KR101518977B1 - Apparatus of cooling for stator coils of superconduting motor or generator - Google Patents

Apparatus of cooling for stator coils of superconduting motor or generator Download PDF

Info

Publication number
KR101518977B1
KR101518977B1 KR1020130143560A KR20130143560A KR101518977B1 KR 101518977 B1 KR101518977 B1 KR 101518977B1 KR 1020130143560 A KR1020130143560 A KR 1020130143560A KR 20130143560 A KR20130143560 A KR 20130143560A KR 101518977 B1 KR101518977 B1 KR 101518977B1
Authority
KR
South Korea
Prior art keywords
cooling
armature coil
core
heat
shield
Prior art date
Application number
KR1020130143560A
Other languages
Korean (ko)
Inventor
김호민
김지형
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Priority to KR1020130143560A priority Critical patent/KR101518977B1/en
Application granted granted Critical
Publication of KR101518977B1 publication Critical patent/KR101518977B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/876Electrical generator or motor structure
    • Y10S505/877Rotary dynamoelectric type
    • Y10S505/878Rotary dynamoelectric type with cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/888Refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/90Heat exchange
    • Y10S505/901Heat pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

The present invention relates to a magnetic cooling type cooling structure of a coreless armature coil for a superconducting rotator. The technical point of the present invention is to provide an improved cooling system for the armature coil of the superconducting rotator. The armature coil is combined on one side of a machinery shield, is fixed on a slot of an FRP supporter, and promotes air cooling by exposing a part of a plurality of cooling grooves. A magnetic cooling material (Gd-Si-Ge) of a nonmagnetic body and a copper thin plate or a stainless thin plate are combined in the cooling groove with an iron core type and are cooled according to the variation of a magnetic field. The cooling efficiency of the armature coil is remarkably improved by discharging heat through a water cooling channel of a machinery shield and a cooling duct of the machinery shield after absorbing the heat of the armature coil and then performing a heat exchange process.

Description

초전도 회전기용 공심형 전기자코일의 자기냉동식 냉각구조{Apparatus of cooling for stator coils of superconduting motor or generator}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a cooling structure for a superconducting rotor,

본 발명은 초전도 회전기의 전기자코일에 대하여 개선된 냉각시스템을 제공하기 위함으로, 상기 전기자코일은 기계쉴드(Machinery shield) 일측에 결합되도록 하되, 비자성 복합재(FRP지지체) 코어의 슬롯에 고정되면서 다수의 냉각홈으로 하여금 일부가 노출되어 공기냉각을 도모하도록 형성되는 바, 이러한 냉각홈에는 비자성체의 자기냉각물질(Gd-Si-Ge)과 구리박판 또는 스테인레스박판이 철심코어 형태로 결합되어 자기장 변화에 따라 자기냉각물질이 냉각되면 전기자코일의 열을 흡수한 후 열교환한 뒤 기계쉴드의 냉각용 덕트 또는 기계쉴드에 매설된 냉각채널을 통해 방출시키도록 형성되어 전기자코일의 냉각효율이 크게 향상되는 것을 특징으로 하는 초전도 회전기용 공심형 전기자코일의 자기냉동식 냉각구조에 관한 것이다.
In order to provide an improved cooling system for an armature coil of a superconducting rotating machine, the armature coil is coupled to one side of a machine shield, and is fixed to a slot of a non-magnetic composite (FRP support) (Gd-Si-Ge), a copper thin plate or a stainless steel thin plate is coupled in the form of an iron core to form a magnetic field change in the cooling groove. The cooling efficiency of the armature coils is greatly improved by absorbing the heat of the armature coils according to the cooling of the armature coils according to the cooling of the armature coils, The present invention relates to a self-cooling cooling structure of an air core type armature coil for a superconducting rotor.

통상적으로 초전도 회전기(전동기, 발전기)는 등록특허 10-1243291에 개시된 바와 같이, 회전자에 초전도 고정자코일을 사용하여 기존의 기기보다 높은 자기장을 발생시킬 수 있고, 이를 위해 회전자에 위치한 초전도계자코일을 냉각시키기 위해 진공용기가 요구되므로, 고정자와 회전자 사이의 공극이 매우 크다.Generally, a superconducting rotor (a motor, a generator) can generate a magnetic field higher than that of a conventional device by using a superconducting stator coil as a rotor, as disclosed in Japanese Patent No. 10-1243291. For this purpose, The gap between the stator and the rotor is very large.

또한 고정자의 전기자코일에서 발생하는 역기전력을 정현적으로 만들어 주기위하여 고정자코일이 FRP(fiber-reinforced plastic)와 같은 비자성체로 둘러싸여 있게 된다.In order to make the counter electromotive force generated in the armature coil of the stator sinusoidal, the stator coil is surrounded by a non-magnetic material such as FRP (fiber-reinforced plastic).

기존의 기기는 도 2에서와 같이 고정자의 전기자코일(4)이 규소강판으로 이루어진 철심으로 둘러싸여 있기 때문에, 전기자코일(4)에서 발생하는 열이 주변의 열전도도가 높은 슬롯(5)을 통하여 고정자요오크(6)로 쉽게 전달된다.2, since the armature coil 4 of the stator is surrounded by an iron core made of a silicon steel plate, the heat generated in the armature coil 4 is fixed to the slot 5 having a high thermal conductivity around it And is easily transferred to the oak 6.

그러나, 초전도 회전기인 경우 전기자코일(4)이 열전도도가 매우 낮은 FRP 재질의 슬롯(5)으로 둘러싸여 있기 때문에 코일에서 발생하는 열이 고정자요오크(6)으로 잘 전달되지 않는다. However, in the superconducting rotating machine, the armature coils 4 are surrounded by the slots 5 made of the FRP material having a very low thermal conductivity, so that the heat generated in the coils can not be transmitted to the stator yoke 6 easily.

따라서 공랭식일 경우 발생된 열의 접촉 면적이 전기자코일에 국한되어 효과적인 냉각이 이루어지지 않는다. 특히 고전압 기기의 경우 전기자코일이 절연지로 여러 겹 둘러싸여 있기 때문에 전기자코일의 온도 상승은 더욱 심해진다.
Therefore, in the case of the air-cooling type, the contact area of the generated heat is limited to the armature coil, so that effective cooling is not achieved. Especially in the case of high-voltage equipment, since the armature coils are surrounded by multiple layers of insulating paper, the temperature rise of the armature coils becomes even worse.

한편, 또 다른 초전도 회전기의 고정자 전기자코일에 관한 냉각 기술로는 대한민국 공개특허 10-2010-0044393 '전기자코일 냉각수단이 구비된 초전도 모터'에 개시되어 있다.On the other hand, Korean Patent Laid-Open No. 10-2010-0044393 'Superconducting motor equipped with armature coil cooling means' discloses another cooling technique for the stator armature coil of another superconducting rotating machine.

이에 도 3을 참조하면, 초전도 계자코일(22)이 권선된 회전자(20) 및 다수개의 전기자코일(44)이 삽입되는 전기자슬롯(42)이 형성된 고정자(40)를 포함하여 이루어지는 초전도 회전기에 있어서, 상기 전기자코일(44)의 일측에는 상기 전기자코일(44)의 발열을 흡수하는 냉각채널(46)이 일체로 결합 형성되되, 상기 냉각채널(46)은 상기 전기자코일(44)에 비해 상대적으로 비저항이 크고 열전도율이 높은 재질로 형성되는 것을 특징으로 하여 냉각을 용이하게 할 수 있도록 한 것이다.3, there is shown a superconducting rotor including a stator 40 having a rotor 20 in which a superconducting field coil 22 is wound and an armature slot 42 in which a plurality of armature coils 44 are inserted. A cooling channel 46 for absorbing the heat of the armature coil 44 is integrally coupled to one side of the armature coil 44. The cooling channel 46 is relatively in contact with the armature coil 44, And is formed of a material having a high specific resistance and a high thermal conductivity, so that cooling can be facilitated.

그러나, 이러한 종래의 초전도 회전기의 전기자코일을 냉각하는 방식 중 공기 냉각 방식은 냉각효율이 떨어지는 문제점이 있어왔고, 수랭 혹은 유랭 냉각채널을 이용한 냉각방식은 구조적으로 복잡하지만 냉각특성이 안정적이므로 초전도 회전기의 전기자코일 냉각을 주로 수랭식이나 유랭식을 사용하게 된다.However, the air cooling method of cooling the armature coil of the conventional superconducting rotor has a problem in that the cooling efficiency is inferior. Since the cooling method using the water cooling or cooling channel is structurally complicated, the cooling characteristic is stable. The cooling of the armature coil is mainly performed using a water-cooled type or an oil-based type.

아울러, 수랭식이나 유랭식은 전기자코일 사이에 냉각을 위한 금속튜브를 삽입하여 제작을 해야되므로 구조가 복잡해지고 비용이 증가하게 되며, 또한 가열된 튜브 내부의 유체를 다시 냉각시켜야 하므로 복잡한 냉각 장치가 필요한 문제점이 있다.
In addition, the water-cooled or air-cooled system requires a metal tube inserted between the armature coils for cooling, which complicates the structure and increases the cost. In addition, since the fluid inside the heated tube must be cooled again, .

본 발명은 상술한 문제점을 해결하기 위한 것으로, 그 기술적 요지는 초전도 회전기의 전기자코일에 대하여 개선된 냉각시스템을 제공하기 위함으로, 상기 전기자코일은 기계쉴드(Machinery shield) 일측에 결합되도록 하되, 비자성 복합재(FRP지지체) 코어의 슬롯에 고정되면서 다수의 냉각홈으로 하여금 일부가 노출되어 공기냉각을 도모하도록 형성되는 바, 이러한 냉각홈에는 비자성체의 자기냉각물질(Gd-Si-Ge)과 구리박판 또는 스테인레스박판이 철심코어 형태로 결합되어 자기장 변화에 따라 자기냉각물질이 냉각되면 전기자코일의 열을 흡수한 후 열교환한 뒤 기계쉴드의 냉각용 덕트 또는 기계쉴드에 매설된 냉각채널을 통해 방출시키도록 형성되어 전기자코일의 냉각효율이 크게 향상되는 것을 특징으로 하는 초전도 회전기용 공심형 전기자코일의 자기냉동식 냉각구조를 제공함에 그 목적이 있다.
SUMMARY OF THE INVENTION In order to provide an improved cooling system for an armature coil of a superconducting rotor, the armature coil is adapted to be coupled to one side of a machine shield, (Gd-Si-Ge) and copper (Gd-Si-Ge) are formed in the cooling grooves, and a plurality of cooling grooves are formed in the slots of the green composite (FRP support) When a thin plate or a stainless steel thin plate is coupled in the form of an iron core, when the magnetic cooling material is cooled according to the magnetic field change, the heat of the armature coil is absorbed and then the heat is exchanged and then discharged through the cooling channel embedded in the mechanical shield And the cooling efficiency of the armature coils is greatly improved. The air core type armature coil for superconducting rotors To provide a refrigeration-based cooling mechanism, it is an object.

이러한 목적을 달성하기 위해 본 발명은 전기자코일(10)이 FRP지지체(20)의 슬롯(21)에 고정되면서 기계쉴드(30: Machinery shield) 일측에 결합되도록 하되, 상기 슬롯(21)에는 전기자코일(10)이 노출되면서 공랭을 도모하도록 다수개의 냉각홈(21-1)이 형성되어 기계쉴드(30)의 냉각용 덕트(31)와 함께 동일 축선을 이루면서 서로 관통되도록 형성되고, 상기 냉각홈(21-1)에는 비자성체의 자기냉동식 철심코어(40)가 삽입되어 전기자코일(10)에서 발생된 주울열을 흡열(열교환)하여 기계쉴드 또는 냉각용 덕트(31)로 하여금 방출하면서 냉각시키도록 구성된다.In order to achieve this object, the present invention is characterized in that the armature coil 10 is fixed to a slot 21 of a FRP support 20 and is coupled to one side of a machine shield 30, A plurality of cooling grooves 21-1 are formed so as to achieve air cooling while the cooling shroud 10 is exposed and are formed so as to pass through the cooling shrouds 31 with the cooling shroud 31 of the mechanical shield 30, 21-1, a nonmagnetic self-cooling type iron core 40 is inserted to heat the joule generated in the armature coil 10 to heat the machine shield or the cooling duct 31, .

이때, 상기 철심코어(40)는 자기냉각물질(Gd-Si-Ge)과 구리박판, STS 316L 중 어느 하나로 형성된 다수개의 철심이 코어 형태로 냉각홈(21-1)에 결합되면 전기자코일의 자기장 변화에 따라 냉각되어 발열을 흡수하면서 공랭시키도록 하는 것이 바람직하다.At this time, when the iron core 40 is coupled to the cooling groove 21-1 in the form of a core formed of any one of the self cooling material (Gd-Si-Ge), the copper thin plate and the STS 316L, It is preferable that the cooling is performed in accordance with the change so as to cool air while absorbing heat.

또한, 상기 기계쉴드의 냉각용 덕트(31)는 철심코어(40)의 삽입측 단부와 맞닿은 일측에 냉각 확산용 내입홈(31-1)이 형성되어 철심코어(40)의 일단이 대응되어 삽입되면 열교환에 따른 냉각 단면적이 배가되도록 구성된다.The cooling duct 31 of the mechanical shield is formed with a cooling diffusion inner groove 31-1 at one side thereof in contact with the insertion side end portion of the core core 40 so that one end of the core core 40 is inserted The cooling cross sectional area due to the heat exchange is doubled.

이에, 상기 FRP지지체(20)의 슬롯(21)에 형성된 냉각홈(21-1)은 축방향으로 다수개가 등간격 배열되도록 하되, 냉각홈(21-1)의 개구부 측에는 철심코어(40)가 삽입 결합된 후 지지 고정할 수 있도록 돌기형 스토퍼(21-11)가 형성되도록 하는 것이 바람직하다.A plurality of cooling grooves 21-1 formed in the slots 21 of the FRP support 20 are arranged in the axial direction so that the corrugated cores 40 are arranged on the opening side of the cooling grooves 21-1. It is preferable that the protruding stopper 21-11 is formed so as to be able to support and fix after being inserted and joined.

아울러, 상기 기계쉴드(30)는 다수개의 철심이 모듈 또는 코어 형태로 이루어진 것으로, 내부에는 수냉식 냉각을 도모하도록 순환식 냉매관(32)이 구비되는 것이 바람직하다.
In addition, the mechanical shield 30 is formed of a plurality of iron cores in the form of a module or a core, and it is preferable that a circulation type refrigerant pipe 32 is provided in the inside of the mechanical shield 30 so as to perform water cooling.

이와 같이, 본 발명은 초전도 회전기의 전기자코일에 대하여 개선된 냉각시스템을 제공하기 위함으로, 상기 전기자코일은 기계쉴드(Machinery shield) 일측에 결합되도록 하되, 비자성 복합재(FRP지지체) 코어의 슬롯에 고정되면서 다수의 냉각홈으로 하여금 일부가 노출되어 공기냉각을 도모하도록 형성되는 바, 이러한 냉각홈에는 비자성체의 자기냉각물질(Gd-Si-Ge)과 구리박판 또는 스테인레스박판이 철심코어 형태로 결합되어 자기장 변화에 따라 자기냉각물질이 냉각되면 전기자코일의 열을 흡수한 후 열교환한 뒤 기계쉴드의 냉각용 덕트 또는 기계쉴드에 매설된 냉각채널을 통해 방출시키도록 형성되어 전기자코일의 냉각효율이 크게 향상되는 효과가 있다.
Thus, in order to provide an improved cooling system for an armature coil of a superconducting rotating machine, the armature coils are connected to one side of a machine shield, and a slot of a non-magnetic composite (FRP support) core (Gd-Si-Ge) and a copper thin plate or a stainless steel thin plate are coupled to each other in the form of an iron core in the cooling grooves. When the self-cooling material is cooled according to the magnetic field change, it absorbs the heat of the armature coil and then heat-exchanges it. Then, the magnetic cooling material is discharged through the cooling duct embedded in the mechanical shield or the mechanical shield. There is an effect to be improved.

도 1은 본 발명에 따른 자기냉동식 냉각구조를 나타낸 초전도 회전기의 일부 예시도,
도 2 내지 도 3은 종래의 냉각기술을 나타낸 예시도이다.
1 is a partial view of a superconducting rotating machine showing a self-cooling type cooling structure according to the present invention,
Figs. 2 to 3 are illustrations showing conventional cooling techniques. Fig.

다음은 첨부된 도면을 참조하며 본 발명을 보다 상세히 설명하겠다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings.

도 1에 도시된 바와 같이, 본 발명의 냉각구조는 자기냉동식 철심코어를 이용한 전기자코일의 냉각 시스템을 구현하는 것을 특징으로 한다.As shown in FIG. 1, the cooling structure of the present invention is characterized by implementing a cooling system of an armature coil using a magnetically freezing core.

이에, 본 발명은 전기자코일(10)이 FRP지지체(20)의 슬롯(21)에 고정되면서 기계쉴드(30: Machinery shield) 일측에 결합되도록 하되, 상기 슬롯(21)에는 전기자코일(10)이 노출되면서 공랭을 도모하도록 다수개의 냉각홈(21-1)이 형성되어 기계쉴드(30)의 냉각용 덕트(31)와 함께 동일 축선을 이루면서 서로 관통되도록 형성된다.The armature coil 10 is fixed to the slot 21 of the FRP support 20 and is coupled to one side of the machine shield 30. The armature coil 10 is inserted into the slot 21, A plurality of cooling grooves 21-1 are formed to penetrate the cooling ducts 31 of the mechanical shield 30 while forming the same axial line with each other.

이때, 상기 냉각홈(21-1)에는 비자성체의 자기냉동식 철심코어(40)가 삽입되어 전기자코일(10)에서 발생된 주울열을 흡열(열교환)하여 기계쉴드의 냉각용 덕트(31)와 기계쉴드 냉각채널로 하여금 방출하면서 냉각시키도록 구성된다.At this time, a self-cooling type iron core 40 of a nonmagnetic material is inserted into the cooling groove 21-1 to heat the joule generated in the armature coil 10 to heat the cooling duct 31 of the mechanical shield, And cooling the machine shield cooling channel while discharging it.

이때, 상기 철심코어(40)는 자기냉각물질(Gd-Si-Ge)과 구리박판, STS 316L 중 어느 하나로 형성된 다수개의 철심이 코어 형태로 냉각홈(21-1)에 결합되면 전기자코일의 자기장 변화에 따라 냉각되어 발열을 흡수하면서 기계쉴드 방향으로 냉각시키도록 하는 것이 바람직하다.At this time, when the iron core 40 is coupled to the cooling groove 21-1 in the form of a core formed of any one of the self cooling material (Gd-Si-Ge), the copper thin plate and the STS 316L, It is preferable to cool it in the machine shield direction while absorbing the heat generated by the cooling.

또한, 상기 기계쉴드의 냉각용 덕트(31)는 철심코어(40)의 삽입측 단부와 맞닿은 일측에 냉각 확산용 내입홈(31-1)이 형성되어 철심코어(40)의 일단이 대응되어 삽입되면 열교환에 따른 냉각 단면적이 배가되도록 구성된다.The cooling duct 31 of the mechanical shield is formed with a cooling diffusion inner groove 31-1 at one side thereof in contact with the insertion side end portion of the core core 40 so that one end of the core core 40 is inserted The cooling cross sectional area due to the heat exchange is doubled.

이에, 상기 FRP지지체(20)의 슬롯(21)에 형성된 냉각홈(21-1)은 축방향으로 다수개가 등간격 배열되도록 하되, 냉각홈(21-1)의 개구부 측에는 철심코어(40)가 삽입 결합된 후 지지 고정할 수 있도록 돌기형 스토퍼(21-11)가 형성되도록 하는 것이 바람직하다.A plurality of cooling grooves 21-1 formed in the slots 21 of the FRP support 20 are arranged in the axial direction so that the corrugated cores 40 are arranged on the opening side of the cooling grooves 21-1. It is preferable that the protruding stopper 21-11 is formed so as to be able to support and fix after being inserted and joined.

아울러, 상기 기계쉴드(30)는 다수개의 철심이 모듈 또는 코어 형태로 이루어진 것으로, 내부에는 수냉식 냉각을 도모하도록 순환식 냉매관(32)이 구비되는 것이 바람직하다.
In addition, the mechanical shield 30 is formed of a plurality of iron cores in the form of a module or a core, and it is preferable that a circulation type refrigerant pipe 32 is provided in the inside of the mechanical shield 30 so as to perform water cooling.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 고안이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims and their equivalents. Of course, such modifications are within the scope of the claims.

10 ... 전기자코일 20 ... FRP지지체
21 ... 슬롯 21-1 ... 냉각홈
21-11 ... 스토퍼
30 ... 기계쉴드 31 ... 냉각용 덕트
31-1 ... 내입홈 32 ... 냉매관
40 ... 철심코어
10 ... armature coil 20 ... FRP support
21 ... Slot 21-1 ... Cooling groove
21-11 ... stopper
30 ... machine shield 31 ... cooling duct
31-1 ... inner groove 32 ... refrigerant pipe
40 ... core core

Claims (5)

전기자코일(10)이 FRP지지체(20)의 슬롯(21)에 고정되면서 기계쉴드(30: Machinery shield) 일측에 결합되도록 하되, 상기 슬롯(21)에는 전기자코일(10)이 노출되면서 공랭을 도모하도록 다수개의 냉각홈(21-1)이 형성되어 기계쉴드(30)의 냉각용 덕트(31)와 함께 동일 축선을 이루면서 서로 관통되도록 형성되고, 상기 냉각홈(21-1)에는 비자성체의 자기냉동식 철심코어(40)가 삽입되어 전기자코일(10)에서 발생된 주울열을 흡열(열교환)하여 기계쉴드의 냉각용 덕트(31)와 기계쉴드의 수냉채널로 하여금 방출하면서 냉각시키도록 하는 자기냉동식 냉각구조에 있어서,
상기 철심코어(40)는 자기냉각물질(Gd-Si-Ge)과 구리박판, STS 316L 중 어느 하나로 형성된 다수개의 철심이 코어 형태로 냉각홈(21-1)에 결합되면 전기자코일의 자기장 변화에 따라 냉각되어 발열을 흡수하면서 냉각시키도록 형성되고,
상기 기계쉴드의 냉각용 덕트(31)는 철심코어(40)의 삽입측 단부와 맞닿은 일측에 냉각 확산용 냉각장치와 내입홈(31-1)이 형성되어 철심코어(40)의 일단이 대응되어 삽입되면 열교환에 따른 냉각 단면적이 배가되고 외부로 열교환이 되도록 하는 것을 특징으로 하는 초전도 회전기용 공심형 전기자코일의 자기냉동식 냉각구조.
The armature coil 10 is fixed to the slot 21 of the FRP support body 20 so that the armature coil 10 is coupled to one side of the machine shield 30 while the armature coil 10 is exposed to the slot 21, A plurality of cooling grooves 21-1 are formed so as to penetrate each other while being coaxial with the cooling duct 31 of the mechanical shield 30. The cooling grooves 21-1 are formed with a non- The cooling coil 31 is inserted into the cooling coil 30 to heat the joule heat generated in the armature coil 10 to heat the cooling duct 31 of the machine shield and the water- In a freezing cooling structure,
When the core core 40 is coupled to the cooling grooves 21-1 in the form of a core formed of any one of self cooling material (Gd-Si-Ge), copper thin plate and STS 316L, And is cooled so as to cool while absorbing heat,
The cooling duct 31 of the mechanical shield is formed with a cooling device for cooling diffusion and an inner groove 31-1 at one side abutting against the insertion side end of the iron core 40 to correspond to one end of the iron core 40 And a cooling cross-sectional area due to heat exchange is doubled, and heat exchange is performed to the outside.
삭제delete 삭제delete 제 1항에 있어서, 상기 FRP지지체(20)의 슬롯(21)에 형성된 냉각홈(21-1)은 축방향으로 다수개가 등간격 배열되도록 하되, 냉각홈(21-1)의 개구부 측에는 철심코어(40)가 삽입 결합된 후 지지 고정할 수 있도록 돌기형 스토퍼(21-11)가 형성되도록 하는 것을 특징으로 하는 초전도 회전기용 공심형 전기자코일의 자기냉동식 냉각구조.The FRP support according to claim 1, wherein a plurality of cooling grooves (21-1) formed in the slots (21) of the FRP support (20) are axially arranged at equal intervals, Type stopper (21-11) is formed so that the stopper (21-11) can be supported and fixed after the stopper (40) is inserted and coupled. 제 4항에 있어서, 상기 기계쉴드(30)는 다수개의 철심이 모듈 또는 코어 형태로 이루어진 것으로, 내부에는 수냉식 냉각을 도모하도록 순환식 냉매관(32)이 구비되는 것을 특징으로 하는 초전도 회전기용 공심형 전기자코일의 자기냉동식 냉각구조.
5. The superconducting rotating device according to claim 4, wherein the mechanical shield (30) comprises a plurality of iron cores in the form of a module or a core, and a circulation type refrigerant pipe (32) Self - cooling cooling structure of a type armature coil.
KR1020130143560A 2013-11-25 2013-11-25 Apparatus of cooling for stator coils of superconduting motor or generator KR101518977B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130143560A KR101518977B1 (en) 2013-11-25 2013-11-25 Apparatus of cooling for stator coils of superconduting motor or generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130143560A KR101518977B1 (en) 2013-11-25 2013-11-25 Apparatus of cooling for stator coils of superconduting motor or generator

Publications (1)

Publication Number Publication Date
KR101518977B1 true KR101518977B1 (en) 2015-05-12

Family

ID=53394314

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130143560A KR101518977B1 (en) 2013-11-25 2013-11-25 Apparatus of cooling for stator coils of superconduting motor or generator

Country Status (1)

Country Link
KR (1) KR101518977B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117015224A (en) * 2023-09-28 2023-11-07 国网江苏省电力有限公司营销服务中心 Electromagnetic shielding device and system for keeping superconducting state of Josephson junction
KR20240022771A (en) 2022-08-12 2024-02-20 두산에너빌리티 주식회사 Cooling structure for wind power generator and wind power generator including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044393A (en) * 2008-10-22 2010-04-30 한국전기연구원 Superconducting motor having cooling device for armature coil
KR20130021495A (en) * 2011-08-23 2013-03-06 한국전기연구원 Apparatus of air cooling for stator coils of superconduting motor or generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044393A (en) * 2008-10-22 2010-04-30 한국전기연구원 Superconducting motor having cooling device for armature coil
KR20130021495A (en) * 2011-08-23 2013-03-06 한국전기연구원 Apparatus of air cooling for stator coils of superconduting motor or generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240022771A (en) 2022-08-12 2024-02-20 두산에너빌리티 주식회사 Cooling structure for wind power generator and wind power generator including the same
CN117015224A (en) * 2023-09-28 2023-11-07 国网江苏省电力有限公司营销服务中心 Electromagnetic shielding device and system for keeping superconducting state of Josephson junction
CN117015224B (en) * 2023-09-28 2024-02-20 国网江苏省电力有限公司营销服务中心 Electromagnetic shielding device and system for keeping superconducting state of Josephson junction

Similar Documents

Publication Publication Date Title
KR101924294B1 (en) Stator used for motor, motor and ventilation cooling method for motor
US8878404B2 (en) Arrangement and method for cooling an electrical machine
CA2683464A1 (en) Arrangement for cooling of an electrical machine
JP6823944B2 (en) Stator with integrated radiator
US11355976B2 (en) Integral fluid cooling of electrical machine
CA3134252A1 (en) High performance electromagnetic machine and cooling system
JPH07194061A (en) Cooler for alternating current machine
EP3174180B1 (en) Rotating electric machine
KR102656081B1 (en) Stators for electrical machines and electrical machines
CN103460567A (en) Pole shoe
KR101518977B1 (en) Apparatus of cooling for stator coils of superconduting motor or generator
JP2015012620A (en) Permanent magnet type rotary electric machine
FI128650B (en) A stator of an electric machine and an electric machine
Zhou et al. Novel liquid cooling technology for modular consequent-pole PM machines
RU2570834C1 (en) Stator magnetic circuit for electromechanical energy converters with blast cooling (versions) and method of its manufacturing
KR101243291B1 (en) Apparatus of air cooling for stator coils of superconduting motor or generator
JP2017050913A (en) Rotary electric machine
KR20120128046A (en) Electric motor and electric vehicle having the same
RU169538U1 (en) Permanent Magnet Synchronous Machine Rotor
KR101493288B1 (en) Stator and superconducting rotating machine having the same
KR101386801B1 (en) A damper device for rotor of supreconducting generator
US20220368198A1 (en) Method and system for pole retainer with integrated cooling
CN215344248U (en) Motor, compressor and have its electrical apparatus
KR101252267B1 (en) Cooling device for superconducting motor
KR20160032606A (en) Apparatus for coolong motor

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190422

Year of fee payment: 5