KR101550151B1 - Mimo-ofdm 시스템에서 신호 검출 방법 및 그 장치 - Google Patents

Mimo-ofdm 시스템에서 신호 검출 방법 및 그 장치 Download PDF

Info

Publication number
KR101550151B1
KR101550151B1 KR1020140113954A KR20140113954A KR101550151B1 KR 101550151 B1 KR101550151 B1 KR 101550151B1 KR 1020140113954 A KR1020140113954 A KR 1020140113954A KR 20140113954 A KR20140113954 A KR 20140113954A KR 101550151 B1 KR101550151 B1 KR 101550151B1
Authority
KR
South Korea
Prior art keywords
symbol
detected
signal
new
technique
Prior art date
Application number
KR1020140113954A
Other languages
English (en)
Inventor
송형규
하창빈
최환준
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Priority to KR1020140113954A priority Critical patent/KR101550151B1/ko
Application granted granted Critical
Publication of KR101550151B1 publication Critical patent/KR101550151B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03254Operation with other circuitry for removing intersymbol interference
    • H04L25/03267Operation with other circuitry for removing intersymbol interference with decision feedback equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

본 발명은 MIMO-OFDM 시스템에서 신호 검출 방법 및 그 장치에 관한 것이다. 본 발명에 따르면,
Figure 112014082701962-pat00222
개의 다중 안테나를 가지는 송신 단말로부터 신호를 수신하는 단계와, 수신 신호의 전송 채널에 대한 의사 역행렬의 크기를 구하고 상기 의사 역행렬의 크기에 따라 상기 전송 채널에 포함된 채널 계수를 정렬하는 단계와, 상기 정렬된 채널 계수에 기반하여
Figure 112014082701962-pat00223
개의 수신 심볼인
Figure 112014082701962-pat00224
내지
Figure 112014082701962-pat00225
심볼을 검출하되, 1 내지 T 번째 검출 단계는 상기 QRD-M 기법을 적용하여
Figure 112014082701962-pat00226
내지
Figure 112014082701962-pat00227
심볼을 순차로 검출하고, (T+1) 내지 NT 번째 검출 단계는 상기 DFE 기법을 적용하여
Figure 112014082701962-pat00228
내지
Figure 112014082701962-pat00229
심볼을 순차로 검출하는 단계, 및 상기 검출된
Figure 112014082701962-pat00230
내지
Figure 112014082701962-pat00231
심볼 및 상기 검출된
Figure 112014082701962-pat00232
심볼을 이용하여
Figure 112014082701962-pat00233
내지
Figure 112014082701962-pat00234
심볼을 상기 DFE 기법으로 재검출하는 단계를 포함하는 MIMO-OFDM 시스템에서 신호 검출 방법을 제공한다.
본 발명에 따른 신호 검출 방법 및 그 장치에 따르면, 기존의 QRD-M 검출 기법보다 다이버시티 이득을 높이고 검출 성능을 향상시킬 수 있는 이점이 있다.

Description

MIMO-OFDM 시스템에서 신호 검출 방법 및 그 장치{Method for detecting signal in MIMO system and apparatus thereof}
본 발명은 MIMO-OFDM 시스템에서 신호 검출 방법 및 그 장치에 관한 것으로서, 보다 상세하게는 기존의 검출 기법보다 다이버시티 이득을 높이고 검출 성능을 향상시킬 수 있는 MIMO-OFDM 시스템에서 신호 검출 방법 및 그 장치에 관한 것이다.
최근 무선 통신 환경에서 고속 데이터 전송이 요구되면서 다중 안테나를 사용하는 차세대 무선 시스템 전송 기술인 다중 입출력 직교 주파수 다중 분할 시스템(MIMO-OFDM) 방식의 관심이 늘어나고 있다.
MIMO-OFDM 방식은 다중 경로 페이딩에 강하고 주파수 효율이 높고 one-tap 등화가 가능한 OFDM의 장점과 전송률을 향상시키는 MIMO 기법의 장점을 모두 가진다. 특히 V-BLAST(Vertical Bell Laboratories Layered Space Time) 기법은 단순한 다중화 기법으로 쉽게 구현이 가능하기 때문에 MIMO-OFDM 시스템을 구현하는 데에 주로 사용된다.
하지만 이와 같은 장점에도 불구하고 MIMO-OFDM 시스템은 서로 다른 송신 안테나에서 전송된 신호가 수신 신호로 들어오기 때문에, 다른 안테나의 신호는 간섭 신호로 작용한다. 따라서 수신 신호의 정확한 검출이 매우 어렵고 정확한 검출을 위해서는 높은 복잡도가 요구되는 검출 기법을 필요로 한다.
이에 따라 MIMO-OFDM 방식의 신호 검출 기법은 활발하게 연구되고 있다. ZF(Zero-Forcing), MMSE(Mimimum Mean Square Error)와 같은 선형 검출 기법은 낮은 복잡도로 전송된 신호를 검출할 수 있지만, 검출 성능이 낮기 때문에 잘 사용되지 않는다.
또 다른 검출 기법으로 DFE(Decision Feedback Equalization) 검출 기법은 QR 분해를 사용하여, 신호를 순차적으로 검출하면서 비교적 낮은 복잡도로 우수한 검출 성능을 나타낸다.
QRD-M(QR-decomposition-M algorithm) 검출기법은 Tree 구조와 QR 분해를 이용하여 신호를 순차적으로 검출하며 매우 우수한 검출 성능을 가진다. 그런데, 이 방법은 신호 검출의 복잡도가 높은 문제점이 있으며 처음 검출한 신호가 정확한 신호가 아니라면 다음에 검출한 신호가 이전 신호의 영향을 받게 되어 검출 성능이 저하되는 문제점이 있다.
본 발명의 배경이 되는 기술은 대한민국 등록특허공보 제1104455호(2012.01.12 공고)에 개시되어 있다.
본 발명은 기존의 QRD-M 검출 기법보다 검출 성능을 향상시킬 수 있는 MIMO-OFDM 시스템에서 신호 검출 방법 및 그 장치를 제공하는데 목적이 있다.
본 발명은,
Figure 112014082701962-pat00001
개의 다중 안테나를 가지는 송신 단말로부터 신호를 수신하는 단계와, 수신 신호의 전송 채널에 대한 의사 역행렬의 크기를 구하고 상기 의사 역행렬의 크기에 따라 상기 전송 채널에 포함된 채널 계수를 정렬하는 단계와, 상기 정렬된 채널 계수에 기반하여
Figure 112014082701962-pat00002
개의 수신 심볼인
Figure 112014082701962-pat00003
내지
Figure 112014082701962-pat00004
심볼을 검출하되, 1 내지 T 번째 검출 단계는 상기 QRD-M 기법을 적용하여
Figure 112014082701962-pat00005
내지
Figure 112014082701962-pat00006
심볼을 순차로 검출하고, (T+1) 내지 NT 번째 검출 단계는 상기 DFE 기법을 적용하여
Figure 112014082701962-pat00007
내지
Figure 112014082701962-pat00008
심볼을 순차로 검출하는 단계, 및 상기 검출된
Figure 112014082701962-pat00009
내지
Figure 112014082701962-pat00010
심볼 및 상기 검출된
Figure 112014082701962-pat00011
심볼을 이용하여
Figure 112014082701962-pat00012
내지
Figure 112014082701962-pat00013
심볼을 상기 DFE 기법으로 재검출하는 단계를 포함하는 MIMO-OFDM 시스템에서 신호 검출 방법을 제공한다.
또한, 상기
Figure 112014082701962-pat00014
내지
Figure 112014082701962-pat00015
심볼을 상기 DFE 기법으로 재검출하는 단계는, 상기 정렬된 전송 채널을 재정렬하는 단계와, 상기 재정렬된 전송 채널을 QR 분해하여 Q(new)와 R(new)을 계산하는 단계와, 상기 수신 신호의 행렬에 상기 Q(new)에 대한 에르미트 변환을 곱하여 상기 Q(new) 성분이 제거된 수신 신호의 행렬인 Z(new)을 획득하는 단계, 및 상기 획득된 수신 신호의 행렬 Z(new)과 상기 검출된
Figure 112014082701962-pat00016
내지
Figure 112014082701962-pat00017
심볼 및 상기 검출된
Figure 112014082701962-pat00018
심볼을 이용하여, 상기
Figure 112014082701962-pat00019
내지
Figure 112014082701962-pat00020
심볼을 상기 DFE 기법으로 재검출하는 단계를 포함할 수 있다.
도한, 상기 재정렬된 전송 채널은 아래의 수학식으로 정의될 수 있다.
Figure 112014082701962-pat00021
여기서,
Figure 112014082701962-pat00022
는 상기 정렬된 전송 채널(Hsort)의 T 번째 열(column)을 의미한다.
또한, 상기 검출된
Figure 112014082701962-pat00023
내지
Figure 112014082701962-pat00024
심볼인
Figure 112014082701962-pat00025
내지
Figure 112014082701962-pat00026
는 아래의 수학식으로 정의될 수 있다.
Figure 112014082701962-pat00027
여기서, zk는 상기 Z(new)의 k번째 행의 값, r은 상기 재정렬된 전송 채널에 대한 상 삼각행렬,
Figure 112014082701962-pat00028
은 이전에 검출된 신호, Q(·)는 () 안의 값에 대해 가장 가까운 L-QAM 심볼에 대응하는 함수를 의미한다.
그리고, 본 발명은
Figure 112014082701962-pat00029
개의 다중 안테나를 가지는 송신 단말로부터 신호를 수신하는 신호 수신부와, 수신 신호의 전송 채널에 대한 의사 역행렬의 크기를 구하고 상기 의사 역행렬의 크기에 따라 상기 전송 채널에 포함된 채널 계수를 정렬하는 정렬부와, 상기 정렬된 채널 계수에 기반하여 개의 수신 심볼인
Figure 112014082701962-pat00031
내지
Figure 112014082701962-pat00032
심볼을 검출하되, 1 내지 T 번째 검출 단계는 상기 QRD-M 기법을 적용하여
Figure 112014082701962-pat00033
내지
Figure 112014082701962-pat00034
심볼을 순차로 검출하고, (T+1) 내지 NT 번째 검출 단계는 상기 DFE 기법을 적용하여
Figure 112014082701962-pat00035
내지
Figure 112014082701962-pat00036
심볼을 순차로 검출하는 신호 검출부, 및 상기 검출된
Figure 112014082701962-pat00037
내지
Figure 112014082701962-pat00038
심볼 및 상기 검출된
Figure 112014082701962-pat00039
심볼을 이용하여
Figure 112014082701962-pat00040
내지
Figure 112014082701962-pat00041
심볼을 상기 DFE 기법으로 재검출하는 반복 검출부를 포함하는 MIMO-OFDM 시스템에서 신호 검출 장치를 제공한다.
본 발명에 따른 MIMO-OFDM 시스템에서 신호 검출 방법 및 그 장치에 따르면, 기존의 QRD-M 검출 기법보다 다이버시티 이득을 높이고 검출 성능을 향상시킬 수 있는 이점이 있다.
도 1은 본 발명의 실시예에 따른 MIMO-OFDM 시스템의 구성도이다.
도 2는 도 1을 이용한 신호 검출 방법의 흐름도이다.
도 3 및 도 4는 본 발명의 실시예와 기존의 기법 간의 BER 성능의 비교 결과이다.
그러면 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 MIMO-OFDM 시스템의 구성도이다. MIMO-OFDM 시스템은 송신 단말(100)과 수신 단말(200)을 포함한다. 송신 단말(100)은
Figure 112014082701962-pat00042
개의 다중 송신 안테나를, 수신 단말(200)은
Figure 112014082701962-pat00043
개의 다중 수신 안테나를 가진다.
송신 단말(100)은
Figure 112014082701962-pat00044
개의 다중 송신 안테나를 이용하여 각각의 신호를 전달한다. 각각의 신호에는 복수의 부반송파(서브캐리어)가 포함되어 있다. 각 송신 안테나로부터 송신된
Figure 112014082701962-pat00045
개의 송신 신호가 채널을 통과한 뒤 혼합되어 수신 단말(200)로 수신된다. 이때, 부반송파는 다중 경로 채널을 통하여 전송되며, 안테나의 성능 또는 채널 경로에 따라 서로 다른 채널 상태를 가질 수 있다.
송신 단말(100)과 수신 단말(200)은 V-BLAST 방식으로 통신을 수행한다. 우선, j번째 송신 안테나의 OFDM 심볼은 다음의 수학식 1과 같이 정의된다.
Figure 112014082701962-pat00046
여기서, j는 송신 안테나의 인덱스를 의미하며, k는 부반송파의 인덱스를 의미한다. 송신 단말(10)에서 전송된 전체 OFDM 심볼은 수학식 2로 표현된다.
Figure 112014082701962-pat00047
전송된 신호는 다중 채널을 거쳐 수신 단말(200)이 가진
Figure 112014082701962-pat00048
개의 수신 안테나에서 수신되며, 수신 신호 Y는 다음의 수학식 3으로 표현된다.
Figure 112014082701962-pat00049
여기서, i는 다중 수신 안테나의 인덱스, j는 다중 송신 안테나의 인덱스,
Figure 112014082701962-pat00050
는 i번째 수신 안테나에서 발생한 백색 가우시안 잡음(Additive White Gaussian Noise: AWGN)을 나타낸다.
수학식 3에서 채널 행렬 H는 다음의 수학식 4로 나타낼 수 있다.
Figure 112014082701962-pat00051
여기서, Hi ,j는 i번째 송신 안테나에서 j번째 수신 안테나 사이의 채널 계수를 나타낸다.
도 1을 참조하면, 본 발명의 실시예에 따른 MIMO-OFDM 시스템에서의 신호 검출 장치는 상기 수신 단말(200)에 해당되는 것으로서, 상기 수신 단말(200)은 신호 수신부(210), 설정부(220), 정렬부(230), QRD-M 검출부(240), DFE 검출부(250), 반복 검출부(260)를 포함한다.
신호 수신부(210)는
Figure 112014082701962-pat00052
개의 다중 안테나를 가지는 송신 단말로부터 신호를 수신한다. 설정부(220)는 전체 1 내지
Figure 112014082701962-pat00053
번째의 검출 단계 중에서 QRD-M 기법을 적용시킬 검출 단계와 DFE를 적용시킬 검출 단계를 결정하며 그 경계값을 T로 정의한다. T 값에 의해, 1 내지 T 번째 검출 단계에서는 QRD-M 기법이 적용되고, (T+1) 내지
Figure 112014082701962-pat00054
번째 검출 단계에서는 DFE 기법이 적용된다.
정렬부(230)는 수신 신호가 통과한 전송 채널에 대한 채널 계수의 의사 역행렬의 크기를 구하고 의사 역행렬의 크기에 따라 채널 계수를 정렬한다. 본 실시예에서 신호 검출부는 QRD-M 검출부(240), DFE 검출부(250), 반복 검출부(260)로 구성된다. 신호 검출부는 상기 정렬된 채널 계수에 기반하여
Figure 112014082701962-pat00055
개의 수신 심볼인
Figure 112014082701962-pat00056
내지
Figure 112014082701962-pat00057
심볼을 검출한다.
구체적으로, QRD-M 검출부(240)는 의사 역행렬의 크기가 작은 채널 계수들에 대하여 순차적으로 QRD-M 방식으로 심볼들을 검출한다. QRD-M 검출부(240)는 상기 1 내지 T 번째 검출 단계까지 QRD-M 기법을 통하여
Figure 112014082701962-pat00058
내지
Figure 112014082701962-pat00059
심볼을 순차로 검출한다. 이러한 QRD-M 기법은 기 공지된 방법에 해당되는 것으로서, T 번째 검출 단계까지 QRD-M 기법을 통해 M개의 후보열이 결정되면 M개의 후보열 중에서 가장 작은 누적된 squared Euclidean 거리를 가진 후보열이 T 번째 검출 단계까지의 심볼로 검출된다.
이후 DFE 검출부(250)는 T 번째 검출 단계까지 QRD-M 기법을 통해 검출된
Figure 112014082701962-pat00060
내지
Figure 112014082701962-pat00061
심볼을 이용하여,
Figure 112014082701962-pat00062
내지
Figure 112014082701962-pat00063
심볼을 순차적으로 검출한다. 즉, (T+1) 내지 NT 번째 검출 단계까지는 상기 DFE 기법을 적용하여
Figure 112014082701962-pat00064
내지
Figure 112014082701962-pat00065
심볼을 순차적으로 검출한다.
반복 검출부(260)는 상기 QRD-M 기법으로 검출된
Figure 112014082701962-pat00066
내지
Figure 112014082701962-pat00067
심볼 및 상기 DFE 기법으로 검출된
Figure 112014082701962-pat00068
심볼을 이용하여,
Figure 112014082701962-pat00069
내지
Figure 112014082701962-pat00070
심볼을 상기 DFE 기법으로 재검출하는 부분이다. 여기서, 상기 검출된
Figure 112014082701962-pat00071
심볼은 DFE 기법을 통해 최종적으로 검출된 가장 높은 다이버시티 이득을 가진 심볼로서 다이버시티가 높아서 오류 확률이 가장 적다.
따라서, 반복 검출부(260)는 QRD-M 기법을 통해 검출된 심볼들과 DFE 기법을 통해 마지막으로 검출된 심볼을 이용하여 간섭 신호를 제거하면서 앞서 DFE 방식을 통해 검출된
Figure 112014082701962-pat00072
내지
Figure 112014082701962-pat00073
심볼들을 반복 검출 기법을 통하여 다시 순차적으로 재검출하게 된다.
이하에서는 본 발명의 실시예에 적용되는 채널 정렬 방법과 QRD-M 기법, DFE 기법, 그리고 반복 검출 기법에 대하여 설명한다.
먼저 채널 정렬 방법에 대하여 설명한다. 정렬부(230)는 다음과 같은 방법으로 채널을 정렬한다. 앞서, 신호가 통과하는 전송 채널의 정보 즉, 채널 행렬에 대해서는 수학식 4에 나타낸 바 있다.
정렬부(220)는 채널 행렬의 의사 역행렬의 크기를 구하고 이를 이용하여 전송 채널에 포함된 채널 계수를 정렬한다. 의사 역행렬(G)은 수학식 5를 통해 연산할 수 있다.
Figure 112014082701962-pat00074
이러한 수학식 5에서 H는 수학식 4의 채널 행렬(전송 채널)을 의미하며, (·)H는 에르미트(Hermitian) 변환을 나타낸다.
수신 단말(200)은 채널 상태가 좋지 않은 채널을 통해 수신 신호를 보다 정확하게 검출하기 위해서, 수학식 5에서 연산한 의사 역행렬(G)의 norm 값인 ∥G∥2을 계산한다. 여기서, 행렬 G의 norm 값인 ∥G∥2을 가장 큰 행부터 작은 행으로 정렬한다. 즉, 행렬 G의 norm 값을 각 행에 대하여 구하고, norm 값이 큰 행부터 작은 행 순으로 행렬 G를 정렬한다.
또한 이를 바탕으로, 수학식 4의 채널 행렬 H 역시 앞서 행렬 G의 정렬 순서와 동일하게 각 행을 정렬하여, 정렬된 전송 채널 행렬인 Hsort를 구한다.
이하에서는 Hsort의 QR 분해에 기반하는 QRD-M 기법에 대하여 설명한다. 상기 정렬된 전송 채널 Hsort는 QR 분해를 통해 수학식 6과 같이 Q와 R로 분해될 수 있다.
Figure 112014082701962-pat00075
여기서, Q는 정규직교 행렬(orthonormal matrix)이고 R은 상삼각 행렬(upper triangular matrix)이다. 따라서, 수신 신호 Y에서 Q에 대한 에르미트 변환을 곱하면 Q 성분이 제거된 수신 신호인 Z가 생성되며, Z는 수학식 7과 같다.
Figure 112014082701962-pat00076
이와 같이 구성된 Z를 이용하여
Figure 112014082701962-pat00077
부터
Figure 112014082701962-pat00078
까지 순차적으로 신호를 검출할 수 있다.
L개의 심볼을 사용하여 변조를 수행하는 L-QAM(quadrature amplitude modulation) 시스템에서, QRD-M 방법에 따르면, L개의 심볼을 모두 후보심볼로 이용하여, 아래의 수학식 8과 같이 z1과 각 후보 심볼 사이의 squared Euclidean 거리를 계산할 수 있다.
Figure 112014082701962-pat00079
여기서, c = [c1 c2 … cL]은 L-QAM 시스템의 L개의 전송 가능한 심볼을 나타내고,
Figure 112014082701962-pat00080
은 1번째 후보 심볼인 c1과 z1 사이의 squared Euclidean 거리이다.
즉, 이러한 수학식 8은 수신된 심볼과 L개의 후보심볼 간의 유클레디안 거리를 개별 계산한 다음, L개의 후보 심볼 중 거리가 작은 M개의 후보 심볼을 선택하는 과정이다.
예를 들어, L개의 후보심볼은 [0,0], [0,1], [1,0], [1,1]을 포함한 4개이고 첫 번째 수신된 심볼은 [0,0.3]이면, [0,0.3]과 상기 4개의 후보심볼 각각에 대한 유클레디안 거리를 수학식 8을 이용하여 계산한다.
수학식 8을 통해 z1과 L-QAM 시스템의 모든 전송 가능한 심볼 사이의 squared Euclidean 거리 벡터인
Figure 112014082701962-pat00081
을 구하고, e1의 각 성분 값을 비교하여, L 개의 후보심볼 중에서 squared Euclidean 거리가 작은 M 개의 후보 심볼이 선택된다. 이때, M은 다음 검출 단계로 넘어가는 후보열의 수를 결정하는 변수로서 L보다 작거나 같아야 한다.
상기의 예에서 M=2인 경우, [0,0.3]과 유클레디안 거리가 작은 후보심볼은 상기 4개의 후보심볼 중에서 [0,0]과 [0,1]를 포함하는 2개로 결정될 것이다.
그리고, 선택된 M 개의 후보 심볼은 squared Euclidean 거리가 작은 것부터 순차적으로 정렬된다. 이렇게 선택되고 정렬된 M개의 후보열
Figure 112014082701962-pat00082
은 다음 검출 단계로 전달된다.
m번째 검출 단계의 squared Euclidean 거리는 이전 단계에서 검출된 M개의 후보열과 L-QAM시스템의 L개의 심볼의 조합인 M·L개의 후보열을 고려하여 계산한다. 그리고 각 검출 단계의 squared Euclidean 거리는 바로 이전의 검출 단계까지의 누적 거리와 더해져서 계산된다.
첫 번째 수신된 심볼 [0,0.3] 이후에, 두 번째 수신된 심볼이 [0.3,0.1]인 경우, 이 2번째 검출 단계에서는, 1번째 검출 단계에서 검출된 2개의 후보열([0,0], [0,1])과, 4개의 후보심볼([0,0], [0,1], [1,0], [1,1])의 조합인 8개의 후보열을 고려하여 계산한다. 이때, 각 단계에서 얻어진 유클레디안 거리를 누적한 값으로부터 총 8개의 심볼 조합 중 2개를 결정할 수 있다.
즉, m번째 검출 단계의 squared Euclidean 거리는 바로 이전의 검출 단계의 누적 거리와 더해져서 수학식 9와 같이 계산된다.
Figure 112014082701962-pat00083
여기서
Figure 112014082701962-pat00084
k(1≤k≤T) 번째 신호 검출 단계에서 m(1≤m≤M) 번째 후보열로 간섭 신호를 제거하고 l(1≤l≤L) 번째 L-QAM 심볼인 c l 에 대한 누적된 squared Euclidean 거리이다. zk는 상기 수신 신호에서 정규 직교행렬 성분이 제거된 신호 중 k번째 검출 과정에 대응되는 신호이고, r은 상기 전송 채널에 대한 상 삼각행렬이며,
Figure 112014082701962-pat00085
m번째 후보열의 i번째 신호이며, E k -1(m)은 k-1번째 검출 과정까지 m번째 후보열의 누적된 squared Euclidean 거리에 해당된다.
이전 단계와 동일한 방법으로 누적된 squared Euclidean 거리
Figure 112014082701962-pat00086
를 비교하여 거리가 짧은 M개의 심볼 조합을 선택한다. 선택된 M개의 심볼 조합을 squared Euclidean 거리가 작은 것부터 정렬한다.
QRD-M의 마지막 단계(본 실시예의 경우 T 번째 검출 단계)에서는 바로 앞 단계에서 구해진 M개의 후보 열을 고려하여 이루어진다. 즉, T 번째 검출 단계에서 선택된 상기 M개의 심볼 조합들 중에서 가장 작은 누적된 squared Euclidean 거리를 갖는 한 개의 심볼 조합이 최종적으로 선택된다.
이러한 QRD-M 기법은 앞서 설정부(220)에서 설정된 T 값에 따라, 전체 1 내지
Figure 112014082701962-pat00087
번째의 검출 단계 중에서 1 내지 T 번째 검출 단계까지 적용된다. 그리고, T 번째 검출 단계까지 고려된 M 개의 후보열 중에서 가장 작은 누적된 squared Euclidean 거리를 가지는 후보열이 T 번째 검출 단계까지 검출된 신호로 결정된다.
본 실시예에서 T+1 번째 검출 과정부터 마지막
Figure 112014082701962-pat00088
번째의 검출 단계에는 DFE 기법이 적용되어 신호가 검출된다. DFE 기법 또한 QR 분해를 기반으로 신호를 검출하며, 정렬된 채널 Hsort과 QR 분해에 따른 수학식 6, 7 및 이하의 수학식 10을 이용한다.
Figure 112014082701962-pat00089
여기서,
Figure 112014082701962-pat00090
t(T+1≤t
Figure 112014082701962-pat00091
)번째 검출 과정에서 검출된 신호이고,
Figure 112014082701962-pat00092
부터
Figure 112014082701962-pat00093
는 앞서 QRD-M 검출 기법을 통해 검출된 신호를 사용한다. z k 는 상기 수신 신호에서 정규 직교행렬 성분이 제거된 신호 중 k번째 검출 과정에 대응되는 신호이고, r은 상기 전송 채널에 대한 상 삼각행렬이다.
Figure 112014082701962-pat00094
은 이전 검출 과정에서 검출된 신호 중에서 n번째 검출 과정에서 검출된 신호를 의미한다.
Figure 112014082701962-pat00095
는 ()안의 값에 대해 가장 가까운 L-QAM 시스템의 심볼에 대응하는 함수를 의미한다.
이러한 DFE 검출 단계에서 DFE 기법을 통해 검출된 신호는
Figure 112014082701962-pat00096
로 정의한다.
반복 검출부(260)는 DFE 검출 단계에 대하여 반복 기법을 수행한다. 반복 검출은 QRD-M 기법을 통해 검출된 신호들(
Figure 112014082701962-pat00097
내지
Figure 112014082701962-pat00098
)과, DFE 기법을 적용하여 최종적으로 검출된 신호(
Figure 112014082701962-pat00099
)를 이용하여, DFE 검출 기법이 적용된 검출 단계에 대해 적용한다. 다만,
Figure 112014082701962-pat00100
을 제외한 나머지 신호들을 반복 검출한다. 검출 과정은 DFE 방식과 동일하며, 반복 검출 기법에 의해 검출된 신호는
Figure 112014082701962-pat00101
로 정의한다.
이상과 같이 본 발명의 실시예는 QRD-M 기법과 DFE 기법, 그리고 반복 검출 기법을 포함한다. QRD-M 기법은 매우 우수한 검출 성능을 가지고 있으나 복잡도가 매우 높고, DFE 기법은 우수한 검출 성능을 가지며 QRD-M에 비해 비교적 낮은 복잡도를 갖는다. QRD-M 기법과 DFE 기법은 모두 이전 검출 단계에서 검출된 심볼들을 이용하여 다음 검출 단계에서 간섭 신호를 제거하기 때문에, 검출 초기 단계에서 검출된 심볼은 전체적인 BER 성능에 중요한 결과로 작용한다.
일반적으로 다이버시티 이득을 높이는 해결 방법으로서 안테나를 추가하는 방법이 있으나 이는 단말의 크기 제한 때문에 구현되기 어렵다. 전체 1 내지
Figure 112014082701962-pat00102
번째의 검출 단계에서 모두 QRD-M 기법을 사용하는 것은 DFE 기법을 사용하는 것보다 성능이 좋지만, 복잡도의 문제 때문에 이 방법 역시 사용하기에 어려움이 있다.
그렇기 때문에, 초기 검출 단계에서는 QRD-M 기법을 사용하여 심볼들을 정확하게 검출하고, 정확히 검출된 이들 심볼들을 이용하여 간섭 신호가 제거되는 하위 검출 단계에서는 DFE 기법을 사용한다. 이러한 방법은 모든 검출 단계에서 QRD-M을 적용하는 것보다 복잡도는 크게 감소하면서 검출 성능은 거의 감소하지 않아 검출 효율을 높인다.
또한, 이와 같은 기법에서 BER 성능을 높이기 위하여 본 실시예에서는 다이버시티 이득을 높이는 반복 검출 기법을 사용한다. 반복 검출 기법은 1 내지 T 번째 검출 단계에서 QRD-M 기법을 통해 검출된
Figure 112014082701962-pat00103
와, (T+1) 내지
Figure 112014082701962-pat00104
번째 검출 단계에서 DFE 기법을 통해 검출된 신호들 중 마지막으로 검출된 신호
Figure 112014082701962-pat00105
를 이용하여, 간섭 신호를 제거하면서 순차적으로 반복 검출 기법을 수행한다. 검출하는 과정은 DFE 방법과 동일하다.
도 2는 도 1을 이용한 신호 검출 방법의 흐름도이다. 이상과 같은 내용을 바탕으로 하여 본 발명의 실시예에 따른 신호 검출 방법에 관하여 상세히 설명하면 다음과 같다.
먼저, 송신 단말(100)은
Figure 112014082701962-pat00106
개의 다중 안테나 별로 전송 신호를 송신한다.
그러면, 수신 단말(200)의 신호 수신부(210)는
Figure 112014082701962-pat00107
개의 다중 안테나를 가지는 송신 단말로부터 L-QAM 방식으로 수학식 3과 같은 신호를 수신한다(S210). 물론 이때 신호가 통과하는 채널(전송 채널)은 수학식 4와 같다.
설정부(220)는 전체 1 내지
Figure 112014082701962-pat00108
번째의 검출 단계 중에서 QRD-M 기법을 적용할 검출 단계(1~T)와 DFE 기법을 적용할 단계((T+1)~
Figure 112014082701962-pat00109
)를 설정할 T값을 설정한다(S220).
본 실시예에서는 상기 설정된 T 값에 따라, 1 내지 T 번째 검출 단계까지는 QRD-M 기법이 사용되고 그 이후의 T+1 번째 검출 단계부터는 DFE 기법이 사용된다. T 값은 시스템에서 요구하는 검출 성능에 따라 다르게 설정될 수 있으며, T 값을 설정하는 방법은 다양한 방법이 적용될 수 있다.
정렬부(230)는 수학식 5를 이용하여 수신 신호의 전송 채널에 대한 의사 역행렬의 크기를 구하고 상기 의사 역행렬의 크기에 따라 상기 전송 채널에 포함된 채널 계수를 정렬한다(S230).
다음 신호 검출부는 상기 정렬된 채널 계수에 기반하여
Figure 112014082701962-pat00110
개의 수신 심볼인
Figure 112014082701962-pat00111
내지
Figure 112014082701962-pat00112
심볼을 검출한다. 이러한 신호 검출부는 QRD-M 검출부, DEF 검출부, 반복 검출부를 포함하고 있다.
우선, 1 내지 T 번째 검출 단계에서, QRD-M 검출부(240)는 상기 정렬된 전송 채널 Hsort와 수학식 6 내지 수학식 9를 이용하여 QRD-M 기법을 통해
Figure 112014082701962-pat00113
내지
Figure 112014082701962-pat00114
심볼을 순차로 검출한다(S240). 이러한 1 내지 T 번째 검출 단계에서 검출된
Figure 112014082701962-pat00115
내지
Figure 112014082701962-pat00116
심볼은
Figure 112014082701962-pat00117
로 명명한다.
다음, DFE 검출부(250)는 상기 정렬된 전송 채널 Hsort와 수학식 6, 수학식 7, 그리고 수학식 10을 이용하여, (T+1) 내지 NT 번째의 검출 단계에서 DFE 기법을 통하여
Figure 112014082701962-pat00118
내지
Figure 112014082701962-pat00119
심볼을 순차로 검출한다(S250).
이러한 (T+1) 내지 NT 번째 검출 단계에서 검출된
Figure 112014082701962-pat00120
내지
Figure 112014082701962-pat00121
심볼은
Figure 112014082701962-pat00122
로 명명한다. 여기서,
Figure 112014082701962-pat00123
를 제외한 (old)가 표시된 심볼들은 추후 반복 검출부에서 재검출될 신호들을 나타낸다.
반복 검출부(260)는 상기 검출된 QRD-M 기법을 통하여 검출된
Figure 112014082701962-pat00124
내지
Figure 112014082701962-pat00125
심볼(
Figure 112014082701962-pat00126
)과, 상기 DFE 기법을 통하여 검출된 심볼들 중 마지막 단계에서 검출된
Figure 112014082701962-pat00127
심볼(
Figure 112014082701962-pat00128
)를 이용하여 간섭 신호를 제거하고
Figure 112014082701962-pat00129
내지
Figure 112014082701962-pat00130
심볼을 상기 DFE 기법으로 재검출한다(S260). 이러한 반복 검출 단계에서 재검출된
Figure 112014082701962-pat00131
내지
Figure 112014082701962-pat00132
심볼은
Figure 112014082701962-pat00133
로 명명한다.
상기 S260 단계를 더욱 상세히 설명하면 다음과 같다.
우선, 반복 검출부(260)는 QRD-M 기법을 통하여 검출된 심볼
Figure 112014082701962-pat00134
과, 가장 높은 다이버시티 이득을 가지는 심볼
Figure 112014082701962-pat00135
을, 심볼
Figure 112014082701962-pat00136
내지
Figure 112014082701962-pat00137
의 재검출에 이용하기 위하여 전송 채널을 재정렬하는 과정을 수행한다.
즉, 앞서 정렬된 전송 채널 Hsort을 재정렬하여, 재정렬된 전송 채널 Hsort(new)를 획득한다. 재정렬된 전송 채널 Hsort(new)는 아래의 수학식 12과 같다.
Figure 112014082701962-pat00138
여기서,
Figure 112014082701962-pat00139
는 상기 정렬된 전송 채널(Hsort)의 T 번째 열(column)을 의미한다. 수학식 11을 보면 기존 행렬 Hsort에서 마지막에 있던
Figure 112014082701962-pat00140
번째 열(
Figure 112014082701962-pat00141
)은 T+1번째 열의 자리로 이동한 것을 알 수 있고, 이에 따라 T+1 번째 내지
Figure 112014082701962-pat00142
-1번째 열(
Figure 112014082701962-pat00143
)은 그 오른쪽으로 한 칸씩 이동한 것을 알 수 있다.
이후에는 재정렬된 전송 채널 Hsort(new)을 QR 분해하여 Q(new)와 R(new)을 다음과 같이 계산한다.
Figure 112014082701962-pat00144
또한, 수신 신호의 행렬 Y에 상기 Q(new)에 대한 에르미트 변환을 곱하여, Q(new) 성분이 제거된 수신 신호의 행렬인 Z(new)을 수학식 13과 같이 획득한다.
Figure 112014082701962-pat00145
상기 획득된 수신 신호의 행렬 Z(new)과, Q-RDM 방법으로 검출된
Figure 112014082701962-pat00146
내지
Figure 112014082701962-pat00147
심볼(즉,
Figure 112014082701962-pat00148
), 그리고 DFE 기법으로 검출된
Figure 112014082701962-pat00149
심볼(즉,
Figure 112014082701962-pat00150
)을 이용하여, 상기
Figure 112014082701962-pat00151
내지
Figure 112014082701962-pat00152
심볼을 상기 DFE 기법으로 재검출한다.
여기서, 상기 검출된
Figure 112014082701962-pat00153
내지
Figure 112014082701962-pat00154
심볼인
Figure 112014082701962-pat00155
내지
Figure 112014082701962-pat00156
는 아래의 수학식 14로 정의된다.
Figure 112014082701962-pat00157
여기서, zk는 상기 Z(new)의 k번째 행의 값(k번째 검출 과정에 대응되는 신호), r은 상기 재정렬된 전송 채널에 대한 상 삼각행렬, Q(·)는 () 안의 값에 대해 가장 가까운 L-QAM 심볼에 대응하는 함수를 의미한다. 여기서 z와 r에 (new)가 부여된 것은 수학식 13의 Z(new)에 의한 것이다.
Figure 112014082701962-pat00158
은 이전에 검출된 신호에 해당되는 것으로서 상기
Figure 112014082701962-pat00159
Figure 112014082701962-pat00160
의 신호를 포함하고 있다.
이러한 수학식 14는 수학식 10과 동일한 DFE 기법에 해당된다. 다만, 수학식 11의 재정렬 과정에서
Figure 112014082701962-pat00161
번째 열(
Figure 112014082701962-pat00162
)은 기존의 T+1번째 열의 자리로 이동하였기 때문에, 수학식 14에서 두 식의 우변에 있는 시그마 위의 숫자와, z, r과 관련된 아래 첨자들이 변경된 것을 알 수 있다.
즉, 기존의 수학식 10 대로 라면, 수학식 14의 두 식에서 시그마 위의 값은 각각 (T+1)과 (NT-1)이 아닌, T와 (NT-2)가 되어야 하지만, 앞서와 같이 채널 행렬의 재정렬 과정에서 T+1 번째 내지
Figure 112014082701962-pat00163
-1번째 열(
Figure 112014082701962-pat00164
)이 기존의 T+2 번째 내지
Figure 112014082701962-pat00165
번째 열의 자리로 한 칸씩 이동함에 따라, 시그마 위의 값 또한 T와 (NT-2)에서 1씩 더해진 (T+1)과 (NT-1)로 변경된 것이다.
이상과 같이, 반복 검출 단계는 QRD-M을 통해 검출된 심볼
Figure 112014082701962-pat00166
과 가장 높은 다이버시티 이득을 가진
Figure 112014082701962-pat00167
를 이용하여 간섭 신호를 제거함으로써 각 검출 과정에서 간섭 십호의 제거를 통해 다이버시티 이득을 얻는 것을 보장한다.
도 3 및 도 4는 본 발명의 실시예와 기존의 기법 간의 BER 성능의 비교 결과이다. 먼저, 검출 시간 및 주파수 동기, 채널 추정은 완벽하다고 가정하며 변조 기법으로는 QPSK(Quadrature Phase Shift Keying) 변조 기법을 사용하였다.
도 3은 송·수신 안테나가 각각 8개씩이고, 도 4는 송·수신 안테나가 각각 8개씩인 것을 가정한 것이다. 이러한 도 3 및 도 4는 본 발명의 실시예에서 변수 T=2, M=2,3을 사용하는 경우에 대해서 기존의 기법과 BER 성능을 비교한다. M은 QRD-M에서 사용하는 후보열의 개수를 의미한다.
먼저 도 3에서 나타난 것처럼, 본 발명의 실시 예를 사용한 경우(proposed scheme)는 동일한 변수를 사용한 기존의 기법보다 좋은 성능을 가지는 것을 볼 수 있다. 왜냐하면, 본 발명의 실시 예에서는 종래 기술과 달리 반복 검출 기법을 통해서 다이버시티 이득을 더 얻었기 때문이다.
도 3에서 기존의 기법의 결과와 본 발명을 비교해보면, 본 발명이 T=2, M=2의 변수를 사용하는 경우, 10-5의 BER 성능에서 약 3.8dB 정도의 성능이 향상되었고 T=2, M=3을 사용하는 경우, 10-5에서 약 1.5dB 정도의 성능이 향상되었다.
도 4에서 기존의 기법의 결과와 본 발명을 비교해보면, 본 발명이 T=2, M=2의 변수를 사용하는 경우 10-5의 BER 성능에서 약 2.3dB 정도의 성능이 향상되었고 T=2, M=3을 사용하는 경우 10-5에서 약 2.5dB 정도의 성능이 향상되었다. 이를 통해 본 발명은 기존의 기법보다 월등히 좋은 성능을 갖는 것을 확인할 수 있다.
이상과 같은 본 발명에 따른 MIMO-OFDM 시스템에서 신호 검출 방법 및 그 장치에 따르면, 기존의 QRD-M 검출 기법보다 다이버시티 이득을 높이고 검출 성능을 향상시킬 수 있는 이점이 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
100: 송신 단말 200: 수신 단말
210: 신호 수신부 220: 설정부
230: 정렬부 240: QRD-M 검출부
250: DFE 검출부 260: 반복 검출부

Claims (8)

  1. Figure 112015071272896-pat00168
    개의 다중 안테나를 가지는 송신 단말로부터 신호를 수신하는 단계;
    수신 신호의 전송 채널에 대한 의사 역행렬의 크기를 구하고 상기 의사 역행렬의 크기에 따라 상기 전송 채널에 포함된 채널 계수를 정렬하는 단계;
    상기 정렬된 채널 계수에 기반하여
    Figure 112015071272896-pat00169
    개의 수신 심볼인
    Figure 112015071272896-pat00170
    내지
    Figure 112015071272896-pat00171
    심볼을 검출하되, 1 내지 T 번째 검출 단계는 QRD-M 기법을 적용하여
    Figure 112015071272896-pat00172
    내지
    Figure 112015071272896-pat00173
    심볼을 순차로 검출하고, (T+1) 내지 NT 번째 검출 단계는 DFE 기법을 적용하여
    Figure 112015071272896-pat00174
    내지
    Figure 112015071272896-pat00175
    심볼을 순차로 검출하는 단계; 및
    상기 검출된
    Figure 112015071272896-pat00176
    내지
    Figure 112015071272896-pat00177
    심볼 및 상기 검출된
    Figure 112015071272896-pat00178
    심볼을 이용하여
    Figure 112015071272896-pat00179
    내지
    Figure 112015071272896-pat00180
    심볼을 상기 DFE 기법으로 재검출하는 단계를 포함하는 MIMO-OFDM 시스템에서 신호 검출 방법.
  2. 청구항 1에 있어서,
    상기
    Figure 112014082701962-pat00181
    내지
    Figure 112014082701962-pat00182
    심볼을 상기 DFE 기법으로 재검출하는 단계는,
    상기 정렬된 전송 채널을 재정렬하는 단계;
    상기 재정렬된 전송 채널을 QR 분해하여 Q(new)와 R(new)을 계산하는 단계;
    상기 수신 신호의 행렬에 상기 Q(new)에 대한 에르미트 변환을 곱하여 상기 Q(new) 성분이 제거된 수신 신호의 행렬인 Z(new)을 획득하는 단계; 및
    상기 획득된 수신 신호의 행렬 Z(new)과 상기 검출된
    Figure 112014082701962-pat00183
    내지
    Figure 112014082701962-pat00184
    심볼 및 상기 검출된
    Figure 112014082701962-pat00185
    심볼을 이용하여, 상기
    Figure 112014082701962-pat00186
    내지
    Figure 112014082701962-pat00187
    심볼을 상기 DFE 기법으로 재검출하는 단계를 포함하는 MIMO-OFDM 시스템에서 신호 검출 방법.
  3. 청구항 2에 있어서,
    상기 재정렬된 전송 채널은 아래의 수학식으로 정의되는 MIMO-OFDM 시스템에서 신호 검출 방법:
    Figure 112014082701962-pat00188

    여기서,
    Figure 112014082701962-pat00189
    는 상기 정렬된 전송 채널(Hsort)의 T 번째 열(column)을 의미한다.
  4. 청구항 2 또는 청구항 3에 있어서,
    상기 검출된
    Figure 112014082701962-pat00190
    내지
    Figure 112014082701962-pat00191
    심볼인
    Figure 112014082701962-pat00192
    내지
    Figure 112014082701962-pat00193
    는 아래의 수학식으로 정의되는 MIMO-OFDM 시스템에서 신호 검출 방법:
    Figure 112014082701962-pat00194

    여기서, zk는 상기 Z(new)의 k번째 행의 값, r은 상기 재정렬된 전송 채널에 대한 상 삼각행렬,
    Figure 112014082701962-pat00195
    은 이전에 검출된 신호, Q(·)는 () 안의 값에 대해 가장 가까운 L-QAM 심볼에 대응하는 함수를 의미한다.
  5. Figure 112015071272896-pat00196
    개의 다중 안테나를 가지는 송신 단말로부터 신호를 수신하는 신호 수신부;
    수신 신호의 전송 채널에 대한 의사 역행렬의 크기를 구하고 상기 의사 역행렬의 크기에 따라 상기 전송 채널에 포함된 채널 계수를 정렬하는 정렬부;
    상기 정렬된 채널 계수에 기반하여
    Figure 112015071272896-pat00197
    개의 수신 심볼인
    Figure 112015071272896-pat00198
    내지
    Figure 112015071272896-pat00199
    심볼을 검출하되, 1 내지 T 번째 검출 단계는 QRD-M 기법을 적용하여
    Figure 112015071272896-pat00200
    내지
    Figure 112015071272896-pat00201
    심볼을 순차로 검출하고, (T+1) 내지 NT 번째 검출 단계는 DFE 기법을 적용하여
    Figure 112015071272896-pat00202
    내지
    Figure 112015071272896-pat00203
    심볼을 순차로 검출하는 신호 검출부; 및
    상기 검출된
    Figure 112015071272896-pat00204
    내지
    Figure 112015071272896-pat00205
    심볼 및 상기 검출된
    Figure 112015071272896-pat00206
    심볼을 이용하여
    Figure 112015071272896-pat00207
    내지
    Figure 112015071272896-pat00208
    심볼을 상기 DFE 기법으로 재검출하는 반복 검출부를 포함하는 MIMO-OFDM 시스템에서 신호 검출 장치.
  6. 청구항 5에 있어서,
    상기 반복 검출부는,
    상기 정렬된 전송 채널을 재정렬하고 상기 재정렬된 전송 채널을 QR 분해하여 Q(new)와 R(new)을 계산한 후,
    상기 수신 신호의 행렬에 상기 Q(new)에 대한 에르미트 변환을 곱하여 상기 Q(new) 성분이 제거된 수신 신호의 행렬인 Z(new)을 획득한 다음,
    상기 획득된 수신 신호의 행렬 Z(new)과 상기 검출된
    Figure 112014082701962-pat00209
    내지
    Figure 112014082701962-pat00210
    심볼 및 상기 검출된
    Figure 112014082701962-pat00211
    심볼을 이용하여, 상기
    Figure 112014082701962-pat00212
    내지
    Figure 112014082701962-pat00213
    심볼을 상기 DFE 기법으로 재검출하는 MIMO-OFDM 시스템에서 신호 검출 장치.
  7. 청구항 6에 있어서,
    상기 재정렬된 전송 채널은 아래의 수학식으로 정의되는 MIMO-OFDM 시스템에서 신호 검출 장치:
    Figure 112014082701962-pat00214

    여기서,
    Figure 112014082701962-pat00215
    는 상기 정렬된 전송 채널(Hsort)의 T 번째 열(column)을 의미한다.
  8. 청구항 6 또는 청구항 7에 있어서,
    상기 검출된
    Figure 112014082701962-pat00216
    내지
    Figure 112014082701962-pat00217
    심볼인
    Figure 112014082701962-pat00218
    내지
    Figure 112014082701962-pat00219
    는 아래의 수학식으로 정의되는 MIMO-OFDM 시스템에서 신호 검출 장치:
    Figure 112014082701962-pat00220

    여기서, zk는 상기 Z(new)의 k번째 행의 값, r은 상기 재정렬된 전송 채널에 대한 상 삼각행렬,
    Figure 112014082701962-pat00221
    은 이전에 검출된 신호, Q(·)는 () 안의 값에 대해 가장 가까운 L-QAM 심볼에 대응하는 함수를 의미한다.
KR1020140113954A 2014-08-29 2014-08-29 Mimo-ofdm 시스템에서 신호 검출 방법 및 그 장치 KR101550151B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140113954A KR101550151B1 (ko) 2014-08-29 2014-08-29 Mimo-ofdm 시스템에서 신호 검출 방법 및 그 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140113954A KR101550151B1 (ko) 2014-08-29 2014-08-29 Mimo-ofdm 시스템에서 신호 검출 방법 및 그 장치

Publications (1)

Publication Number Publication Date
KR101550151B1 true KR101550151B1 (ko) 2015-09-04

Family

ID=54247246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140113954A KR101550151B1 (ko) 2014-08-29 2014-08-29 Mimo-ofdm 시스템에서 신호 검출 방법 및 그 장치

Country Status (1)

Country Link
KR (1) KR101550151B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911168B1 (ko) * 2017-02-28 2018-10-24 세종대학교산학협력단 Mimo-ofdm 시스템을 이용한 적응적 신호 검출 방법 및 그 장치
KR101937559B1 (ko) * 2017-03-30 2019-01-11 세종대학교산학협력단 Mimo-ofdm 시스템을 이용한 선형 근사화 신호 검출 장치 및 그 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104455B1 (ko) 2010-10-29 2012-01-12 세종대학교산학협력단 Mimo 시스템의 신호 검출 방법 및 그 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104455B1 (ko) 2010-10-29 2012-01-12 세종대학교산학협력단 Mimo 시스템의 신호 검출 방법 및 그 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911168B1 (ko) * 2017-02-28 2018-10-24 세종대학교산학협력단 Mimo-ofdm 시스템을 이용한 적응적 신호 검출 방법 및 그 장치
KR101937559B1 (ko) * 2017-03-30 2019-01-11 세종대학교산학협력단 Mimo-ofdm 시스템을 이용한 선형 근사화 신호 검출 장치 및 그 방법

Similar Documents

Publication Publication Date Title
JP4845738B2 (ja) 線形プリコーディングされた信号のマルチアンテナ伝送方法、対応するデバイス、信号、および受信方法
WO2007094832A2 (en) Recursive and trellis-based feedback reduction for mimo-ofdm with rate-limited feedback
US8811215B2 (en) Apparatus and method for detecting signal in spatial multiplexing system
US7729458B2 (en) Signal decoding apparatus, signal decoding method, program, and information record medium
US9654252B2 (en) Low complexity maximum-likelihood-based method for estimating emitted symbols in a SM-MIMO receiver
KR20170043174A (ko) 무선 통신 시스템에서 채널 상태 추정 방법 및 장치
US8054909B2 (en) Method of selecting candidate vector and method of detecting transmission symbol
KR101711190B1 (ko) 다중입력다중출력 전송의 신호검출 방법 및 장치
KR101550151B1 (ko) Mimo-ofdm 시스템에서 신호 검출 방법 및 그 장치
US8098777B2 (en) Signal detection method and receiving apparatus in MIMO system
Abuthinien et al. Joint maximum likelihood channel estimation and data detection for MIMO systems
KR101911168B1 (ko) Mimo-ofdm 시스템을 이용한 적응적 신호 검출 방법 및 그 장치
CN108768475B (zh) 用于mimo-ofdm-im的低复杂度ml接收机方法
EP3068065B1 (en) Method and base station for pilot frequency arrangement determination
WO2017069880A1 (en) Systems and methods for detecting data in a received multiple-input-multiple-output (mimo) signal
KR101937559B1 (ko) Mimo-ofdm 시스템을 이용한 선형 근사화 신호 검출 장치 및 그 방법
US20090154579A1 (en) Qr decomposition apparatus and method for mimo system
WO2009057876A1 (en) Transmitting/receiving method for multi-user multiple-input multiple-output system
KR101348557B1 (ko) Mimo-ofdm 시스템을 이용한 신호 검출 방법 및 그 장치
Patra et al. Efficient signal detection methods for high mobility OFDM system with transmit diversity
KR102304930B1 (ko) 다중 입출력 통신 시스템의 격자 감소 방법
GB2439770A (en) Decision error compensation in wireless MIMO receivers
KR101484863B1 (ko) Mimo-ofdm 시스템에서 채널 상태에 기반한 적응적 신호 검출 방법 및 그 장치
Someya et al. SAGE algorithm for channel estimation and data detection with tracking the channel variation in MIMO system
CN111064684B (zh) 上行链路空间调制单载波频域联合均衡方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180724

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190722

Year of fee payment: 5