Preparation method of high-purity silicon carbide nano fibers
KR102508544B1 (en) 2015-11-09 2023-03-09 강릉원주대학교산학협력단 Preparation method of high purity silicon carbide
CN106747628B (en) * 2017-02-22 2020-02-04 南京航空航天大学 High-temperature-resistant foam-reinforced SiO2Aerogel thermal insulation material and preparation method thereof
KR102593491B1 (en) * 2020-11-27 2023-10-24 한국세라믹기술원 SiC nanotube composite, and method of fabricating of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019548A (en) 1999-07-09 2001-01-23 Bridgestone Corp Silicon carbide sintered compact and its production
JP2003119077A (en) 2001-10-16 2003-04-23 Bridgestone Corp Method of producing silicon carbide sintered compact, and silicon carbide sintered compact obtained by the same method
JP2006248807A (en) * 2005-03-08 2006-09-21 Bridgestone Corp Silicon carbide sintered compact having silicon carbide surface rich layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US327572A (en) * 1885-10-06 Reservoir-stove

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019548A (en) 1999-07-09 2001-01-23 Bridgestone Corp Silicon carbide sintered compact and its production
JP2003119077A (en) 2001-10-16 2003-04-23 Bridgestone Corp Method of producing silicon carbide sintered compact, and silicon carbide sintered compact obtained by the same method
JP2006248807A (en) * 2005-03-08 2006-09-21 Bridgestone Corp Silicon carbide sintered compact having silicon carbide surface rich layer

Also Published As

Publication number Publication date
KR20110074176A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
Baldus et al. Novel high‐performance ceramics—amorphous inorganic networks from molecular precursors
KR101581448B1 (en) High purity silicon carbide product manufacturing method
KR101637567B1 (en) High purity silicon carbide manufacturing method and system
Chen et al. Large‐scale synthesis of ultralong single‐crystalline SiC nanowires
Ceballos-Mendivil et al. Synthesis of silicon carbide using concentrated solar energy
KR100972601B1 (en) Process for producing nano-sized silicon carbide powder
Kim et al. Structural and optical characteristics of crystalline silicon carbide nanoparticles synthesized by carbothermal reduction
Zhong et al. Fabrication of novel hydrophobic SiC/SiO2 bead-string like core-shell nanochains via a facile catalyst/template-free thermal chemical vapor deposition process
KR101162567B1 (en) Silicon carbide and method of fabricating thereof
Soltys et al. Synthesis and Properties of Silicon Carbide
Huang et al. In-situ synthesis of SiC nanowires on biomass carbon materials derived from cherry stones
Ghanem et al. Paper derived SiC–Si3N4 ceramics for high temperature applications
KR101641431B1 (en) Method of manufacturing silicon nitride nano fiber
Kim et al. Preparation and characterization of silicon nitride (SiN)-coated carbon fibers and their effects on thermal properties in composites
CN106187203B (en) A kind of method and products thereof that aluminium nitride powder is prepared based on aluminium carbide
Tang et al. Synthesis of SiBNC‐Al ceramics with different aluminum contents via polymer‐derived method
Chen et al. Thermodynamic analysis of chemical vapor deposition progress for SiC coatings
Cheng et al. Graphene-coated pearl-chain-shaped SiC nanowires
Gupta et al. The influence of diluent gas composition and temperature on SiC nanopowder formation by CVD
Prabhakaran et al. Silicon carbide wires of nano to sub-micron size from phenol-furfuraldehyde resin
CN102874811B (en) Method for synthesizing beaded-chain one-dimensional silicon carbide nano crystal whiskers through morphological control
KR101732573B1 (en) Fiber-type ceramic heating element and method for manufacturing the same
Yang et al. Microstructure and high temperature oxidation resistance of mixed long Si3N4 nanowires with wide diameter distribution
KR20180108809A (en) Methods of depositing in situ coatings on thermally and chemically loaded components of a fluidized bed reactor for producing high purity polysilicon
Zhao et al. High-temperature oxidation behaviour of si3n4 nanowires with different diameters

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181112

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191111

Year of fee payment: 5