KR101508042B1 - Method of improving low temperature property of biodiesel from vegetable oils and animal fats with a high content of saturated fatty acids - Google Patents

Method of improving low temperature property of biodiesel from vegetable oils and animal fats with a high content of saturated fatty acids Download PDF

Info

Publication number
KR101508042B1
KR101508042B1 KR20120125297A KR20120125297A KR101508042B1 KR 101508042 B1 KR101508042 B1 KR 101508042B1 KR 20120125297 A KR20120125297 A KR 20120125297A KR 20120125297 A KR20120125297 A KR 20120125297A KR 101508042 B1 KR101508042 B1 KR 101508042B1
Authority
KR
South Korea
Prior art keywords
biodiesel
saturated fatty
fatty acid
acid methyl
methyl ester
Prior art date
Application number
KR20120125297A
Other languages
Korean (ko)
Other versions
KR20140058884A (en
Inventor
이영화
장영석
김광수
조현준
박광근
이기택
신정아
장화
Original Assignee
대한민국(농촌진흥청장)
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장), 충남대학교산학협력단 filed Critical 대한민국(농촌진흥청장)
Priority to KR20120125297A priority Critical patent/KR101508042B1/en
Publication of KR20140058884A publication Critical patent/KR20140058884A/en
Application granted granted Critical
Publication of KR101508042B1 publication Critical patent/KR101508042B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Fats And Perfumes (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

본 발명은 포화지방산 함량이 높은 동물성 및 식물성 유지 바이오디젤의 저온유동성 개선방법에 관한 것으로서, 더욱 상세하게는 포화지방산 메틸에스테르 함량이 높은 바이오디젤에 요소와 메탄올을 첨가하여 포화지방산 메틸에스테르 함량을 저감시켜 바이오디젤의 저온유동성을 개선하는 방법, 그리고 포화지방산 메틸에스테르 함량이 저감된 바이오디젤에 이차적으로 첨가제(CFPP-depressant additives)를 혼합하여 저온필터막힘점(CFPP)을 개선하는 방법을 복합적으로 적용하여 그 효율성을 극대화함으로써 바이오디젤의 저온유동성을 크게 개선하는 방법에 관한 것이다. 본 발명에 의하면 포화지방산 메틸에스테르 함량이 높은 바이오디젤의 저온필터막힘점을 개선함으로써 국내 환경조건에서 보다 유리한 연료유로 적용 가능한 바이오디젤을 얻을 수 있다.The present invention relates to a method for improving the low-temperature fluidity of an animal and vegetable oil-retained biodiesel having a high saturated fatty acid content, and more particularly, to a method for reducing saturated fatty acid methyl ester content by adding urea and methanol to biodiesel having a high saturated fatty acid methyl ester content (CFPP) by mixing the additives (CFPP-depressant additives) to the biodiesel with reduced saturated fatty acid methyl ester content, and a method of improving the low temperature filter clogging point Thereby greatly improving the low temperature fluidity of the biodiesel by maximizing its efficiency. According to the present invention, it is possible to obtain a biodiesel which can be applied to a fuel flow channel more favorable in domestic environmental conditions by improving the low temperature filter clogging point of biodiesel having a high saturated fatty acid methyl ester content.

Description

포화지방산 고함유 동·식물성 유지 유래 바이오디젤의 저온유동성 개선방법{Method of improving low temperature property of biodiesel from vegetable oils and animal fats with a high content of saturated fatty acids}TECHNICAL FIELD The present invention relates to a method for improving the low temperature fluidity of biodiesel derived from vegetable and animal fats and oils having a high content of saturated fatty acids,

본 발명은 동물성 및 식물성 바이오디젤에서 분획방법을 이용하여 포화지방산 메틸에스테르를 저감함으로써 동·식물성 바이오디젤의 저온필터막힘점을 개선하는 방법과, 포화지방산 메틸에스테르가 저감된 바이오디젤에 첨가제(CFPP-depressant additives)를 혼합하는 것을 포함하는 저온필터막힘점(CFPP) 개선 방법으로, 바이오디젤의 포화도 저감과 첨가제 혼합을 통해 저온필터막힘점 개선효과를 극대화하는 것을 특징으로 하는 동·식물성 유지 유래 바이오디젤의 저온필터막힘점을 개선하는 방법에 관한 것이다.
The present invention relates to a method for improving the low-temperature filter clogging point of a plant / plant biodiesel by reducing a saturated fatty acid methyl ester by using a fractionation method in animal and vegetable biodiesel, The present invention relates to a method for improving the low-temperature filter clogging point (CFPP), which comprises mixing a low-temperature filter clogging point (CFPP) Temperature filter clogging point of the diesel.

석유를 대체할 수 있는 바이오매스 에너지원 중 하나로, 바이오디젤이 주목받고 있다. 바이오디젤은 보통 메탄올을 이용해 3가의 지방산에 글리세롤이 결합한 트라이글리세리드로부터 글리세롤을 분리한 다음, 지방산에스테르를 만들어내는 에스테르 교환방법을 통하여 제조되고 있다. 즉, 바이오디젤은 지방산메틸에스테르(FAME)의 혼합물로서, 석유에서 추출한 디젤과 물성이 유사하면서도 환경오염물질인 방향족 화합물의 배출량이 크게 낮으며, 무엇보다도 재생 가능한 에너지원이라는 장점이 있다. 그러나, 바이오디젤은 저온유동성이 좋지 않아 낮은 온도조건에서 응집이 쉽게 되고, 이는 자동차용 연료로 적용시 연료 필터가 막히는 문제를 발생시키고 있다.
Biodiesel is one of the biomass energy sources that can replace petroleum. Biodiesel is produced by transesterification, in which glycerol is separated from triglycerides in which glycerol is bonded to trivalent fatty acids using methanol, and then fatty acid esters are produced. In other words, biodiesel is a mixture of fatty acid methyl ester (FAME), which has similar physical properties to petroleum-derived diesel, but also has a significantly lower emission of aromatic compounds as environmental pollutants, and above all, it has the advantage of being a renewable energy source. However, since biodiesel has poor low-temperature fluidity, coagulation is easy under low temperature conditions, which causes a problem that the fuel filter is clogged when applied to automotive fuel.

바이오디젤의 낮은 저온유동성은 포화지방산 메틸에스테르 및 불포화지방산 메틸에스테르의 함량과 관련이 있다. 즉, 포화지방산 메틸에스테르의 함량이 높고 불포화지방산 메틸에스테르의 함량이 낮은 바이오디젤은 저온 필터 막힘점(Cold Flow Plug Point, CFPP)이 높아 저온유동성 면에서 불량한 물성을 갖는다. 특히, 팜유 유래 바이오디젤은 포화지방산 메틸에스테르의 함량이 높아 CFPP가 높은데, 이는 동물성 유지에 함유된 포화지방산의 비율 때문이다. 통상 돈지와 우지는 포화지방산 비율이 각각 36 % 와 50 %에 이르고 있다. 따라서 바이오디젤, 특히 동물성 바이오디젤을 자동차용 연료로 적용하기 위해서는 포화지방산 메틸에스테르의 함량을 낮추는 것이 중요하다.
The low and low temperature fluidity of biodiesel is related to the content of saturated fatty acid methyl esters and unsaturated fatty acid methyl esters. That is, biodiesel having a high content of saturated fatty acid methyl esters and a low content of unsaturated fatty acid methyl esters has a low cold filter plug point (CFPP), which is poor in low temperature fluidity. In particular, palm oil-derived biodiesel has a high content of saturated fatty acid methyl esters and thus a high CFPP due to the proportion of saturated fatty acids contained in animal fats. In general, the proportion of saturated fatty acids in lard and woji is 36% and 50%, respectively. Therefore, in order to apply biodiesel, especially animal biodiesel, as fuel for automobiles, it is important to lower the content of saturated fatty acid methyl esters.

종래기술로서 중간 증류물 연료에서의 담점을 저하시키기 위한, 유용성 극성 질소 화합물과 유용성 지방족 화합물의 혼합물이 한국 특허 공개번호 2012-0011034에 개시되어 있다.
As a prior art, a mixture of an oil-soluble polar nitrogen compound and an oil-soluble aliphatic compound for lowering the cloud point in a middle distillate fuel is disclosed in Korean Patent Publication No. 2012-0011034.

본 발명자들은 포화지방산 함량이 높은 동물성 및 식물성 바이오디젤의 저온유동성을 개선할 수 있는 연구를 거듭한 결과, 바이오디젤에 요소를 첨가하여 포화지방산 메틸에스테르를 침전물의 형태로 제거하면 포화지방산 메틸에스테르의 함량을 저감할 수 있어 식물성 바이오디젤의 저온필터막힘점을 낮출 수 있음을 알게 되었고, 또한 포화지방산 메틸에스테르 함량이 저감된 바이오디젤에 첨가제(CFPP-depressant additives)를 혼합하면 바이오디젤의 저온필터막힘점을 크게 낮출 수 있고, 그 효율성을 극대화 할 수 있음을 알게 되어 본 발명을 완성하였다.
As a result of studies to improve the low temperature fluidity of animal and vegetable biodiesel having high saturated fatty acid content, it has been found that when saturated fatty acid methyl ester is removed in the form of a precipitate by adding urea to biodiesel, (CFPP-depressant additives) to the biodiesel with reduced saturated fatty acid methyl ester content, it was found that the low temperature filter clogging of the biodiesel could be prevented by adding the additive (CFPP-depressant additives) It has been found that the point can be largely lowered and the efficiency can be maximized, thus completing the present invention.

본 발명은 a) 포화지방산 함량이 높은 동물성 및 식물성 유지 유래 바이오디젤에 요소를 첨가하는 단계; b) 상기 바이오디젤에 함유된 포화지방산 메틸에스테르와 요소가 응집되어 포접화합물을 형성하는 단계; c) 상기 포접화합물을 제거하는 단계; 및 d) 포접화합물이 제거된 바이오디젤에 첨가제를 혼합하는 단계; 를 포함하는 바이오디젤의 저온유동성 개선방법으로, 연료유로 적용 가능한 포화지방산 메틸에스테르 함량이 높은 동·식물성 유지 유래 바이오디젤의 저온유동성 개선방법을 제공한다.
The present invention relates to a method for the production of biodiesel, comprising: a) adding an urea to an animal and vegetable oil-derived biodiesel having a high saturated fatty acid content; b) the saturated fatty acid methyl ester and urea contained in the biodiesel are aggregated to form an inclusion compound; c) removing the inclusion compound; And d) mixing the additive in the biodiesel with the inclusion compound removed; The present invention provides a method for improving low-temperature fluidity of biodiesel derived from vegetable or vegetable oils, which has a high saturated fatty acid methyl ester content applicable to a fuel flow path.

본 발명에 따른 바이오디젤의 저온유동성 개선방법은 바이오디젤에 함유된 포화지방산 메틸에스테르를 저감시킨 후 첨가제(CFPP-depressant additives) 혼합을 통해 보다 효과적으로 저온필터막힘점을 크게 낮춤(팜유 바이오디젤: 12 ℃ → -42 ℃; 우지 바이오디젤: 10 ℃ → -32 ℃)으로써 저온유동성을 개선한다.
The method of improving the low-temperature fluidity of the biodiesel according to the present invention significantly reduces the low-temperature filter clogging point by mixing the additives (CFPP-depressant additives) after reducing the saturated fatty acid methyl ester contained in the biodiesel (palm oil biodiesel: 12 ° C → -42 ° C; Uji Biodiesel: 10 ° C → -32 ° C) to improve low-temperature fluidity.

도 1은 본 발명에 따른 바이오디젤의 저온유동성 개선방법을 단계별로 나타낸 순서도이다.
도 2는 팜유 및 우지 유래 바이오디젤에 포화도 저감 후, 첨가제(Flozol® 515 또는 Infineum R408)를 처리하여 저온유동성을 개선한 다음, -15 ℃ 냉동실에서 저온경과시험 전면사진이다.
도 3은 팜유 및 우지 유래 바이오디젤에 포화도 저감 후, 첨가제(Flozol® 515 또는 Infineum R408)를 처리하여 저온유동성을 개선한 다음, -15 ℃ 냉동실에서 저온경과시험 윗면사진이다.
FIG. 1 is a flowchart showing steps of improving the low-temperature fluidity of biodiesel according to the present invention.
FIG. 2 is a photograph of the front side of the low temperature progress test in a -15 ° C freezing room after improving the low temperature fluidity by treating additives such as Flozol 515 or Infineum R408 after reducing the degree of saturation to palm oil and woji derived biodiesel.
FIG. 3 is a photograph of the top side of a low-temperature progress test in a -15 ° C freezer after treatment with additives (Flozol® 515 or Infineum R408) after lowering the degree of saturation to palm oil and woji-derived biodiesel.

본 발명은 국내 환경조건에서 연료유로 적용 가능하도록 포화지방산 메틸에스테르 함량이 높은 바이오디젤의 저온유동성을 개선하는 방법을 제공한다.
The present invention provides a method for improving the low-temperature fluidity of biodiesel having a high saturated fatty acid methyl ester content so as to be applicable to a fuel flow path under domestic environmental conditions.

본 발명은 a) 포화지방산 메틸에스테르 함량이 높은 동물성 및 식물성 유지 유래 바이오디젤에 요소와 메탄올을 첨가하는 단계; b) 상기 바이오디젤에 함유된 포화지방산 메틸에스테르와 요소가 응집되어 포접화합물을 형성하는 단계; c) 상기 포접화합물을 제거하는 단계; 및 d) 포접화합물이 제거된 바이오디젤에 첨가제를 혼합하는 단계; 를 포함하는 바이오디젤의 저온유동성 개선방법을 제공한다.
The present invention relates to a process for the preparation of a food product comprising the steps of: a) adding urea and methanol to an animal and vegetable oil-derived biodiesel having a high saturated fatty acid methyl ester content; b) the saturated fatty acid methyl ester and urea contained in the biodiesel are aggregated to form an inclusion compound; c) removing the inclusion compound; And d) mixing the additive in the biodiesel with the inclusion compound removed; Temperature fluidity improvement of biodiesel comprising the steps of:

본 발명의 "바이오디젤"은 동물성 유지 및 포화지방산 메틸에스테르를 높게 함유하는 식물성 유지 유래 바이오디젤로서 통상적으로 사용되는 것을 포함한다. The term " biodiesel "of the present invention includes those commonly used as vegetable oil-derived biodiesel containing animal fat and saturated fatty acid methyl esters.

본 발명의 바이오디젤과 요소의 중량비는 1 내지 2 : 1 내지 3이며, 바람직하게는 1 : 3 일 수 있다.
The weight ratio of the biodiesel to the urea of the present invention may be 1 to 2: 1 to 3, preferably 1: 3.

본 발명의 "포접화합물"은 분자의 3차원 구조에 생긴 틈에 다른 원자 또는 분자가 화학결합에 의하지 않고 들어가 거의 일정한 조성의 결정구조를 이루는 물질을 의미한다.
"Inclusion compound" of the present invention means a substance in which another atom or molecule enters into a gap formed in the three-dimensional structure of the molecule without forming a chemical bond and forms a crystal structure of almost constant composition.

본 발명의 "첨가제" 에틸렌과 비닐 아세테이트의 공중합체 또는 다른 올레핀-에스테르 공중합체를 포함하는 것을 특징으로 하는 CFPP-depressant additives로서, 통상적으로 사용되는 것을 포함하며 Flozol® 515 (The Lubrizol Corporation, Wickliffe, OH), Infineum R408 (Infineum International Ltd., Abingdon, United Kingdom), Bioflow 875 (Octel Sterron, Newark, DE), MCC P205 (Midcontinental chemical, Overland Park, KS), 및 Arctic Express 0.25% (Power Service, Weatherford, TX)일 수 있다.
"Additives" of the present invention CFPP-depressant additives characterized by comprising copolymers of ethylene and vinyl acetate or other olefin-ester copolymers, including Flozol 515 (The Lubrizol Corporation, Wickliffe, OH), Infineum R408 (Infineum International Ltd., Abingdon, United Kingdom), Bioflow 875 (Octel Sterron, Newark, DE), MCC P205 (Midcontinental chemical, Overland Park, KS), and Arctic Express 0.25% , TX).

상기 첨가제는 1,000 내지 5,000 ppm를 혼합할 수 있으며, 바람직하게는약 3,000 ppm이고, 특히 3,000 ppm를 혼합할 수 있다.
The additive may be mixed with 1,000 to 5,000 ppm, preferably about 3,000 ppm, especially 3,000 ppm.

본 발명의 일실시예에서 팜유 유래 바이오디젤을 제조한 후, 서로 다른 조건으로 분획하고 요소/메탄올 용액을 넣는다. 그 후, 바이오디젤과 요소/메탄올 용액의 혼합물을 1,500 내지 2,500 rpm으로 3 내지 7 분간 원심분리 하여 액상과 고체상을 분리한다. 바람직하게는 2,000 rpm으로 5 분간 원심분리한다. 이와 같은 과정을 반복, 상온과 -2 내지 2 ℃의 분획 온도 조건에서 3차 연속 분획하여 포화지방산 함량을 낮출 수 있다. 포화지방산 함량은 액상 층의 지방산 메틸에스테르를 추출하여 산출한다. 포화지방산 메틸에스테르 함량이 저감된 후, 추가로 수분과 불순물을 제거할 수 있으며 일 예로 안하이드로스 소디움 설페이트 컬럼을 이용할 수 있다.
In one embodiment of the present invention, biodiesel derived from palm oil is prepared and fractionated under different conditions, and a urea / methanol solution is added. Thereafter, the mixture of biodiesel and urea / methanol solution is centrifuged at 1,500 to 2,500 rpm for 3 to 7 minutes to separate the liquid phase and the solid phase. Preferably, centrifugation is carried out at 2,000 rpm for 5 minutes. Such a process can be repeatedly performed at a room temperature and a fractionation temperature of -2 to 2 캜 for a third continuous fraction to lower the saturated fatty acid content. Saturated fatty acid content is calculated by extracting the fatty acid methyl ester of the liquid phase. After the saturated fatty acid methyl ester content is reduced, further moisture and impurities can be removed, and an anhydrous sodium sulfate column can be used as an example.

본 발명은 상기와 같은 방법으로 제조된 바이오디젤을 제공한다.
The present invention provides a biodiesel produced by the above method.

이하 본 발명을 상세히 설명하면 다음과 같다.
Hereinafter, the present invention will be described in detail.

단, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다.However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited by the following examples.

<< 실시예Example 1> 팜유 유래 바이오디젤 제조 1> Biodiesel production from palm oil

(주)오뚜기(Ottogi Co, Ltd.)에서 제조한 산가(acid value)가 0.4이고 과산화물가(peroxide value)가 2.5±0.6인 팜유를 바이오디젤 합성에 이용하였다.
Palm oil having an acid value of 0.4 and a peroxide value of 2.5 ± 0.6, manufactured by Ottogi Co, Ltd., was used for biodiesel synthesis.

팜유와 메탄올에서 몰비 1: 15의 비율(팜유 50 g: 메탄올 28.95 g)을 취한 후, KOH 5 g(팜유의 1 %, w/w)을 첨가하고 65 ℃에서 30 분간 반응하여 바이오디젤을 획득하였다. 이때 얻은 팜유 유래 바이오디젤의 포화지방산 함량은 50.1 % 였다.
5 g of KOH (1% w / w of palm oil) was added to the mixture of palm oil and methanol at a molar ratio of 1:15 (palm oil 50 g: methanol 28.95 g), followed by reaction at 65 ° C for 30 minutes to obtain biodiesel Respectively. The saturated fatty acid content of palm oil-derived biodiesel obtained at this time was 50.1%.

<< 실시예Example 2 ~ 6> 2 to 6>

실시예 1에서 얻은 바이오디젤과 요소의 혼합 중량비는 하기 표 1과 같았다.
The mixing weight ratio of biodiesel and urea obtained in Example 1 was as shown in Table 1 below.

팜유 유래 바이오디젤과 요소의 혼합 중량비Mixed weight ratio of biodiesel and urea derived from palm oil 팜유BD* Palm oil BD * 요소: MeOH Element: MeOH 분획 조건Fraction condition 온도(℃)Temperature (℃) 처리시간(h)Processing time (h) 실시예Example 2 2 2 g2 g 6 g: 30 6 g: 30 mLmL 상온Room temperature 22 실시예 3Example 3 2 g2 g 6 g: 30 mL6 g: 30 mL 상온Room temperature 1717 실시예 4Example 4 2 g2 g 6 g: 30 mL6 g: 30 mL 00 22 실시예Example 5 5 2 g2 g 6 g: 30 6 g: 30 mLmL 00 1717 실시예 6Example 6 2 g2 g 2 g: 10 mL
1 g: 5 mL
1 g: 5 mL
2 g: 10 mL
1 g: 5 mL
1 g: 5 mL
상온Room temperature 각각 5분씩 3차
연속 원심분리
3 minutes each for 5 minutes
Continuous centrifugation

*BD: 바이오디젤
* BD: Biodiesel

상기 실시예 2 ~ 5는 팜유 유래 바이오디젤 2 g에 메탄올 10 mL과 요소 6 g을 첨가하여 80 ℃ 항온수조(온도계 65 ℃)에 용해시킨 후, 서로 다른 분획조건(상온, 0 ℃, 2 시간, 17 시간)에서 방치하였다. 원심분리를 이용하여 액상과 고체상(침전물)을 분리한 후, 얻어진 액상을 50 mL 바이알에 옮겼다. 액상 층의 지방산 메틸에스테르를 추출하기 위하여 헥산 10 mL와 증류수 15 mL를 첨가하여 교반(vortex)하고, 원심분리법을 통해 층 분리 후 상층(헥산)은 안하이드로스 소디움 설페이트(anhydrous sodium sulfate) 컬럼을 이용하여 수분과 불순물을 제거하였다. 다시 하층을 회수하여 헥산 10 mL을 첨가한 후 모두 2 회 추출하였다. 용매를 질소를 이용하여 완전히 제거한 후, 얻은 바이오디젤의 무게(g)/원료 팜유의 무게(g)로 생산 수율(wt%)을 계산하였다.
In Examples 2 to 5, 10 g of methanol and 6 g of urea were added to 2 g of biodiesel derived from palm oil and dissolved in a constant temperature water bath (temperature: 65 ° C) at 80 ° C, and then subjected to different fractionation conditions (room temperature, , 17 hours). The liquid phase and the solid phase (precipitate) were separated using centrifugation, and the obtained liquid phase was transferred to a 50 mL vial. To extract the fatty acid methyl esters of the liquid phase, add 10 mL of hexane and 15 mL of distilled water, vortex and centrifuge to separate the upper layer (hexane) from the anhydrous sodium sulfate column To remove moisture and impurities. The lower layer was recovered, and 10 mL of hexane was added thereto, followed by extraction twice. After the solvent was completely removed by using nitrogen, the production yield (wt%) was calculated from the weight (g) of the obtained biodiesel / the weight (g) of the raw palm oil.

상기 실시예 6은 팜유 유래 바이오디젤 2 g에 요소/메탄올 용액(20 g/100 mL) 10 mL을 넣어 2000 rpm으로 5 분간 원심분리하여 액상과 제 1 고체상을 분리하고, 분리한 액상층에 5 mL 요소/메탄올 용액을 넣고 2000 rpm으로 5 분간 원심분리하여 액상층과 제 2 고체상을 분리하였고, 다시 분리된 액상층에 5 mL 요소/메탄올 용액을 넣어 액상층과 제 3 고체상으로 분리함으로써 3차 연속식으로 포화지방산 메틸에스테르 함량을 낮추었다. 포화지방산 메틸에스테르 함량이 저감된 액상층의 추출과 수율계산은 실시예 2 ~ 5와 같은 방법으로 수행하였다.
In Example 6, 10 mL of urea / methanol solution (20 g / 100 mL) was added to 2 g of palm oil-derived biodiesel and the mixture was centrifuged at 2000 rpm for 5 minutes to separate the liquid phase and the first solid phase. mL urea / methanol solution and centrifuged at 2000 rpm for 5 minutes to separate the liquid phase and the second solid phase. The liquid phase separated again into the liquid phase and the third solid phase by adding 5 mL urea / methanol solution to the separated liquid phase, The saturated fatty acid methyl ester content was lowered continuously. The extraction of the liquid phase in which the saturated fatty acid methyl ester content was reduced and the yield were calculated in the same manner as in Examples 2 to 5.

상기 팜유 유래 바이오디젤에 요소를 첨가하기 전 기체크로마토그래피로 분석한 결과와 팜유 유래 바이오디젤에 요소를 첨가하고 침전물을 제거하여 얻은 액상부분을 정제한 후 기체크로마토그래피로 분석한 결과를 표 2에 나타내었다.
From the results of analysis by gas chromatography before adding urea to biodiesel derived from palm oil and by adding urea to biodiesel derived from palm oil and removing the precipitate, the liquid phase portion was purified and analyzed by gas chromatography. The results are shown in Table 2 Respectively.

팜유 유래Derived from palm oil 바이오디젤에 포화도 Saturation on biodiesel 저감Abatement 후의 지방산  Subsequent fatty acids 메틸에스테르Methyl ester 조성 분석 결과 Composition analysis result 구분division 팜유BD*Palm oil BD * 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 지방산메틸에스테르 조성Fatty acid methyl ester composition C12:0C12: 0 0.4±0.10.4 ± 0.1 0.6±0.20.6 ± 0.2 0.5±0.10.5 ± 0.1 0.6±0.30.6 ± 0.3 0.2±0.30.2 ± 0.3 0.6±0.10.6 ± 0.1 C14:0C14: 0 1.2±01.2 ± 0 1.7±0.61.7 ± 0.6 1.4±0.21.4 ± 0.2 1.2±0.21.2 ± 0.2 0.4±0.60.4 ± 0.6 1.3±0.31.3 ± 0.3 C16:0C16: 0 43±043 ± 0 17±1.817 ± 1.8 11±011 ± 0 9.5±3.69.5 ± 3.6 5.9±2.35.9 ± 2.3 5±1.85 ± 1.8 C16:1C16: 1 0.4±0.10.4 ± 0.1 0.5±00.5 ± 0 0.7±0.30.7 ± 0.3 0.5±00.5 ± 0 0.3±0.40.3 ± 0.4 0.6±0.10.6 ± 0.1 C18:0C18: 0 5±0.25 ± 0.2 0.6±00.6 ± 0 0.1±0.20.1 ± 0.2 0.5±0.10.5 ± 0.1 0.2±0.20.2 ± 0.2 0±00 ± 0 C18:1C18: 1 38.1±0.338.1 ± 0.3 58.9±158.9 ± 1 63.5±063.5 ± 0 64.1±1.564.1 ± 1.5 63.6±0.263.6 ± 0.2 67.3±0.767.3 ± 0.7 C18:2C18: 2 10.9±010.9 ± 0 19.7±0.119.7 ± 0.1 21.8±0.221.8 ± 0.2 23.2±1.423.2 ± 1.4 29±4.129 ± 4.1 24.4±0.624.4 ± 0.6 C20:0C20: 0 0.4±0.10.4 ± 0.1 0±00 ± 0 0±00 ± 0 0±00 ± 0 0±00 ± 0 0±00 ± 0 C18:3C18: 3 0.3±0.10.3 ± 0.1 0.5±00.5 ± 0 0.5±0.10.5 ± 0.1 0±00 ± 0 0.2±0.30.2 ± 0.3 0.3±00.3 ± 0 C20:1C20: 1 0.3±00.3 ± 0 0.6±00.6 ± 0 0.6±0.10.6 ± 0.1 0.5±0.20.5 ± 0.2 0.2±0.30.2 ± 0.3 0.5±0.10.5 ± 0.1 포화도(%)Saturation (%) 50.150.1 19.919.9 1313 11.711.7 6.76.7 6.96.9 불포화도(%)Unsaturation (%) 49.949.9 80.180.1 8787 88.388.3 93.393.3 93.193.1 붚포화 지방산 중 회수율(%)회 Recovery rate of saturated fatty acids (%) -- 4343 41.541.5 37.537.5 35.535.5 9.59.5

*BD: 바이오디젤* BD: Biodiesel

상기 표 2에서 실시예 2와 실시예 3은 요소를 첨가한 후 상온에서 2 시간, 17 시간 동안 분획한 것이고, 실시예 4와 실시예 5는 요소를 첨가한 후 0 ℃에서 2 시간, 17 시간 분획한 것이며, 실시예 6은 요소를 첨가하며 상온에서 3 차 연속적으로 분획한 결과이다.In Table 2, Example 2 and Example 3 were obtained by adding urea and then fractionating at room temperature for 2 hours and 17 hours. In Example 4 and Example 5, after adding urea, And Example 6 is a result of third continuous fractionation at room temperature with addition of urea.

상기 표 2에서 보는 바와 같이 시간, 온도, 분획 회수 등 세 가지 조건 모두 포화지방산 메틸에스테르 저감에 영향을 주었다.
As shown in Table 2, all three conditions such as time, temperature, and fraction recovery affected the reduction of saturated fatty acid methyl esters.

포화지방산인 미리스트산(myristic acid, C14:0), 팔미트산(palmitic acid, C16:0) 및 스테아린산(stearic acid, C18:0)은 온도가 같을 때 시간이 증가함에 따라 분획이 잘 되고 온도가 낮아짐에 따라 포화도가 더 잘 감소하였으며, 3차 연속 분획하면 시간이 적게 소요되고 포화도 또한 많이 감소하지만 회수율이 낮았다. 한편, 요소 결정 석출 형태를 보았을 때 용해-냉각 온도 차이가 크면(0 ℃ 분획) 결정 석출 시간이 짧고 결정이 부드럽고 반대로 용해-냉각 온도 차이가 작으면(상온 분획) 결정이 천천히 생성되고 결정형태가 상대적으로 컸다.
Palmitic acid (C16: 0) and stearic acid (C18: 0), saturated fatty acids, myristic acid (C14: 0) The lower the temperature, the better the degree of saturation. The third sequential fractionation takes less time and the saturation degree is also reduced, but the recovery rate is lower. On the other hand, when the urea-cooling temperature difference is large (0 ° C fraction), the crystallization time is short and the crystal is smooth. On the contrary, when the dissolution-cooling temperature difference is small (room temperature fraction) It was relatively large.

팜유 유래 바이오디젤의 시간, 온도에 따른 분획물과 3 차 연속식 분획물의 회수율(%) 및 지방산 메틸에스테르의 함량을 보면 팜유 유래 바이오디젤에는 포화지방산 메틸에스테르가 50.1 % 함유되어 있는데, 실시예 2에서는 얻어진 분획물의 회수율이 39.8 ~ 46.5 % 이며, 그 중 불포화 메틸에스테르의 함량은 79.4 ~ 80.8 % 함유하고 있었다.The palm oil-derived biodiesel contained 50.1% of saturated fatty acid methyl ester, while the recovery rate (%) and the fatty acid methyl ester content of the fraction, the third continuous fraction, and the fatty acid methyl ester content of biodiesel derived from palm oil were 50.1% The recovered fraction of the obtained fraction was 39.8 to 46.5%, and the content of the unsaturated methyl ester was 79.4 to 80.8%.

실시예 3에서는 얻어진 분획물의 회수율이 41.3 ~ 41.8 % 이며, 그 중 불포화 메틸에스테르의 함량은 87 ~ 87.1 % 함유하고 있었다.
In Example 3, the recovered fraction of the obtained fractions was 41.3 to 41.8%, and the content of unsaturated methyl esters thereof was 87 to 87.1%.

실시예 4에서는 얻어진 분획물의 회수율이 35.7 ~ 34.6 % 이며 그 중 불포화 메틸에스테르의 함량은 86.1 ~ 90.50 % 함유하고 있었다.
In Example 4, the recovery rate of the obtained fractions was 35.7 to 34.6%, and the content of unsaturated methyl esters was 86.1 to 90.50%.

실시예 5에서는 얻어진 분획물의 회수율이 34.8 ~ 36.5 % 이며, 그 중 불포화 메틸에스테르의 함량은 91.9 ~ 95.7 % 함유하고 있었다.
In Example 5, the recovered fraction of the obtained fraction was 34.8 to 36.5%, and the unsaturated methyl ester content thereof contained 91.9 to 95.7%.

실시예 6에서는 얻어진 분획물의 수율이 8.1 ~ 10.8 % 이며 그 중 불포화 메틸에스테르의 함량은 92.1 ~ 94.1 % 함유하고 있었다.
In Example 6, the yield of the obtained fractions was 8.1 to 10.8%, and the content of unsaturated methyl esters was 92.1 to 94.1%.

실시예 2 ~ 6에서 최적조건을 나타내는 실시예 5는 -17 ℃에서 액상 상태인 바이오디젤의 포화지방산 함량과 비슷하여, 요소를 첨가하여 포화지방산 메틸에스테르를 효과적으로 감소할 수 있음을 알 수 있었다.
Example 5 showing the optimum conditions in Examples 2 to 6 was similar to the saturated fatty acid content of biodiesel in liquid state at -17 ° C, and it was found that the addition of urea effectively reduced saturated fatty acid methyl ester.

<< 실시예Example 8 ~ 9> 8 to 9>

실시예Example 2와  2 and 실시예Example 5에 첨가제 혼합 전, 후  5, before and after the additive mixture CFPPCFPP (( 저온필터막힘점Low temperature filter clogging point ) 분석) analysis 바이오디젤(포화도)Biodiesel (Saturation) CFPP(℃) 분석CFPP (° C) analysis 바이오디젤(포화도) + 첨가제(Flozol® 515, 3,000 ppm)Biodiesel (Saturation) + Additive (Flozol® 515, 3,000 ppm) CFPP(℃) 분석CFPP (° C) analysis 팜유BD* (50.1 %)Palm Oil BD * (50.1%) 1212 팜유BD (50.1 %)Palm Oil BD (50.1%) 99 실시예 2 (19.9 %)Example 2 (19.9%) -2-2 실시예 8 (19.9 %)Example 8 (19.9%) -9-9 실시예 5 (6.7 %)Example 5 (6.7%) -7-7 실시예 9 (6.7 %)Example 9 (6.7%) -42-42

*BD: 바이오디젤* BD: Biodiesel

상기 표 3은 팜유 유래 바이오디젤, 실시예 2(불포화도는 가장 낮지만 회수율이 가장 높은 시료)와 실시예 5(불포화도는 가장 높고 회수율도 비교적 높은 시료)에 대해 CFPP을 분석한 결과와 팜유 유래 바이오디젤, 실시예 2 및 실시예 5에 첨가제 혼합(Flozol® 515, 3,000 ppm) 후 CFPP를 분석한 결과이다.
Table 3 shows the results of analysis of CFPP for biodiesel derived from palm oil, Example 2 (the sample having the lowest unsaturation degree but the highest recovery rate) and Example 5 (the sample having the highest unsaturation degree and the comparatively high recovery rate) Diesel, and CFPP after addition of additives (Flozol 515, 3,000 ppm) in Examples 2 and 5.

상기 표 3에서 보는 바와 같이 팜유 유래 바이오디젤의 CFPP는 12 ℃ 이며, 첨가제 혼합(Flozol® 515, 3,000 ppm) 후 CFPP는 9 ℃로 CFPP 개선효과가 거의 없었다.
As shown in Table 3, CFPP of biodiesel derived from palm oil was 12 ° C, and CFPP had no improvement effect at 9 ° C after addition of additives (Flozol® 515, 3,000 ppm).

반면에 팜유 유래 바이오디젤의 포화지방산 메틸에스테르가 저감(실시예 2, 실시예 5)될수록 CFPP가 각각 -2 ℃ 및 -7 ℃로 개선되었다. 특히, 포화지방산 메틸에스테르가 저감된 바이오디젤에 첨가제를 혼합(실시예 8, 실시예 9)하면 CFPP가 각각 -9 ℃ 및 -42 ℃까지 떨어져 저온유동성 개선효과가 극대화되었다.
On the other hand, as the saturated fatty acid methyl ester of palm oil derived biodiesel was reduced (Example 2, Example 5), CFPP improved to -2 캜 and -7 캜, respectively. Particularly, when the additive was mixed with the biodiesel in which the saturated fatty acid methyl ester was reduced (Examples 8 and 9), CFPP fell to -9 ° C and -42 ° C, respectively, and the effect of improving the low temperature fluidity was maximized.

우지Uji 유래 바이오디젤의 포화도  Saturation of derived biodiesel 저감Abatement 및 첨가제 혼합 전, 후 CFPP( And before and after the addition of the additive CFPP ( 저온필터막힘점Low temperature filter clogging point ) 분석) analysis 바이오디젤 (포화도) Biodiesel (Saturation) CFPP(℃) 분석CFPP (° C) analysis 바이오디젤 + 첨가제
(Infineum R408, 3,000 ppm)
Biodiesel + Additive
(Infineum R408, 3,000 ppm)
CFPP(℃) 분석CFPP (° C) analysis
우지BD(50%)Uji BD (50%) 1010 우지BD(50%) Uji BD (50%) 99 우지BD(6%)Uji BD (6%) -26-26 우지BD(6%) Uji BD (6%) -32-32

상기 표 4는 우지 유래 바이오디젤에 포화도 저감 후 CFPP을 분석한 결과와 포화도 저감 및 첨가제 혼합(Infineum R408, 3,000 ppm) 후 CFPP를 분석한 결과이다.
Table 4 shows the results of analysis of CFPP after saturation reduction of biodiesel derived from Uji and analysis of CFPP after saturation reduction and addition of additives (Infineum R408, 3,000 ppm).

상기 표 4에서 보는 바와 같이 우지 유래 바이오디젤의 CFPP는 10 ℃ 이며, 첨가제 혼합(Infineum R408, 3,000 ppm) 후 CFPP는 9 ℃로 CFPP 개선효과가 거의 없었다.
As shown in Table 4, the CFPP of the biodiesel derived from Uji was 10 ° C, and the addition of the additive (Infineum R408, 3,000 ppm) did not improve the CFPP at 9 ° C.

반면에 우지 유래 바이오디젤의 포화지방산 50 %에서 6 %로 저감할 경우 CFPP가 각각 -26 ℃로 개선되었으며, 포화도 저감 후 첨가제(Infineum R408, 3,000 ppm)를 혼합하면 CFPP가 -32 ℃까지 떨어져 첨가제의 저온유동성 개선효과가 극대화되었다.
On the other hand, CFPP was improved to -26 ° C when the saturated fatty acid of biodiesel derived from Uji was reduced from 50% to 6%, and when the additive (Infineum R408, 3,000 ppm) was added after saturation reduction, CFPP fell to -32 ° C, The effect of improving low temperature fluidity was maximized.

상기 팜유 및 우지 유래 바이오디젤의 포화도 저감 후, 첨가제를 처리하여 -15℃ 냉동실에서 저온유동성을 시험한 결과를 도 2 및 도 3에 나타내었다.
After lowering the saturation of the palm oil and the woji-derived biodiesel, the additive was treated and the low temperature fluidity was tested in a -15 ° C freezer, and the results are shown in FIG. 2 and FIG.

그 결과 상기 실시예에 따른 포화지방산 메틸에스테르가 저감된 우지 유래 바이오디젤(포화도 6 %) 및 팜유 유래 바이오디젤(포화도 6,7 %)의 저온유동성이 통상적인 우지 유래 바이오디젤 및 팜유 유래 바이오디젤의 저온유동성에 비하여 현저히 개선되었다. 도 2 및 도 3에서, -15.6 ℃에서 통상적인 우지 유래 바이오디젤 및 팜유 유래 바이오디젤은 응고된 반면, 포화지방산 메틸에스테르가 저감된 후, 첨가제가 처리된 우지 유래 바이오디젤 및 팜유 유래 바이오디젤은 응고되지 않았음을 확인하였다.As a result, low-temperature fluidity of bamboo-derived biodiesel (saturated 6%) and palm oil-derived biodiesel (saturated 6% and 7%) in which the saturated fatty acid methyl ester according to the above example was reduced was lower than that of conventional biodiesel derived from woji and biodiesel derived from palm oil Temperature fluidity of &lt; / RTI &gt; In Figs. 2 and 3, typical Uji-derived biodiesel and palm oil-derived biodiesel treated with additive after the saturated fatty acid methyl ester had been reduced while coagulating the normal Uji-derived biodiesel and palm oil-derived biodiesel at -15.6 deg. It was confirmed that it was not solidified.

Claims (8)

a) 바이오디젤과 요소의 중량비가 1 : 1 내지 3이 되도록 바이오디젤에 요소를 첨가하고 이에 메탄올을 더 첨가하는 단계;
b) 상기 바이오디젤에 함유된 포화지방산 메틸에스테르와 요소가 응집되어 포접화합물을 형성하고 -2 내지 2 ℃의 분획 온도 조건에서 방치하는 단계;
c) 상기 포접화합물을 제거하는 단계; 및
d) 포접화합물이 제거되어 상대적으로 불포화지방산 메틸에스테르가 집적된 바이오디젤에 에틸렌과 비닐 아세테이트의 공중합체 또는 다른 올레핀-에스테르 공중합체를 포함하는 첨가제를 혼합하는 단계; 를 포함하는 바이오디젤의 저온유동성 개선방법.
a) adding urea to biodiesel so that the weight ratio of biodiesel to urea is 1: 1 to 3, and further adding methanol thereto;
b) allowing the saturated fatty acid methyl ester and the urea contained in the biodiesel to aggregate to form an inclusion compound and leaving at a fractionation temperature of -2 to 2 캜;
c) removing the inclusion compound; And
d) mixing an additive comprising a copolymer of ethylene and vinyl acetate or another olefin-ester copolymer to the biodiesel wherein the inclusion compound is removed and the relatively unsaturated fatty acid methyl ester is integrated; Wherein the low temperature fluidity improving method of the biodiesel comprises:
제 1 항에 있어서,
상기 바이오디젤은 동물성 유지 및 포화지방산 메틸에스테르를 함유하는 식물성 유지 유래 바이오디젤인 바이오디젤의 저온유동성 개선방법.
The method according to claim 1,
Wherein the biodiesel is a vegetable oil-derived biodiesel containing an animal fat and saturated fatty acid methyl ester.
삭제delete 삭제delete 제 1 항에 있어서,
상기 첨가제는 3,000 ppm를 혼합하는 것을 특징으로 하는 바이오디젤의 저온유동성 개선방법.
The method according to claim 1,
Wherein the additive is mixed at 3,000 ppm.
제 1 항에 있어서,
상기 포접화합물은 1,500 내지 2,500 rpm으로 3 내지 7 분 동안 원심분리 하여 제거한 것을 특징으로 하는 바이오디젤의 저온유동성 개선방법.
The method according to claim 1,
Wherein the inclusion compound is removed by centrifugation at 1,500 to 2,500 rpm for 3 to 7 minutes.
제 1 항에 있어서,
단계 c)를 거친 후, 추가로 수분과 불순물을 제거하는 것을 특징으로 하는 바이오디젤의 저온유동성 개선방법.
The method according to claim 1,
And after step c), further removing moisture and impurities.
제 1 항 내지 제 2 항 및 제 5 항 내지 제 7 항 중 어느 한 항에 의하여 제조된 바이오디젤.
A biodiesel produced by any one of claims 1 to 2 and 5 to 7.
KR20120125297A 2012-11-07 2012-11-07 Method of improving low temperature property of biodiesel from vegetable oils and animal fats with a high content of saturated fatty acids KR101508042B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20120125297A KR101508042B1 (en) 2012-11-07 2012-11-07 Method of improving low temperature property of biodiesel from vegetable oils and animal fats with a high content of saturated fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20120125297A KR101508042B1 (en) 2012-11-07 2012-11-07 Method of improving low temperature property of biodiesel from vegetable oils and animal fats with a high content of saturated fatty acids

Publications (2)

Publication Number Publication Date
KR20140058884A KR20140058884A (en) 2014-05-15
KR101508042B1 true KR101508042B1 (en) 2015-04-07

Family

ID=50888949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120125297A KR101508042B1 (en) 2012-11-07 2012-11-07 Method of improving low temperature property of biodiesel from vegetable oils and animal fats with a high content of saturated fatty acids

Country Status (1)

Country Link
KR (1) KR101508042B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230122738A (en) 2022-02-15 2023-08-22 주식회사 엘씨그린텍 Method for producing biodiesel using waste oil and biodiesel produced thereby

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060123683A (en) * 2006-11-07 2006-12-04 김학로 Biodiesel manufacturing method with improved low temperature fluidity
JP2010516627A (en) * 2007-01-17 2010-05-20 ポス パイロット プラント コーポレイション Method for separating saturated and unsaturated fatty acids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060123683A (en) * 2006-11-07 2006-12-04 김학로 Biodiesel manufacturing method with improved low temperature fluidity
JP2010516627A (en) * 2007-01-17 2010-05-20 ポス パイロット プラント コーポレイション Method for separating saturated and unsaturated fatty acids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230122738A (en) 2022-02-15 2023-08-22 주식회사 엘씨그린텍 Method for producing biodiesel using waste oil and biodiesel produced thereby

Also Published As

Publication number Publication date
KR20140058884A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
Silitonga et al. Schleichera oleosa L oil as feedstock for biodiesel production
DE60023710T2 (en) A one-phase process for the preparation of fatty acid methyl esters from mixtures of triglycerides and fatty acids
EP1985684B1 (en) Process to obtain Biodiesel fuel with improved properties at low temperature and comprising glycerine acetates
US6642399B2 (en) Single-phase process for production of fatty acid methyl esters from mixtures of triglycerides and fatty acids
KR101194982B1 (en) A biofuel composition, process of preparation and a method of fueling thereof
Smith et al. Improving the low-temperature properties of biodiesel: Methods and consequences
EP2114851B1 (en) Process for separating saturated and unsaturated fatty acids
KR101420414B1 (en) Palm-Based Biodiesel Formulation
Dunn Improving the cold flow properties of biodiesel by fractionation
US20090183420A1 (en) Biodiesel fuel for cold, temperate and hot weather climates and for aviation jet fuel
KR20090045243A (en) Preparation of fatty acid esters of glycerol formal and its use as biofuel
RU2009105665A (en) COMBINED METHOD FOR PRODUCING BIOFUELS FROM VARIOUS TYPES OF RAW MATERIALS AND RELATED PRODUCTS
El-Boulifi et al. Fatty acid alkyl esters and monounsaturated alcohols production from jojoba oil using short-chain alcohols for biorefinery concepts
US20090199462A1 (en) Method for separating saturated and unsaturated fatty acid esters and use of separated fatty acid esters
KR101508042B1 (en) Method of improving low temperature property of biodiesel from vegetable oils and animal fats with a high content of saturated fatty acids
KR101353895B1 (en) Method of making biodiesel with good low-temperature performance from palm oil
Kouame Comparative characterization of Jatropha, soybean and commercial biodiesel
Canoira et al. Nitration of biodiesel of waste oil: Nitrated biodiesel as a cetane number enhancer
DE202005020492U1 (en) Vegetable oil, useful as diesel fuel, comprises soybean oil, rapeseed oil, Jatropha oil and/or sun flower oil, and a fatty acid alkyl ester mixture, coco oil and/or palm kern oil
KR20160045467A (en) Method of making drilling fluid from fat and oil in biomass
GB2475786A (en) Diesel fuel formulation with a biofuel content
JPWO2006016492A1 (en) Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel
KR20080017226A (en) Modifier for biodiesel fuel, fuel, methods relating to those
EP2099888B1 (en) Reconstitution of triglycerides for use as fuel in diesel engines
WO2007079765A1 (en) Vegetable oil diesel fuel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180219

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190226

Year of fee payment: 5