KR101568003B1 - 탄성 및 부력을 이용한 용융물의 표면으로부터의 시트의 제거 - Google Patents

탄성 및 부력을 이용한 용융물의 표면으로부터의 시트의 제거 Download PDF

Info

Publication number
KR101568003B1
KR101568003B1 KR1020127031458A KR20127031458A KR101568003B1 KR 101568003 B1 KR101568003 B1 KR 101568003B1 KR 1020127031458 A KR1020127031458 A KR 1020127031458A KR 20127031458 A KR20127031458 A KR 20127031458A KR 101568003 B1 KR101568003 B1 KR 101568003B1
Authority
KR
South Korea
Prior art keywords
sheet
melt
height
meniscus
translating
Prior art date
Application number
KR1020127031458A
Other languages
English (en)
Other versions
KR20130062940A (ko
Inventor
피터 엘. 켈러만
다웨이 선
브라이언 헬렌브룩
데이빗 에스. 하비
Original Assignee
베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. filed Critical 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크.
Publication of KR20130062940A publication Critical patent/KR20130062940A/ko
Application granted granted Critical
Publication of KR101568003B1 publication Critical patent/KR101568003B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/06Non-vertical pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

시트 제조와 관련된 실시예들이 개시된다. 용융물 상에 재료의 시트를 형성하기 위하여, 재료의 용융물이 냉각된다. 시트는 제 1 시트 높이에서 제 1 영역 내에 형성된다. 시트가 제 1 시트 높이보다 높은 제 2 시트 높이를 가지도록, 시트는 제 2 영역으로 병진이동된다. 다음으로, 시트는 용융물로부터 분리된다. 시드 웨이퍼는 시트를 형성하기 위해 이용될 수 있다.

Description

탄성 및 부력을 이용한 용융물의 표면으로부터의 시트의 제거{REMOVING A SHEET FROM THE SURFACE OF A MELT USING ELASTICITY AND BUOYANCY}
본 발명은 용융물로부터의 시트 형성(sheet formation)에 관한 것으로, 더욱 구체적으로, 용융물로부터 시트를 제거하는 것에 관한 것이다.
실리콘 웨이퍼들 또는 시트들은 예를 들어, 집적 회로 또는 솔라 셀(solar cell) 산업에서 이용될 수 있다. 솔라 셀들에 대한 수요는 재생가능 에너지원들에 대한 수요가 증가함에 따라 계속 증가하고 있다. 대부분의 솔라 셀들은 단결정 실리콘 웨이퍼들과 같은 실리콘 웨이퍼들로 만들어진다. 현재, 결정 실리콘(crystalline silicon) 솔라 셀의 주요 비용은 솔라 셀이 그 위에 만들어지는 웨이퍼이다. 솔라 셀의 효율, 또는 표준 조명 하에 생산되는 전력량은 부분적으로 웨이퍼의 품질에 의해 제한된다. 솔라 셀들에 대한 수요가 증가함에 따라, 솔라 셀 산업의 하나의 목표는 비용/전력 비율을 낮추는 것이다. 품질을 감소시키지 않으면서 웨이퍼를 제조하는 비용에 있어서의 임의의 감소는 비용/전력 비율을 낮출 것이고 이 청정 에너지 기술의 더 폭넓은 이용가능성을 가능하게 할 것이다.
최고 효율의 실리콘 솔라 셀들은 20 %보다 큰 효율을 가질 수 있다. 이들은 전자기기-등급 단결정(monocrystalline) 실리콘 웨이퍼들을 이용하여 만들어진다. 이러한 웨이퍼들은 초크랄스키 방법(Czochralski method)을 이용하여 성장된 단결정 실리콘 원통형 부울(cylindrical boule)로부터 얇은 슬라이스(slice)들을 소잉(sawing) 함으로써 만들어질 수 있다. 이들 슬라이스들은 200㎛ 미만의 두께일 수 있다. 단결정 성장을 유지하기 위하여, 부울은 용융물을 함유하는 도가니(crucible)로부터 10 ㎛/s 미만과 같이 느리게 성장되어야 한다. 이후의 소잉 공정(sawing process)은 웨이퍼마다, 대략 200 ㎛의 커프 손실(kerf loss), 또는 소우 블레이드(saw blade)의 폭에 의한 손실에 이른다. 또한, 원통형 부울 또는 웨이퍼는 정사각형 솔라 셀을 만들기 위하여 정사각형 모양으로 만들어질 필요가 있을 수 있다. 정사각형 제작 및 커프 손실들 둘 모두는 재료 낭비 및 증가된 재료 비용들에 이른다. 솔라 셀들이 더 얇아질수록, 커트(cut) 마다의 실리콘 낭비의 백분율(percent)이 증가한다. 잉곳 슬라이싱 기술에 대한 제한들은 더 얇은 솔라 셀들을 얻기 위한 능력을 방해할 수 있다.
다른 솔라 셀들은 다결정(polycrystalline) 실리콘 잉곳들로부터 소잉되는 웨이퍼들을 이용하여 만들어진다. 다결정 실리콘 잉곳들은 단결정 실리콘보다 더욱 신속하게 성장될 수 있다. 그러나, 더 많은 결함들 및 결정립계(grain boundary)들이 존재하므로, 결과적인 웨이퍼들의 품질은 더 낮고, 이것은 더 낮은 효율의 솔라 셀들로 귀착된다. 다결정 실리콘 잉곳을 위한 소잉 공정은 단결정 실리콘 잉곳 또는 부울만큼 비효율적이다.
또 다른 해결책은 용융물로부터 수직으로 실리콘의 얇은 리본(ribbon)을 견인(pull)하고, 그 다음으로, 견인된 실리콘을 냉각하고 시트(sheet)로 고체화하도록 하는 것이다. 이 방법의 견인 레이트(pull rate)는 대략 18 mm/분(minute) 미만으로 제한될 수 있다. 실리콘의 냉각 및 고체화 동안의 제거된 잠열(latent heat)은 수직 리본(vertical ribbon)을 따라 제거되어야 한다. 이것은 리본을 따라 큰 온도 구배(gradient)로 귀착된다. 이 온도 구배는 결정 실리콘 리본에 응력(stress)을 가하고, 열악한 품질의 멀티-입자(multi-grain) 실리콘으로 귀착될 수 있다. 또한, 리본의 폭 및 두께는 이 온도 구배로 인해 제한될 수 있다. 예를 들어, 폭은 80 mm 미만으로 제한될 수 있고, 두께는 180 ㎛로 제한될 수 있다.
용융물로부터 수평으로 시트들을 제조하는 것은 잉곳으로부터 슬라이싱되는 실리콘보다 덜 고가일 수 있고, 커프 손실 또는 정사각형 제작으로 인한 손실을 제거할 수 있다. 또한, 용융물로부터 수평으로 제조되는 시트들은 용융물로부터 수직으로 견인되는 실리콘 리본보다 덜 고가일 수 있다. 또한, 용융물로부터 수평으로 제조되는 시트들은 수직으로 또는 용융물로부터 각도를 이루어 견인되는 실리콘 리본들에 비해 시트의 결정 품질을 향상시킬 수 있다. 재료 비용들을 감소시킬 수 있는 이것과 같은 결정 성장 방법은 실리콘 솔라 셀들의 비용을 감소시키는 것을 가능하게 하는 주요한 단계일 것이다.
용융물로부터 물리적으로 견인되는 실리콘의 수평 리본들이 테스트되었다. 하나의 방법에서, 로드(rod)에 부착된 시드(seed)가 용융물 내로 삽입되고, 로드 및 결과적인 시트는 도가니의 에지(edge) 상에서 낮은 각도로 견인된다. 각도, 표면 장력(surface tension), 및 용융물 레벨은 도가니 상에서 용융물이 넘치는 것을 방지하도록 균형이 맞추어진다. 그러나, 이러한 견인 공정을 개시하고 제어하는 것은 어렵다. 첫째, 중력과, 도가니 에지에서 형성된 메니스커스(meniscus)의 표면 장력의 균형을 맞추기 위한 경사각 조절은 어려울 수 있다. 둘째, 시트 및 용융물 사이의 분리 지점에서의 리본을 따른 온도 구배는 냉각 판이 이 분리 지점 근처에 있을 경우에, 결정에서 전위(dislocation)들을 야기시킬 수 있다. 셋째, 용융물 위에서 시트를 기울이는 것은 동결 팁(freeze tip)에서의 응력으로 귀착될 수 있다. 이 동결 팁은 시트가 가장 얇고 가장 부서지기 쉬우므로 시트에서의 전위들 또는 파손들이 발생할 수 있는 장소일 수 있다. 넷째, 낮은 각도를 얻기 위하여 복잡한 견인 장치가 필요할 수 있다.
시트는 용융물을 넘치게 하지 않으면서 용융물 표면으로부터 제거되어야 한다. 따라서, 시트의 하면(underside) 및 용융물 사이의 메니스커스는 안정적으로 또는 용기(vessel)에 부착된 상태로 남아 있어야 한다. 이전에는, 메니스커스의 안정성을 유지하기 위하여, 용융물에서 압력이 감소되었다. 하나의 예에서, 낮은 각도의 실리콘 시트(LASS : Low Angle Silicon Sheet)가 작은 각도로 시트를 기울였고 용융물 상에서 멈추었다. 이것은 대기압(atmospheric pressure)에 대한 용융물에서의 부압(negative pressure)을 생성하였고, 메니스커스에 대해 압력을 제공하였다. 또 다른 예에서, 용융물은 배수로(spillway)의 에지 상으로 넘쳐 흐를 수 있다. 배수로의 뒤쪽에서의 유체의 낙하는 메니스커스를 안정화시키기 위하여 용융물에서 부압을 제공한다. 또한, 가스 제트들은 메니스커스 상에서 국소 압력을 증가시키기 위하여 이용될 수 있다. 그러나, 당 업계에서는 용융물로부터 시트를 제거하는 개선된 방법, 더욱 구체적으로, 시트의 탄성(elasticity)을 이용하여 용융물로부터 시트를 제거하는 개선된 방법에 대한 필요성이 존재한다.
본 발명은 탄성 및 부력을 이용하여 용융물의 표면으로부터의 시트를 제거하기 위한 시트 제조 방법을 제공하는 것을 목적으로 한다.
발명의 제 1 측면에 따르면, 시트 제조 방법이 제공된다. 상기 방법은 재료의 용융물을 냉각하여 상기 용융물의 표면 상에 상기 재료의 시트를 형성하는 단계를 포함한다. 상기 시트는 제 1 시트 높이에서 제 1 영역 내에 형성된다. 상기 시트는 제 1 시트 높이보다 높은 제 2 시트 높이를 가지도록 제 2 영역으로 병진이동된다. 상기 시트는 상기 용융물로부터 분리된다.
발명의 제 2 측면에 따르면, 시트 제조 방법이 제공된다. 상기 방법은 시드 웨이퍼를 재료의 용융물에 삽입하는 단계를 포함한다. 상기 용융물은 상기 용융물을 함유하는 용기(vessel)의 에지(edge)보다 높은 제 1 높이에서 표면을 가진다. 상기 시드 웨이퍼는 냉각 판에 근접한 영역으로 용융물에서 병진이동된다. 상기 용융물의 표면은 제 1 높이 아래의 제 2 높이로 하강(lower)된다. 상기 재료의 시트는 이 영역 내의 시드 웨이퍼를 이용하여 상기 용융물 상에서 형성된다. 상기 시트 및 시드 웨이퍼는 병진이동되고 상기 시트는 상기 용기의 에지에서 상기 용융물로부터 분리된다.
발명의 제 3 측면에 따르면, 시트 제조 방법이 제공된다. 상기 방법은 시드 웨이퍼를 재료의 용융물에 삽입하는 단계를 포함한다. 상기 용융물은 상기 용융물을 함유하는 용기의 에지와 동일하거나 용기보다 낮은 제 1 높이에서 표면을 가진다. 상기 시드 웨이퍼는 냉각 판에 근접한 영역으로 병진이동된다. 상기 재료의 시트는 상기 시드 웨이퍼를 이용하여 상기 용융물 상에 형성된다. 상기 시트는 이 영역에 근접한 제 1 시트 높이를 가진다. 상기 시트 및 시드 웨이퍼는 병진이동되고, 상기 시트는 상기 용융물로부터 분리된다. 상기 시트는 상기 분리시키는 단계 후의 제 1 시트 높이보다 높은 제 2 시트 높이를 가진다.
본 발명에 따르면, 탄성 및 부력을 이용하여 용융물의 표면으로부터의 시트를 제거하기 위한 시트 제조 방법이 구현될 수 있다.
본 개시 내용의 더욱 양호한 이해를 위하여, 참조를 위해 본 명세서에 통합되는 첨부 도면들에 대해 참조가 행해진다.
도 1은 용융물로부터 시트를 분리시키는 장치의 실시예의 측단면도이다.
도 2는 용융물로부터 시트를 분리시키는 장치의 제 2 실시예의 측단면도이다.
도 3은 시트를 도가니에 합치는 메니스커스의 측단면도이다.
도 4는 경사진 시트를 위한 메니스커스 안정화의 측단면도이다.
도 5는 용융물의 탄성 및 부력을 이용한 메니스커스 안정화의 측단면도이다.
도 6은 실리콘 용융물 내의 실리콘 시트의 측단면도이다.
도 7은 부력을 포함하는 빔 변형 방정식에 대한 수치 해법을 예시한다.
도 8은 리프트(lift)하기 위한 최소 시트 길이의 둔감성(insensitivity)을 예시한다.
도 9는 탄성 및 부력을 이용한 시트 초기화를 위한 제 1 실시예를 예시한다.
도 10은 탄성 및 부력을 이용한 시트 초기화를 위한 제 2 실시예를 예시한다.
도 11은 탄성 및 부력을 이용한 시트 초기화를 위한 제 3 실시예를 예시한다.
본 명세서의 장치들 및 방법들의 실시예들은 솔라 셀들과 관련하여 설명된다. 그러나, 이것들은 예를 들어, 집적 회로들, 평판 패널들, LED들, 또는 당업자들에게 알려진 다른 기판들을 제조하기 위해 이용될 수 있다. 또한, 용융물은 본 명세서에서 실리콘인 것으로 설명되지만, 용융물은 게르마늄(germanium), 실리콘 및 게르마늄, 갈륨(gallium), 갈륨 나이트라이드(gallium nitride), 다른 반도체 재료들, 또는 당업자들에게 알려진 다른 재료들을 포함할 수 있다. 따라서, 발명은 이하에 설명되는 특정 실시예들에 한정되지 않는다.
도 1은 용융물로부터 시트를 분리하는 장치의 실시예의 측단면도이다. 시트 형성 장치(21)는 용기(16)를 가진다. 용기(16)는 예를 들어, 텅스텐(tungsten), 붕소 나이트라이드(boron nitride), 알루미늄 나이트라이드(aluminum nitride), 몰리브덴(molybdenum), 흑연(graphite), 실리콘 카바이드(silicon carbide), 또는 석영(quartz)일 수 있다. 용기(16)는 용융물(10)을 함유하도록 구성된다. 이 용융물(10)은 실리콘일 수 있다. 시트(13)는 용융물(10) 위에 형성될 것이다. 하나의 사례에서, 시트(13)는 용융물(10) 내에서 적어도 부분적으로 부유(float)할 것이다. 시트(13)는 도 1에서 용융물(10)에서 부유하는 것으로 예시되어 있지만, 시트(13)는 용융물(10)에서 적어도 부분적으로 잠길 수 있거나, 용융물(10)의 상단 위에서 부유할 수 있다. 시트(13)가 위치되는 깊이는 시트(13) 및 용융물(10)의 상대적인 밀도들에 부분적으로 기초하고 있다. 하나의 사례에서, 시트(13)의 10%만 용융물(10)의 상단 위로부터 돌출된다. 용융물(10)은 시트 형성 장치(21) 내부에서 순환할 수 있다.
이 용기(16)는 적어도 하나의 채널(17)을 정의한다. 이 채널(17)은 용융물(10)을 수용하도록 구성되고, 용융물(10)은 채널(17)의 제 1 지점(18)으로부터 제 2 지점(19)으로 흐른다. 용융물(10)은 예를 들어, 압력차, 중력, 펌프, 또는 다른 수송 방법들로 인해 흐를 수 있다. 다음으로, 용융물(10)은 배수로(12) 상으로 넘쳐 흐른다. 이 배수로(12)는 램프(ramp), 둑(weir), 선반(ledge), 작은 댐(dam), 또는 코너(corner)일 수 있고, 도 1에 예시된 실시예에 한정되지 않는다. 배수로(12)는 시트(13)가 용융물(10)로부터 분리되도록 하는 임의의 형상일 수 있다.
하나의 특정 실시예에서, 용기(16)는 대략 1685 K를 약간 초과하는 온도에서 유지될 수 있다. 실리콘에 대하여, 1685 K는 동결 온도(freezing temperature) 또는 계면 온도(interface temperature)를 나타낸다. 용기(16)의 온도를 용융물(10)의 동결 온도를 약간 초과하도록 유지함으로써, 냉각 판(14)은 용융물(10) 상에서 또는 용융물(10) 내에서 시트(13)의 희망하는 동결 레이트(freezing rate)를 얻기 위하여, 복사 냉각(radiation cooling)을 이용하여 기능할 수 있다. 이 특정 실시예에서의 냉각 판(14)은 단일 세그먼트(segment) 또는 섹션(section)으로 구성되지만, 다수의 세그먼트들 또는 섹션들을 포함할 수도 있다. 계면에서 용융물(10) 내의 작은 수직 온도 구배를 생성하여 구조상 과냉각(constitutional supercooling)이나, 시트(13) 상에서의 덴드라이트(dendrite) 또는 분기하는 돌출부들의 형성을 방지하기 위하여, 채널(17)의 하단(bottom)이 용융물(10)의 용융 온도보다 높게 가열될 수 있다. 그러나, 용기(16)는 용융물(10)의 용융 온도보다 높은 임의의 온도일 수 있다. 이것은 용융물(10)이 용기(16) 상에서 고체화하는 것을 방지한다.
시트 형성 장치(21)를 인클로저(enclosure) 내에 적어도 부분적으로 또는 전적으로 동봉(enclose)함으로써, 시트 형성 장치(21)는 용융물(10)의 동결 온도보다 약간 높은 온도에서 유지될 수 있다. 인클로저가 시트 형성 장치(21)를 용융물(10)의 동결 온도보다 높은 온도에서 유지하는 경우, 시트 형성 장치(21)를 가열하기 위한 필요성은 회피 또는 감소될 수 있고, 인클로저 내의 또는 인클로저 주위의 히터(heater)들은 임의의 열 손실을 보상할 수 있다. 이 인클로저는 이방성 전도성(anisotropic conductivity)으로 등온(isothermal)일 수 있다. 또 다른 특정 실시예에서, 히터들은 인클로저 상에 또는 인클로저 내에 배치되지 않고, 오히려, 시트 형성 장치(21) 내에 있다. 하나의 사례에서, 히터들을 용기(16) 내에 내장하고 멀티-구역(multi-zone) 온도 제어를 이용함으로써, 용기(16)의 상이한 영역들이 상이한 온도들로 가열될 수 있다.
인클로저는 시트 형성 장치(21)가 배치되는 환경을 제어할 수 있다. 특정 실시예에서, 인클로저는 불활성 가스(inert gas)를 포함한다. 이 불활성 가스는 용융물(10)의 동결 온도보다 높게 유지될 수 있다. 불활성 가스는 시트(13)의 형성 동안에 조성적 불안정성(constitutional instability)들을 야기시킬 수 있는, 용융물(10)로의 용질(solute)들의 추가를 감소시킬 수 있다.
냉각 판(14)은 시트(13)가 용융물(10) 위에 형성될 수 있게 하는 열 추출(heat extraction)을 허용한다. 냉각 판(14)의 온도가 용융물(10)의 동결 온도보다 낮게 하락될 때, 냉각 판(14)은 시트(13)가 용융물(10) 상에서 또는 용융물(10) 내에서 동결하게 할 수 있다. 이 냉각 판(14)은 복사 냉각을 이용할 수 있고, 예를 들어, 흑연(graphite), 석영(quartz), 또는 실리콘 카바이드(silicon carbide)로 제조될 수 있다. 시트(13)에서 결함들을 방지하기 위하여, 시트(13)가 형성되는 동안에 용융물(10)에 대한 교란(disturbance)들이 감소될 수 있다. 용융물(10)의 표면 위의 시트(13), 또는 용융물(10) 위에서 부유하는 시트(13)를 냉각하는 것은 비교적 큰 시트(13) 추출 레이트를 가지면서, 융해 잠열(latent heat of fusion)이 큰 영역에 걸쳐 느리게 제거되도록 한다.
시트(13)가 용융물(10) 위에 형성된 후, 시트(13)는 배수로(12)를 이용하여 용융물(10)로부터 분리된다. 용융물(10)은 채널(17)의 제 1 지점(18)으로부터 제 2 지점(19)으로 흐른다. 시트(13)는 용융물(10)과 함께 흐를 것이다. 시트(13)의 이러한 수송은 연속적인 동작일 수 있다. 하나의 사례에서, 시트(13)는 용융물(10)이 흐르는 것과 대략 동일한 속력(speed)으로 흐를 수 있다. 따라서, 시트(13)가 형성될 수 있고, 용융물(10)에 대해 정지된 상태로 수송될 수 있다. 용융물(10) 또는 시트(13)의 속도 프로파일(velocity profile)을 변화시키기 위하여, 배수로(12)의 형상 또는 배수로(12)의 방위가 변경될 수 있다.
용융물(10)은 배수로(12)에서 시트(13)로부터 분리된다. 하나의 실시예에서, 용융물(10)의 흐름은 배수로(12) 상에서 용융물(10)을 수송하고, 적어도 부분적으로, 배수로(12) 상에서 시트(13)를 수송할 수 있다. 이것은 외부의 응력(stress)이 시트(13)에 가해지지 않기 때문에, 시트(13)의 파손을 최소화 또는 방지할 수 있다. 물론, 시트(13)는 견인될 수 있거나, 가해지는 약간의 외부의 힘을 가질 수 있다. 이 특정 실시예에서, 용융물(10)은 시트(13)로부터 떨어져서 배수로(12) 상에서 흐를 것이다. 시트(13)로의 열 충격을 방지하기 위하여, 냉각이 배수로(12)에서 가해지지 않을 수 있다. 하나의 실시예에서는, 배수로(12)에서의 분리가 등온-근접(near-isothermal) 조건들에서 일어난다. 하나의 실시예에서, 시트(13)는 배수로(12)를 지나서 직진하는 경향이 있을 수 있다. 이 시트(13)는 파손을 방지하기 위하여 일부 사례들에서 배수로(12) 상에서 지나간 후에 지지될 수 있다.
물론, 냉각 판(14)의 길이에 걸친 상이한 냉각 온도들, 용융물(10)의 상이한 유량(flow rate)들 또는 시트(13)의 견인 속력(pull speed)들, 시트 형성 장치(21)의 다양한 섹션들의 길이, 또는 시트 형성 장치(21) 내의 타이밍(timing)은 공정 제어를 위해 이용될 수 있다. 용융물(10)이 실리콘인 경우, 시트(13)는 시트 형성 장치(21)를 이용한 다결정 또는 단결정 시트일 수 있다. 도 1은 용융물(10)로부터 시트(13)를 형성할 수 있는 시트 형성 장치의 오직 하나의 예들이다. 수평 시트(13) 성장의 다른 장치들 또는 방법들이 가능하다. 여기에 설명된 실시예들은 임의의 수평 시트(13) 성장 방법 또는 장치에 적용될 수 있다. 따라서, 여기에 설명된 실시예들은 도 1의 특정 실시예에 전적으로 한정되지 않는다. 예를 들어, 도 2는 용융물로부터 시트를 분리하는 장치의 제 2 실시예의 측단면도이다. 시트 형성 장치(31)에서, 용융물(13)은 용기(16) 내에 형성된다. 냉각 판(14)에 의한 형성 후에, 시트(13)는 용융물(10)로부터 견인된다. 도 2에서는 수평이지만, 시트(13)는 용융물(10)에 대해 각도를 이룰 수 있다. 도 1 내지 도 2의 실시예들에서, 용융물(10)은 시트 형성 장치(21) 또는 시트 형성 장치(31)의 측면들 주위와 같이, 시트 형성 장치(21) 또는 시트 형성 장치(31) 주위를 순환할 수 있다. 물론, 용융물(10)은 시트(13) 형성 공정의 일부 또는 전부 동안에 정지되어 있을 수도 있다.
여기에 설명된 실시예들은 용융물에서 유체 정압(hydrostatic pressure)을 감소시키고 메니스커스를 안정화시킨다. 시트의 탄성 및 부력 속성들 둘 모두는 용융물에서 시트가 형성되는 곳과 같은 어떤 영역들 내의 용융물 내에서 시트가 수평으로 유지되는 동안의 안정화를 위해 이용된다. 이것은 LASS에 비해 장점을 제공하며, 왜냐하면 시트를 수평으로 부유(float)하게 하는 것은 시트를 위를 향해 경사지게 하는 것과 반대로, 선단 성장 에지(leading growth edge)에서의 응력(stress)을 회피하기 때문이다. 또한, 탄성력 및 부력을 이용하는 것은 시트 형성 영역이 메니스커스 안정화 영역에 관계없이 최적화되도록 하거나, 시트 형성 영역이 메니스커스 안정화 영역의 상류에서 거리를 두도록 한다. 이 최적화는 냉각 판 또는 임의의 가열 시스템들과 같은 열 환경을 조절하는 것을 포함한다. 최종적으로, 탄성 및 부력을 이용하는 것은 복잡한 각도 제어를 위한 필요성을 회피한다. 여기에 개시된 실시예들은 용융물의 흐름을 필요로 하지 않을 수 있거나, 특정한 시간에만 용융물을 흐르게 할 수 있으므로, 용융물이 흐르기 전에 결정 초기화가 발생할 수 있다. 이것은 결정 시딩(crystal seeding)을 단순화한다. 또한, 용융물 흐름은 메니스커스 안정화에 관계없이 조절될 수 있다. 또한, 복잡한 가스 제트 제어가 회피된다.
액체(liquid)가 가스(gas)와 접촉할 때, 계면이 형성된다. 이 계면은 영-라플라스 방정식(Young-Laplace equation)을 따른다. 2차원에서, 그것은 다음의 형태를 취한다:
Figure 112012099452365-pct00001
여기서, △P는 계면에 걸쳐서의 압력 차이이고, σ는 액체의 표면 장력이고, R은 표면의 곡률 반경이다. 메니스커스의 곡률 반경은 메니스커스를 묘사하는 라인의 제 1 및 제 2 미분계수(derivative)들의 측면에서 표현될 수 있다.
도 3은 시트를 도가니에 합치는 메니스커스의 측단면도이다. 메니스커스(23)에 걸친 압력 차이는 중력에 의해 야기되는 용융물(10)에서의 유체 정압(ρgy)에만 기인하므로, 영-라플라스 방정식은 2차 미분 방정식이 된다:
Figure 112012099452365-pct00002
이 미분 방정식은 2개의 경계 조건들을 필요로 한다. 메니스커스(23)는 용기(16)의 벽에서 핀(pin)으로 고정되므로, 그 위치는 x=0에서 고정된다. 메니스커스(23)가 시트(13)에 부착되는 메니스커스(23)의 다른 단부에서, 메니스커스(23)는 핀으로 고정되지 않고, 시트(13)로 만들어지는 각도는 고체 및 액체 실리콘 및 가스 사이의 표면 에너지에 의해 결정된다. 그 용융물과 접촉하는 고체 실리콘에 대하여, 접촉 각도는 대략 11°일 수 있다. 따라서, y0는 x=0에서 그리고 다른 단부에서의 접촉 각도에서 특정된다. 다음으로, 용기(16)에서의 초기 접촉 각도와, 시트(13)와의 접촉 지점(contact point)의 위치는 미분 방정식들에 대한 해법에 의해 결정된다. 도 3은 우측의 도표에서 하나의 해법을 도시한다. 11°의 접촉 각도를 유지하면서, 그리고 용융물(10)이 대략 1mm 만큼 용기(16)의 벽 위에 있으면서, 볼록 해법(convex solution)이 가능하다. 용융물(10)이 용기(16)의 벽 위에 1mm 보다 높이 있을 경우, 유체 정압은 메니스커스(23)를 밀어낼 수 있어서, 접촉 각도는 >11°일 것이고, 메니스커스(23)는 외부로 이동할 것이다. 이것은 용융물(10)이 용기(16)의 에지 상으로 넘쳐 흐르는 것으로 귀착될 수 있다.
도 4는 경사진 시트를 위한 메니스커스 안정화의 측단면도이다. 여기서, 메니스커스(23)의 오목 형상은 표면(24)과 같은 용융물(10)의 표면에 대해 시트(13)를 위로 리프트하고 각도를 형성함으로써 생성되는 대기압(Patmos)에 대한 부압(negative pressure)(P1)에 의해 제공된다. 이것은 용융물(10)의 높이보다 더 낮은 고도에 있는 시트(13)의 동결 전방부보다 용기(16)의 에지에서 시트(13)의 더 높은 고도를 가능하게 한다. 그러나, 이 경사는 냉각 판(14)에 의해 정의되는 바와 같은 동결 영역을 또한 리프트(lift)한다. 시트(13)의 수직 위치는 견인 장치에 의해 제어될 수 있다. 냉각 판(14)의 위치 및 길이는 각도 및 높이에 의해 적어도 부분적으로 결정된다. 이 냉각 판(14)은 아마 용기(16)의 에지에 매우 근접하게 되도록 할 필요가 있다.
도 5는 용융물의 탄성 및 부력을 이용한 메니스커스 안정화의 측단면도이다. 상기 탄성 및 부력은 시트(13)가 수평으로 견인되고 "지지 테이블(support table)"(22)에 의해 지지되도록 하고, 이 지지 테이블(22)은 가스 베어링 또는 가스 테이블일 수 있거나, 롤러(roller)들 또는 당업자들에게 알려진 일부 다른 메커니즘을 가질 수 있다. 따라서, 지지 테이블(22)은 시트(13)를 지지하기 위하여 유체의 힘 또는 기계적 힘을 이용할 수 있다. 지지 테이블(22)은 표면(24)에 있을 수 있는 용융물(10)의 레벨(level) 위에 있지만, 시트(13)의 동결 단부(freezing end)는 용기(16) 내의 용융물(10) 상에서 수평으로 유지된다. 시트(13)는 냉각 판(14)에 근접한 제 1 영역(29) 내의 제 1 시트 높이(25)와, 용융물(10)로부터의 분리 후에 제 1 시트 높이(25)보다 높은 제 2 시트 높이(26)를 가질 수 있다. 이 제 2 시트 높이(26)가 다른 곳에 있을 수 있지만, 이것은 예를 들어, 제 2 영역(30)에 있을 수 있다. 지지 테이블(22)은 이 제 2 시트 높이(26)에서 시트(13)를 지지할 수 있다. 용기(16)의 에지로부터의 냉각 판(14)의 최소 거리가 계산될 수 있지만, 표면(24)에서의 용융물(10)의 레벨에 대한 지지 테이블(22)의 높이에 대한 제약들이 회피될 수 있다. 이 지지 테이블(22)은 메니스커스(23) 근처의 시트(13)의 곡률을 일치시키기 위하여, 하나의 사례에서 굴곡된 상단 표면 또는 부분적으로 굴곡된 상단 표면을 가질 수 있다. 메니스커스(23)를 안정화시키기 위하여, 음(negative)의 유체 정압이 이용될 수 있다.
도 6은 실리콘 용융물 내의 실리콘 시트의 측단면도이다. 시트(13)는 용융물(10)과 접촉한다. 도 6에 예시된 시트(13)의 우측 단부는 y0(수평 점선으로 예시됨)에서 적어도 부분적으로 용융물(10)의 표면 위로 상승(raise)되는 반면, 시트(13)의 좌측 단부는 자유(free)이고 y0 아래에 있다. 시트(13)의 형상은 시트(13) 상의 수직의 힘들에 의해 결정되고, 이것은 용융물(10)의 유체정역학적 힘(hydrostatic force)뿐만 아니라 중력(gravity)을 포함한다. 부분적으로 부력으로 인해, 시트(13)가 그 부유 지점 위로 리프트되면, 이 유체정역학적 힘은 위를 향하거나 아래를 향할 수 있다. 실리콘의 탄성은 시트(13)의 형상이 전체 시트(13)를 따른 힘들에 의해 작용되도록 할 수 있다. 이 형상은 하나의 사례에서 x의 함수인 수직 위치 y로서 정의될 수 있다.
이것은 "빔 변형 방정식(beam deflection equation)"에 의해 설명된다. 이 방정식에서, M은 빔 또는 시트(13)를 따른 휨 모멘트(bending moment)이고, V는 빔 또는 시트(13)를 따른 전단(shear)이고, q는 빔 또는 시트(13)를 따른 힘의 분포(N/m)이고, Iz는 관성(inertia)의 중심 모멘트이고, E는 고체에서의 탄성 계수이다.
Figure 112012099452365-pct00003
x에서의 시트(13)의 곡률은 x에서의 휨 모멘트에 의존하고, 이 휨 모멘트는 x 및 시트(13)의 단부 사이의 시트(13) 상의 분포된 힘을 적분함으로써 결정된다. 이 힘은 부력을 포함하므로, 각각의 지점(즉, 형상)에서의 시트(13)의 수직 위치는 그 형상을 구하기 위해 구하기 위해 알려져 있어야 한다. 이것은 반복 또는 이완 방법(iterative or relaxation method)에 의해 달성될 수 있다. 먼저, 시트(13)의 형상의 다항식 표현 ypoly(x)으로 이 공정을 시딩함으로써, yinteg(x)는 적분을 이용하여 구해질 수 있다. 다항식 계수들을 변동시킴으로써, ypoly(x) 및 yinteg(x) 사이의 차이를 최소화하는 값이 구해질 수 있고, 이것은 해법을 산출한다.
도 7은 부력을 포함하는 빔 변형 방정식에 대한 수치 해법을 예시한다. 도 7은 시트(13)의 결과적인 형상뿐만 아니라 해법의 수렴(convergence)을 모두 도시한다. 이 계산에서, 시트(13)는 좌측 상에서 수평으로 지지된다. 휨 모멘트는 부력의 효과를 통합하고, 이에 따라, 시트(13)는 그 부유 레벨 외부로 평평하게 된다. 실리콘의 밀도는 2.53 g/cm2으로서 취해졌고, 실리콘의 탄성은 1.4E11 Pa로서 취해졌다.
실리콘의 탄성 특성 및 실리콘 용융물(10)에서의 그 부력을 활용함으로써, 시트(13)는 충분한 리프트와 함께 그리고 시트(13)가 용융물(13) 표면 위에 있는 동안에, 용기의 에지 상에서 견인되거나 수송될 수 있다. 이것은 부압을 생성하고 메니스커스를 안정화시킨다. 또한, 시트(13)의 자유 단부는 냉각 판의 하부와 같은, 용융물(10)의 표면 상에서 수평으로 부유할 수 있다. 따라서, 시트(13)는 임의의 순수 수직적인 힘이 없어도 형성될 수 있고, 전위(dislocation)들이 감소될 수 있다. 또한, 냉각 판은 임의로 길이가 길 수 있고, 특정한 속도로 수평으로 견인하면서 시트(13)가 아래를 향해 서서히 성장하도록 할 수 있다. 또한, 이것은 시트(13) 상에서 응력을 감소시키고, 전위들의 수를 감소시킨다.
특정한 시트(13) 두께에 대하여, 용융물(10)에서의 최소 시트(13) 길이가 계산될 수 있다. 300 ㎛ 시트(13) 두께에 대하여, 시트(13)는 길이에 있어서 대략 32 cm이어야 한다. 200 ㎛ 시트(13) 두께에 대하여, 시트(13)는 길이에 있어서 대략 24 cm이어야 한다. 150 ㎛ 시트(13) 두께에 대하여, 시트(13)는 길이에 있어서 대략 20 cm이어야 한다. 100 ㎛ 시트(13) 두께에 대하여, 시트(13)는 길이에 있어서 대략 16 cm이어야 한다. 최소 시트(13) 길이들은 용기 에지 상에서 리프트 높이에 대해 상대적으로 둔감하다. 리프트가 높을수록, 시트(13)를 아래를 향해 변형시키는 유체정역학적 힘도 커진다. 도 8은 리프트하기 위한 최소 시트 길이의 둔감성(insensitivity)을 예시한다. 따라서, 이 공정의 실시예들은 자체-정정(self-correcting)일 수 있다. 하나의 특정한 실시예에서는, 시트가 용융물 표면 아래로 밀리지 않으면서, 결정화(crystallization) 또는 동결(freezing) 동안에 용융물의 표면 상에서 부유하는 상태로 유지하도록 리프트(lift)가 계산된다.
도 9는 탄성 및 부력을 이용한 시트 초기화를 위한 제 1 실시예를 예시한다. 시드 웨이퍼(seed wafer)(27)가 삽입되기 전에, 석영(quartz)일 수 있는 용기(16)에는 용기(16)의 에지 바로 위의 레벨까지 용융물(10)이 보관되고, 용융물(10)의 "메사(mesa)"를 형성한다. 이 표면(24)은 도 9의 A에서 제 1 높이를 가진다. 용융물(10)에 의해 형성되는 이 메사의 레벨은 흘러 넘침을 방지하기 위하여 용기(16)의 에지 위에서 대략 1 mm보다 작을 수 있다.
도 9의 B에서, 시드 웨이퍼(27)는 용융물(10)에 삽입된다. 이것은 시드 웨이퍼(27)의 위와 아래 모두에 메니스커스(meniscus)를 형성한다. 도 9의 C에서, 용융물(10)의 레벨은 하강한다. 표면(24)은 이제 제 1 높이보다 낮은 제 2 높이를 가진다. 시드 웨이퍼(27)는 냉각 판(14)에 근접한 또는 냉각 판(14) 아래의 영역으로 병진이동(translate) 되었다. 도 9의 D에서, 시트(13)는 냉각 판(14)의 온도를 하강함으로써 개시된다. 시트(13)는 시드 웨이퍼(27)에 부착된다. 도 9의 E에서 예시된 바와 같이, 시트(13)가 견인될 때, 시트(13)의 탄성은 용융물(10) 상에서 시트(13)를 위를 향해 리프트한다.
도 9의 F에서, 시트(13)는 용융물(10)로부터 멀어지도록 견인되거나, 용융물(10)로부터 분리된다. 시트(13)가 용기(16)의 벽을 통과한 후에도, 부압은 메니스커스를 안정화한다. 도 9의 G에서, 시트(13)는 용융물(10)로부터 계속 제거된다. 용융물(10)의 레벨은 정상 상태에서 메니스커스 안정성(stability)을 보장하기 위하여 더욱 하강될 수 있다. 용융물(10)이 다른 때에 흐르기 시작할 수도 있지만, 용융물(10)은 하나의 특정한 실시예에서 도 9의 G에 예시된 지점에서 흐르기 시작할 수 있다. 냉각 판(14) 및 용기(16)의 벽 사이의 최소 거리가 유지되는 경우, 냉각 판(14) 하부의 시트(13)의 부유하는 수평 특성을 유지하면서, 용융물(10)의 레벨이 시트(13)의 견인 동안에 하강될 수 있다. 이것은 메니스커스의 안정화를 보장하기 위하여 수행될 수 있다. 도 9의 실시예에서, 시드 웨이퍼(27) 삽입 또는 지지 테이블(22)의 레벨 및 각도는 시트(13)를 위한 시딩 및 견인 공정 동안에 조절될 필요가 없을 수도 있다.
도 10은 탄성 및 부력을 이용한 시트 초기화를 위한 제 2 실시예를 예시한다. 도 10의 A에서, 용기(16)에는 용기(16)의 벽의 상단과 동일한 레벨 또는 상단 아래의 레벨까지 용융물(10)이 보관되며, 이것은 용융물을 흘러 넘치게 하는 위험을 감소시킨다. 표면(24)은 도 10의 A에서 제 1 높이를 가진다. 시드 웨이퍼(27)는 도 10의 B의 용융물(10) 상에서 그리고 냉각 판(14) 아래에서 캔틸레버(cantilever) 방식으로 지지된다. 용융 온도 미만으로 냉각되기 전에, 시드 웨이퍼(27)의 단부는 냉각 판(14)의 선단 에지(leading edge)에서 용융물(10) 위에 있다. 도 10의 C에서, 용융물(10)의 레벨은 상승(raise)되고, 표면(24)은 제 1 높이보다 높은 제 2 높이를 가진다. 용융물(10) 레벨은 시드 웨이퍼(27)가 적셔질 때까지 상승될 수 있고, 이것은 시드 웨이퍼(27)를 아래를 향해 견인할 것이다.
도 10의 D에서, 냉각 판(14)의 온도를 용융물(10)의 용융 온도 미만으로 하강함으로써 시트(13)가 개시된다. 시드 웨이퍼(27)는 시트(13)와 함께 병진이동되기 시작할 수 있다. 도 10의 E에서 볼 수 있는 바와 같이, 시트(13)가 견인될 때, 시드 웨이퍼(27)의 탄성은 시트(13)를 위를 향해 리프트한다. 도 10의 F에서, 시트(13)는 용융물(10)로부터 멀어지도록 견인되거나 용융물(10)로부터 분리된다. 시트(13)가 용기(16)의 벽을 통과한 후에도, 부압은 메니스커스를 안정화한다. 도 10의 G에서, 시트(13)는 용융물(10)로부터 계속 제거된다. 용융물(10)의 레벨은 정상 상태에서 메니스커스 안정성을 보장하기 위하여 더욱 하강될 수 있다. 용융물(10)이 다른 때에 흐르기 시작할 수도 있지만, 용융물(10)은 하나의 특정한 실시예에서 도 10의 G에 예시된 지점에서 흐르기 시작할 수 있다.
시드 웨이퍼(27) 두께가 대략 0.7 mm(300 mm 전자기기 등급 웨이퍼의 두께에 대응할 수 있음)인 경우, 20 cm를 넘는 캔틸레버 방식의 드룹(cantilevered droop)을 가질 수 있는 시드 웨이퍼(27)는 1 mm 보다 작다. 이 경우, 시드 웨이퍼(27)가 용융물(10)과 아직 접촉하고 있지 않을 때, 방정식은 다음의 최대 변형을 산출하기 위하여 폐쇄 형식(closed form)으로 구해질 수 있다:
Figure 112012099452365-pct00004
다음으로, 예를 들어, 석영 플런저(quartz plunger)를 용융물에 삽입하거나 더 많은 실리콘을 추가함으로써 용융물(10)의 레벨이 상승하므로, 용융물(10)은 시드 웨이퍼(27)와 만난다. 일단 시드 웨이퍼(27)가 적셔지면, 용융물(10)은 시드 웨이퍼(27)의 아래로 끌어 당겨져서 용기(16)의 벽에 부착되는 메니스커스를 형성한다. 시드 웨이퍼(27)가 용융물(10) 레벨 위에 있으므로, 메니스커스에서 압력이 감소된다. 오목 형상이 형성될 수 있고, 메니스커스의 안정화가 발생할 수 있다. 시트(13)의 견인 또는 수송이 시작되었으면, 결정화를 안정시키기 위하여 용융물(10)에서 흐름이 개시될 수 있다. 하나의 특정한 실시예에서, 용융물(10)은 항상 흐를 수 있고, 시드 웨이퍼(27)의 병진이동은 용융물(10) 레벨이 상승한 후에 시작될 수 있다.
도 11은 탄성 및 부력을 이용한 시트 초기화를 위한 제 3 실시예를 예시한다. 도 11의 A에서, 용기(16)에는 용기(16)의 에지의 높이 아래 또는 이 높이와 동일한 용융물(10)이 보관된다. 표면(24)은 도 11의 A에서 제 1 높이를 가진다. 시드 웨이퍼(17)는 시드 웨이퍼(27)를 용융물(10)로 낮출 수 있고 시드 웨이퍼(27)를 다른 방향들로 병진이동시킬 수 있는 시드 홀더(seed holder)(28)에 의해 유지된다. 이 경우, 다른 길이들이 가능하지만, 시드 웨이퍼(27)는 대략 냉각 판(14)만큼의 길이에 불과하다. 시드 웨이퍼(27)는 도 11의 A에서 냉각 판(14) 아래로 이동되고, 시드 웨이퍼(27)는 용융물(10)의 온도 아래로 냉각된다. 다음으로, 시드 웨이퍼(27)는 도 11의 B에서 용융물(10)로 하강되고, 도 11의 C에서 수평 견인 또는 수송이 개시된다. 시트(13)가 형성되고 시드 웨이퍼(27)에 부착된다. 시트(13) 형성을 보조하기 위하여 시드 웨이퍼(27)가 용융물(10)과 접촉한 후, 냉각 판(14)의 온도는 하나의 사례에서 하강될 수 있다. 시드 홀더(28) 또는 시드 웨이퍼(27)가 용기(16)의 벽에 도달하기 전에, 도 11의 D에서 볼 수 있는 바와 같이 상승되고, 이어서, 시드 웨이퍼(27) 및 시트(13)는 위로 상승된다. 이 상승은 시트(13) 아래에 감소된 압력을 생성하고, 시드 웨이퍼(27) 및 시트(13)가 용기(16)의 벽 상에서 통과할 때, 용기(16)의 벽에서 형성되는 메니스커스를 안정화시킨다. 도 11의 E에서 볼 수 있는 바와 같이, 시트(13)가 견인될 때, 시드 웨이퍼(27)의 탄성은 시트(13)를 위로 리프트한다. 도 11의 F에서, 시트(13)는 용융물(10)로부터 멀어지도록 견인되거나 용융물(10)로부터 분리된다. 시트(13)가 용기(16)의 벽을 통과한 후에도, 부압은 메니스커스를 안정화시킨다. 도 11의 G에서, 시트(13)는 용융물(10)로부터 계속 제거된다. 용융물(10)의 레벨은 정상 상태에서 메니스커스 안정성을 보장하기 위하여 더욱 하강될 수 있다. 또 다른 실시예에서, 용융물(10)은 도 11의 공정 전반에 걸쳐 흐를 수 있지만, 하나의 특정한 실시예에서, 용융물(10)은 도 11의 G에서 예시된 지점에서 흐르기 시작할 수 있다.
도 9 내지 도 11은 도 1에서 예시된 바와 같이 배수로를 이용하지 않지만, 대안적인 실시예들은 이 배수로를 이용할 수 있다. 이러한 경우, 용융물은 배수로 상으로 흐를 수 있지만, 메니스커스는 여전히 시드 웨이퍼 또는 시트와 함께 형성될 것이다.
이 방법의 실시예들은 시트 두께에 따라 용기의 에지 및 냉각 판 사이에서 최소의 거리를 필요로 할 수 있다. 다음으로, 실리콘의 탄성 또는 부력은 냉각 판 아래의 결정화로부터 용기의 벽 상에서 메니스커스 안정화를 결합해제한다. 결정화 또는 동결이 발생하는 영역은 용융물로부터의 분리가 발생하는 영역으로부터 결합해제되거나 분리될 수 있다. 두 영역들은 최적화된 열 속성들을 가질 수 있거나, 다른 것에 영향을 주지 않는 상이한 열 조건들을 가질 수 있다. 예를 들어, 동결 온도는 하나의 영역에서 최적화될 수 있고, 다른 영역은 등온(isothermal) 상태로 유지될 수 있다. 또한, 이것은 잠재적으로 용융물을 흘러 넘치게 하지 않으면서, 시트가 수평으로 견인되거나 병진이동되도록 한다. 시트를 수평으로 견인하거나 병진이동하는 것은 시트의 선단 에지에서 응력을 회피한다. 용융물 또는 시트의 시딩(seeding), 견인(pulling), 또는 수송(transportation) 동안에는 각도 조절이 전혀 필요하지 않을 수 있다. 시트는 임의의 순수 수직 응력들 없이 냉각 판 아래에서 수평으로 그리고 부유하도록 유지될 수 있고, 이것은 시트의 품질을 향상시키고 결정에서의 전위들을 감소시킨다. 용융물 흐름 속도는 시트 견인 또는 수송 속도와 무관할 수 있고, 이것은 결정 초기화 공정 동안에 용융물 흐름이 제로(zero)로 설정되도록 할 수 있다. 이것은 시딩 공정을 단순화한다.
본 개시 내용은 여기에 설명된 특정 실시예들에 의해 범위가 제한되어야 하는 것은 아니다. 실제로, 여기에 설명된 것들과 함께, 본 개시 내용의 다른 다양한 실시예들 및 본 개시 내용의 수정들은 상기한 설명 및 첨부한 도면들로부터 당업자들에게 명백할 것이다. 따라서, 이러한 다른 실시예들 및 수정들은 본 개시 내용의 범위 내에 속하는 것으로 의도된다. 또한, 본 개시 내용은 특정 목적의 특정 환경에서 특정한 구현과 관련하여 여기에 설명되었지만, 당업자들은 그 유용성이 그것에 한정되지 않고 본 개시 내용은 임의의 수의 목적들을 위하여 임의의 수의 환경들에서 유익하게 구현될 수 있다는 것을 인식할 것이다. 따라서, 이하에 기재된 청구항들은 여기에 설명된 바와 같은 본 개시 내용의 전체 폭 및 취지를 고려하여 해석되어야 한다.

Claims (20)

  1. 재료의 용융물을 냉각하여 제 1 영역 내의 상기 용융물의 표면 상에 상기 재료의 시트를 제 1 시트 높이에서 형성하는 단계;
    상기 시트를 상기 용융물의 상기 표면에 수평으로 병진이동시키고 상기 시트의 제 1 부분을 상기 용융물의 상기 표면으로부터 수직으로 상승시켜 상기 시트의 상기 제 1 부분이 제 2 영역에 배치되고 상기 시트의 제 2 부분은 상기 제 1 영역에 배치되고, 상기 시트의 상기 제 1 부분은 제 2 시트 높이를 가지며, 상기 시트의 상기 제 2 부분은 제 1 시트 높이를 가지며, 상기 제 1 시트 높이는 상기 제 2 시트 높이보다 낮고, 상기 시트의 상기 제 1 부분은 상기 시트의 상기 제 2 부분에 평행한, 상기 시트를 병진이동 및 상승시키는 단계; 및
    상기 제 2 시트 높이에서 상기 제 2 영역에 상기 용융물로부터 상기 시트를 분리시키는 단계를 포함하는, 시트 제조 방법.
  2. 청구항 1에 있어서,
    상기 재료는 실리콘, 또는 실리콘 및 게르마늄인, 시트 제조 방법.
  3. 청구항 1에 있어서,
    상기 용융물 및 상기 시트를 흐르게 하는 단계를 더 포함하는, 시트 제조 방법.
  4. 청구항 1에 있어서,
    유체의 힘 또는 기계적 힘 중의 적어도 하나를 이용하여 상기 분리시키는 단계 후의 상기 제 2 시트 높이에서 상기 시트를 지지하는 단계를 더 포함하는, 시트 제조 방법.
  5. 시드 웨이퍼를 재료의 용융물에 삽입하는 단계로서, 상기 용융물은 상기 용융물을 함유하는 용기의 에지(edge)보다 높은 제 1 높이에서 표면을 가지는, 상기 시드 웨이퍼를 재료의 용융물에 삽입하는 단계;
    상기 용융물 내의 상기 시드 웨이퍼를 냉각 판에 근접한 영역으로 병진이동시키는 단계;
    상기 용융물의 상기 표면을 상기 제 1 높이 아래의 제 2 높이로 하강(lower)시키는 단계;
    상기 영역 내의 상기 시드 웨이퍼를 이용하여 상기 용융물 상에 상기 재료의 시트를 형성하는 단계;
    상기 시트 및 상기 시드 웨이퍼를 상기 용융물의 상기 표면에 수평으로 병진이동시키고 상기 시트의 제 1 부분을 상기 용융물의 상기 표면으로부터 수직으로 상승시켜 상기 시트의 상기 제 1 부분이 상기 제 1 높이에 배치되고 상기 시트의 제 2 부분은 상기 제 2 높이에 배치되고, 상기 시트의 상기 제 1 부분은 상기 시트의 상기 제 2 부분에 평행한, 상기 시트를 병진이동 및 상승시키는 단계; 및
    상기 용기의 에지에서 상기 용융물로부터 상기 시트를 분리시키는 단계를 포함하는, 시트 제조 방법.
  6. 청구항 5에 있어서,
    상기 재료는 실리콘, 또는 실리콘 및 게르마늄인, 시트 제조 방법.
  7. 청구항 5에 있어서,
    상기 용융물 및 상기 시트를 흐르게 하는 단계를 더 포함하는, 시트 제조 방법.
  8. 청구항 5에 있어서,
    유체의 힘 또는 기계적 힘 중의 적어도 하나를 이용하여 상기 분리시키는 단계 후의 상기 제 1 시트 높이에서 상기 시트를 지지하는 단계를 더 포함하는, 시트 제조 방법.
  9. 시드 웨이퍼를 제 1 영역에 재료의 용융물에 삽입하는 단계로서, 상기 제 1 영역에서의 상기 용융물은 상기 용융물을 함유하는 용기의 에지와 동일하거나 상기 에지보다 낮은 제 1 높이에서 표면을 가지는, 상기 시드 웨이퍼를 재료의 용융물에 삽입하는 단계;
    상기 시드 웨이퍼를 냉각 판에 근접한 제 2 영역으로 병진이동시키는 단계;
    상기 제 2 영역의 상기 시드 웨이퍼를 이용하여 상기 용융물 상에 상기 재료의 시트를 형성하는 단계로서, 상기 시트는 상기 제 2 영역에 근접한 제 1 시트 높이를 가지는, 상기 재료의 시트를 형성하는 단계;
    상기 시트 및 상기 시드 웨이퍼를 상기 용융물의 상기 표면에 수평으로 병진이동시키고 상기 시트의 제 1 부분을 상기 용융물의 상기 표면으로부터 상기 제 1 영역으로 수직으로 상승시켜 상기 시트의 상기 제 1 부분이 상기 제 1 영역에 근접한 제 2 시트 높이를 가지며, 상기 제 1 시트 높이는 상기 제 2 시트 높이보다 낮고, 상기 시트의 상기 제 1 부분은 상기 제 2 영역에 근접한 상기 시트의 상기 제 2 부분에 평행한, 상기 시트를 병진이동 및 상승시키는 단계;; 및
    상기 용융물로부터 상기 시트를 분리시키는 단계로서, 상기 시트는 상기 분리시키는 단계 후에 적어도 상기 제 2 시트 높이를 가지는, 상기 시트를 분리시키는 단계를 포함하는, 시트 제조 방법.
  10. 청구항 9에 있어서,
    상기 재료는 실리콘, 또는 실리콘 및 게르마늄인, 시트 제조 방법.
  11. 청구항 9에 있어서,
    상기 용융물 및 상기 시트를 흐르게 하는 단계를 더 포함하는, 시트 제조 방법.
  12. 청구항 9에 있어서,
    유체의 힘 또는 기계적 힘 중의 적어도 하나를 이용하여 상기 분리시키는 단계 후의 상기 제 2 시트 높이에서 상기 시트를 지지하는 단계를 더 포함하는, 시트 제조 방법.
  13. 청구항 9에 있어서,
    상기 형성하는 단계 전에, 상기 표면을 상기 제 1 높이보다 높은 제 2 높이로 상승(raise)시키는 단계를 더 포함하는, 시트 제조 방법.
  14. 청구항 9에 있어서,
    상기 시트의 제 1 부분을 수직으로 상승시키는 단계는 상기 시드 웨이퍼를 상승시키는 단계를 포함하는, 시트 제조 방법.
  15. 청구항 9에 있어서,
    상기 병진이동시키는 단계는 상기 용융물 내의 상기 시드 웨이퍼를 병진이동시키는 단계를 포함하는, 시트 제조 방법.
  16. 청구항 1에 있어서,
    상기 시트를 병진이동 및 상승시키는 단계는 메니스커스(meniscus)가 상기 시트와 상기 용융물사이에 형성되도록 하고, 상기 메니스커스는 상기 시트의 상기 제 1 부분과 상기 시트의 상기 제 2 부분사이에 배치되고, 상기 메니스커스는 상기 시트의 상부 표면에 관하여 소정 각도에서 지향되는, 시트 제조 방법.
  17. 청구항 16에 있어서,
    상기 제 1 시트 높이는 상기 제 2 시트 높이보다 낮은 1mm 미만이고, 상기 각도는 11도인, 시트 제조 방법.
  18. 청구항 1에 있어서,
    상기 제 1 시트 높이와 상기 제 2 시트 높이의 차이는 적어도 부분적으로 상기 시트의 두께에 기초하여 결정되는, 시트 제조 방법.
  19. 청구항 5에 있어서,
    상기 시트를 병진이동 및 상승시키는 단계는 메니스커스(meniscus)가 상기 시트와 상기 용융물사이에 형성되도록 하고, 상기 메니스커스는 상기 시트의 상기 제 1 부분과 상기 시트의 상기 제 2 부분사이에 배치되고, 상기 메니스커스는 상기 시트의 상부 표면에 관하여 소정 각도에서 지향되는, 시트 제조 방법.
  20. 청구항 9에 있어서,
    상기 시트를 병진이동 및 상승시키는 단계는 메니스커스(meniscus)가 상기 시트와 상기 용융물사이에 형성되도록 하고, 상기 메니스커스는 상기 시트의 상기 제 1 부분과 상기 시트의 상기 제 2 부분사이에 배치되고, 상기 메니스커스는 상기 시트의 상부 표면에 관하여 소정 각도에서 지향되는, 시트 제조 방법.
KR1020127031458A 2010-05-06 2011-03-04 탄성 및 부력을 이용한 용융물의 표면으로부터의 시트의 제거 KR101568003B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US33206210P 2010-05-06 2010-05-06
US61/332,062 2010-05-06
US13/039,808 US8764901B2 (en) 2010-05-06 2011-03-03 Removing a sheet from the surface of a melt using elasticity and buoyancy
US13/039,808 2011-03-03
PCT/US2011/027209 WO2011139407A1 (en) 2010-05-06 2011-03-04 Removing a sheet from the surface of a melt using elasticity and buoyancy

Publications (2)

Publication Number Publication Date
KR20130062940A KR20130062940A (ko) 2013-06-13
KR101568003B1 true KR101568003B1 (ko) 2015-11-10

Family

ID=44901160

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127031458A KR101568003B1 (ko) 2010-05-06 2011-03-04 탄성 및 부력을 이용한 용융물의 표면으로부터의 시트의 제거

Country Status (7)

Country Link
US (1) US8764901B2 (ko)
EP (1) EP2567001B1 (ko)
JP (1) JP5848752B2 (ko)
KR (1) KR101568003B1 (ko)
CN (1) CN103025924B (ko)
TW (1) TWI481750B (ko)
WO (1) WO2011139407A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10526720B2 (en) 2015-08-19 2020-01-07 Varian Semiconductor Equipment Associates, Inc. Apparatus for forming crystalline sheet from a melt
CN107217296B (zh) * 2017-04-28 2019-05-07 常州大学 一种硅片水平生长设备和方法
US20220145494A1 (en) * 2019-05-13 2022-05-12 Leading Edge Crystal Technologies, Inc. Exposure of a silicon ribbon to gas in a furnace
MX2022001458A (es) * 2019-08-09 2022-06-08 Leading Edge Equipment Tech Inc Produccion de una cinta u oblea con regiones de baja concentracion de oxigeno.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322262A (en) 1980-03-03 1982-03-30 T. C. Mfg. Co., Inc. Apparatus for wrapping conduits with sheet material
US4366024A (en) 1979-01-26 1982-12-28 Heliotronic Forschungs-Und Entwicklungsgesellschaft Fur Solarzellen-Grundstoffe Mbh Process for making solar cell base material
US20090233396A1 (en) 2008-03-14 2009-09-17 Varian Semiconductor Equipment Associates, Inc. Floating sheet production apparatus and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224165A (en) * 1975-08-20 1977-02-23 Toyo Silicon Kk Process for growth of ribbon crystal by horizontal drawing
JPS5215485A (en) * 1975-07-28 1977-02-05 Toyo Silicon Kk Process for growth of ribbon crystals by lateral pulling
DE2633961C2 (de) 1975-07-28 1986-01-02 Mitsubishi Kinzoku K.K. Verfahren zum Ziehen eines dünnen Halbleiter-Einkristallbandes
JPS5261180A (en) 1975-11-14 1977-05-20 Toyo Shirikon Kk Horizontal growth of crystal ribbons
JPS5580797A (en) 1978-12-09 1980-06-18 Agency Of Ind Science & Technol Ribbon crystal growing method by lateral pulling accompanied by circulating melt convection
US4289571A (en) 1979-06-25 1981-09-15 Energy Materials Corporation Method and apparatus for producing crystalline ribbons
US4417944A (en) 1980-07-07 1983-11-29 Jewett David N Controlled heat sink for crystal ribbon growth
AU543747B2 (en) 1981-09-17 1985-05-02 Energy Materials Corp. Single crystal ribbons
JPS598688A (ja) * 1982-07-06 1984-01-17 Matsushita Electric Ind Co Ltd 薄膜結晶の製造方法
CN1016852B (zh) * 1985-10-19 1992-06-03 阿利金尼·勒德卢姆钢铁公司 连续铸造结晶带材之方法和装置
CN101133194B (zh) * 2006-02-16 2010-12-08 靳永钢 浮法硅晶片的制作工艺和设备
AU2007300183B2 (en) 2006-09-28 2012-03-29 Amg Idealcast Solar Corporation Method and apparatus for the production of crystalline silicon substrates
US7816153B2 (en) 2008-06-05 2010-10-19 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for producing a dislocation-free crystalline sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366024A (en) 1979-01-26 1982-12-28 Heliotronic Forschungs-Und Entwicklungsgesellschaft Fur Solarzellen-Grundstoffe Mbh Process for making solar cell base material
US4322262A (en) 1980-03-03 1982-03-30 T. C. Mfg. Co., Inc. Apparatus for wrapping conduits with sheet material
US20090233396A1 (en) 2008-03-14 2009-09-17 Varian Semiconductor Equipment Associates, Inc. Floating sheet production apparatus and method

Also Published As

Publication number Publication date
US20110272115A1 (en) 2011-11-10
KR20130062940A (ko) 2013-06-13
JP5848752B2 (ja) 2016-01-27
WO2011139407A1 (en) 2011-11-10
EP2567001A1 (en) 2013-03-13
EP2567001B1 (en) 2015-08-05
TW201139762A (en) 2011-11-16
CN103025924A (zh) 2013-04-03
TWI481750B (zh) 2015-04-21
US8764901B2 (en) 2014-07-01
CN103025924B (zh) 2016-04-06
JP2013531876A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
US9112064B2 (en) Floating sheet production apparatus and method
EP2319089B1 (en) Method and apparatus for forming a sheet from the melt
JP5961303B2 (ja) ガスジェットを用いる融液の表面からのシートの取り出し
WO2009149325A2 (en) Method and apparatus for producing a dislocation-free crystalline sheet
KR101568003B1 (ko) 탄성 및 부력을 이용한 용융물의 표면으로부터의 시트의 제거
US8226903B2 (en) Removal of a sheet from a production apparatus
US20100080905A1 (en) Solute stabilization of sheets formed from a melt

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20121130

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
A201 Request for examination
A302 Request for accelerated examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20150108

Comment text: Request for Examination of Application

PA0302 Request for accelerated examination

Patent event date: 20150108

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20150514

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20150916

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20151104

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20151105

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20181031

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20181031

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20201022

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20211007

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20221012

Start annual number: 8

End annual number: 8

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20240815