KR101517423B1 - 마이크로전자 장치의 성능 향상을 위한 플라즈몬 고속 장치 - Google Patents

마이크로전자 장치의 성능 향상을 위한 플라즈몬 고속 장치 Download PDF

Info

Publication number
KR101517423B1
KR101517423B1 KR1020107008114A KR20107008114A KR101517423B1 KR 101517423 B1 KR101517423 B1 KR 101517423B1 KR 1020107008114 A KR1020107008114 A KR 1020107008114A KR 20107008114 A KR20107008114 A KR 20107008114A KR 101517423 B1 KR101517423 B1 KR 101517423B1
Authority
KR
South Korea
Prior art keywords
photonic
substrate
electromagnetic radiation
dielectric layer
nanowire
Prior art date
Application number
KR1020107008114A
Other languages
English (en)
Other versions
KR20100069681A (ko
Inventor
스탠리 알. 윌리암스
데이비드 파탈
Original Assignee
휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. filed Critical 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피.
Publication of KR20100069681A publication Critical patent/KR20100069681A/ko
Application granted granted Critical
Publication of KR101517423B1 publication Critical patent/KR101517423B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명의 다양한 실시예는 입사 ER를 수집하여, 마이크로전자 장치의 동작을 향상시키는데 사용될 수 있는 표면 플라즈몬으로 변환하는데 사용될 수 있는 광자장치에 관한 것이다. 본 발명의 일 실시예에서, 광자 장치(100)는 상부면 및 바닥면을 가진 유전체층(104), 상기 유전체층의 적어도 상부면의 적어도 일부를 덮는 플래너 나노와이어 네트워크(106)를 포함한다. 유전체층의 바닥면은 기판(102)의 상부면에 위치하고, 플래너 나노와이어 네트워크는 입사 전자기 방사를, 유전체층을 통해 기판의 적어도 일부 속으로 침투하는 표면 플라즈몬으로 변환하도록 구성된다.

Description

마이크로전자 장치의 성능 향상을 위한 플라즈몬 고속 장치{PLASMONIC HIGH-SPEED DEVICES FOR ENHANCING THE PERFORMANCE OF MICROELECTRONIC DEVICES}
본 발명의 실시예는 광자 장치(photonic devices)에 관한 것으로, 특히 마이크로전자 장치의 성능을 향상시키는데 사용될 수 있는 고속 플라즈마(plasma) 기반 장치에 관한 것이다.
최근에, 집적회로 상의 마이크로전자 장치의 밀도 증가는 이들 장치를 상호연결하는데 사용될 수 있는 금속 신호선의 밀도에서 기술적 병목현상을 가져왔다. 예를 들면 증가된 신호선 밀도는 인접한 신호선들 간의 크로스토크와 전자 장치들 간의 최장 통신 링크를 동기화하는데 어려움을 가져왔다. 결과적으로, 물리학자 및 기술자들은 신호선을 통해 전기 신호로서 정보를 송신하기보다는 도파관을 통해 또는 자유 공간을 통해 ER(electromagnetic radiation)로 인코딩되는 동일 정보를 송신하는데 사용될 수 있는 장치 및 물질을 조사중이다. 도파관을 통해 ER로 인코딩된 정보를 송신하는 것은 신호선들을 통해 전기 신호들을 송신하는 것에 비해 다수의 이점이 있다. 첫째, 도파관을 통해 송신되는 ER은 신호선을 통해 송신되는 전기 신호에 비해 열화 또는 손실이 훨씬 적다. 두 번째, 도파관은 신호선보다 휠씬 더 높은 대역폭을 지원하도록 제조될 수 있다. 예를 들면 단일 Cu 또는 Al 와이어는 단지 단일 전기신호를 송신할 수 있는 반면에, 단일 광섬유는 약 100 이상의 상이한 인코딩된 ER 신호를 송신하도록 구성될 수 있다.
재료 공학 및 반도체 제조 기법의 향상으로 인하여 PIC(photonic integrated circuit)를 형성하기 위하여 CMOS 회로와 같은 전자장치와 집적될 수 있는 광자 장치를 개발하는 것이 가능하게 되었다. 용어 "광자(photonic)"는 전자기 스펙트럼에 걸친 주파수로써 전형적으로 특징지어진 전자기 방사 또는 양자화된 전자기 방사와 동작할 수 있는 장치를 언급한다. PIC는 전자 집적회로의 광자 등가물이며, 반도체 물질의 웨이퍼 상에 구현될 수 있다. PIC를 효과적으로 구현하기 위하여, 수동 및 능동 광자 장치가 필요하다. 도파관 및 감쇠기는 마이크로전자 장치들 사이에 ER 전파를 지시하는데 사용될 수 있는 수동 광자 장치의 예이고, 광검출기는 ER에서 데이터를 인코딩하거나, 데이터 인코딩된 ER을 검출하거나, 또는 PIC의 소정 마이크로전자 장치 구성요소의 동작을 제어하는데 사용될 수 있는 능동 광자 장치의 예이다. 대부분의 광검출기는 p-n 또는 p-i-n 접합 반도체 포토다이오드(photodiodes)이다. 충분한 에너지를 가진 ER 펄스가 포토다이오드를 스트라이크할 때, 전자-정공(electron-hole)쌍이 생성된다. 그러면, 포토다이오드의 진성 전기장은 마이크로전자 장치의 동작을 제어하거나 또는 입사 ER 펄스의 존재를 증명하는데 사용될 수 있는 전류를 생성하는 접합 공핍 영역을 통해 반대 방향으로 전자 및 정공을 스위핑(sweeping)한다. 예를 들면 마이크로전자 장치와 전기 통신하는 포토다이오드는 전자기 방사의 대응하는 온 및 오프 펄스를 인가함으로써 장치를 턴온 및 턴오프시키는데 사용될 수 있다. 그러나 포토다이오드는 종종 높은 커패시턴스를 가지고, 그들을 매우 다양한 마이크로전자 장치에 포함시키는 것을 비현실적으로 만들 수 있는 증폭기 사용을 요구할 수 있다.
물리학자 및 기술자는 소정 마이크로전자 장치의 성능 및 동작을 향상시키는데 사용될 수 있는 광자 장치가 필요하다는 것을 인식해왔다.
본 발명의 다양한 실시예는 입사 ER을 수집하여, 마이크로전자 장치의 성능 및 동작을 향상시키는데 사용될 수 있는 표면 플라즈몬(surface plasmons)으로 변환하는데 사용될 수 있는 광자 장치에 관한 것이다. 본 발명의 일 실시예에서, 광자 장치는 상부면 및 바닥면을 가진 유전체층, 그리고 이 유전체층의 적어도 상부면 일부를 덮고 있는 플래너(planar) 나노와이어 네트워크를 포함한다. 유전체층의 바닥면은 기판의 상부면에 위치하고, 플래너 나노와이어 네트워크는 입사 전자기 방사를, 유전체층을 통해 적어도 기판 일부로 침투하는 표면 플라즈몬으로 변환하도록 구성된다.
도 1a는 본 발명의 실시예에 따라서 기판에 의해 지지되는 제1 광자 장치의 등각 투상도.
도 1b는 본 발명의 실시예에 따라서 도 1a에 도시된 제1 광자 장치 및 기판의 분해된 등각 투상도.
도 2는 본 발명의 실시예에 따라서 유전체층에 의해 지지되는 육각형 플래너 나노와이어 네트워크의 평면도.
도 3a는 본 발명의 실시예에 따라서 정사각형 플래너 나노와이어 네트워크를 도시하는 도면.
도 3b는 본 발명의 실시예에 따라서 오각형 플래너 나노와이어 네트워크를 도시하는 도면.
도 4는 본 발명의 실시예에 따라서, 도 1에 도시된 선 4-4을 따른 제1 광자 장치의 단면도.
도 5는 본 발명의 실시예에 따라서, 렌즈를 가진 제1 광자 장치의 단면도.
도 6a는 본 발명의 실시예에 따라서, 도 1에 도시된 제1 광자 장치의 플래너 나노와이어 네트워크상에 입사되는 전자기 방사를 도시하는 도면.
도 6b는 본 발명의 실시예에 따라서, 도 6a에 도시된 선 6B-6B을 따른 제1 광자 장치의 나노와이어의 단면도.
도 7a는 본 발명의 실시예에 따라서, 기판에 의해 지지되는 제2 광자 장치의 등각 투상도.
도 7b는 본 발명의 실시예에 따라서, 도 7a에 도시된 선 7B-7B를 따른 제2 광자 장치의 단면도.
도 8은 본 발명의 실시예에 따라서, 도 7a에 도시된 제2 광자 장치에 입사되는 전자기파의 전기장 성분을 도시하는 도면.
도 9a는 본 발명의 실시예에 따라서, 기판에 의해 지지되는 제3 광자 장치의 등각 투상도.
도 9b는 본 발명의 실시예에 따라서, 도 9a에 도시된 선 9B-9B를 따른 제3 광자 장치의 단면도.
본 발명의 다양한 실시예는 입사 ER을 수집하여, 마이크로전자 장치의 성능 및 동작을 향상시키는데 사용될 수 있는 표면 플라즈몬으로 변환하는데 사용될 수 있는 광자 장치에 관한 것이다. 이들 광자 장치의 크기는 일, 이 및 삼차원에서 감소될 수 있고, 여전히 비교적 큰 ER 캡처 단면을 보유한다. 도 1a는 본 발명의 실시예에 따라서 기판(102)에 의해 지지되는 제1 광자 장치(100)의 등각 투상도를 도시한다. 광자 장치(100)는 유전체층(104), 이 유전체층(104)의 적어도 상부면 일부를 덮고 있는 플래너 나노와이어 네트워크(106)를 포함하고, 또한 기판(102)과 접촉하지 않는 플래너 나노와이어 네트워크(106)의 표면을 덮으며, 플래너 나노와이어 네트워크(106)에 의해 덮어지지 않은 유전체층(104)의 일부를 덮는 선택적 무반사 코팅(108)을 포함할 수 있다. 선택적 무반사 코팅(108)은 입사 ER의 소정 파장의 반사율을 감소시킴으로써 광검출기의 효율성을 개선할 수 있다. 특히 파장 λ를 가진 입사 ER의 반사율을 감소시키기 위하여, 무반사 코팅은 약 λ/4의 두께로써 제조될 수 있다.
도 1b는 본 발명의 실시예에 따라서 도 1a에 도시된 광자 장치(100)와 기판(102)의 분해된 등각 투상도를 도시한다. 유전체층(104)은 기판(102) 및 무반사 코팅(108)으로부터 분리되어 도시된다. 또한 도 1b는 무반사 코팅(108) 내 플래너 나노와이어 네트워크(106)의 임프레션(impression)(110)을 나타내며, 무반사 코팅(108)이 플래너 나노와이어 네트워크(106)의 나노와이어들 간의 영역을 채우고 있음을 보여준다.
도 2는 본 발명의 실시예에 따라서 유전체층(104)에 의해 지지되는 플래너 나노와이어 네트워크(106)의 평면도를 도시한다. 플래너 나노와이어 네트워크(106)는 이 플래너 나노와이어 네트워크(106)의 중심으로부터 외부로 방사되는 대략 균일하게 이격된 6개의 방사형 나노와이어(201-206)를 포함한다. 각 방사형 나노와이어쌍은 대략 평행한 4개의 가로 나노와이어에 의해 상호연결되고, 가로 나노와이어는 4개의 동심 나노와이어 육각형을 형성하도록 구성되고, 여기서 각 방사 나노와이어는 나노와이어 육각형(201-206)의 각각의 정점을 교차한다. 예를 들면 가로 나노와이어(207)는 방사형 나노와이어(201, 202)를 상호연결하고, 가로 나노와이어(207-212)는 4개의 동심 나노와이어 육각형 중의 하나를 형성하고, 방사형 나노와이어(201)는 4개의 동심 나노와이어 육각형의 각각의 정점을 교차한다.
본 발명의 다른 실시예에서, 방사형 나노와이어의 수와 인접한 방사형 나노와이어들 간의 각도는 다양한 규칙적 형태의 플래너 나노와이어 네트워크를 구성하기 위하여 변경될 수 있다. 예를 들어 본 발명의 실시예에 따라서, 도 3a는 대략 균일하게 이격된 4개의 방사형 나노와이어로부터 형성된 정사각형 플래너 나노와이어 네트워크(302)를 도시하고, 도 3b는 대략 균일하게 이격된 5개의 방사형 나노와이어로부터 형성된 오각형 플래너 나노와이어 네트워크(304)를 도시한다. 또한 본 발명의 다른 실시예에서, 인접한 나노와이어들 간의 각도는 불규칙 형태의 플래너 나노와이어 네트워크를 형성하기 위하여 변경될 수 있고, 인접한 임의 방사형 나노와이어쌍을 상호연결하는 가로 나노와이어의 수가 변할 수 있다.
도 4는 본 발명의 실시예에 따라서 도 1에 도시된 선 4-4을 따라 광자 장치(100)와 기판(102)의 단면을 도시한다. 도 4에 도시된 바와 같이, 선택적 무반사 코팅(108)은 플래너 나노와이어 네트워크(106)의 나노와이어 세그먼트들 간의 공간을 채운다. 본 발명의 다른 실시예에서, 렌즈는 광자 장치(100) 상으로 보다 큰 영역 위로 입사되는 전자기 방사의 초점을 맞추기 위하여 광자 장치(100)의 상부 위에 배치될 수 있다. 도 5는 본 발명의 실시예에 따라서 광자 장치(100) 위에 퇴적된 렌즈(502)를 가진 광자 장치(100)의 단면을 도시한다. 본 발명의 소정 실시예에서, 렌즈(502)는 홀로그램 렌즈(holographic lens)일 수 있다.
플래너 나노와이어 네트워크가 도 4 및 도 5에 도시된 바와 같이 직사각형 단면을 가진 개별 나노와이어 세그먼트로써 도시되었지만, 플래너 나노와이어 네트워크의 나노와이어는 또한 정사각형, 원형, 타원형 또는 보다 복잡한 단면을 가질 수 있다. 또한 플래너 나노와이어 네트워크의 나노와이어 세그먼트는 다수의 상이한 폭 또는 직경, 그리고 종횡비 또는 이심률을 가질 수 있다. 용어 "나노와이어"는 서브-마이크로스케일 와이어, 마이크로스케일 와이어, 보다 큰 치수의 와이어를 가진 플래너 나노와이어 네트워크의 와이어, 또는 혼합 단면 치수를 가진 플래너 나노와이어 네트워크의 와이어를 언급할 수 있다. 예를 들면 가로 나노와이어는 나노스케일 치수를 가질 수 있지만, 방사형 나노와이어는 마이크로스케일 치수를 가진다.
플래너 나노와이어 네트워크는 금속과 반도체 물질, 또는 이들 유형의 물질의 결합으로부터, 그리고 다른 유형의 물질로부터 구성될 수 있다. 예를 들면 플래너 나노와이어 네트워크는 금, 은, 구리, 알루미늄, 티타늄, 백금 및 이의 합금을 포함한 금속으로부터 형성될 수 있다. 본 발명의 플래너 나노와이어 네트워크는 기계적 나노임프린팅(nanoimprinting) 및 리소그래픽 기법에 의해 제조될 수 있다. 이 대신에, 플래너 나노와이어 네트워크는 랭뮤어-브로짓(Langmuir-Blodgett) 처리를 포함한 하나 이상의 처리 단계에서 화학적으로 합성될 수 있고 퇴적될 수 있다. 또한 나노와이어를 제조하기 위한 다른 대안적 기법이 사용될 수 있다. 따라서 도 1에 도시된 바와 같은 플래너 나노와이어 네트워크는 다수의 잘 알려진 처리 중의 임의 처리에 의해 제조될 수 있다.
기판(102)은 반도체 또는 화합물 반도체 장치를 나타내거나, 또는 CMOS 장치의 금속 구성요소를 나타낼 수 있고, 광자 장치(100)는 이들 장치의 동작을 광자적으로 제어 또는 향상시키는데 사용될 수 있다. 예를 들면 기판(102)은 포토다이오드의 p-n 또는 p-i-n 접합을 나타낼 수 있고, 광자 장치(100)는 포토다이오드의 동작을 향상시키기 위해 사용될 수 있다. 기판(102)은 전계효과 트랜지스터의 금속 게이트이거나, 또는 커패시터의 바닥일 수 있고, 광자 장치는 전계효과 트랜지스터 또는 커패시터의 동작을 제어하는데 사용될 수 있다.
광자 장치(100)상에 입사하는 전자기 방사의 펄스는 다음과 같이 기판(102)에 의해 표현되는 장치의 동작을 향상시키는데 사용될 수 있다. 광자 장치(100)는 플래너 나노와이어 네트워크(106) 상에 입사되며 적당한 파장 범위 내 파장을 가진 전자기 방사가 플래너 나노와이어 네트워크(106)의 나노와이어 세그먼트에 의해 표면 플라즈몬으로 변하도록 구성될 수 있다. 플라즈몬은 금속에서 전자 플라즈마 진동의 양자화 상태에 대응하는 ER 모드이다. 표면 플라즈몬은 금속 표면상에 존재하는 전자 여기 모드이고, 세로 및 가로 구성요소의 모두를 가진다. 표면 플라즈몬은 고밀도 전기장 및 느린 그룹 속도의 특징을 보이므로, 가까운 전자-정공 쌍의 생성 레이트가 상당히 증가하게 된다. 표면 플라즈몬은 기판(102)에 의해 표현되는 광전자 장치 크기를 서브-파장 치수로 감소시킬 수 있게 하지만 입사 ER의 큰 유효 단면을 유지할 수 있게 한다. 감소된 물리적 치수의 한가지 당면한 장점은 기판(102)에 의해 표현되는 장치가 보다 신속하게 동작할 수 있게 하는 보다 낮은 진성 커패시턴스이다. 기판(102)이 광검출기 또는 포토트랜스듀서의 흡수층과 같이 광전자 장치의 활성 영역일 때, 기판(102)의 두께는 수십 나노미터로 감소될 수 있고, 여전히 파장 두께 흡수층의 흡수 속성을 유지할 수 있다. 얇은 기판(102)은 광-발생된 캐리어(즉 전자 및 정공)가 그들의 각 전극에 보다 신속하게 도달할 수 있게 하고, 이어서 내부 양자 효율성 및 장치 속도의 모두를 증가시킨다. 표면 플라즈몬이 플래너 나노와이어 네트워크의 나노와이어 세그먼트를 따라 전파된 후에 기판(102)의 기저 장치에 흡수되지 않는다면, 표면 플라즈몬은 금속에서 열로서 소산되거나, 또는 플래너 나노와이어 네트워크의 에지에 도달시에 자유 공간으로 재방사될 수 있다.
도 6a는 본 발명의 실시예에 따라서 광자 장치(100)의 플래너 나노와이어 네트워크(106)상에 입사되는 전자기 방사를 보여준다. 전자기 방사는 플래너 나노와이어 네트워크(106)와 유전체층(104)의 경계면을 따라 표면 플라즈몬을 형성하는 나노와이어와 상호작용한다. 표면 플라즈마는 가로 및 세로 전자기장 성분의 모두를 가진다. 자기장 성분은 경계면에 평행하고 전파 방향에 수직하는 반면, 전기장 성분은 표면 플라즈몬 전파 방향에 평행하고 경계면에 수직한다. 도 6b는 본 발명의 실시예에 따라서 도 6a에 도시된 선 6B-6B를 따라 나노와이어(602)의 단면을 도시한다. 곡선(604)은 전기장 성분이 나노와이어(603)로 침투하는 범위를 나타내고, 곡선(606)은 전기장 성분이 유전체층(104)을 통해 기판(102)으로 침투하는 범위를 나타낸다. 곡선(604, 606)은 어떻게 전기장 성분이 경계면(608)으로부터 지수적으로 감쇠하는 지를 보여준다.
방향 화살표(601-606)에 의해 지시되는 바와 같이, 가로 나노와이어의 경계면을 따라 형성된 표면 플라즈몬 일부는 방사형 나노와이어로 전파되고, 그 후에 플래너 나노와이어 네트워크(106)의 중심을 향해 방사형 나노와이어를 따라 전파된다. 표면 플라즈몬 강도는 포지티브 간섭 효과로 인하여 플래너 나노와이어 네트워크(106)의 중심을 향해 상당히 증가할 수 있다. 환언하면, 나노와이어 네트워크의 세그먼트에서 생성된 플라즈몬 일부는 관련된 플라즈마 진동을 가진 국부적으로 강한 전기장을 생성하기 위하여 네트워크의 중심에서 동일 위상으로 추가된다. 기판(102)으로 전기장이 침투함으로써, 광자 장치(100)의 중심 아래에서 전자-정공 쌍이 최대로 생성되는 광자 장치(100) 아래의 기판(102) 내에서 생성되는 양 및 레이트가 향상된다. 체적이 작은 공간에서 발생되는 이 증가된 생성 레벨 및 레이트는 기판(102)에 의해 표현되는 커패시터, 작은 커패시턴스 포토다이오드, 또는 전계효과 트랜지스터의 게이트의 동작을 향상시킨다.
본 발명의 다른 실시예에서, 광자 장치(100)의 플래너 나노와이어 네트워크, 유전체층 및 선택적 무반사 코팅은 중심 부근에 위치한 작은 금속 전극쌍을 가진 2차 유전체 격자(dielectric grating)에 의해 대체될 수 있다. 도 7a는 본 발명의 실시예에 따라서 기판(102)에 의해 지지되는 제2 광자 장치(700)의 등각 투상도를 도시한다. 광자 장치(700)는 광자 격자(photonic grating)(702), 제1 및 제2 전극(704, 706), 그리고 전극(704)과 전극(706) 사이에 끼워진 ER 흡수 물질(708)을 포함한다. 광자 격자(702)는 광자 격자판의 두께에 걸친 대략 규칙적으로 이격된 정사각 형태의 구멍 래티스(lattice of holes)를 포함한다. 예를 들면 구멍(710)은 광자 격자판의 두께에 걸쳐 있다. 도 7b는 본 발명의 실시예에 따라서 도 7a에 도시된 선 7B-7B을 따라 광자 장치(700)의 단면을 도시한다. 도 7b에 도시된 바와 같이, 광자 격자(702)는 기판(102)의 상부면에 의해 지지되고, 전극(704, 706)은 광자 격자(702)의 두께에 걸쳐 있도록 구성된다. 본 발명의 실시예는 도 7에 도시된 바와 같이 정사각형 래티스 구성으로 배치된 정사각 형태의 구멍으로 제한되지 않는다. 구멍은 직사각형, 원형, 타원형 또는 임의 다른 형태일 수 있고, 광자 격자(702) 내에서 입사 전자기 방사를 트래핑(trapping) 및 집결시키는데 적합한 임의 2차원 래티스 구성으로 배치될 수 있다.
ER 흡수 물질(708)은 반도체 또는 SiO2이 주입된 화합물 반도체와 같은 반도체, 화합물 반도체 또는 다공성 나노 물질로 구성될 수 있다. 전극(704, 706)은 금, 은, 구리, 알루미늄, 티타늄, 백금, 이의 합금, 반도체, 화합물 반도체, 또는 도전성 유기 물질로 구성될 수 있다. 전극은 전극과 흡수 물질(708) 간의 갭(gap)에 강한 전기장 성분을 가지는, 원하는 파장 범위의 국부적 플라즈몬 공진을 보여준다. 광자 격자(702)는 단일 유전체, 반도체 또는 화합물 반도체로 구성될 수 있다. 광자 격자를 위해 선택된 물질 유형은 필요한 광자 격자의 치수 및 구성, 또는 전파 방향
Figure 112010023722113-pct00001
및 편광과 같은 전자기 방사의 입사 빔과 관련된 모드 파라미터, 또는 입사 전자기 방사의 주파수 또는 파장 범위에 의존할 수 있다. 예를 들면 광자 격자는 SiO2, Al2O3, Si3N4, 유전체 중합체, 반도체, 화합물 반도체, 또는 임의 다른 적당한 물질로 구성될 수 있다. 화합물 반도체는 2원, 3원 또는 4원 II-VI 또는 III-V 반도체 화합물일 수 있다. 예를 들면 광자 격자(702)는 ZnTe 또는 CdSe, 양 II-VI 반도체 화합물, 또는 GaAs 또는 InP, 양 III-V 반도체 화합물로 구성될 수 있다. 광자 격자는 둘 이상의 층으로 구성될 수 있고, 여기서 각 층은 상이한 유전체, 반도체, 또는 반도체 화합물 물질로 구성될 수 있다. 예를 들면 광자 격자(702)는 AlGaAs의 두 층들 간에 끼워진 단일 GaAs 층으로 구성될 수 있다.
광자 격자판은 분자빔 에피택시 또는 화학 기상 증착을 사용하여 형성될 수 있다. 구멍 래티스는 다수의 잘 알려진 리소그래픽 및 에칭 기법 중의 하나를 사용하여 형성될 수 있다. 예를 들면 구멍 래티스는 반응성 이온 에칭, 집속 이온빔 밀링(focused ion-beam milling), 화학적 보조 이온빔 에칭, 전자빔 리소그래피, 포토리소그래피, 그리고 나노임프린트 리소그래피를 사용하여 판(slab)에서 형성될 수 있고, 이들 모두는 본 기술분야에서 모두 잘 알려져 있고, 필요한 구멍의 크기 및 형태를 기반으로, 그리고 판 물질을 기반으로 선택될 수 있다. 구멍은 공기 구멍일 수 있거나, 혹은 유전체, 반도체, 또는 광자 격자의 유전상수와 상이한 유전상수를 가진 반도체 화합물질로 다시 채워질 수 있다. 구멍은 물리적 또는 화학 기상 증착 기법을 사용하여 물질로 채워질 수 있다.
통상, 광자 격자의 동작 메카니즘은 유도 공진(guided resonance) 현상에 의존한다. 이들 유도 공진은 광자 격자판 내에 강하게 한정되고, 보다 낮은 반사율 구멍에 의해 생성된 주기적 인덱스 콘트라스트는 한정 모드로의 입사 광 결합과, 자유 공간으로의 유도 모드 스캐터링을 허용하는 위상 매칭 메카니즘을 제공하여, 공진에 유한한 수명을 제공한다. 유도 공진의 공진 주파수 및 수명이 광자 격자의 구조에 의해 결정되어, 엔지니어링 특정 광학 속성에 대한 방대한 융통성을 제공한다. 다음은 광자 격자의 동작에 관한 일반적 설명이며, 광자 격자에 입사하는 전자기 방사는 단일 입사 전자기파의 전기장 성분의 관점으로 표현된다.
도 8은 본 발명의 실시예에 따라서 광자 장치(700)의 광자 격자(702)에 입사하는 전자기파의 전기장 성분을 보여준다. 도 8에서, 축(804-806)은 데카르트 좌표축
Figure 112010023722113-pct00002
,
Figure 112010023722113-pct00003
,
Figure 112010023722113-pct00004
의 각각을 표현한다. 전자기파는 관련된 파동 벡터를 가진다:
Figure 112010023722113-pct00005
여기서 k는 입사 전자기파(802)의 파수(wave number)이고, 파라미터 θ 및 φ는 전자기파의 입사각이다. 입사 전자기파는 전형적으로 광자 격자(702)를 통해 전송된다. 그러나 특정 편광 및 파장 λ의 각 입사 전자기파에 대해, 전자기파가 광자 격자(702)를 통해 전송되지 않는 관련 입사각쌍 θ 및 φ가 있다. 대신에, 이들 전자기파는 광자 격자 래티스 구조와 결합하고, 광자 격자의 xy 평면 내에서 주파수 공진 모드를 가진다. 입사 전자기파가 광자 격자(702)의 평면에 수직한 방향일 때(즉 편각(polar angle) φ는 "0"), 방위각(azimuthal angle) θ에서 변동은 광자 격자와 입사 전자기파의 결합에 영향을 주지 않는다. 반면에, 입사 전자기파가 광자 격자(702)의 평면에 수직하지 않는 방향일 때, 광자 격자(702)가 입사 전자기파(802)에 투명한 다수의 입사 각 θ 및 φ이 있다. 예를 들면 광자 격자(702)로 입사하는 특정 편광 및 파장 λ0을 가진 전자기파(802)를 고려한다. 입사 전자기파(802)가 광자 격자(702)의 xy 평면 내에서 공진 주파수 fo를 가지는 입사각 θ0 및 φ0를 가진다고 가정한다. θ0 및 φ0와 다른 입사각을 가진 전자기파는 광자 격자(702)를 통해 전송된다. 광자 격자(702)는 전자기파에 대한 브래그 반사기(Bragg reflector)로서 기능하고, 광자 격자(702)는 파동 벡터각 θ0 및 φ0를 가진 이 전자기파에 투명하지 않다. 파동 벡터각 θ0 및 φ0를 가진 전자기파는 광자 격자(702) 내에 흡수되어 순환한다. 이 공진 현상은 광자 격자(702)에 의해 지원될 수 있는 전자기 방사 모드와 입사 전자기파(802) 간의 결합 결과이다.
공진 주파수 또는 공진 fo는 전자기파가 최대 진폭 Amax 또는 진동 에너지
Figure 112010023722113-pct00006
Figure 112010023722113-pct00007
를 가지고 진동하는 주파수이다. 공진 주파수 fo는 유전상수 ε, 래티스 상수, 구멍 폭, 그리고 광자 격자(702)의 두께에 의해 결정된다. "Q(quality)" 인자는 광자 격자의 공진의 선명도(sharpness)를 양적으로 평가하는 하나의 방법이다. Q 인자는 ER이 흡수되거나 또는 방사되어 버리기 전에 얼마나 오래 공진에서 트래핑되어 남아있는 지에 대한 측정치이다. Q 인자는 시스템이 에너지를 손실하는 레이트에 대해 시스템이 진동하는 주파수를 비교한다. 비교적 큰 Q 인자는 시스템의 공진 주파수에 비하여 낮은 에너지 소산 레이트를 나타낸다. 통상, Q 인자는 다음에 의해 표현된다:
Figure 112010023722113-pct00008
여기서 Δf는 물리적 시스템의 진동 에너지가 f0에서 최대 진동 에너지 Emax의 적어도 절반인 주파수 범위이다.
광자 격자(702)의 동작을 다시 참조하면, 입사 전자기 방사는 광자 격자(702)와 공진을 형성하기 위하여 적절한 입사각 및 파장으로써 선택될 수 있다. 이 전자기 방사는 광자 격자(702) 내에 트래핑 및 집결되고, ER 흡수 물질(708)에 의해 흡수될 비교적 긴 시간 주기를 가지며, 트래핑된 ER은 두 금속 전극(704, 706)과 흡수 물질(708) 사이의 갭 플라즈몬을 효율적으로 여기시킬 수 있다. 갭 프라즈몬과 관련된 전기장 성분은 도 6을 참조하여 전술한 바와 같이 전자-정공쌍의 형성을 일으키는 흡수 물질(708)과 전극들(704, 706) 사이의 영역에서 상당히 강하다. 전자와 정공은 전극(704)과 전극(706) 사이의 단거리(~10-50nm)만을 이동한다. 따라서 양자 효율성과 장치의 속도가 높아야 한다.
도 9a는 본 발명의 실시예에 따라서 기판(102)에 의해 지지되는 제3 광자 장치(900)의 등각 투상도를 도시한다. 광자 장치(900)는 4개의 동심 링(901-904), 그리고 두 전극(704, 706) 사이에 끼워진 ER 흡수 물질(708)을 포함하는 중심 영역(905)으로 구성된다. 도 9b는 본 발명의 실시예에 따라서 도 9a에 도시된 선 9B-9B을 따라 광자 장치(900)의 단면을 도시한다. 도 9b는 동심 링(901, 902) 사이의 갭(906)과 같이 동심 링들(901-904) 간의 갭들을 보여준다. 본 발명의 실시예는 동심 링(901-904)을 가진 광자 장치(900)로 제한되지 않는다. 본 발명의 다른 실시예에서, 동심 타원이 필요한 광자 장치의 종류 및 형태에 따라 사용될 수 있다.
광자 장치(900)는 단일 유전체, 반도체 또는 반도체 화합물질로 구성될 수 있다. 광자 격자를 위해 선택된 물질 유형은 필요한 광자 장치의 치수 및 구성, 또는 전파 방향
Figure 112010023722113-pct00009
및 편광과 같이 전자기 방사의 입사빔과 관련된 모드 파라미터, 또는 입사 전자기 방사의 주파수 또는 파장 범위에 의존할 수 있다. 광자 장치는 분자빔 에피택시 또는 화학 기상 증착을 사용하여 물질 판을 먼저 퇴적시킴으로써 형성될 수 있다. 동심 링(901-904)과 중심 영역(905) 사이의 갭은 다수의 잘 알려진 리소그래픽 및 에칭 기법 중의 하나를 사용하여 형성될 수 있다. 예를 들면 갭은 반응성 이온 에칭, 집속 이온빔 밀링, 화학보조 이온빔 에칭, 전자빔 리소그래피, 포토리소그래피 및 나노임프린트 리소그래피를 사용하여 형성될 수 있고, 이들 모두는 본 기술분야에 모두 잘 알려져 있고, 필요한 구멍의 크기 및 형태, 그리고 판 물질을 기반으로 선택될 수 있다. 갭은 공기 갭일 수 있거나, 또는 동심 링(901-904)의 유전상수와 상이한 유전상수를 가진 유전체, 반도체, 또는 화합물 반도체 물질로써 다시 채워질 수 있다. 갭은 물리적 또는 화학적 공기 증착 기법을 사용하여 물질로써 채워질 수 있다.
입사 전자기 방사는 광자 장치(900)와 공진을 형성하기 위하여 적절한 입사각 및 파장으로써 선택될 수 있다. 광자 격자(702)와 같이, 이 전자기 방사는 광자 장치(900) 내에 트래핑 및 집결된다. ER 흡수 물질(702)은 전극(704, 706) 상의 표면 플라즈몬 형성을 돕는다. 전극(704, 706)과 기판(102) 사이의 경계면에 형성된 표면 플라즈몬은 도 6을 참조하여 전술한 바와 같이 기판(102)에서 전자-정공 쌍의 형성을 향상시킨다.
전술한 설명은 설명을 위하여 본 발명의 철저한 이해를 제공하기 위해 특정 전문용어를 사용했다. 그러나 당업자는 특정 상세사항이 본 발명을 실행하기 위해 요구되지는 않는다는 것을 명백히 알 것이다. 본 발명의 특정 실시예의 전술한 설명은 도시 및 기술을 위하여 제시된다. 그들은 본 발명을 개시된 정밀한 형태로 제한하거나 또는 이를 총망라하려는 것이 아니다. 분명히, 다수의 변형 및 변경이 전술한 교시의 관점에서 가능하다. 실시예는 본 발명의 원리 및 그의 실제 적용을 가장 잘 설명하기 위하여 도시 및 기술되었으므로 다른 당업자가 고려하는 특정 용도에 맞도록 다양한 변형으로써 본 발명 및 다양한 실시예를 잘 이용할 수 있게 한다. 본 발명의 범주는 다음의 청구범위 및 그들의 등가물에 의해서만 정의된다.

Claims (10)

  1. 광자 장치(100)로서,
    상부면과 바닥면을 가진 유전체층(104) - 상기 유전체층의 바닥면이 기판(102)의 상부면 위에 위치됨 - ,
    상기 유전체층의 상부면의 적어도 일부를 덮고, 입사 전자기 방사를, 상기 유전체층을 통해 상기 기판의 적어도 일부로 침투하는 표면 플라즈몬들(surface plasmons)로 변환하도록 구성되는 플래너 나노와이어 네트워크(planar nanowire network)(106)
    를 포함하고,
    상기 플래너 나노와이어 네트워크(106)는
    다수의 방사형 나노와이어(201-206) - 각 나노와이어-방사형 바가 상기 플래너 나노와이어 네트워크의 중심 영역으로부터 밖으로 각각 연장됨 - , 및
    다수의 가로 나노와이어(207-212) - 각 나노와이어 크로스바가 두 인접한 나노와이어-방사형 바를 연결함 -
    를 더 포함하는,
    광자 장치.
  2. 제1항에 있어서,
    상기 플래너 나노와이어 네트워크(106)의 상부면 및 측면, 그리고 상기 유전체층(104)의 적어도 일부를 덮는 무반사 코팅(108)을 더 포함하는 광자 장치.
  3. 삭제
  4. 제1항에 있어서,
    상기 나노와이어-방사형 바들 및 나노와이어 크로스바들은 다각형 구성, 또는 입사 전자기 방사를 표면 플라즈몬들로 변환하기 위한 임의의 다른 구성을 형성하도록 배치되는 광자 장치.
  5. 제1항에 있어서,
    상기 기판(102)은
    커패시터의 바닥,
    전계효과 트랜지스터의 게이트,
    포토다이오드,
    포토트랜스듀서, 및
    표면 플라즈몬에 의해 변형된 컨덕턴스(conductance)를 가진 임의의 물질
    중의 하나를 더 포함하는 광자 장치.
  6. 광자 장치(700)로서,
    광자 격자(photonic grating) 내 특정 파장 범위에 걸쳐 입사 전자기 방사를 집결시키도록 구성된 다수의 개구부(710)를 가지며 기판의 상부면에 위치한 상기 광자 격자(702),
    상기 광자 격자에 매립된 적어도 두 전극(704, 706), 및
    상기 광자 격자 내 집결된 전자기 방사가 상기 적어도 두 전극 상의 표면 플라즈몬들로 변환되도록 상기 적어도 두 전극들 사이에 위치된 전자기 방사 흡수 물질(708)
    을 포함하고,
    상기 표면 플라즈몬들은 상기 기판의 적어도 일부로 침투할 수 있는 광자 장치.
  7. 제6항에 있어서,
    상기 광자 격자(702)는 유전체 물질판을 더 포함하는 광자 장치.
  8. 제6항에 있어서,
    상기 다수의 개구부(710)는 상기 광자 격자를 통해 연장되는 사실상 규칙적으로 이격된 다수의 구멍을 더 포함하는 광자 장치.
  9. 제6항에 있어서,
    상기 다수의 개구부(710)는 유전체 물질의 동심 링들 간에 사실상 균일하게 이격된 다수의 개구부를 더 포함하는 광자 장치.
  10. 제6항에 있어서,
    상기 전자기 방사 흡수 물질(708)은
    반도체들,
    화합물 반도체들,
    다공성 나노 물질들, 및
    유기 물질들
    을 더 포함하는 광자 장치.
KR1020107008114A 2007-10-15 2008-10-15 마이크로전자 장치의 성능 향상을 위한 플라즈몬 고속 장치 KR101517423B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/974,746 2007-10-15
US11/974,746 US8357980B2 (en) 2007-10-15 2007-10-15 Plasmonic high-speed devices for enhancing the performance of microelectronic devices
PCT/US2008/011783 WO2009051732A1 (en) 2007-10-15 2008-10-15 Plasmonic high-speed devices for enhancing the performance of microelectronic devices

Publications (2)

Publication Number Publication Date
KR20100069681A KR20100069681A (ko) 2010-06-24
KR101517423B1 true KR101517423B1 (ko) 2015-05-04

Family

ID=40534291

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107008114A KR101517423B1 (ko) 2007-10-15 2008-10-15 마이크로전자 장치의 성능 향상을 위한 플라즈몬 고속 장치

Country Status (6)

Country Link
US (1) US8357980B2 (ko)
JP (1) JP5222950B2 (ko)
KR (1) KR101517423B1 (ko)
CN (1) CN101821652B (ko)
DE (1) DE112008002737B4 (ko)
WO (1) WO2009051732A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063396B2 (en) * 2009-04-30 2011-11-22 University Of Seoul Industry Cooperation Foundation Polariton mode optical switch
FR2966925B1 (fr) * 2010-11-03 2012-11-02 Commissariat Energie Atomique Detecteur infrarouge a base de micro-planches bolometriques suspendues
US8797662B2 (en) * 2010-12-14 2014-08-05 Micron Technology, Inc. Apparatuses and devices for absorbing electromagnetic radiation, and methods of forming the apparatuses and devices
CN102933015B (zh) * 2012-11-16 2017-02-08 上海交通大学 一维纳米结构极化增强放电电极
KR102202223B1 (ko) * 2013-10-31 2021-01-13 엘지전자 주식회사 광 흡수체, 이미지 센서 및 태양 전지
US9733188B2 (en) 2015-09-21 2017-08-15 International Business Machines Corporation Enhancing on-chip fluorescence detection
CN105372756A (zh) * 2015-11-25 2016-03-02 广西师范大学 一种光学增益的金纳米线增强表面等离子体的传播装置
US9885888B2 (en) * 2016-02-08 2018-02-06 International Business Machines Corporation Integrated microwave-to-optical single-photon transducer with strain-induced electro-optic material
CN109509954A (zh) * 2019-01-04 2019-03-22 桂林电子科技大学 一种基于费马旋臂结构的人工表面等离激元波导
JP7150275B2 (ja) * 2019-02-25 2022-10-11 株式会社デンソー 受光素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625729A (en) 1994-08-12 1997-04-29 Brown; Thomas G. Optoelectronic device for coupling between an external optical wave and a local optical wave for optical modulators and detectors
US5962863A (en) 1993-09-09 1999-10-05 The United States Of America As Represented By The Secretary Of The Navy Laterally disposed nanostructures of silicon on an insulating substrate
JP2001108612A (ja) 1999-10-12 2001-04-20 Junkosha Co Ltd 表面プラズモン共鳴センサ
JP2007248141A (ja) 2006-03-14 2007-09-27 Toshiba Corp 受光素子及び光配線lsi

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555622A (en) * 1982-11-30 1985-11-26 At&T Bell Laboratories Photodetector having semi-insulating material and a contoured, substantially periodic surface
GB9929752D0 (en) * 1999-12-17 2000-02-09 Secr Defence Textured surface
US6462950B1 (en) * 2000-11-29 2002-10-08 Nokia Mobile Phones Ltd. Stacked power amplifier module
TW506083B (en) * 2001-11-28 2002-10-11 Ind Tech Res Inst Method of using nano-tube to increase semiconductor device capacitance
US7106935B2 (en) * 2002-01-07 2006-09-12 Seagate Technology Llc Apparatus for focusing plasmon waves
GB0210065D0 (en) * 2002-05-02 2002-06-12 Koninkl Philips Electronics Nv Electronic devices comprising bottom gate tft's and their manufacture
US7161168B2 (en) * 2002-07-30 2007-01-09 The Regents Of The University Of California Superlattice nanopatterning of wires and complex patterns
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7416993B2 (en) * 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
CN100474038C (zh) * 2003-09-18 2009-04-01 日本电气株式会社 光学元件
KR100853067B1 (ko) 2004-04-05 2008-08-19 닛본 덴끼 가부시끼가이샤 포토 다이오드와 그 제조 방법
JPWO2005100445A1 (ja) * 2004-04-16 2008-03-06 Jsr株式会社 光半導体封止用組成物、光半導体封止材および光半導体封止用組成物の製造方法
US20060065989A1 (en) * 2004-09-29 2006-03-30 Thad Druffel Lens forming systems and methods
US7329871B2 (en) * 2005-02-04 2008-02-12 Stc.Unm Plasmonic enhanced infrared detector element
CN1921151A (zh) * 2005-08-26 2007-02-28 中国科学院半导体研究所 一种近场光学增强型可见光探测器
CN101438419B (zh) * 2006-03-13 2012-02-22 日本电气株式会社 光电二极管、用于制造这种光电二极管的方法、光学通信设备和光学互连模块
US20080014689A1 (en) * 2006-07-07 2008-01-17 Texas Instruments Incorporated Method for making planar nanowire surround gate mosfet
US8235537B2 (en) * 2007-08-31 2012-08-07 The United States Of America, As Represented By The Secretary Of The Navy Plasmonic retroreflectors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962863A (en) 1993-09-09 1999-10-05 The United States Of America As Represented By The Secretary Of The Navy Laterally disposed nanostructures of silicon on an insulating substrate
US5625729A (en) 1994-08-12 1997-04-29 Brown; Thomas G. Optoelectronic device for coupling between an external optical wave and a local optical wave for optical modulators and detectors
JP2001108612A (ja) 1999-10-12 2001-04-20 Junkosha Co Ltd 表面プラズモン共鳴センサ
JP2007248141A (ja) 2006-03-14 2007-09-27 Toshiba Corp 受光素子及び光配線lsi

Also Published As

Publication number Publication date
WO2009051732A1 (en) 2009-04-23
JP5222950B2 (ja) 2013-06-26
JP2011501433A (ja) 2011-01-06
DE112008002737B4 (de) 2015-05-21
US8357980B2 (en) 2013-01-22
CN101821652B (zh) 2012-12-19
DE112008002737T5 (de) 2010-07-22
US20090097798A1 (en) 2009-04-16
KR20100069681A (ko) 2010-06-24
CN101821652A (zh) 2010-09-01

Similar Documents

Publication Publication Date Title
KR101517423B1 (ko) 마이크로전자 장치의 성능 향상을 위한 플라즈몬 고속 장치
JP4694753B2 (ja) 垂直型金属半導体マイクロ共振器による光検出装置およびその製造方法
US7800193B2 (en) Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module
EP1010997B1 (en) Three-dimensional periodical structure, its manufacturing method, and method of manufacturing film
US20090253227A1 (en) Engineered or structured coatings for light manipulation in solar cells and other materials
US11437531B2 (en) Photodetector
CN114153029B (zh) 一种基于连续域束缚态的光栅结构
CN114265146A (zh) 实现片上单光子源的微腔-波导耦合结构及其设计方法
LU100953B1 (en) Photodetector
US20230207727A1 (en) Photon source and method of fabricating a photon source
CN1168152C (zh) 无光栅耦合的n型GaAs/AlGaAs多量子阱红外焦平面器件
Zhang et al. Plasmonic-photonic hybrid nanodevice
JP2006032787A (ja) 光電変換素子
Noda et al. III–V based-semiconductor photonic crystals
JP2023505716A (ja) テラヘルツ信号又はピコ秒電気パルス用の3次元光伝導トランスデューサ
Leclercq et al. Surface operating photonic devices based on 2D photonic crystal: toward 2.5 dimensional microphotonics
CN116937320A (zh) 增强随机激光面内辐射方向性的复合结构、激光器及方法
CN117091697A (zh) 一种用于量子阱探测器的宽带微腔阵列耦合结构及其制备方法
Dubey Passive and Active Optical Components for Optoelectronics Based on Porous Silicon
Noda et al. Semiconductor Photonic Crystals
Dubey Optical Components for Optoelectronics Based on Porous Silicon
Letartre et al. Surface operation photonic devices based on two dimensional InP membrane photonic crystals
JP2017011242A (ja) 光検出装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 5