KR101563937B1 - 충돌 방지 장치를 위한 정전용량 센서 - Google Patents
충돌 방지 장치를 위한 정전용량 센서 Download PDFInfo
- Publication number
- KR101563937B1 KR101563937B1 KR1020130075436A KR20130075436A KR101563937B1 KR 101563937 B1 KR101563937 B1 KR 101563937B1 KR 1020130075436 A KR1020130075436 A KR 1020130075436A KR 20130075436 A KR20130075436 A KR 20130075436A KR 101563937 B1 KR101563937 B1 KR 101563937B1
- Authority
- KR
- South Korea
- Prior art keywords
- sensor
- electrode
- frequency
- operational amplifier
- signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/24—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/30—Structural combination of electric measuring instruments with basic electronic circuits, e.g. with amplifier
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2605—Measuring capacitance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/088—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/24—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
- G01D5/241—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
- G01D5/2417—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Geophysics (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Power Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Electronic Switches (AREA)
Abstract
물체를 검출하기 위한, 특히 이동 가능한 자동차 부품의 경우에 충돌을 검출하기 위한 정전용량 센서(2)가 명시된다. 센서(2)는 적어도 하나의 센서 전극(6)을 포함하는 전극 배치(4)를 갖는다. 센서(2)는 또한 센서 전극(6)의 다운스트림에 연결되고 센서 전극(6)에서 생성되는 수신 신호(SR)를 처리하기 위한 평가 회로(8)를 갖는다. 이러한 경우, 평가 회로(8)는 주파수 응답을 보상하기 위한 수단(22, 40, 60)을 갖는 트랜스임피던스 증폭기(20)를 포함한다.
Description
본 발명은 물체, 특히 사람의 신체 또는 아이템의 일부를 검출하기 위한 정전용량 센서(capacitive sensor) 및 이러한 센서를 갖는 충돌 방지 장치(anti-collision apparatus)에 관한 것이다.
정전용량 센서들은 자동차 공학, 특히 충돌 방지 장치 내에 사용된다. 이러한 충돌 방지 장치는 일반적으로 고정 프레임에 대하여 개방 위치와 폐쇄 위치 사이에서 이동 가능한 자동차 부품의 개방 영역(opening area)에서 장애물을 검출하기 위해 사용된다. 그 자동차 부품 - 이하에서 "조정 엘리먼트(adjustment element)"라고도 함 - 은, 특히 창유리(window pane) 또는 뒷문(tailgate)이다. 또한, 모니터링될 자동차 부품 또는 조정 엘리먼트는 또한 옆문, 트렁크 뚜껑 또는 엔진실 커버(engine compartment cover), 개폐식 지붕 또는 폴딩 탑(folding top)일 수 있다. 충돌 방지 장치들은 이러한 경우, 특히 각각의 관련 자동차 부품이 모터에 의해 움직여지는 경우에 사용된다.
조정 운동(adjustment movement) 중의 조정 엘리먼트에 의해 덮이는 공간은 개방 영역으로 칭해진다. 조정 엘리먼트의 개방 영역은 특히, 조정 엘리먼트의 폐쇄 위치의 폐쇄 에지에 기대어 있는 프레임의 대응하는 에지와 조정 엘리먼트의 폐쇄 에지 사이에 배치된 공간의 영역을 포함한다.
자동차의 조정 엘리먼트, 특히 자동차 유리 또는 뒷문을 닫는 경우, 일반적으로 조정 엘리먼트의 몸체 부분 또는 다른 아이템이 차체(bodywork)와 조정 엘리먼트의 폐쇄 에지 사이에 구속될(trapped) 위험이 있다. 본 출원에서 구속 방지(anti-trapping) 장치로도 칭해지는 충돌 방지 장치는, 개방 영역에서의 장애물들을 검출하고 이러한 경우에 폐쇄 움직임을 정지시키거나 반전시키는 충돌 방지 장치에 의해, 이러한 구속 및 그 결과에 따른 사람의 상해 및/또는 물질적 손해의 위험을 방지하기 위해 사용된다.
또한, 이러한 충돌 방지 장치는, 회전하는 조정 엘리먼트의 경우에, 조정 엘리먼트의 개방을 방해하는 장애물들을 검출하기 위해 사용될 수 있다. 본 출원에서 또한, 충돌 방지 장치는, 조정 엘리먼트가 장애물과 충돌한 결과로서의 물질적인 손해를 방지하기 위해 이러한 장애물을 검출하는 경우, 조정 엘리먼트의 움직임을 정지시키거나 반전시킨다.
이러한 경우에, 간접적인 충돌 방지 장치와 직접적인 충돌 방지 장치 사이에 차이가 발생한다. 간접적인 충돌 방지 장치는, 특히 모터 전류의 비정상적인 증가 또는 모터 속도의 비정상적인 감소로부터 조정 엘리먼트를 구동하는 서보 모터(servo motor)의 작동 변수(operating variable)를 모니터링함으로써 구속 또는 충돌을 검출한다. 직접적인 충돌 방지 장치는 일반적으로, 개방 영역의 장애물의 존재 또는 부존재의 측정 변수 특성을 기록하는 하나 이상의 센서들뿐만 아니라 장애물이 개방 영역에 존재하는지 여부를 결정하고 필요한 경우에는 대응하는 대책들을 시작하기 위해 이러한 측정 변수를 사용하는 평가 유닛을 포함한다. 직접적인 충돌 방지 장치들 중에서, 장애물이 이미 센서에 접촉한 경우에만 장애물의 존재를 표시하는 이른바 접촉 센서들을 갖는 시스템들과 이미 센서로부터 소정의 거리에 있는 장애물을 검출하는 비접촉 센서들을 갖는 시스템들 사이에서 다시 차이가 발생한다. 비접촉 센서들은, 특히 소위 정전용량 (근접) 센서들을 포함한다.
정전용량 센서는 일반적으로 조정 엘리먼트의 개방 영역에서 전기장을 더 강하게 하기 위해 사용되는 하나 이상의 (센서) 전극들을 갖는 전극 배치를 포함한다. 개방 영역의 장애물은 전극 배치의 커패시턴스를 모니터링함으로써 검출된다. 이러한 경우, 장애물, 특히 인간의 신체 일부분이 센서에 의해 생성되는 전기장에 영향을 주고 따라서 전극 배치의 커패시턴스에 영향을 준다는 사실을 이용한다.
이러한 정전용량 센서의 종래의 설계에서, 이러한 센서의 전극 배치는, 센서 전극들로서, 전송 신호를 생성하기 위한 신호 생성 회로에 연결되는 적어도 하나의 전송 전극 및 수신 전극에서 생성되는 수신 신호를 처리하기 위한 평가 회로에 연결되는 수신 전극을 포함한다(전송기/수신기 원리). 이러한 센서는 전송 전극과 수신 전극 사이에 형성되는 커패시턴스 또는 이와 상관되는(correlated) 측정 변수를 측정한다.
대안적인 설계에서, 정전용량 센서의 전극 배치는 전송 신호가 적용되고, 예를 들어 변위 전류(displacement current)의 형식으로 정전용량-종속 수신 또는 응답 신호를 기록하기 위해 또한 사용되는 복수의 동일 센서 전극들 또는 오직 하나의 센서 전극을 포함한다(단일-전극 원리). 이러한 센서의 경우에, 사용된 상대 전극(counter-electrode)은 접지 전위, 특히 센서가 설치된 자동차의 차체에서 센서 외부 아이템이다. 따라서 이러한 센서의 경우에, 접지에 대한 센서 전극(들)의 커패시턴스는 측정 변수로서 기록된다.
미리 정해진 전송 주파수에서 진동하는 전기 교류 신호는 일반적으로 전송 신호로서 사용된다. 평가 회로는 센서 전극(특히 수신 전극)에서 유도되는 변위 전류를 측정하기 위해 종종 저임피던스(low impedance)를 갖는다. 이러한 경우, 평가 회로는 종종 트랜스임피던스 증폭기를 포함한다. 이러한 정전용량 센서는 예를 들어 DE 10 2007 001 712 A1로부터 공지된다.
정전용량 센서를 갖는 충돌 방지 장치의 경우에, 전송 주파수가 간섭을 갖는 경우, 즉 그 주파수가 센서의 전송 주파수와 동일하거나 유사한 외부 교류장(external alternating field)이 센서 전극(특히 수신 전극)에 적용되는 경우, 검출 오류들이 일어날 수 있다. 반면에, 이러한 검출 오류는 충돌 방지 장치가 구속(trapping)을 부정확하게 검출하고 객관적으로 이유 없이 조정 엘리먼트의 움직임을 정지시키거나 반전시키는 결과를 야기할 수 있다. 그러나, 반면에, 이러한 검출 오류는 또한 실제로 존재하는 구속이 충돌 방지 장치에 의해 검출되지 않는 결과를 야기할 수 있다.
이러한 중단(disruption)들을 방지하기 위해, 때로는 전송 신호의 주파수를 변경시켜 간섭이 없는 주파수로 돌릴 수 있도록 하는 것이 바람직하다. 그러나, 저항성 부귀환(resistive negative feedback)을 갖는 종래의 트랜스임피던스 증폭기에 의해 평가 회로가 형성되는 정전용량 센서들에서는, 이러한 트랜스임피던스 증폭기가 공급되는 센서의 임피던스가 확연한 주파수 의존성(frequency dependence)을 갖기 때문에 주파수를 변경시키는 것이 어렵다. DE 10 2007 001 712 A1로부터 공지된 센서에서, 이러한 주파수 의존성(또한 주파수 응답(frequency response)으로도 칭해짐)은, 거기에서 트랜스임피던스 증폭기가 무반응성 저항의 결과로서가 아니라 커패시턴스 및 이와 병렬로 연결된 인덕턴스를 갖는 병렬 공진 회로의 결과로서 부귀환을 갖기 때문에, 또한 강화된다. 이러한 센서는 높은 주파수 선택성(frequency selectivity)을 갖는다. 따라서 그것은 전송 주파수에서 작은 주파수 구성요소들의 간섭에 둔감하다. 그러나 이러한 센서의 반응은, 특히 전송 주파수가 상당한 간섭을 갖는 경우에, 더더욱 민감하다.
본 발명은 간섭에 민감하지 않고 물체를 검출하기 위한 정전용량 센서 및 관련 충돌 방지 장치, 특히 이동 가능한 자동차 부품과 물체 사이의 구속 또는 다른 충돌을 검출하고 방지하기 위한 충돌 방지 장치를 명시할 목적에 기초한다.
정전용량 센서에 대하여, 이러한 목적은, 본 발명에 따라, 청구항 1의 특징들에 의해 달성된다. 충돌 방지 장치에 대하여, 이러한 목적은, 본 발명에 따라, 청구항 6의 특징들에 의해 달성된다. 본 발명의 이로운 개선들 및 개발들은 종속 청구항의 대상이거나 이하의 설명으로부터 도출된다.
본 발명에 따른 센서는 적어도 하나의 센서 전극을 포함하는 전극 배치를 포함한다. 센서는 또한 적어도 하나의 센서 전극의 다운스트림에 연결되는 평가 회로를 포함한다. 평가 회로는 전극 배치를 사용하여 방출되는 전기장의 작용으로 센서 전극에서 생성되는 수신 신호(또는 응답 신호)를 처리하기 위해 사용된다.
이러한 경우에, 본 발명에 따라, 평가 회로는 트랜스임피던스 증폭기에 의해 형성되는 저임피던스 입력 회로를 갖는다. 종래의 트랜스임피던스 증폭기와 반대로, 본 발명에 따른 트랜스임피던스 증폭기는 주파수 응답을 보상하기 위한 수단, 즉 적어도 미리 정해진 주파수 범위에서 트랜스임피던스 증폭기가 제공되는 센서의 주파수 의존성을 제거하는 수단을 갖는다.
원칙적으로, 본 발명은 단일 전극 원리에 따라 동작하고 접지에 대해 그들의 센서 전극(들)의 커패시턴스를 감지하는 정전용량 센서들에 적용될 수 있다. 그러나, 센서는 바람직하게는 전송기/수신기 원리에 따라 동작하는 정전용량 센서이다. 따라서, 전극 배치는 바람직하게는, 센서 전극들로서, 적어도 하나의 전송 전극 및 적어도 하나의 수신 전극을 포함한다. 평가 회로 - 또한 이 경우에는 수신 회로로도 칭해짐 - 는 여기에서 적어도 하나의 수신 전극의 다운스트림에 연결되고, 적어도 하나의 전송 전극에 의해 방출되는 전기장의 작용으로 수신 전극에서 생성되는 수신 신호를, 입력 변수로서, 수신한다.
종래의 트랜스임피던스 증폭기와 같이, 본 발명에 따른 트랜스임피던스 증폭기는 바람직하게는, 비반전 입력(non-inverting input)이 접지에 연결되고 반전 입력(inverting input)이 수신 전극에 직접적으로 또는 간접적으로 연결되는 연산증폭기(operational amplifier)를, 중심 구성요소로서, 갖는다.
그러나, 종래의 트랜스임피던스 증폭기와는 달리, 본 발명의 일 바람직한 실시예에서, 주파수 응답을 보상하기 위한 수단으로서 연산증폭기의 출력은 무반응(non-reactive) 저항이 아니라 커플링 커패시턴스(coupling capacitance)(즉 하나 이상의 커패시턴스들)를 통해서만 부귀환으로 반전 입력에 연결된다. 이것은 주파수와 독립된 방식으로 센서의 주파수 의존성을 제거한다. 특히, 연산증폭기의 이득 계수는 용량성 부귀환(capacitive negative feedback)의 결과로서 센서 커패시턴스의 주파수 의존성과 반대 방향으로 변화하고, 그 결과 센서 커패시턴스의 주파수 의존성은 모든 주파수들에 대해 보상된다.
본 발명의 대안적인 실시예에서, 연산증폭기의 출력은 커플링 커패시턴스 및 무반응 커플링 저항을 포함하는 병렬 회로를 통해 부귀환으로 반전 입력에 연결된다. 이러한 실시예에서, 트랜스임피던스 증폭기는 고역 필터(high-pass filter) 작용을 갖는다. 따라서, 이러한 경우, 그 주파수가 하한 주파수(lower cut-off frequency) 미만의 주파수들에 대해 줄어들기 때문에 센서의 이득 계수가 매우 감소하는 동안에, 주파수 응답 보상은 고주파수들에 대하여만 동작한다. 연산증폭기는 바람직하게는, 원하는 동작 주파수에 따라 하한 주파수가 1kHz와 1MHz 사이에 있고, 특히 대략 100kHz인 방식으로 연결된다.
연산증폭기가 상술한 실시예의 기본적인 변형에서 저역 필터(low-pass filter)를 통해 또는 직접적으로 수신 전극에 연결되는 반면에, 인덕턴스는 상술한 실시예의 추가적인 개발에서 연산증폭기의 반전 출력의 업스트림에 연결된다. 따라서 인덕턴스는 연산증폭기의 반전 출력과 수신 전극 사이에 삽입된다. 이러한 실시예에서, 트랜스임피던스는 대역 필터(bandpass filter) 작용을 갖는다. 따라서 이러한 경우에, 그 주파수가 하한 주파수 미만의 주파수들 및 상한 주파수(upper cut-off frequency)를 초과하는 주파수들에 대해 감소하거나 증가하기 때문에 센서의 이득 계수는 크게 감소하는 동안에, 주파수 응답 보상은 미리 정해진 주파수 범위에서만 동작한다. 연산증폭기는 바람직하게는, 원하는 동작 주파수에 따라 상한 주파수가 1MHz와 100MHz 사이에 있고, 특히 대략 10MHz인 방식으로 연결된다.
일 적절한 개발에서, 커플링 커패시턴스의 설계 및/또는 재료 구성은 센서 전극(들)의 것/것들과 동일하거나 유사하다. 게다가 또는 대안적으로, 커플링 커패시턴스는 바람직하게는, 센서 전극(들)과 동일하거나 유사한 동작 상태들(예를 들어, 기온, 먼지, 습기, 동작 수명 등)에 노출되는 방식으로 배치된다. 이러한 측정들은 커플링 커패시턴스가 전극 배치와 동일한 방식으로 또는 유사한 방식으로 기온, 동작 수명 등에 기초하여 임의의 커패시턴스 이동을 수행하도록 하여, 그 결과 센서 전극(들)의 이동(drift)이, 필요하다면, 전체적으로 또는 부분적으로 커플링 커패시턴스에 의해 보상된다.
본 발명에 따른 충돌 방지 장치는 상술한 유형의 정전용량 센서를 포함한다.
본 발명의 예시적인 실시예들은 도면을 사용하여 이하에서 더 상세하게 설명된다.
도 1은 전송 전극, 수신 전극, 전송 전극의 업스트림에 연결되는 신호 생성 회로 및 수신 전극의 다운스트림에 연결되는 수신 회로를 포함하는 정전용량 센서를 가지고, 이동할 수 있는 자동차 부품의 경우에 구속을 검출하고 방지하기 위한 구속 방지(anti-trapping) 장치의 개략적인 블록도를 도시한다.
도 2는 이러한 경우에 커패시턴스에 의해 부귀환을 갖는 트랜스임피던스 증폭기에 의해 실질적으로 형성되는 수신 회로의 구성의 간략한 전기 회로 다이어그램을 도시한다.
도 3은 입력 신호의 주파수에 대하여 출력 전압의 그래프에서 도 2에 따른 트랜스임피던스 증폭기가 제공되는 센서의 주파수 응답을 도시한다.
도 4는, 도 2에 따른 설명에서, 이러한 경우에 무반응 저항과 병렬로 연결된 커패시턴스를 통한 부귀환을 갖는 트랜스임피던스의 변형을 도시한다.
도 5는, 도 3에 따른 설명에서, 도 4에 따른 트랜스임피던스 증폭기가 제공되는 센서의 주파수 응답을 도시한다.
도 6은, 도 4에 따른 설명에서, 이러한 경우에 입력 측에서 추가적인 인덕턴스에 연결되는 트랜스임피던스 증폭기의 추가적인 개발을 도시한다.
도 7은, 도 5에 따른 설명에서, 도 6에 따른 트랜스임피던스 증폭기가 제공되는 센서의 주파수 응답을 도시한다.
도 2는 이러한 경우에 커패시턴스에 의해 부귀환을 갖는 트랜스임피던스 증폭기에 의해 실질적으로 형성되는 수신 회로의 구성의 간략한 전기 회로 다이어그램을 도시한다.
도 3은 입력 신호의 주파수에 대하여 출력 전압의 그래프에서 도 2에 따른 트랜스임피던스 증폭기가 제공되는 센서의 주파수 응답을 도시한다.
도 4는, 도 2에 따른 설명에서, 이러한 경우에 무반응 저항과 병렬로 연결된 커패시턴스를 통한 부귀환을 갖는 트랜스임피던스의 변형을 도시한다.
도 5는, 도 3에 따른 설명에서, 도 4에 따른 트랜스임피던스 증폭기가 제공되는 센서의 주파수 응답을 도시한다.
도 6은, 도 4에 따른 설명에서, 이러한 경우에 입력 측에서 추가적인 인덕턴스에 연결되는 트랜스임피던스 증폭기의 추가적인 개발을 도시한다.
도 7은, 도 5에 따른 설명에서, 도 6에 따른 트랜스임피던스 증폭기가 제공되는 센서의 주파수 응답을 도시한다.
상호적으로 대응하는 부분들 및 변수들은 항상 모든 도면에서 동일한 참조 부호들을 제공받는다.
도 1은 자동차의 이동 가능한 조정 엘리먼트(상세하게 도시되지 않음), 특히 모터에 의해 움직이는 문 또는 뒷문에 대한 구속 방지 장치(1)의 개략도를 도시한다. 구속 방지 장치(1)는 정전용량 센서(2) 및 모니터링 유닛(3)을 포함한다.
센서(2)는 전기용량 계측학(capacitive metrology)에 기초한다. 따라서, 센서(2)는 적어도 하나의 전송 전극(5) 및 적어도 하나의 상대 전극(counter-electrode) 또는 수신 전극(6)을 갖는 전극 배치(4)를 포함한다. 전극 배치(4)는 바람직하게는 공통 수신 전극(common reception electrode)(6)과 상호작용하는 복수의 전송 전극들(5)을 (더 상세하게 도시되지 않은 방식으로) 포함한다.
센서(2)가 동작하는 동안, 필드 방출 전송 전극(5) 및 수신 전극(6)으로부터 형성된 커패시터의 (전기적) 커패시턴스 또는 그와 상관되는 측정 변수가 수신 전극(6)을 사용하여 기록되는 동안, 그 또는 각각의 전송 전극(5)에 전기 AC 전압을 인가함으로써 조정 엘리먼트의 개방 영역에서 전기장(F)(표시만 됨)이 생성된다.
상세하게는, 센서(2)는, 전극 배치(4)와 함께, 신호 생성 회로(7), 수신 회로(8) 및 커패시턴스 측정 엘리먼트(9)를 포함한다.
센서(2)가 동작하는 동안, 신호 생성 회로(7)는 미리 정해진 주파수(f)에서 펄스형 전압 신호 또는 사인형 AC 전압의 형태의 전송 신호(SE)를 생성한다. 신호 생성 회로(7)는 전송 신호(SE)의 작용으로 전기장(F)을 방출하는 전송 전극(5)으로 전송 신호(SE)를 전달한다. 센서(2)가 복수의 전송 전극들(5)을 포함하는 경우, 시분할 멀티플렉서(상세하게 도시되지 않음)는 바람직하게는, 신호 생성 회로(7)와 전극 배치(4) 사이에 삽입되고, 시간에 관하여 교번적인 방식으로 각각의 경우에 복수의 전송 전극들(5) 중 하나로 전송 신호(SE)를 전달한다.
이하에서 수신 신호(SR)로도 칭해지는 전기 교류 신호(electrical alternating signal)는 전기장(F)의 작용으로 수신 전극(6)에서 생성된다. 간섭이 없는 동작 동안에, 수신 신호(SR)는 전송 신호(SE)와 위상 동기이고, 따라서 전송 신호(SE)의 주파수(f)에서 진동한다. 그러나 전송 신호(SE)와 달리 수신 신호(SR)의 신호 진폭은 또한 측정될 커패시턴스에 기초하여 변화한다.
수신 신호(SR)는 입력 신호로서 수신 회로(8)에 공급된다. 이 경우에, 수신 신호(SR)를 미리 필터링하기 위한 저대역 필터(명시적으로 도시되지 않음)는 수신 전극(6)과 수신 회로(8) 사이에 선택적으로 삽입된다. 수신 회로(8)는 기본적인 구성요소로서 트랜스임피던스 증폭기(20)(도 2)를 포함한다. 이 경우에, 수신 회로(8)는 전송 신호(SE)의 작용으로 수신 전극(6)에서 유도되는 변위 전류에 비례하는 전압 신호 - 이하에서 수신 신호(SR')로 칭해짐 - 를 출력한다. 이러한 수신 신호(SR')는, 수신 회로(8)의 다운스트림에 연결되고 그로부터 커패시턴스 비례 측정 변수(K)를 생성하는 커패시턴스 측정 엘리먼트(9)에 공급된다.
측정 변수(K)는 센서(2)의 다운스트림에 연결되는 모니터링 유닛(3)에 공급된다. 바람직하게는 그 안에서 구현되는 모니터링 소프트웨어와 함께 마이크로컨트롤러에 의해 형성되는 모니터링 유닛(3)은 측정 변수(K)를 저장된 트리거링 임계값(triggering threshold value)과 비교한다. 임계값이 초과되는 경우, 모니터링 유닛(3)은 가능한 구속을 나타내는 트리거링 신호(A)를 출력하고, 구속 방지 장치(1)와 관련된 조정 엘리먼트의 움직임이 상기 신호의 작용으로 반전된다.
도 2에 따라, 트랜스임피던스 증폭기(20)는 연산증폭기(21) 및 커플링 커패시턴스(22)에 의해 형성된다. 연산증폭기(21)의 출력(23)은 커플링 커패시턴스(22)를 통해 부귀환으로 반전 입력(24)에 연결된다. 연산증폭기(21)는 반전 입력(24)을 통해 직접적으로 - 또는 아마도 존재하는 저역 필터를 통해 간접적으로 - 수신 전극(6)에 연결된다. 연산증폭기(21)의 비반전 입력(25)은 접지(M)에 연결된다. 커플링 커패시턴스(22)는 바람직하게는 10pF의 커패시턴스 값을 갖는다.
도 3은 도 2에 따른 트랜스임피던스 증폭기(20)가 제공되는 센서(2)의 주파수 응답, 들어오는(incoming) 수신 신호(SR)의 주파수(f)에 대한 트랜스임피던스 증폭기(20)의 출력 전압(U0)의 의존성을 도시하고, 이 경우에 전송 신호(SE)의 고정 신호 진폭(constant signal amplitude)이 추정된다. 이러한 경우에, 출력 전압(U0)은 트랜스임피던스 증폭기(20)에 의해 출력되는 수신 신호(SR')의 진폭을 나타낸다. 도 3으로부터 알 수 있듯이, 도 2에 따른 트랜스임피던스 증폭기(20)가 제공되는 센서(2)는, 배타적인 용량성 부귀환 때문에, 소멸하는(disappearing) 주파수 응답, 즉 0(zero)으로 보상되는 주파수 응답을 갖는다. 다시 말해, 출력 전압(U0)은 전송 신호(SE)의 고정 신호 진폭을 갖는 모든 주파수들(f)에 대해 적어도 대략 동일하다.
도 4는 트랜스임피던스 증폭기(20)의 변형을 도시한다. 이러한 변형은, 커플링 저항(40)이 커플링 커패시턴스(22)와 병렬로 연결되는 점에서, 도 2에 따른 예시적인 실시예와 상이하다. 커플링 커패시턴스(22)는 바람직하게는 - 도 2에 따른 예시에서처럼 - 10pF의 커패시턴스 값을 갖는다. 무반응 커플링 저항(40)은 바람직하게는 대략 1MΩ의 저항을 갖는다.
도 4에 따른 트랜스임피던스 증폭기(20)가 제공되는 센서(2)의 주파수 응답을 도시하는 도 5로부터, 트랜스임피던스 증폭기(20)가 도 4에 따른 실시예에서 고역 필터 작용을 보인다는 것을 알 수 있다. 다시 말해, 센서(2)의 주파수 응답은 하한 주파수(fU)를 초과하는 수신 신호(SR)의 주파수들(f)(f>fU)에 대해서만 0(zero)으로 보상된다. 반대로, 하한 주파수(fU)에 도달하지 못하는 주파수들(f)(f<fU)에 대해서는, 출력 전압(U0)은 감소하는 주파수(f)와 함께, 또 전송 신호(SE)의 고정 신호 강도와 함께 매우 감소한다.
도 6은 트랜스임피던스 증폭기(20)의 다른 변형을 도시한다. 이러한 변형은 또한, 인덕턴스(60)가 연산증폭기(21)의 반전 입력(24)의 업스트림에 추가로 연결된다는 점에서, 도 4에 따른 실시예와 상이하다. 따라서 인덕턴스(60)는 입력(24)과 수신 전극(6) 사이에 삽입된다. 커플링 커패시턴스(22) 및 무반응 커플링 저항(40)은 바람직하게는 - 도 4에 따른 예시에서와 같이 - 10pF의 커패시턴스 값 및 1MΩ의 저항을 각각 갖는다. 예를 들어, 인덕턴스(60)는 10μH의 인덕턴스 값을 갖는다.
도 6에 따른 트랜스임피던스 증폭기(20)가 제공되는 센서(2)의 주파수 응답을 도시하는 도 7로부터, 센서(2)가 이러한 경우에 대역 필터 작용을 보인다는 것을 알 수 있다. 따라서 여기에서 센서(2)의 주파수 응답은 하한 주파수(fU)와 상한 주파수(fO) 사이의 주파수 범위(fU≤f≤fO)에서만 0으로 보상된다. 하한 주파수(fU)에 도달하지 못하는 주파수들(f)(f<fU) 및 상한 주파수(fO)를 초과하는 주파수들(f)(f>fO) 양쪽 모두에 대해서는, 감소하거나 증가하는 주파수(f)와 함께, 또 전송 신호(SE)의 고정 신호 강도와 함께 감소한다.
본 발명이 위의 예시적인 실시예들로부터 특히 명확해지지만, 이에 한정되는 것은 아니다. 오히려, 본 발명의 더 많은 실시예들이 위의 설명으로부터 당업자에 의해 도출될 수 있다.
1 구속 방지 장치
2 센서
3 모니터링 유닛
4 전극 배치
5 전송 전극
6 수신 전극
7 신호 생성 회로
8 수신 회로
9 커패시턴스 측정 엘리먼트
20 트랜스임피던스 증폭기
21 연산증폭기
22 커플링 커패시턴스
23 출력
24 (반전) 입력
25 (비반전) 입력
40 커플링 저항
60 인덕턴스
A 트리거링 신호
F (전기) 장
f 주파수
fO (상한) 주파수
fU (하한) 주파수
K 커패시턴스 측정 변수
M 접지
SE 전송 신호
SR 수신 신호
SR' 수신 신호
U0 출력 전압
2 센서
3 모니터링 유닛
4 전극 배치
5 전송 전극
6 수신 전극
7 신호 생성 회로
8 수신 회로
9 커패시턴스 측정 엘리먼트
20 트랜스임피던스 증폭기
21 연산증폭기
22 커플링 커패시턴스
23 출력
24 (반전) 입력
25 (비반전) 입력
40 커플링 저항
60 인덕턴스
A 트리거링 신호
F (전기) 장
f 주파수
fO (상한) 주파수
fU (하한) 주파수
K 커패시턴스 측정 변수
M 접지
SE 전송 신호
SR 수신 신호
SR' 수신 신호
U0 출력 전압
Claims (6)
- 물체를 검출하기 위한 정전용량 센서(capacitive sensor)(2)에 있어서,
- 적어도 하나의 센서 전극(6)을 포함하는 전극 배치(4)를 갖고,
- 상기 센서 전극(6)의 다운스트림에 연결되고 상기 센서 전극(6)에서 생성된 수신 신호(SR)를 처리하기 위한 평가 회로(8)를 갖고 ― 상기 평가 회로(8)는 트랜스임피던스(transimpedance) 증폭기(20)를 포함함 ―,
상기 트랜스임피던스 증폭기(20)는 주파수 응답을 보상하기 위한 수단(22, 40, 60)을 갖고,
상기 트랜스임피던스 증폭기(20)는 연산증폭기(operational amplifier)(21)를 포함하고, 상기 연산증폭기(21)의 비반전 입력(25)은 접지(M) 또는 다른 기준 전위에 연결되고, 상기 연산증폭기(21)의 반전 입력(24)은 상기 센서 전극(6)에 연결되고, 상기 연산증폭기(21)의 출력(23)은 상기 주파수 응답을 보상하기 위한 수단으로서, 저항(40)과 병렬로 연결되는 커패시턴스(22)에 의해, 부귀환(negative feedback)을 사용하여 상기 반전 입력(24)에 연결되어, 결과적으로 주파수 응답은 한계 주파수(fU)를 초과하는 주파수들에 대해서만 보상되는 반면, 상기 한계 주파수(fU) 미만의 주파수들에 대해서 센서의 이득 계수는 주파수가 감소하면서 강하게 감소하며,
상기 연산증폭기는 상기 한계 주파수(fU)가 1kHz 내지 1MHz 사이에 있는 방식으로 설계되고,
인덕턴스(60)는 상기 연산증폭기(21)의 반전 입력(24)의 업스트림에 연결되는, 정전용량 센서(2). - 제1항에 있어서,
상기 연산증폭기는 상기 한계 주파수(fU)가 100kHz인 방식으로 설계되는, 정전용량 센서(2). - 제1항에 있어서,
- 상기 전극 배치(4)는 전송 신호(SE)가 적용되는 동안 전기장(F)을 방출하기 위한 적어도 하나의 전송 전극(5) 및 적어도 하나의 수신 전극(6)을, 센서 전극들로서, 포함하고,
- 상기 평가 회로(8)는 상기 전기장(F)의 작용으로 상기 수신 전극(6)에서 생성된 수신 신호(SR)를 처리하기 위해 상기 수신 전극(6)의 다운스트림에 연결되는, 정전용량 센서(2). - 삭제
- 제1항에 있어서,
상기 센서는 이동 가능한 자동차 부품의 경우에 충돌을 검출하기 위해 설계된, 정전용량 센서(2). - 제1항 내지 제3항 중 어느 한 항에 따른 정전용량 센서(2)를 갖는, 충돌 방지 장치(1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012012864.9A DE102012012864A1 (de) | 2012-06-28 | 2012-06-28 | Kapazitiver Sensor für eine Kollisionsschutzvorrichtung |
DE102012012864.9 | 2012-06-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140001794A KR20140001794A (ko) | 2014-01-07 |
KR101563937B1 true KR101563937B1 (ko) | 2015-10-28 |
Family
ID=48613394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130075436A KR101563937B1 (ko) | 2012-06-28 | 2013-06-28 | 충돌 방지 장치를 위한 정전용량 센서 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9255952B2 (ko) |
EP (1) | EP2680043B1 (ko) |
KR (1) | KR101563937B1 (ko) |
CN (1) | CN103513283A (ko) |
DE (1) | DE102012012864A1 (ko) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10309997B2 (en) * | 2013-03-15 | 2019-06-04 | Infineon Technologies Ag | Apparatus and a method for generating a sensor signal indicating information on a capacitance of a variable capacitor comprising a variable capacitance |
DE102014214968A1 (de) | 2014-07-30 | 2016-02-04 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | In einem Heizmodus betreibbare Schaltungsanordnung zur Auswertung einer Messgröße in oder an einem Fahrzeug |
CN104508977B (zh) * | 2014-10-22 | 2017-06-06 | 索尔思光电(成都)有限公司 | 具有增大动态范围的跨阻放大器(tia)及其光器件 |
DE102015002128A1 (de) * | 2015-02-19 | 2016-08-25 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Kapazitiver Näherungssensor für ein Kraftfahrzeug, Kollisionsschutzeinrichtung für ein Kraftfahrzeug und Kraftfahrzeug mit einem kapazitiven Näherungssensor |
JP6791886B2 (ja) * | 2015-03-06 | 2020-11-25 | 日本テキサス・インスツルメンツ合同会社 | 感知信号変調を用いる広帯域容量性センシング |
GB2539659B (en) * | 2015-06-22 | 2019-05-01 | Octo Telematics Spa | Collision Diagnosis for a Traffic Event |
US10277180B2 (en) | 2016-01-15 | 2019-04-30 | Honeywell International Inc. | Dual port transimpedance amplifier with separate feedback |
US10236683B2 (en) | 2016-06-10 | 2019-03-19 | Apple Inc. | Corrosion mitigation for an external connector of an electronic device |
US10591430B2 (en) * | 2017-09-08 | 2020-03-17 | Apple Inc. | Method and system for detecting moisture on a connector contact |
CN109975877B (zh) * | 2019-04-15 | 2021-01-01 | 深圳大学 | 汽车盲区预警系统、汽车、方法及其装置 |
CN110031026B (zh) * | 2019-04-17 | 2021-07-02 | 安菲腾(常州)光电科技有限公司 | 一种电容位置传感器检测电路 |
CN111289262B (zh) * | 2020-02-21 | 2021-08-24 | 威睿电动汽车技术(宁波)有限公司 | 一种电流型碰撞检测电路及系统 |
CN112277001A (zh) * | 2020-09-30 | 2021-01-29 | 江苏集萃智能制造技术研究所有限公司 | 一种应用于机器人非接触式人体碰撞检测装置及其方法 |
JP2022061835A (ja) * | 2020-10-07 | 2022-04-19 | キヤノン株式会社 | 無線通信システムおよび受信装置 |
US11658443B2 (en) | 2021-04-13 | 2023-05-23 | Apple Inc. | Liquid detection and corrosion mitigation |
US20230179178A1 (en) * | 2021-12-02 | 2023-06-08 | Microsoft Technology Licensing, Llc | Synthetic inductive resonant drive circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989003052A1 (en) * | 1987-10-02 | 1989-04-06 | Detection Systems Pty. Ltd. | Capacitive material presence detecting apparatus |
US20030090326A1 (en) * | 2001-11-14 | 2003-05-15 | Victor Pogrebinsky | Transimpedance amplifier with dual gain outputs |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19536198B4 (de) * | 1995-09-28 | 2006-03-30 | Endress + Hauser Gmbh + Co. Kg | Kapazitiver Schalter |
DE69621334T2 (de) * | 1996-10-11 | 2003-01-09 | Brown & Sharpe Tesa S.A., Renens | Kapazitive Dimensionsmesseinrichtung |
DE19836054A1 (de) * | 1998-08-10 | 2000-02-17 | Bosch Gmbh Robert | Meßschaltung |
DE102007026307A1 (de) * | 2006-06-06 | 2008-02-07 | Ident Technology Ag | Anordnung zur Generierung eines für die Präsenz eines Objektes innerhalb eines Observationsbereiches indikativen Signals |
DE102007001712B4 (de) | 2007-01-11 | 2022-12-29 | Microchip Technology Germany Gmbh | Anordnung zur Generierung eines für die Präsenz eines Objektes innerhalb eines Observationsbereiches indikativen Signals |
CN101092864A (zh) * | 2007-07-20 | 2007-12-26 | 山东省科学院自动化研究所 | 基于自适应的电动车窗防夹手装置及其控制方法 |
DE102008028932B4 (de) * | 2008-06-18 | 2011-12-22 | Ident Technology Ag | Einklemmschutz für Verdecksystem |
DE102009057931B4 (de) * | 2009-12-11 | 2015-07-09 | Ident Technology Ag | Schaltungsanordnung für ein kapazitives Sensorelement. |
US7825735B1 (en) * | 2009-10-20 | 2010-11-02 | Sandia Corporation | Dual-range linearized transimpedance amplifier system |
CN102082510B (zh) * | 2009-11-27 | 2015-11-25 | 立锜科技股份有限公司 | 用于变频式电压调节器的频率控制电路及方法 |
DE102009057934A1 (de) * | 2009-12-11 | 2011-06-16 | Ident Technology Ag | Sensoreinrichtung und Verfahren zur Annäherungsdetektion |
DE102010012433B4 (de) * | 2010-03-23 | 2013-01-24 | Northrop Grumman Litef Gmbh | Verstärkerschaltung und Verfahren zur Konditionierung eines Ausgangsstromsignals eines Detektorelements |
DE102010020348B3 (de) * | 2010-05-12 | 2011-07-21 | Pyreos Ltd. | Pin-kompatibler Infrarotlichtdetektor mit verbesserter thermischer Stabilität |
US9551738B2 (en) * | 2010-06-08 | 2017-01-24 | Iee International Electronics & Engineering S.A. | Robust capacitive measurement system |
WO2011154468A1 (en) * | 2010-06-08 | 2011-12-15 | Iee International Electronics & Engineering S.A. | Robust capacitive measurement system |
DE102011078534B4 (de) * | 2011-07-01 | 2016-02-18 | Ident Technology Ag | Auswerteverfahren und Auswerteeinrichtung für einen kapazitiven Berührungssensor |
-
2012
- 2012-06-28 DE DE102012012864.9A patent/DE102012012864A1/de not_active Withdrawn
-
2013
- 2013-06-07 EP EP13002936.6A patent/EP2680043B1/de active Active
- 2013-06-27 CN CN201310263602.1A patent/CN103513283A/zh active Pending
- 2013-06-28 US US13/930,556 patent/US9255952B2/en not_active Expired - Fee Related
- 2013-06-28 KR KR1020130075436A patent/KR101563937B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989003052A1 (en) * | 1987-10-02 | 1989-04-06 | Detection Systems Pty. Ltd. | Capacitive material presence detecting apparatus |
US20030090326A1 (en) * | 2001-11-14 | 2003-05-15 | Victor Pogrebinsky | Transimpedance amplifier with dual gain outputs |
Also Published As
Publication number | Publication date |
---|---|
EP2680043A2 (de) | 2014-01-01 |
EP2680043B1 (de) | 2020-11-11 |
US9255952B2 (en) | 2016-02-09 |
KR20140001794A (ko) | 2014-01-07 |
EP2680043A3 (de) | 2017-08-30 |
CN103513283A (zh) | 2014-01-15 |
DE102012012864A1 (de) | 2014-01-02 |
US20140002116A1 (en) | 2014-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101563937B1 (ko) | 충돌 방지 장치를 위한 정전용량 센서 | |
US9726775B2 (en) | Capacitive sensing device | |
US10065590B2 (en) | Capacitive sensing device | |
US9561768B2 (en) | Capacitive sensing device | |
US8334623B2 (en) | Capacitive moisture independent crush protection | |
US7969166B2 (en) | Method and circuit for detecting the presence, position and/or approach of an object relative to an electrode | |
US8994385B2 (en) | Plural-frequency capacitive occupancy sensing system | |
EP2515715B1 (en) | Capacitive occupant sensing system and method | |
US10197377B2 (en) | Method of operating a capacitive proximity sensor and capacitive proximity sensor | |
JP2003505675A (ja) | 近接センサ | |
US8405408B2 (en) | Capacitive occupant detection apparatus | |
US7545154B2 (en) | Sensor using the capacitive measuring principle | |
US20110133756A1 (en) | Apparatus for capacitively measuring changes | |
JP2003504624A (ja) | 乗員センサ | |
CN105051306B (zh) | 用于可调车辆部件的防夹保护方法和防夹保护装置 | |
US10118522B2 (en) | Combined heating and capacitive seat occupant sensing system | |
US6486681B1 (en) | Measuring circuit for a capacitive sensor for distance measurement and/or space monitoring | |
RU2477837C2 (ru) | Устройство детектирования объектов для механического транспортного средства | |
EP1316148A1 (en) | Controller for a capacitive sensor | |
CN116490419A (zh) | 基于相对测量系统的鲁棒的“方向盘上手”分类 | |
CN117157447A (zh) | 夹持事件的检测与避免 | |
KR20200061117A (ko) | 물체 접근 감지 장치, 이를 이용한 물체 접근 감지 방법 | |
WO2018036794A1 (en) | Capacitive jam protection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180918 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190917 Year of fee payment: 5 |