KR101564009B1 - Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor - Google Patents

Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor Download PDF

Info

Publication number
KR101564009B1
KR101564009B1 KR1020140016711A KR20140016711A KR101564009B1 KR 101564009 B1 KR101564009 B1 KR 101564009B1 KR 1020140016711 A KR1020140016711 A KR 1020140016711A KR 20140016711 A KR20140016711 A KR 20140016711A KR 101564009 B1 KR101564009 B1 KR 101564009B1
Authority
KR
South Korea
Prior art keywords
reactor
precursor
taylor
coprecipitation
cobalt
Prior art date
Application number
KR1020140016711A
Other languages
Korean (ko)
Other versions
KR20150095428A (en
Inventor
권순모
권오상
문창준
강동구
Original Assignee
주식회사 이엔드디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔드디 filed Critical 주식회사 이엔드디
Priority to KR1020140016711A priority Critical patent/KR101564009B1/en
Priority to CN201480075219.6A priority patent/CN106029575B/en
Priority to PCT/KR2014/001204 priority patent/WO2015122554A1/en
Publication of KR20150095428A publication Critical patent/KR20150095428A/en
Application granted granted Critical
Publication of KR101564009B1 publication Critical patent/KR101564009B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 니켈이차전지에서 리튬과 함께 혼합하여 양극 활물질로 사용되는 니켈-코발트-망간 복합 전구체인 NixCoyMn1 -x-y(OH)2의 연속식 제조 방법에 관한 기술로서, 특히, 쿠에트 테일러 반응기에서의 1차 공침을 통한 NixCoyMn1 -x-y(OH)2 전구체 시드의 제조와, 오버플로우를 갖는 배치식 반응기에서 상기 전구체 시드와 금속 공침액을 투입하여 2차 공침을 통하여 최종적으로 균일하고 구형도가 높으며, 결정화도가 높은 크기가 약 3 ~ 4 ㎛의 NixCoyMn1 -x-y(OH)2 전구체를 제조할 수 있다.The present invention relates to a method for continuously producing Ni x Co y Mn 1 -xy (OH) 2 , which is a nickel-cobalt-manganese composite precursor used as a cathode active material in combination with lithium in a nickel secondary battery, Preparation of Ni x Co y Mn 1 -xy (OH) 2 precursor seeds via primary co-precipitation in an Eta Taylor reactor and addition of the precursor seeds and metal coprecipitates in a batch reactor with overflow, A precursor of Ni x Co y Mn 1 -xy (OH) 2 of about 3 to 4 탆 in size with high uniformity and high sphericity and high crystallinity can be produced.

Description

쿠에트 테일러 반응기를 이용한 니켈―코발트―망간 복합 전구체의 연속식 제조 방법{Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor}[0001] The present invention relates to a method for continuously producing a nickel-cobalt-manganese composite precursor using a Cu-Te-Tay reactor,

본 발명은 리튬이차전지에서 리튬과 함께 혼합하여 양극 활물질로 사용되는 니켈-코발트-망간 복합 전구체인 NixCoyMn1 -x-y(OH)2의 제조 방법에 관한 기술로서, 특히, 쿠에트 테일러 반응기와 배치식 반응기의 이중 구조를 이용한 2번의 공침을 통하여 균일하고 구형도가 높으며 소입경의 NixCoyMn1 -x-y(OH)2의 전구체를 제조할 수 있는 기술에 관한 것이다.
The present invention relates to a process for producing Ni x Co y Mn 1 -xy (OH) 2 which is a nickel-cobalt-manganese composite precursor which is mixed with lithium in a lithium secondary battery and used as a cathode active material, The present invention relates to a technique capable of producing a precursor of Ni x Co y Mn 1 -xy (OH) 2 having a uniform and spherical shape and having a small particle diameter through two co-processes using a dual structure of a reactor and a batch reactor.

휴대용의 소형 전기ㆍ전자기기의 보급 확산에 따라 니켈수소전지나 리튬 이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 이 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다. 리튬은 매우 이온화 경향이 큰 금속으로 고전압 발현이 가능하여 에너지 밀도가 높은 전지에 각광을 받고 있는 물질이다.
Development of new secondary batteries such as a nickel hydride battery and a lithium secondary battery is progressing actively due to the spread of portable small electric and electronic devices. Among them, the lithium secondary battery uses carbon such as graphite as an anode active material, a metal oxide containing lithium as a cathode active material, and a non-aqueous solvent as an electrolyte. Lithium is a highly ionized metal, and is capable of high-voltage development, and is a source of energy for high energy density batteries.

리튬이차전지에 사용되는 양극 활물질로는 리튬을 함유하고 있는 리튬 전이금속산화물이 주로 사용되고 있으며, 코발트계/니켈계/삼성분계(코발트, 니켈 및 망간이 공존) 등의 층상계 리튬 전이금속 복합산화물이 90% 이상 사용되고 있다.
Lithium transition metal oxides containing lithium are mainly used as the cathode active material used for the lithium secondary battery, and layered lithium transition metal complex oxides such as cobalt / nickel / ternary system (coexisting of cobalt, nickel and manganese) Have been used for more than 90%.

예를 들어, Li2CO3와 NixCoyMn1 -x-y(OH)2계 전구체를 혼합 소성 가공하여 양극 소재로 사용하고 있다. 이러한 NixCoyMn1 -x-y(OH)2 전구체의 입자크기 및 비표면적은 전기자동차(HEV, PHEV, EV)용 중대형 리튬전지의 고출력 구현에 큰 영향을 미치게 된다. NixCoyMn1 -x-y(OH)2 양극소재의 입자가 작아질수록 비표면적이 증가하고, 리튬 이온의 확산거리가 짧아져 리튬 이온의 확산 및 출입을 원활하고 신속하게 함으로써, 우수한 전지 특성을 나타내기 때문에, 비표면적을 최대화하기 위하여 전구체의 소입경화가 반드시 필요하다.
For example, Li 2 CO 3 and Ni x Co y Mn 1 -xy (OH) 2 precursors are mixed and calcined to be used as a cathode material. The particle size and the specific surface area of the Ni x Co y Mn 1 -xy (OH) 2 precursor have a great influence on the high output power of a medium and large lithium battery for electric vehicles (HEV, PHEV, EV). Ni x Co y Mn 1 -xy (OH) 2 As the particle size of the anode material becomes smaller, the specific surface area increases and the diffusion distance of lithium ions becomes shorter, so that diffusion and entry of lithium ions can be smoothly and quickly performed. It is necessary to harden the precursor in order to maximize the specific surface area.

통상 NixCoyMn1 -x-y(OH)2 전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염들을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제), NaOH 수용액(염기성 수용액)과 함께 반응기에 투입하면 NixCoyMn1 -x-y(OH)2이 합성된 후 침전된다.
In general, the Ni x Co y Mn 1 -xy (OH) 2 precursor is prepared by coprecipitation. After dissolving nickel salts, manganese salts and cobalt salts in distilled water, aqueous ammonia solution (chelating agent), aqueous NaOH solution ), The Ni x Co y Mn 1 -xy (OH) 2 is synthesized and precipitated.

한편, 이러한 공침법은 통상 배치 타입(batch type) 반응기가 주로 사용되었으나, 기존의 배치 타입의 반응기를 이용한 비연속식 공침법으로는 균일한 입경의 전구체 제조는 용이하였으나, 비연속식의 특성상 생산능력의 한계가 존재하였다. 물론, 배치 타입 반응기에 오버플로우를 통하여 연속식이 가능하였으나, 이 경우 대입경의 전구체 제조는 반응시간(잔류시간)의 조절로 가능했으나, 3 ~ 5㎛ 크기의 소입경의 전구체는 실질적으로 배치 타입 반응기의 오버플로우를 통한 연속식으로는 제조가 어려운 문제점이 있다.
In the co-precipitation method, batch type reactors were mainly used. However, it was easy to manufacture uniform precursors by non-continuous coprecipitation using a batch type reactor, but due to the nature of the non-continuous type, There was a limit of ability. Of course, the batch type reactor could be continuously operated by overflow. In this case, the preparation of the precursor of the larger diameter was possible by controlling the reaction time (the residence time), but the precursor of the small diameter of 3 ~ There is a problem in that it is difficult to manufacture by the continuous method through the overflow of the overflow.

연속식의 다른 예로서 특허등록 제10-1275845호에서는 쿠에트 테일러 반응기를 이용한 리튬 이차전지용 양극 활물질 전구체 제조 장치에 관한 기술을 공개하고 있다(도 1 참조). 상기와 같이 쿠에트 테일러 반응기는 배치 타입의 반응기에 오버플로우를 통하여 연속식으로 전구체를 제조하는 것에 비하여 짧은 시간에 소입경의 전구체를 용이하게 제조할 수는 있으나, 제조된 소입경의 전구체가 비정질이며 구형도가 떨어지는 단점이 있어, 리튬과 혼합 소성되어 양극재로 사용되는 경우 전기적 특성이 좋지 않다.As another example of the continuous method, Patent Registration No. 10-1275845 discloses a technique for manufacturing a precursor for a cathode active material precursor for a lithium secondary battery using a quartetail reactor (see FIG. 1). As described above, the quat-tailer reactor can easily produce a precursor having a small particle size in a short time as compared with the case where the precursor is continuously produced through the overflow in a batch-type reactor. However, And the sphericity is lowered. Therefore, when it is used as a cathode material by mixing and firing with lithium, the electrical characteristics are poor.

대한민국특허등록 제10-1275845호Korean Patent Registration No. 10-1275845

본 발명은 연속공정을 통하여 NixCoyMn1 -x-y(OH)2 전구체를 제조하는 방법을 제공하는 것을 목적으로 하되, 특히, 본 발명은 NixCoyMn1 -x-y(OH)2 전구체가 균일한 구형의 형상(morphology)을 유지하면서도, 종래 배치 타입의 반응기에서 공침법을 통해 제조되는 것에 비하여 입자의 크기가 작고 균일한 NixCoyMn1 -x-y(OH)2 전구체를 제조하는 방법을 제공하는 것을 목적으로 한다.
The present invention, but an object of the present invention to provide a method for producing a Ni x Co y Mn 1 -xy ( OH) 2 precursor through a continuous process, in particular, the present invention is Ni x Co y Mn 1 -xy ( OH) 2 precursor (OH) 2 precursor having a smaller particle size than that produced by coprecipitation in a conventional batch type reactor while maintaining a uniform morphology of the Ni x Co y Mn 1 -xy And a method thereof.

상기 목적을 실현하기 위하여 본 발명은 하기와 같은 방법을 제공한다.
In order to achieve the above object, the present invention provides the following method.

쿠에트 테일러 반응기 내에서 니켈, 코발트 및 망간이 포함된 공침액을 넣고 공침법에 의하여 NixCoyMn1 -x-y(OH)2(여기서, 0<x<1, 0<y<1, 0<x+y<1)전구체 시드를 제조하는 제1공침 단계(1);The co-precipitate containing nickel, cobalt and manganese in a Quattro Taylor reactor is introduced and co-precipitated to form Ni x Co y Mn 1 -xy (OH) 2 , A first coprecipitation step (1) of producing 0 <x <1, 0 <y <1, 0 <x + y <1) precursor seeds;

상기 단계(1)의 쿠에트 테일러 반응기에서 배출되는 NixCoyMn1 -x-y(OH)2 전구체 시드와 함께 니켈, 코발트 및 망간이 포함된 공침액을 배치 타입의 반응기 내에 연속으로 공급하여 공침법에 의하여 NixCoyMn1 -x-y(OH)2를 제조하는 제2공침 단계(2); 및The coprecipitate containing nickel, cobalt and manganese together with the Ni x Co y Mn 1 -xy (OH) 2 precursor seed discharged from the quattroyl reactor of the step (1) A second coprecipitation step (2) of producing Ni x Co y Mn 1 -xy (OH) 2 by an immersion method; And

상기 제2공침 단계(2)의 배치 타입의 반응기에서 오버플로우(overflow)되는 공침액 중에서 고체상의 NixCoyMn1 -x-y(OH)2를 분리하는 단계(3)을 포함하는 쿠에트 테일러 반응기를 이용한 NixCoyMn1 -x-y(OH)2의 연속식 제조 방법을 제공한다.
(3) of separating solid phase Ni x Co y Mn 1 -xy (OH) 2 from the coprecipitate overflowed in the batch type reactor of said second coprecipitation step (2) The present invention provides a continuous process for producing Ni x Co y Mn 1 -xy (OH) 2 using a reactor.

특히, 상기 단계(1)에서 제조되는 NixCoyMn1 -x-y(OH)2의 입자크기가 1~ 2㎛이며, 상기 단계(2)에서 제조되는 NixCoyMn1 -x-y(OH)2의 입자크기가 3 ~ 5㎛가 되도록 공정 조건을 조절하는 것이 바람직하다.
Particularly, it is preferable that the particle size of Ni x Co y Mn 1 -xy (OH) 2 produced in the step (1) is 1 to 2 μm, and Ni x Co y Mn 1 -xy (OH ) &Lt; 2 &gt; is 3 to 5 mu m.

특히, 상기 공정 조건은 온도 및 반응기 내 체류 시간인 것이 바람직하다.
In particular, the process conditions are preferably temperature and residence time in the reactor.

특히, 상기 단계(1) 및 단계(2)의 공침액은 황산니켈, 황산코발트 및 황산망간을 포함하는 공침액인 것이 바람직하다.
In particular, the coprecipitate of step (1) and step (2) is preferably a coprecipitate comprising nickel sulfate, cobalt sulfate and manganese sulfate.

특히, 상기 단계(1)의 공침액에는 암모니아 및 수산화나트륨을 더 포함하는 것이 바람직하다.
In particular, it is preferable that the co-precipitate of step (1) further contains ammonia and sodium hydroxide.

종래 쿠에트 테일러 반응기를 통해서는 구형도가 낮고 결정화도가 낮은 소입경의 NixCoyMn1 -x-y(OH)2의 전구체를 연속식으로 제조할 수 있으나, 본 발명과 같이 쿠에트 테일러 반응기와 배치 타입의 반응기의 이중 공침을 통하여 소입경이면서 구형도가 높으며, 결정화도가 높게 NixCoyMn1 -x-y(OH)2 전구체를 연속적으로 제조할 수 있다.
The precursor of Ni x Co y Mn 1 -xy (OH) 2 having a small sphericity and a low degree of crystallinity and having a small particle size can be continuously produced through a conventional quat-tailer reactor. However, The precursor of Ni x Co y Mn 1 -xy (OH) 2 can be continuously produced with a small particle size, high sphericity and a high degree of crystallinity through the double coprecipitation of the batch type reactor.

도 1은 종래기술로서 대한민국특허등록 제10-1275845호의 쿠에트 테일러 반응기를 이용하여 리튬 이차전지용 양극 활물질 전구체를 제조하는 장치를 설명하는 도면이다.
도 2는 본 발명의 방법을 구현하기 위한 시스템도이다.
도 3a 내지 3d는 실시예 1에 의해 제조된 전구체의 실험 결과로서, 3a 및 3b는 배율을 달리한 SEM 측정 사진, 3c는 입도 분포도, 3d는 XRD 측정 사진이다.
도 4a 내지 4d는 실시예 2에 의해 제조된 전구체의 실험 결과로서, 4a 및 4b는 배율을 달리한 SEM 측정 사진, 4c는 입도 분포도, 4d는 XRD 측정 사진이다.
도 5a 내지 5c는 실시예 3에 의해 제조된 리튬 이차전지용 양극활물질의 실험 결과로서, 5a 및 5b는 배율을 달리한 SEM 측정 사진, 5c는 충방전 테스트 결과이다.
1 is a view for explaining an apparatus for producing a cathode active material precursor for a lithium secondary battery using a quartetailer reactor of Korean Patent Registration No. 10-1275845 as a prior art.
2 is a system diagram for implementing the method of the present invention.
Figs. 3A to 3D are experimental results of the precursor prepared in Example 1, wherein 3a and 3b are SEM measurement photographs with different magnifications, 3c is a particle size distribution chart, and 3d is an XRD measurement photograph.
Figs. 4A to 4D are experimental results of the precursor prepared in Example 2, wherein 4a and 4b are SEM measurement photographs with different magnifications, 4c is a particle size distribution chart, and 4d is an XRD measurement photograph.
FIGS. 5A to 5C are experimental results of the cathode active material for a lithium secondary battery manufactured by Example 3, wherein 5a and 5b are SEM measurement photographs with different magnifications, and 5c is a result of a charge / discharge test.

이하 본 발명에 대하여 설명하기로 하되, 이하 설명에서 "전구체"는 NixCoyMn1-x-y(OH)2 전구체를 의미하며, 여기서, 0<x<1, 0<y<1, 0<x+y<1이다.
Hereinafter, the present invention will be described. In the following description, "precursor" means a Ni x Co y Mn 1-xy (OH) 2 precursor, 0 < x < 1, 0 < y &lt;

본 발명은 쿠에트 테일러 반응기 내에서 니켈, 코발트 및 망간이 포함된 공침액을 넣고 공침법에 의하여 NixCoyMn1 -x-y(OH)2(여기서, 0<x<1, 0<y<1, 0<x+y<1)전구체 시드를 제조하는 제1공침 단계(1); 상기 단계(1)의 쿠에트 테일러 반응기에서 배출되는 NixCoyMn1-x-y(OH)2 전구체 시드와 함께 니켈, 코발트 및 망간이 포함된 공침액을 배치 타입의 반응기 내에 연속으로 공급하여 공침법에 의하여 NixCoyMn1 -x-y(OH)2를 제조하는 제2공침 단계(2); 및 상기 제2공침 단계(2)의 배치 타입의 반응기에서 오버플로우(overflow)되는 공침액 중에서 고체상의 NixCoyMn1 -x-y(OH)2를 분리하는 단계(3)을 포함하는 쿠에트 테일러 반응기를 이용한 NixCoyMn1-x-y(OH)2의 연속식 제조 방법을 제공한다.
The present invention relates to a process for the preparation of Ni x Co y Mn 1 -xy (OH) 2 , wherein the coprecipitate containing nickel, cobalt and manganese is placed in a Quattro Taylor reactor, A first coprecipitation step (1) of producing 0 <x <1, 0 <y <1, 0 <x + y <1) precursor seeds; The coprecipitate containing nickel, cobalt and manganese together with the Ni x Co y Mn 1-xy (OH) 2 precursor seeds discharged from the quattro Taylor reactor of the step (1) A second coprecipitation step (2) of producing Ni x Co y Mn 1 -xy (OH) 2 by an immersion method; And (3) separating solid phase Ni x Co y Mn 1 -xy (OH) 2 from the coprecipitate which overflows in the batch type reactor of the second co-seeding step (2) It provides a continuous manufacturing method of Ni x Co y Mn 1-xy (OH) 2 using a Taylor reactor.

본 발명은 연속식 공정을 통하여 NixCoyMn1 -x-y(OH)2 전구체를 제조하는 방법을 제공하되, 쿠에트 테일러 반응기를 통한 1차 공침과, 배치 타입의 반응기에서 상기 1차 공침을 통해 제조되는 NixCoyMn1 -x-y(OH)2 전구체를 시드(seed)로 하여 재공침을 하는 2차 공침의 2 단계의 공침을 통한 연속식 NixCoyMn1 -x-y(OH)2 전구체의 제조 방법을 제공하는 것을 특징으로 한다. 배치 타입의 반응기 역시 공침액 및 NixCoyMn1-x-y(OH)2 전구체 시드를 연속식으로 공급하며, 최종반응물 역시 오버플로우 시스템을 통하여 외부로 배출되도록 함으로써, 전체 시스템이 연속식이 가능하도록 하였다.
The present invention provides a process for preparing a Ni x Co y Mn 1 -xy (OH) 2 precursor through a continuous process, wherein a first co-deposition through a quattro Taylor reactor and a first co- Ni x Co y Mn 1 -xy (OH) continuous Ni x Co y Mn 1 -xy through the co-precipitation of the secondary two-stage co-precipitation of the needle to the WIP and the second precursor into the seed (seed) is prepared by (OH) 2 &lt; / RTI &gt; precursor. The batch type reactor also feeds the coprecipitate and the Ni x Co y Mn 1-xy (OH) 2 precursor seeds continuously, and the final reactants are also discharged to the outside through the overflow system, Respectively.

이하에서는 각 단계별로 설명하기로 한다.
Hereinafter, each step will be described.

쿠에트Quet 테일러 반응기를 이용한 제1공침 단계(1) The first coprecipitation step (1) using the Taylor reactor,

본 발명은 쿠에트 테일러 반응기 내에서 NixCoyMn1 -x-y(OH)2 전구체 시드(seed)를 제조한다. 쿠에트 테일러 반응기는 통상의 쿠에트 테일러 반응기를 사용하면 되며, 쿠에트 테일러 반응기 자체는 잘 알려진 기술이므로 이에 대한 구체적인 설명은 생략하기로 한다.
The present invention produces a Ni x Co y Mn 1 -xy (OH) 2 precursor seed in a Quattro Taylor reactor. The quat-tailer reactor may be a conventional quat-tailor reactor, and the quat-tailor reactor itself is a well-known technology, so a detailed description thereof will be omitted.

쿠에트 테일러 반응기의 특성상 짧은 시간 내에 연속으로 NixCoyMn1 -x-y(OH)2 전구체 시드를 제조할 수 있다. 바람직하게는 쿠에트 테일러 반응기 내에서 제조되는 NixCoyMn1 -x-y(OH)2 전구체 시드는 크기가 1~ 2 ㎛, 바람직하게는 2㎛ 내외 크기가 되도록 반응기 내 잔류 시간 등은 운전 조건을 조절하는 것이 바람직하다.
Due to the nature of the Quattro Taylor reactor, it is possible to produce Ni x Co y Mn 1 -xy (OH) 2 precursor seeds continuously in a short time. Preferably, the Ni x Co y Mn 1 -xy (OH) 2 precursor seeds produced in the quattro Taylor reactor have a size of 1 to 2 μm, preferably about 2 μm, .

배치 타입의 반응기를 이용한 제2공침 단계(2)A second coprecipitation step (2) using a batch type reactor,

상기 제1공침 단계(1)에서 제조된 약 2㎛ 정도의 NixCoyMn1 -x-y(OH)2 전구체를 시드로 삼아 다시 상기 시드로부터 더 큰 크기의 NixCoyMn1 -x-y(OH)2 전구체를 제조한다. 물론 제2공침을 통해 전구체 입자 크기를 키울 뿐만 아니라, 결정화도를 높이고, 구형도 및 균일화도를 높인다.
A Ni x Co y Mn 1 -xy (OH) 2 precursor of about 2 탆 produced in the first coprecipitation step (1) is used as a seed, and a Ni x Co y Mn 1 -xy OH) 2 precursor. Of course, not only the size of the precursor particle is increased through the second coprecipitation, but also the degree of crystallization is increased, and the sphericity and uniformity are increased.

상기 제2공침 단계에서는 제1공침 단계에서 제조된 NixCoyMn1 -x-y(OH)2 전구체 시드와, 배치 타입의 반응기에 투입되는 니켈, 코발트 및 망간의 공침액에 상기 분쇄된 전구체를 포함하여 공침을 진행한다. 제2공침 단계에서는 쿠에트 테일러 반응기에서 제조된 NixCoyMn1 -x-y(OH)2 전구체를 시드(seed)로 삼아 입자가 성장하게 된다. 예를 들어, 제2공침 단계(2)에서는 제1공침 단계(1)에서 제조된 2㎛ 크기의 전구체 시드를 3 ~4㎛ 크기의 NixCoyMn1 -x-y(OH)2 전구체로 제조한다. 배치 타입 반응기에 오버플로우되도록 하여 연속 공정이 가능하도록 하였다. 오버플로우되는 공침액에는 반응이 끝난 NixCoyMn1 -x-y(OH)2 전구체와 미반응 공침액이 혼합되어 있어, 고체상의 NixCoyMn1 -x-y(OH)2 전구체를 분리하는 단계가 필요하다.
In the second coprecipitation step, the precursor seed of Ni x Co y Mn 1 -xy (OH) 2 produced in the first coprecipitation step is mixed with the precursor of nickel, cobalt and manganese introduced into the batch type reactor, And will proceed with the co-ordination. In the second coprecipitation step, particles are grown using the Ni x Co y Mn 1 -xy (OH) 2 precursor prepared in the quartet-Taylor reactor as a seed. For example, in the second coprecipitation step (2), the precursor seed having a size of 2 탆 produced in the first coprecipitation step (1) is made of a precursor of Ni x Co y Mn 1 -xy (OH) 2 having a size of 3 to 4 탆 do. The batch type reactor was overflowed to allow continuous processing. The overflowed coprecipitate contains a pre-reacted Ni x Co y Mn 1 -xy (OH) 2 precursor and an unreacted coprecipitate to separate the solid Ni x Co y Mn 1 -xy (OH) 2 precursor A step is required.

NiNi xx CoCo yy MnMn 1One -x-y-x-y (( OHOH )) 2 2 전구체 분리 단계(3)Precursor Separation Step (3)

상기 배치 타입의 반응기에서 오버플로우되는 공침액 속에는 반응이 끝난 NixCoyMn1-x-y(OH)2 전구체가 공침액 속에 포함되어 있으므로, 고체상의 NixCoyMn1 -x-y(OH)2 전구체만을 분리하는 과정이 필요하다. 이러한 분리는 단순 침전이나, 체(sieve) 등 다양한 통상의 액체로부터 고체 소립자를 분리하기 위한 방법이 사용될 수 있다. 최종적으로 제조되는 NixCoyMn1 -x-y(OH)2 전구체의 크기는 바람직하게는 3~4㎛ 정도로 제조될 수 있다.Since the reacted Ni x Co y Mn 1-xy (OH) 2 precursor is contained in the coprecipitate in the batch type reactor, the solid phase Ni x Co y Mn 1 -xy (OH) 2 It is necessary to separate only the precursor. Such separation may be carried out by simple precipitation or a method for separating solid fine particles from various conventional liquids such as sieves. The size of the finally produced Ni x Co y Mn 1 -xy (OH) 2 precursor can preferably be about 3 to 4 μm.

본 발명의 방법으로 제조된 전구체는 소립자화되어 비표면적이 넓을 뿐만 아니라, 구형화도가 높아서 양극 소자로 사용되어 높은 출력 특성을 나타낸다.
The precursor prepared by the method of the present invention is small-sized and thus has a large specific surface area and high sphericity and is used as a cathode element to exhibit high output characteristics.

[[ 실시예Example ]]

[[ 실시예Example 1] 제1 공침:  1] First Coalition: 쿠에트Quet 테일러 반응기를 이용한  Using a Taylor reactor NiNi xx CoCo yy MnMn 1One -x-y-x-y (( OHOH )) 2 2 전구체 시드 제조Manufacture of precursor seed

이하에서는 NixCoyMn1 -x-y(OH)2에서 x=0.8, y=0.1인 Ni0 .8Co0 .1Mn0 .1(OH)2를 제조하였다. 이는 황산니켈, 황산코발트 및 황산망간의 몰비 조절을 통하여 상기와 같은 화학식의 전구체를 제조할 수 있다.
The following were prepared in a Ni x Co y Mn 1 -xy ( OH) 2 x = 0.8, y = 0.1 of Ni 0 .8 Co 0 .1 Mn 0 .1 (OH) 2. This can be accomplished by controlling the molar ratio of nickel sulfate, cobalt sulfate and manganese sulfate to produce precursors of the above formula.

황산니켈, 황산코발트, 황산망간을 0.8:0.1:0.1의 몰비로 혼합하여 2.5M 농도의 금속 수용액 5L를 2개 준비하였고, NH4OH 5~7%와 NaOH는 12~15%로 혼합한 용액 5L를 준비하였다. 1L 쿠에트-테일러 반응기에 이온제거수(D.I water)를 가득 채우고 온도 유지 장치를 이용하여 50~60℃로 온도를 올려주었다.
Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in a molar ratio of 0.8: 0.1: 0.1 to prepare two 5 L metal aqueous solutions of 2.5 M, and a solution prepared by mixing 5 to 7% of NH 4 OH and 12 to 15% of NaOH 5L were prepared. The 1 L Kuett-Taylor reactor was filled with deionized water (DI water) and heated to 50-60 ° C using a temperature holding device.

상기 반응기에 준비한 NH4OH 및 NaOH 혼합용액을 7~9 mL/min로 정량펌프로 연속적으로 투입하였고, 준비한 금속 수용액은 정량펌프를 사용하여 4~7 mL/min으로 N2가스 2 L/min과 혼합하여 투입하였다. 반응기의 교반 rpm은 800~900으로 고정하였고, 오버플로우를 이용하여 제조된 시드 역할의 반응물이 후단의 배치식 반응기에 투입 되도록 연결하였다.
The NH 4 OH and NaOH mixed solution prepared in the reactor 7 ~ 9 mL / to the metering pump min were subsequently added, the prepared metal solution using a metering pump 4 ~ 7 mL / min in N 2 gas 2 L / min . The stirring rpm of the reactor was fixed at 800 to 900, and the reaction product of the seeds prepared by using the overflow was connected to the rear batch reactor.

[[ 실시예Example 2] 제2 공침:  2] Second Co-op: 배치식Batch type 반응기를 통한  Through the reactor NiNi xx CoCo yy MnMn 1One -x-y-x-y (( OHOH )) 2 2 전구체 제조Precursor manufacture

상기 기존 수조 반응기는 5L 이중 수조 반응기로 배플(baffle)과 교반기가 설치된 일반적인 와류장치이다. 이 기존 반응기에 증류수 2L를 채우고 50~60℃로 온도 유지 장치를 이용하여 온도를 미리 올려주었다. 이 반응기에도 오버플로우를 설치하였고, 교반 rpm은 800~1000으로 고정하였다.
The conventional water tank reactor is a 5L double water tank reactor, which is a general vortex system equipped with a baffle and a stirrer. The existing reactor was filled with 2 L of distilled water, and the temperature was previously raised to 50 to 60 ° C using a temperature holding device. An overflow was also installed in this reactor and the stirring rpm was fixed at 800-1000.

쿠에트-테일러 반응기에서 오버플로우된 시드 역할의 Ni0 .8Co0 .1Mn0 .1(OH)2이 배치식 반응기에 4L가 채워지도록 교반을 유지시킨 상태로 투입시켜 주었다. 4L가 채워지는 시점에 배치식 반응기로 준비된 금속 수용액(2.5M 농도의 황산니켈, 황산코발트 및 황산망간 혼합수용액)을 정량펌프를 이용하여 7~9 mL/min으로 N2가스 3L/min와 혼합하여 펌핑하였다. 별도의 pH 컨트롤은 하지 않았다.
Ku eth- given by the overflowed seed role in Taylor reactor Ni 0 .8 Co 0 .1 Mn 0 .1 (OH) 2 In a state where the maintaining stirring to 4L are filled in the batch reactor. At the time when 4L was filled, a metal aqueous solution (2.5M concentration of nickel sulfate, cobalt sulfate and manganese sulfate mixed solution) prepared by a batch type reactor was mixed with 3 L / min of N 2 gas at 7 to 9 mL / min using a metering pump Lt; / RTI &gt; No separate pH control was applied.

상기 배치 타입의 반응기에서 오버플로우되는 반응물에서 고체인 Ni0.8Co0.1Mn0.1(OH)2 전구체만을 분리하여 필터링 방식으로 온수 수세를 여러 차례 반복한 후, 120℃ 항온건조기에 20시간 건조시켜 니켈-코발트-망간 3성분계 전구체를 얻었다.
Only the precursor Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 which is solid in the reactant overflowing in the batch type reactor is separated The hot water washing was repeated several times by a filtering method and then dried in a constant temperature drier at 120 캜 for 20 hours to obtain a nickel-cobalt-manganese ternary precursor.

[[ 실시예Example 3] 리튬 혼합 양극 활물질 제조 3] Lithium mixed cathode active material manufacturing

LiOH와 상기 실시예 2에서 제조한 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체를 800℃에서 20시간 동안 소성하여 화학식 Li[Ni0 .8Co0 .1Mn0 .1]O2의 리튬 혼합 양극 활물질을 제조하였다.
Ni 0 manufactured by LiOH as Example 2 .8 Co 0 .1 Mn 0 .1 (OH) formula Li [Ni to the second precursor calcined at 800 ℃ for 20 h 0 .8 Co 0 .1 Mn 0 .1 ] O &lt; 2 & gt ;.

[[ 실험예Experimental Example ]]

상기 실시예 1 내지 3에 의해 만들어진 각 결과물에 대하여 다음과 같이 실험을 하였다.
The following results were obtained for each of the products produced by Examples 1 to 3 above.

[[ 실험예Experimental Example 1]  One] 쿠에트Quet 테일러 반응기에서 제조된 제1공침 후의 Ni The Ni after the first coprecipitation prepared in the Taylor reactor 0.80.8 CoCo 0.10.1 MnMn 0.10.1 (OH)(OH) 2 2 전구체의 물성 실험Experiment of precursors

도 3a 및 3b는 실시예 1에 의해 제조되는 쿠에트 테일러 반응기에서 만들어진 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체의 배율을 달리한 SEM 측정사진이다. 도 3a 및 3b의 SEM 사진과 같이, 제1공침에 의해 만들어진 Ni0 .8Co0 .1Mn0 .1(OH)2는 구형도가 좋지 않다는 것을 확인할 수 있었다. 도 3c는 실시예 1에 의해 제조된 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체의 입도 분포도로서, 메디안 크기가 1.953㎛임을 알 수 있었다.
Figures 3a and 3b is a Ni 0 .8 Co 0 .1 Mn 0 .1 SEM photo by measuring the contrast ratio of (OH) 2 precursor made from Et-ku Taylor reactor manufactured by the first embodiment. As shown in SEM photos of Figs. 3a and 3b, Ni 0 .8 Co 0 .1 Mn 0 .1 (OH) 2 is made by first co-precipitation was confirmed that the circularity is not good. Figure 3c was found to be a particle size distribution of the Ni 0 .8 Co .1 0 .1 0 Mn (OH) 2 precursor prepared by Example 1, the median size is 1.953㎛.

도 3d는 실시예 1에 의해 제조된 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체의 XRD 측정 사진으로서, 피크가 뚜렷하지 않고 비교적 피크의 폭이 넓게(broad) 측정되었으며, 이 XRD 결과로부터 쿠에트 테일러 반응기에 의한 제1공침에 의해 제조되는 Ni0.8Co0.1Mn0.1(OH)2 전구체가 비정질(amophous)하다는 것을 알 수 있었다.
FIG. 3D is an XRD measurement photograph of the Ni 0 .8 Co 0 .1 Mn 0 .1 (OH) 2 precursor prepared by Example 1, in which the peaks were not clear and the peaks were broadly measured, From this XRD result, it can be seen that the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor produced by the first coprecipitation with the Cuat Taylor reactor is amorphous.

상기 도 3a 내지 3c의 결과로부터, 쿠에트 테일러 반응기에서 제조된 전구체는 구형도가 낮고, 비정질로 제조되어 양극 활물질로는 적합하지 않다는 것을 확인할 수 있었다.
From the results shown in FIGS. 3A to 3C, it was confirmed that the precursor produced in the Kuett Taylor reactor had a low sphericity and was made amorphous, and thus was not suitable as a cathode active material.

[[ 실험예Experimental Example 2]  2] 배치식Batch type 반응기에서 제조된 제2공침 후의  After the second coprecipitation produced in the reactor NiNi 00 .8.8 CoCo 00 .1.One MnMn 00 .1.One (( OHOH )) 2 2 전구체의 물성 실험Experiment of precursors

도 4a 및 4b는 실시예 2에 의해 제조된 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체의 배율을 달리한 SEM 측정사진이다. 도 4a 및 4b와 같이, 제2공침에 의해 만들어진 Ni0.8Co0.1Mn0.1(OH)2 는 구형도가 크게 개선되었음을 알 수 있었다.
Figures 4a and 4b is a SEM photograph measured varying the magnification factor of the Ni 0 .8 Co .1 0 .1 0 Mn (OH) 2 precursor prepared by Example 2. As shown in FIGS. 4A and 4B, it was found that the sphericity of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 produced by the second coprecipitation was greatly improved.

도 4c는 실시예 2에 의해 제조된 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체의 입도 분포도로서, 메디안 크기가 3.735㎛임을 알 수 있었다. 즉, 1차 공침에 의해 1.953 ㎛ 크기의 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체 시드가, 2차 공침에 의해 성장하여 3.735 ㎛으로 성장하였다.
Figure 4c was found that a particle size distribution of the Ni 0 .8 Co .1 0 .1 0 Mn (OH) 2 produced by a precursor to the second embodiment, a median size 3.735㎛. That is, a size of 1.953 ㎛ by the primary co-precipitated Ni 0 .8 Co .1 0 .1 0 Mn (OH) 2 precursor seeded, grown by a secondary co-precipitation was grown to 3.735 ㎛.

도 4d는 실시예 2에 의해 제조된 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체의 XRD 측정 사진으로서, 도 3d에 비하여 피크가 뚜렷하게 측정되었으며, 이는 쿠에트 테일러 반응기에 의한 제1공침에 의해 제조되는 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체가 2차 공침 후에 결정화도가 높아졌다는 것을 의미한다.
Figure 4d is a second embodiment of Ni 0 .8 Co 0 .1 Mn 0 .1 (OH) 2 precursor XRD measurement picture produced by, were also the peak measured distinctly compared to 3d, which by the Taylor reactor ku Et 0 .8 Co .1 0 is the Ni Mn 0 .1 (OH) second precursor prepared by the coprecipitation 1 means that the degree of crystallinity increased after the second co-precipitation.

즉, 제2공침에 의하여 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체의 구형화도 및 결정화도가 높아졌다는 것을 확인할 수 있으며, 이를 통해 본 발명에 의한 이중 공침을 통해 제조된 Ni0 .8Co0 .1Mn0 .1(OH)2 전구체가 양극 활물질로 적합한 구조를 가짐을 알 수 있었다.
That is, by the second co-precipitated Ni 0 .8 Co 0 .1 Mn 0 .1 (OH) to check that the sphericity and crystallinity of the precursor increased, manufactured through a double co-precipitation according to the invention through which Ni .8 Co .1 0 .1 0 0 Mn (OH) 2 precursor was found that having a structure suitable as a cathode active material.

[[ 실험예Experimental Example 3] 리튬 혼합 양극 활물질의 물성 실험 3] Physical properties of lithium mixed cathode active material

본 실험예 3은 상기 실시예 3에 의해 제조된 리튬 혼합 양극 소자인 Li[Ni0.8Co0.1Mn0.1]O2의 실험 결과이다.
Experimental Example 3 is an experimental result of Li [Ni 0.8 Co 0.1 Mn 0.1 ] O 2 which is a lithium mixed cathode element manufactured by Embodiment 3.

도 5a 및 도 5b는 배율을 달리하여 측정한 SEM 측정 사진으로서, 일반적인 Li[Ni0 .8Co0 .1Mn0 .1]O2 양극재의 형상을 띄고 있음을 알 수 있었다. 도 5c는 코인전지로 제조하여 충방전 테스트를 한 결과로서, 출력효율(2C/0.1C) : 0.8374, 초기용량 : 162.4의 전기적 특성을 보임을 확인할 수 있었다.
FIG. 5A and FIG. 5B are SEM photographs taken at different magnifications, and it was found that the shape of a typical Li [Ni 0 .8 Co 0 .1 Mn 0 .1 ] O 2 cathode material was observed. FIG. 5C shows a result of a charge / discharge test using a coin cell, showing an electrical characteristic of an output efficiency (2C / 0.1C) of 0.8374 and an initial capacity of 162.4.

Claims (5)

쿠에트 테일러 반응기 내에서 니켈, 코발트 및 망간의 공침액을 넣고 공침법에 의하여 NixCoyMn1-x-y(OH)2 (여기서, 0<x<1, 0<y<1, 0<x+y<1)전구체 시드를 제조하는 제1공침 단계(1);
상기 단계(1)에서 쿠에트 테일러 반응기에서 배출되는 NixCoyMn1-x-y(OH)2 전구체 시드와 함께 니켈, 코발트 및 망간의 혼합 공침액을 배치 타입의 반응기 내에 연속으로 공급하여 공침법에 의하여 NixCoyMn1-x-y(OH)2를 제조하는 제2공침 단계(2); 및
상기 제2공침 단계(2)에서 배치 타입의 반응기에서 오버플로우(overflow)되는 공침액 중에서 고체상의 NixCoyMn1-x-y(OH)2를 분리하는 단계(3)를 포함하되,
상기 단계(1)에서 제조되는 NixCoyMn1-x-y(OH)2의 입자크기가 1~ 2 ㎛ 이며, 상기 단계(2)에서 제조되는 NixCoyMn1-x-y(OH)2의 입자크기가 3 ~ 5 ㎛가 되도록 온도 또는 반응기 내 체류 시간을 조절하는 것을 특징으로 하는 쿠에트 테일러 반응기를 이용한 NixCoyMn1-x-y(OH)2의 연속식 제조 방법.
The co-precipitation of nickel, cobalt and manganese in a quartz-tailor reactor is introduced and co-precipitation is performed to produce Ni x Co y Mn 1-xy (OH) 2 , A first coprecipitation step (1) of producing 0 <x <1, 0 <y <1, 0 <x + y <1) precursor seeds;
In step (1), a mixed precursor of Ni x Co y Mn 1-xy (OH) 2 precursor seeds discharged from the quattro Taylor reactor is continuously fed into a reactor of a batch type, A second coprecipitation step (2) of producing Ni x Co y Mn 1-xy (OH) 2 by a second coprecipitation step (2); And
(3) separating solid phase Ni x Co y Mn 1-xy (OH) 2 from the coprecipitate overflowed in a batch type reactor in said second coprecipitation step (2)
Wherein the Ni x Co y Mn 1-xy (OH) 2 particles prepared in the step (1) have a particle size of 1 to 2 μm and the Ni x Co y Mn 1-xy (OH) 2 Wherein the temperature or the residence time in the reactor is controlled so that the particle size of the Ni x Co y Mn 1-xy (OH) 2 is from 3 to 5 μm.
삭제delete 삭제delete 제1항에서, 상기 단계(1) 및 단계(2)의 공침액은 황산니켈, 황산코발트 및 황산망간을 포함하는 공침액인 것을 특징으로 하는 쿠에트 테일러 반응기를 이용한 NixCoyMn1-x-y(OH)2의 연속식 제조 방법.
In claim 1, wherein the ball immersion in the above step (1) and (2) Ni x Co y Mn 1- using a Pico eth- Taylor reactor, characterized in that the immersion ball containing nickel sulfate, cobalt sulfate and manganese sulfate xy (OH) 2 .
제1항에서, 상기 단계(1)의 공침액에는 암모니아 및 수산화나트륨을 더 포함하는 것을 특징으로 하는쿠에트 테일러 반응기를 이용한 NixCoyMn1 -x-y(OH)2의 연속식 제조 방법.In claim 1, wherein the continuous method of producing a Ni x Co y Mn 1 -xy ( OH) 2 using a Pico eth- Taylor reactor, it characterized in that the immersion of the ball of the step (1) further includes an ammonia and sodium hydroxide.
KR1020140016711A 2014-02-13 2014-02-13 Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor KR101564009B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140016711A KR101564009B1 (en) 2014-02-13 2014-02-13 Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor
CN201480075219.6A CN106029575B (en) 2014-02-13 2014-02-14 Utilize the continuous preparation method of the nickel cobalt manganese composite precursor of Couette Taylor's reactor
PCT/KR2014/001204 WO2015122554A1 (en) 2014-02-13 2014-02-14 Method for continuously preparing nickel cobalt manganese composite precursor using couette-taylor reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140016711A KR101564009B1 (en) 2014-02-13 2014-02-13 Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor

Publications (2)

Publication Number Publication Date
KR20150095428A KR20150095428A (en) 2015-08-21
KR101564009B1 true KR101564009B1 (en) 2015-10-28

Family

ID=53800285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140016711A KR101564009B1 (en) 2014-02-13 2014-02-13 Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor

Country Status (3)

Country Link
KR (1) KR101564009B1 (en)
CN (1) CN106029575B (en)
WO (1) WO2015122554A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385227A1 (en) 2017-04-04 2018-10-10 Laminar Co., Ltd. Manufacturing method of cathode active material for secondary cell
KR102069468B1 (en) 2019-04-30 2020-01-22 하임테크(주) Drying device for precursor and drying method Thereof
US11440811B2 (en) * 2017-11-28 2022-09-13 Xtc New Energy Materials(Xiamen) Ltd. Ternary precursor particles and method for manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150756A1 (en) * 2016-03-03 2017-09-08 주식회사 이엔드디 Method for coating hetero atom on nickel-cobalt-manganese composite precursor by using couette-taylor reactor
KR102533157B1 (en) 2016-07-27 2023-05-17 삼성에스디아이 주식회사 Method of fabricating cathode active material of lithum secondary battery
CN106784786B (en) * 2016-12-16 2019-11-15 欣旺达电子股份有限公司 Ternary anode material precursor, synthetic method and lithium ion battery
CN108031416B (en) * 2017-11-28 2020-03-10 荆门市格林美新材料有限公司 Overflow system for preparing cobalt carbonate
CN109896554A (en) * 2017-12-11 2019-06-18 河南科隆新能源股份有限公司 A kind of multi-element doping type nickel cobalt manganese hydroxide, equipment and preparation method thereof
CN108321426B (en) * 2018-01-22 2024-05-14 北京圣比和科技有限公司 Preparation method and equipment of single-particle-morphology lithium nickel manganese cobalt oxide material
CN110600683B (en) * 2018-06-13 2020-07-31 浙江帕瓦新能源股份有限公司 Preparation method of semi-continuous ternary precursor
KR102256298B1 (en) 2018-06-26 2021-05-26 삼성에스디아이 주식회사 Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
EP3611133A1 (en) 2018-08-14 2020-02-19 Samsung SDI Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparation method thereof, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including cathode including the nickel-based active material
CN112366308B (en) * 2020-11-11 2021-12-07 江西普瑞美新材料科技有限公司 Method for rapidly synthesizing nickel-cobalt-manganese positive electrode material precursor
CN113603154B (en) * 2021-07-30 2022-08-26 广东佳纳能源科技有限公司 High-voltage nickel-cobalt-manganese ternary precursor and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038232B1 (en) * 2010-06-23 2011-05-31 (주) 라미나 Apparatus for reaction capable of performing batch type and continuous type reaction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674287B1 (en) * 2005-04-01 2007-01-24 에스케이 주식회사 Layered core·shell cathode active materials for lithium secondary batteries, Method for preparing thereof And lithium secondary batteries using the same
KR101275845B1 (en) * 2011-09-21 2013-06-17 에스케이씨 주식회사 Apparatus using couette-taylor vortice reaction equipment for preparing precursor of cathode material for lithium secondary battery
KR101375701B1 (en) * 2011-11-11 2014-03-20 에스케이씨 주식회사 Cathode active material for lithium secondary battery containing phosphate fluoride and preparation method thereof
KR101429531B1 (en) * 2012-01-05 2014-08-14 한국교통대학교산학협력단 Precursor for cathode active materials for lithiumsecondary battery with core­shell, cathode active materials and lithiumsecondary battery using the same, and preparation method thereof
CN103413926B (en) * 2013-08-31 2015-04-15 张宝 Preparation method of lithium nickel cobalt manganese oxide precursor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038232B1 (en) * 2010-06-23 2011-05-31 (주) 라미나 Apparatus for reaction capable of performing batch type and continuous type reaction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385227A1 (en) 2017-04-04 2018-10-10 Laminar Co., Ltd. Manufacturing method of cathode active material for secondary cell
US11440811B2 (en) * 2017-11-28 2022-09-13 Xtc New Energy Materials(Xiamen) Ltd. Ternary precursor particles and method for manufacturing the same
KR102069468B1 (en) 2019-04-30 2020-01-22 하임테크(주) Drying device for precursor and drying method Thereof

Also Published As

Publication number Publication date
KR20150095428A (en) 2015-08-21
WO2015122554A1 (en) 2015-08-20
CN106029575B (en) 2018-06-22
CN106029575A (en) 2016-10-12

Similar Documents

Publication Publication Date Title
KR101564009B1 (en) Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor
KR102553596B1 (en) Nickel manganese-containing composite hydroxide and method for producing the same
CN109803927B (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
US10522823B2 (en) Cathode active material for lithium secondary battery and lithium secondary battery comprising the same
JP2022008802A (en) Positive electrode active material for lithium secondary battery
KR101757490B1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
KR101313575B1 (en) Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
CN107567666B (en) Anode active material and secondary battery including the same
WO2012164752A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
KR101547972B1 (en) Manufacturing method for Ni-Co-Mn composite precursor
JP2024020290A (en) Lithium composite oxide for lithium secondary battery and manufacturing method thereof
EP3024069A1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same
CN101426728A (en) Lithium-metal composite oxides and electrochemical device using the same
EP3487813A1 (en) A method for upscalable precipitation synthesis of battery materials with tunable particle size distribution
CN104766970A (en) Synthetic method for lithium nickel manganese oxygen covered with lithium titanate
TW201832399A (en) Method of preparing cathode material for secondary battery
KR101950202B1 (en) Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area
WO2010139142A1 (en) Positive electrode materials of secondary lithium battery and preparation methods thereof
KR101608733B1 (en) Method for manufacturing cathode active material for lithium secondary battery
KR100261509B1 (en) Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
KR101847037B1 (en) Manufacturing method for Ni-Co-Mn composite precursor coated with heterogeneous material
CN102723476A (en) Method for preparing lithium-ion battery anode material lithium nickel manganese dioxide (LiNiMnO2)
CN110885100B (en) Preparation method of nickel lithium manganate cathode material with hierarchical structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181023

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190704

Year of fee payment: 5