KR101353895B1 - Method of making biodiesel with good low-temperature performance from palm oil - Google Patents

Method of making biodiesel with good low-temperature performance from palm oil Download PDF

Info

Publication number
KR101353895B1
KR101353895B1 KR20070008991A KR20070008991A KR101353895B1 KR 101353895 B1 KR101353895 B1 KR 101353895B1 KR 20070008991 A KR20070008991 A KR 20070008991A KR 20070008991 A KR20070008991 A KR 20070008991A KR 101353895 B1 KR101353895 B1 KR 101353895B1
Authority
KR
Grant status
Grant
Patent type
Prior art keywords
palm
making
biodiesel
oil
good
Prior art date
Application number
KR20070008991A
Other languages
Korean (ko)
Other versions
KR20080070988A (en )
Inventor
강신영
박환호
김창국
Original Assignee
에스케이이노베이션 주식회사
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing or organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing or organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing or organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels
    • Y02E50/13Bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Bio-feedstock

Abstract

본 발명은 팜오일로부터 저온유동성이 양호한 바이오디젤을 생산하는 방법에 관한 것으로, 보다 상세하게는 팜오일로부터 제조된 팜바이오디젤 (또는 팜지방산)을 증류하여 C16 팜바이오디젤(또는 C16팜지방산)과 C18 팜바이오디젤(또는 C18팜지방산)로 분리하여, 저온유동성이 열악한 C16 팜바이오디젤(또는 C16팜지방산)을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시켜, 경유 배합재로 활용하는 방법에 관한 것이다. The present invention by distillation to a method of producing the low-temperature fluidity and good bio-diesel from palm oil, more particularly palm biodiesel (or palm fatty acid) produced from palm oil C16 Palm biodiesel (or C16 palm fatty acid) and separated by C18 palm biodiesel (or C18 palm fatty acid), followed by the hydrogenation reaction to the low-temperature fluidity is poor C16 palm biodiesel (or C16 palm fatty acid), a method of utilizing a, via blended material was converted to the C15 / C16 paraffin mixture It relates.
식물유, 유채유, 대두유, 팜오일, 바이오디젤, 지방산, 에스테르, 파라핀, 필터막힘점, 유동점, 가수분해, 수첨반응, 경유, 배합재, 저온유동성 Vegetable oil, rapeseed oil, soybean oil, palm oil, biodiesel, fatty acids, esters, paraffins, filter plugging point, pour point, hydrolysis, hydrogenation, diesel, blended material, low-temperature fluidity

Description

팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법 {Method of making biodiesel with good low-temperature performance from palm oil} Method for producing a good low temperature fluidity of biodiesel from palm oil {Method of making biodiesel with good low-temperature performance from palm oil}

도1은 대두유를 사용한 국내 바이오디젤 생산 공정도이다 Figure 1 is a domestic biodiesel production process diagram using soybean oil

도2는 팜오일을 활용한 저온유동성이 양호한 바이오디젤 생산 공정도이다. 2 is a process chart showing the low-temperature fluidity and good biodiesel production utilize palm oil.

도3는 C16 팜지방산의 수첨반응실험 장치의 구성도이다. Figure 3 is a block diagram of a C16 fatty acid hydrogenation test farm of the device.

도4는 C16 팜바이오디젤과 C15/C16 n-파라핀 혼합물의 경유 혼합비율별 필터막힘점을 나타낸 그래프이다. Figure 4 is a graph showing the C16 Palm biodiesel and C15 / C16 n- paraffins mixture via the mixing ratio of the specific filter plugging point.

도5은 식물유별 가격 추이를 나타낸 그래프이다. Figure 5 is a graph showing a classification plant price trends.

본 발명은 팜오일로부터 저온유동성이 양호한 바이오디젤을 생산하는 방법에 관한 것으로, 좀 더 구체적으로 팜오일로부터 제조된 팜바이오디젤(또는 팜지방산)을 C16 팜바이오디젤(또는 C16팜지방산)과 C18팜바이오디젤(또는 C18팜지방산)로 분리하여, 저온유동성이 열악한 C16팜바이오디젤(또는 C16팜지방산)을 수첨반응시 켜 파라핀 혼합액으로 전환하여 경유 배합재로 활용하는 방법에 관한 것이다. The present invention relates to a method of producing a low-temperature fluidity and good bio-diesel from palm oil, more specifically made from palm oil Palm biodiesel (or palm fatty acid) C16 Palm biodiesel (or C16 palm fatty acid) and C18 separated by palm biodiesel (palm fatty acid or C18), relates to a method of utilizing a re-blended via a low-temperature fluidity is poor C16 palm biodiesel (palm fatty acid or C16), switch to turn on paraffin mixture during the hydrogenation reaction.

바이오디젤은 식물유(트리글리세라이드)가 염기촉매하에서 메탄올로 트랜스에스테르화되면서 만들어 지는 지방산메틸에스테르로서, 일산화탄소, 질소산화물, 미세먼지, 이산화탄소의 배출량을 감축시킬 수 있어 기후변화협약에 대처 및 고유가 시대의 대안으로서 관심이 높아지고 있는 실정이다. Biodiesel, vegetable oils (triglycerides) is a fatty acid methyl ester produced as screen transesterification with methanol under basic catalyst, carbon monoxide, nitrogen oxides, particulate matter, can reduce the emissions of carbon dioxide it address the Convention on Climate Change and the high oil prices as an alternative to a situation where increasing interest.

현재 국내 바이오디젤의 원료는 수입 대두유 또는 대두유가 대부분인 회수유가 사용되고 있는데, 도 5에서 보이는 바와 같이, 대두유 가격은 유채유보다 저렴하나, 팜오일 보다는 통상적으로 20-25% 높은 편이다. There are raw materials for the domestic biodiesel is soybean oil or soybean oil imports mostly recovered oil is used, as shown in FIG. 5, soybean oil, rapeseed oil prices are cheaper than one, typically 20-25% higher than a piece of palm oil.

따라서 팜오일로부터 만들어 지는 팜바이오디젤이 생산단가 측면에서 가장 유리하나 팜바이오디젤은 저온유동성이 불리하여 동절기에는 사용되기 어려운 문제점을 가지고 있다. Therefore, one of the most advantageous from the Palm biodiesel production cost aspect is made from palm oil Palm biodiesel has a problem difficult to be used, to winter, low-temperature flowability is disadvantageous. 바이오디젤의 구성 성분 중, 메틸팔미테이트(Methyl Palmitate) (C16:0) 와 Methyl Stearate(메틸스테아레이트) (C18:0)가 저온유동성을 악화시키는 성분인데, 팜바이오디젤에서는 이들의 비율이 45% 이상으로 다른 식물유로부터 만들어 지는 바이오디젤보다 그 비율이 크게 높은 편이다. Of the components of the bio-diesel, methyl palmitate (Methyl Palmitate) (C16: 0) and Methyl Stearate (methyl stearate) (C18: 0) inde the component to deteriorate the low temperature fluidity, the Palm biodiesel these rates of 45 that proportion than biodiesel made from other vegetable oils in% or more is significantly high.

식물유별 바이오디젤의 성분 비율 Biodiesel plant component ratio of shameless

유동점, Pour point,
유채 Rape
바이오 Bio
디젤 diesel
대두 Big head
바이오 Bio
디젤 diesel
Palm
바이오 Bio
디젤 diesel
C16:0(Methyl Palmitate) C16: 0 (Methyl Palmitate) 30-32 30-32 6 % 6% 11 % 11% 44.0 % 44.0%
C18:0 (Methyl Stearate) C18: 0 (Methyl Stearate) 37-41 37-41 1.9 % 1.9% 4 % 4 % 4.5 % 4.5%
C18:1 (Methyl Oleate) C18: 1 (Methyl Oleate) -20 -20 62.1 % 62.1% 24 % 24% 39.2 % 39.2%
C18:2(Methyl Linoleate) C18: 2 (Methyl Linoleate) -35 -35 20.2 % 20.2% 54 % 54% 10.1 % 10.1%
C18:3(Methyl Linoenate) C18: 3 (Methyl Linoenate) -57 -57 8.5 % 8.5% 7 % 7% 0.4 % 0.4%

상기 표에 나타난 C18:1또는 C18:2와 같은 지방산의 표기법을 간단히 설명하면, 예를들어 C18:2는 지방산의 카본체인을 구성하고 있는 탄소의 개수가 18개이고 카본체인 안의 불포화 본드가 2개 있음을 나타낸다. Briefly the notation of fatty acids, such as 2, for example, C18:: C18 shown in Table 1 or C18 2 is an unsaturated bond in the number of carbon is 18 that make up the carbon chains numbered, in the carbon chain fatty acids is two that represents a.

식물유별 바이오디젤의 주요 물성 The main properties of biodiesel plants shameless

유럽규격 European standards 유채 Rape
바이오디젤 Biodiesel
대두 Big head
바이오디젤 Biodiesel
Palm
바이오디젤 Biodiesel
요오드가, g/100g Iodine value, g / 100g < 120 <120 98 98 129 129 55 55
유동점, ℃ Pour point, ℃ < 0 <0
(국내규격) (National standards)
-12 -12 -2 -2 13 13
10%잔류탄소, wt% 10% carbon residue, wt% < 0.30 <0.30 0.25 0.25 0.65 0.65 0.10 0.10
산화안정도, hr Oxidation stability, hr > 6.0 > 6.0 5.5 5.5 3.6 3.6 6.9 6.9
세탄가 Cetane > 51 > 51 58 58 50 50 65 65

위의 표1,2 에서 보는 바와 같이, 식물유를 구성하는 성분 비율의 차이로 식물유별 바이오디젤의 물성 차이가 있다. As shown in Table 1 and 2 above, the composition physical property difference between the plant classification biodiesel to the difference in the proportion constituting a plant-derived oil. 대두바이오디젤은 메틸리놀레이트(Methyl Linoleate)(18:2)이 주성분인데, 이들은 저온 유동성은 양호하나 산화안정도가 불량하다. Soybean Biodiesel methyl linoleate (Methyl Linoleate) (18: 2) inde main component, and these low-temperature fluidity is poor in good oxidation stability one.

바이오디젤 구성 성분 중, 메틸올레이트(Methyl Oleate)(18:1)는 저온유동성이 나쁘지 않으면서도 산화안정도도 우수한 편이기 때문에 바이오디젤 구성 성분으로 가장 바람직하다. Of biodiesel components, methylolated (Methyl Oleate) (18: 1) is most preferred because it is also excellent biodiesel component pieces oxidation stability, without the low temperature fluidity bad. 따라서 메틸올레이트가 주성분인 유채바이오디젤이 물성측면에서 가장 우수하다. Therefore, the main component of rapeseed biodiesel are methyl oleate is the most superior in terms of physical properties. 하지만 유채유는 가격이 상대적으로 높고 국가간 교역량도 많지 않아서, 유채가 많이 생산되는 유럽 일부 지역을 제외하면, 안정적인 물량 확보가 쉽지 않다. However, because rape is also much trade between countries is relatively high and the price, except for some areas in Europe where a lot of rapeseed production, to secure a stable volume is not easy.

대안으로 팜바이오디젤을 들 수 있는데, 전술한 바와 같은 저온유동성 문제만 없다면, 우리나라와 같이 바이오디젤 원료인 식물유의 대부분을 외국에서 수입해야 하는 국가에게는, 팜바이오디젤이 가격 및 품질에서 가장 적합하다. Alternatives may include Palm biodiesel as, barring a low temperature liquidity problems as described above, those countries that most of the biodiesel raw vegetable oils such as Korea have to import from abroad, palm biodiesel is the most suitable in quality and price .

팜바이오디젤의 저온유동성과 관련하여, 미국 특허공개 제 2004-0231234호에서는, 팜바이오디젤을 증류분리 또는 결정화하여 C16 팜바이오디젤(C16:0)을 제거하고 남은 저온유동성이 양호한 C18 팜바이오디젤(C18:0, C18:1, C18:2, C18:3)을 경유 배합재로 사용하는 것을 특징으로 하며, C18 팜바이오디젤은 온대기후 지역에서 바이오디젤로 사용될 수 있을 정도로 유동점이 낮고 부산물로 얻어지는 C16 팜바이오디젤 또는 C16팜지방산은 올레오 화합물(Oleo chemicals)로 팔릴 수 있고 알파 설폰화(α-sulphonated) 메틸에스테르의 원료로 사용될 수 있다고 언급하고 있다. In relation to the low temperature fluidity of the Palm biodiesel, U.S. Patent Publication No. 2004-0231234 the call, to the farm biodiesel distillation separation or crystallization C16 Palm biodiesel (C16: 0), and removing the remaining low-temperature fluidity and good C18 Palm biodiesel the (C18: 0, C18: 1, C18: 2, C18: 3) to and characterized by the use as a diesel blending material, C18 palm biodiesel has a low pour point enough to be used as biodiesel in the temperate climate zone as a by-product palm biodiesel C16 or C16 fatty acids, palm obtained can be sold as oleo compound (Oleo chemicals) and states that can be used as a raw material for the alpha-sulfonated (α-sulphonated) methyl ester.

그러나 위에서 언급한 올레오 화합물의 시장규모는 C16 팜바이오디젤 또는 C16 팜지방산을 모두 흡수하기에는 규모가 충분하지 않고 이미 포화되어 있는 상태이다. However, the market for oleo compounds mentioned above, is a state in which the scale hagieneun absorbs all C16 or C16 palm palm biodiesel is not enough already saturated fatty acids. 따라서 상기의 종래 기술은, C16 팜바이오디젤이 적정 가치이상으로 소비될 수 있는 용도가 있어야, 현실적으로 적용할 수 있다는 문제점을 가지고 있다. Thus, the prior art above, has a problem that the C16 palm biodiesel have a purpose that can be consumed over the fair value can be applied in reality.

일반적으로 유동점이 30℃수준인 C16 팜바이오디젤은 경유의 저온유동성을 크게 저하시키기 때문에 경유에 배합하는 것은 좋은 해결 방안이 될 수 없었다. In general, because the pour point is greatly lowered to a level of 30 ℃ C16 Palm biodiesel via the low-temperature flowability of the formulation is that the via could be a good solution.

한편 미국특허 제4,992,605에 따르면, 식물유를 고압의 수소와 함께 고온상태로 CoMo Type 촉매가 채워진 반응기를 통과시켜 C15/C16/C17/C18 n-파라핀 혼합물로 전환시켜서 경유의 세탄가 향상제로 활용하는 방안이 제시되었다. In this way US Patent No. 4992605, according to which, by utilizing the vegetable oil is passed through the reactor, the Type CoMo catalyst filled with high-temperature state with hydrogen in the high-pressure switch to the C15 / C16 / C17 / C18 n- paraffins mixture zero cetane improvement of diesel It presented. 그러나 이에 따르면, 이 혼합물의 유동점이 20℃ 이상으로 저온유동성이 팜바이오디젤의 유동점보다 오히려 높아지는 문제점을 가지고 있으며, 특히, C18 팜바이오디젤은 수첨반응 시킬 경우, C17/C18 n-파라핀 혼합물로 전환되는데, 이 경우 유동점이 훨씬 높아지게 된다(0 ℃이하 → 25℃이상). However, According to this, but rather have a higher pour point problems than the pour point of the mixture at low temperature fluidity Palm biodiesel over 20 ℃ and, in particular, C18 Palm biodiesel is converted to hydrated when reacted, C17 / C18 n- paraffins mixture there is, in this case, the pour point is much higher (0 ℃ less than → 25 ℃).

또한 C18 팜바이오디젤은, C16 팜바이오디젤과 비교하여, 지방산의 카본체인 중 불포화 본드가 포함되어 있기 때문에 수첨반응에서 상대적으로 30~40% 더 많은 수소가 소모되는 단점을 가지고 있다. Also C18 Palm biodiesel, has the disadvantage that relatively 30-40% more hydrogen consumed in the hydrogenation reaction, since as compared to C16 Palm biodiesel, the carbon chain of the fatty acid comprises an unsaturated bond. 수소 가격이 높기 때문에 가능한 수소 소모량 줄이는 것이 중요하다. It is important to reduce hydrogen consumption as possible because of the high price of hydrogen.

이에 본 발명에서는 상술한 문제점을 해결하기 위하여 광범위한 연구를 수행한 결과, 팜바이오디젤을 C16 팜바이오디젤과 C18팜바이오디젤로 분리하여, C18 팜바이오디젤은 저온 유동성이 양호하여 그대로 경유 배합재로 사용가능 할 것으로 판단되었으나, 팜바이오디젤의 많은 부분을 차지하는C16팜바이오디젤은 저온유동성이 열악하여, 이의 경유배합재로의 활용 방법을 찾기 위하여 심도 있는 조사를 실시한 결과, C16 팜바이오디젤을 수첨반응하여 C15/C16 파라핀 혼합물로 전환시킬 경우, C16 팜바이오디젤을 구성하는 지방산 카본체인에는 불포화 본드가 거의 없기 때문에 수첨반응에서의 수소 소모량이 상대적으로 작다는 이점과 함께, 이를 저온유동성이 양호한 경유 배합재로 활용하는 것이 가능함을 발견하였고 본 발명은 이를 기초로 완성되었다. In the present invention, separating the conducted extensive studies in order to solve the above problems results, Palm biodiesel to C16 Palm biodiesel and C18 Palm biodiesel, C18 Palm biodiesel to as indirect blended material to the low temperature fluidity is good While expected to be used, C16 palm biodiesel, which accounts for much of the palm biodiesel result of the irradiation with the low temperature fluidity is deteriorated, the depth to find a utilization method of a diesel blended material thereof, hydrogenated to C16 palm biodiesel when reacted by switching to the C15 / C16 paraffin mixture, C16 because there is little farm bio fatty acid carbon chain constituting the diesel has an unsaturated bond with the advantage that the hydrogen consumption is relatively small in the hydrogenation reaction, the low-temperature fluidity preferred them via the present invention was discovered that it is possible to take advantage of the mixing member has been accomplished on the basis of this.

따라서, 본 발명의 목적은 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법을 제공하는 것이다. Accordingly, it is an object of the invention to provide a process for preparing a low-temperature fluidity and good bio-diesel from palm oil.

또한 본 발명의 다른 목적은 상기 바이오디젤(C15/C16 파라핀 혼합물)을 포함하는 경유제품을 제공하는 것이다. Another object of the invention to provide a diesel product comprising the bio-diesel (C15 / C16 paraffin mixture).

상기 목적을 달성하기 위한 본 발명에 따른 제조방법은, Production process according to the present invention for achieving the above object,

a) 팜바이오디젤(또는 팜지방산)을 증류하여 C16팜바이오디젤(또는 C16 팜지방산)과 C18팜바이오디젤(또는 C18 팜지방산)로 분리시키는 단계; a) by distilling palm biodiesel (fatty acid or palm) separating a C16 Palm biodiesel (palm fatty acid or C16) and C18 Palm biodiesel (palm fatty acid or C18);

b) 상기C16 팜바이오디젤을 가수분해하여C16 팜지방산 및 메탄올로 전환시키는 단계; b) converting a C16 palm fatty acid and methanol to hydrolyze the C16 Palm biodiesel; And

c) 상기 C16 팜지방산 또는 상기 a)단계의 C16 팜 바이오디젤을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시키는 단계를 포함한다. c) by reacting a hydrogenated C16 Palm biodiesel of the C16 fatty acid or palm said a) step includes the step of switching to C15 / C16 paraffin mixture.

상기 다른 목적을 달성하기 위한 본 발명에 따른 바이오디젤을 함유하는 경유는, Indirect containing biodiesel in accordance with the present invention for achieving the other object,

상기 제조방법에 의하여 제조된 저온유동성이 양호한 바이오디젤(C15/C16 파라핀 혼합물)을, 경유에 2 내지 10부피%로 함유되는 것을 특징으로 하고 있다. The low-temperature fluidity and good bio-diesel (C15 / C16 paraffin mixture) prepared by the above method, is characterized in that which is contained in 2 to 10% by volume of the via.

이하에서 본 발명을 상세히 설명한다. The present invention will be described in detail below.

본 발명은 팜오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법으로서, 본 발명에 따른 제조 방법은 a) 팜바이오디젤(또는 팜지방산)을 증류하여 C16팜바이오디젤(또는 C16 팜지방산)과 C18팜바이오디젤(C18 팜지방산)로 분리시키는 단계; The present invention provides a process for preparing a low-temperature fluidity and good bio-diesel from palm oil, the production method according to the invention a) Palm biodiesel (or palm fatty acid) the distillation and C16 Palm biodiesel (or C16 palm fatty acid) C18 separating a palm biodiesel (C18 palm fatty acid); b) 상기C16 팜바이오디젤을 가수분해하여C16 팜지방산 및 메탄올로 전환시키는 단계; b) converting a C16 palm fatty acid and methanol to hydrolyze the C16 Palm biodiesel; 및 c) 상기 C16 팜지방산 또는 상기 a)단계의C16 팜 바이오디젤을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시키는 단계를 포함한다. And c) to the hydrogenation reaction of the C16 C16 Palm biodiesel palm fatty acid or the a) step includes the step of switching to C15 / C16 paraffin mixture.

이하에서 본 발명의 제조방법의 각 단계에 따라 더욱 상세히 설명한다. It is further described in detail with each step of the manufacturing method of the present invention below.

a) 팜바이오디젤(또는 팜지방산)을 증류하여 C16팜바이오디젤(또는 C16 팜지방산)과 C18팜바이오디젤(C18팜지방산)로 분리시키는 단계; a) by distilling palm biodiesel (fatty acid or palm) separating a C16 Palm biodiesel (palm fatty acid or C16) and C18 Palm biodiesel (palm fatty acid C18);

팜바이오디젤(또는 팜지방산)은 C16:0 (메틸팔미테이트 또는 팔미트산)과 C18:1 (메틸올레이트 또는 올레산)을 주성분으로 하고 있으며, 이는 끓는점의 차이에 따라 증류장치에서 분리가 가능하다. Palm biodiesel (or palm fatty acid) are C16: 0 (methyl palmitate or palmitic acid) and C18: which is mainly composed of 1 (methyl oleate or oleic acid), which is removable from the distillation apparatus according to the difference in boiling point Do. 증류는 5 내지 20 torr 압력으로, 180℃ 내지 230℃온도에서 행하여 진다. Distillation is from 5 to 20 torr pressure, is carried out at 180 ℃ to 230 ℃ temperature.

팜 바이오디젤의 일 성분으로 분리되는C18 팜 바이오디젤은 성분 비율이 유채 바이오디젤과 유사하여, 물성 측면에서 산화안정도 및 10% 잔류탄소는 유채 바이오디젤보다 약간 우수하고, 저온유동성은 유채 바이오디젤보다 약간 불리하나 대두 바이오디젤과 동등한 수준이므로, 이를 경유 배합제로 사용하더라도 저온 유동성에는 큰 문제가 없으나, C16팜 바이오디젤의 경우는 표 3 및 4에서 보이는 바와 같이, 저온유동성이 배합제로 사용하기에 적합하지 않은바, 이를 C16 팜 지방산과 메탄올로 가수분해한 후 C16 팜 지방산을 수첨반응 시킨다. To C18 Palm biodiesel content ratio is separated into a component of the Palm biodiesel is similar to the rapeseed biodiesel, stability and the 10% oxidized carbon residue is slightly superior to rapeseed biodiesel in the physical properties of the side, and low-temperature fluidity than rapeseed biodiesel Since some disadvantages one soybean equivalent and biodiesel, even with this zero via formulated as low-temperature fluidity is but a major problem, is shown in tables 3 and 4. in the case of C16 palm biodiesel, suitability for low-temperature fluidity is blended zero non-bar, and then hydrolyzed to C16 palm fatty acid and methanol, then hydrogenated palm reacting C16 fatty acid.

팜 지방산의 일 성분으로 분리되는 C18 팜지방산은 산촉매하에서 메탄올로 에스테르화되면서 C18 팜바이오디젤로 전환될 수 있다. C18 palm fatty acid, separated by a component of palm fatty acid may be converted as esterified with methanol under acid catalyst to C18 Palm biodiesel.

b) C16 팜 바이오디젤을 가수분해하여 C16 팜 지방산 및 메탄올로 전환시키는 단계; b) by hydrolysis of the C16 Palm biodiesel converting to C16 palm fatty acid and methanol;

가수분해를 위하여, 물을 C16팜 바이오디젤에 대하여 1/15 이상의 중량비로 혼합한 후, 염기촉매를 상기 혼합물에 대하여 0.1중량% 이상 첨가시킨다. For the hydrolysis, the addition of at least 0.1% by weight of the water were mixed in a weight ratio of at least 1/15 with respect to the C16 Palm biodiesel, base catalyst into the mixture. 이때, 물의 C16 팜 바이오디젤에 대한 첨가 비율이 1/15 미만이면, 일부 지방산이 가수분해되지 못하고 남아 있게 되는 문제가 있다. At this time, if it is less than the addition ratio of the water C16 Palm biodiesel 1/15, there is a problem as it becomes part of the remaining fatty acid does not hydrolyze.

염기촉매의 종류에는 특별한 제한이 없으나, 바람직하게는 소디움 메톡사이드(Sodium Metoxide)가 사용될 수 있다. Type of base catalyst, Although there is no particular limitation, and preferably may be used sodium methoxide (Sodium Metoxide).

염기촉매의 함량이 0.1 wt% 미만으로 첨가되면, 가수분해에 필요한 반응시간이 지나치게 길어지는 문제가 있다. When the amount of the base catalyst added is less than 0.1 wt%, there is a problem that the reaction time required for hydrolysis is too long.

상기의 가수분해 결과, C16바이오디젤이 C16팜 지방산 및 메탄올로 분리되며, 상기 메탄올은 진공 증발기를 통하여 회수된다. The results of the hydrolysis, a C16 to C16 biodiesel separated palm fatty acid and methanol, the methanol is recovered via a vacuum evaporator.

c) 상기 C16 팜 지방산 또는 상기 a)단계의C16 팜 바이오디젤을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시키는 단계; c) step of the C16 fatty acid or palm above a) to hydrogenation to C16 Palm biodiesel phase switch to the C15 / C16 paraffin mixture;

수첨반응에서 C16 팜 바이오디젤은 수첨반응에 의하여 C15/C16 파라핀 혼합물로 전환될 수 있으나, C16 팜 바이오디젤 1분자가 최소 4분자의 수소가 필요함에 비하여, 이를 C16 팜 지방산과 메탄올로 가수분해할 경우, 메탄올을 회수할 수 있 고 C16 팜 지방산은 수첨반응에 필요한 수소가 3분자로 줄어들게 된다. In the hydrogenation reaction C16 Palm biodiesel, but it can be converted to the C15 / C16 paraffin mixture by a hydrogenation reaction, as compared to C16 Palm biodiesel per molecule is required the hydrogen of at least 4 molecules, which can hydrolyze to C16 palm fatty acid and methanol If, and can recover the methanol farm C16 fatty acids are the hydrogen required for the hydrogenation reaction is reduced to three molecules.

수첨반응을 통하여 상기 C16 팜지방산은 C15/C16 파라핀 혼합물로 대부분 전환되게 되는데, 증류 단계에서 불순물로 포함되는 C18지방산 혼합물 등은 수첨반응에 의하여 C17/C18파라핀 성분으로 전환되게 되나, 그 양은 미량이다. There is presented through a hydrogenation reaction the C16 palm fatty acids are mostly converted to C15 / C16 paraffin mixture, such as C18 fatty acid mixture contained in the distillation step to impurities, but to be switched to C17 / C18 paraffin components by a hydrogenation reaction, and the amount trace amount .

수첨반응은 CoMo 또는 NiMo계 촉매가 채워진 연속반응기에서 촉매부피에 대하여, C16 팜 바이오디젤 또는 C16팜 지방산인 액상투입물의 시간당 통과 배수 (LHSV)는 2hr - 1 이하, 수소와 액상투입물의 부피비(H 2 to Oil Ratio)는 3 ㎥/kℓ 이상, 수소분압은 30bar 이상, 촉매 층의 평균온도(BAT)는 330℃ 이상에서 행하여 진다. The hydrogenation reaction is CoMo or NiMo catalyst is with respect to the catalyst volume in the filled continuous reactor, C16 Palm biodiesel or C16 palm fatty passed per hour of liquid inputs drain (LHSV) is 2hr - 1 or less, the volume ratio (H of hydrogen and liquid inputs 2 to Oil Ratio) is (BAT) of the average temperature over the catalyst layer 3 ㎥ / kℓ above, the hydrogen partial pressure was 30bar is performed at more than 330 ℃.

C16 팜 바이오디젤에 대한 직접 수첨반응도 상기와 같은 조건에서 이루어질 수 있으며, 그러한 경우 수소소모량이 C16 팜 지방산의 경우보다 많아 지게 된다. Hydrogenated palm reaction C16 directly for biodiesel can be made under the same conditions as above, if so, the hydrogen consumption becomes more than that of C16 fatty acids palm.

수소와 액상투입물의 부피비가 3 미만에서는 반응에 필요한 수소가 충분히 공급되지 못하게 되고 LHSV가 2 hr - 1 이상, 수소분압이 30bar 이하, BAT가 330℃ 미만이 되면, 지방산이 파라핀으로 전환되는 반응이 원활하게 이루어 지지 않게 된다. The reaction when one or more, and a hydrogen partial pressure of 30bar below, BAT is less than 330 ℃, fatty acids are converted to a paraffin-let not hydrogen is supplied enough to the volume ratio of hydrogen and liquid phase inputs is less than 3 required for the reaction and the LHSV is 2 hr It is not supported smoothly.

C16 팜 지방산의 수첨반응에 사용되는 촉매는 경유의 탈황(desulfurization)용으로 사용되는 NiMo계 촉매 또는 CoMo계 촉매를 모두 사용할 수 있다. The catalyst used in the hydrogenation reaction of palm fatty acid C16 may be used for both the catalyst NiMo or CoMo catalyst is used for desulfurization (desulfurization) in the via.

n-파라핀으로 전환된 경우의 물성치는 하기의 표에 개시된 바와 같다. If the properties of the switch to the n- paraffins are the same as described in the table below. 하기의 표에서 보이는 바와 같이, C16팜 지방산은 수첨반응을 통하여, n-C15 및 n-C16 으로 전환되며, 이들은 C18팜 지방산으로부터 전환된 n-C17 및 n-C18에 비하여 유동점이 낮아, 동절기의 연료첨가제로서 바람직하게 활용이 가능하다. As shown in the following Table of, C16 palm fatty acids via a hydrogenation reaction, it is converted to n-C15 and n-C16, which pour point is lowered as compared with the n-C17 and n-C18 conversion from C18 palm fatty acid, in Winter it is preferably used as a fuel additive it is possible.

팜유, 팜지방산, 팜바이오디젤의 n-파라핀으로의 전환 Conversion to palm oil, palm fatty acid, palm biodiesel n- paraffins

바이오디젤 Biodiesel C16:0 C16: 0 C18:0 C18: 0 C18:1 C18: 1 C18:2 C18: 2 C18:3 C18: 3
유동점, ℃ Pour point, ℃ 30-32 30-32 37-41 37-41 -20 -20 -35 -35 -57 -57
세탄가 Cetane 74.5 74.5 86.9 86.9 55 55 42.2 42.2 22.7 22.7
비중 importance 0.852 .852 - - 0.879 .879 0.889 .889 0.895 .895
n-파라핀 n- paraffins n-C15 n-C15 n-C16 n-C16 n-C17 n-C17 n-C18 n-C18
유동점, ℃ Pour point, ℃ 9.9 9.9 18 18 22-24 22-24 29.5 29.5
세탄가 Cetane 95 95 100 100 105 105 110 110
비중 importance 0.769 .769 0.773 .773 0.777 .777 0.777 .777

상기와 같이, C16 팜 지방산 또는 C16 팜 바이오디젤로부터 전환된 n-파라핀 혼합물은, 저온 유동성을 감소시키지 않으면서, 경유와 혼합하여 사용이 가능 하다. As described above, n- C16 paraffin mixture in a conversion from palm fatty acid or C16 Palm biodiesel, without reducing the low-temperature fluidity, it is possible to use a mixture with light oil.

통상적으로 동절기용 경유는 비점구간 150-250℃의 등유와 비점구간 250-360℃의 경질가스오일이 약 3:7의 비율로 혼합되고, 동절기에는 저온유동성을 향상시키기 위하여 유동성향상제가 약 600 ppm 주입되는데, 이와 같은 양으로 첨가되는 경우, 일반적으로 저온 유동점에 대한 국내외 기준을 충족하게 된다. Typically the hard winter diesel gas oil with a boiling point range of the kerosene boiling point range of 250-360 ℃ 150-250 ℃ for about 3: is mixed at a ratio of 7, winter, improved fluidity in order to improve the low temperature fluidity of about 600 ppm I there is injected, when added in this amount, it is generally satisfy national and international standards for the low temperature pour point.

본 발명에 따른 상기 C15/C16 n-파라핀 혼합물이 상기 자동차용 경유에 2 내지 10부피%로 혼합되는 경우, 동일한 양의 C16팜 바이오 디젤을 경유물질과 혼합하는 경우보다 저온 유동성의 개선이 뚜렷하다. If the C15 / C16 n- paraffins mixtures according to the invention is mixed with 2 to 10% by volume of the via for the motor vehicle, the improvement in low-temperature fluidity is significant than in the case of mixing the substance via the same amount of C16 Palm biodiesel . C15/C16 n-파라핀 혼합물이 상기 경유의 10부피%를 초과하여 혼합되는 경우는 저온유동성의 기준이 되는 필터막힘점 측면에서 바람직하지 않다. If the C15 / C16 n- paraffins mixture is mixed in excess of 10% by volume of the via is not preferable in terms of filter plugging point that is the basis for the low-temperature fluidity.

이하 실시예를 통해 본 발명을 좀 더 구체적으로 설명하지만 이에 본 발명의 범주가 한정되는 것은 아니다. Through the following examples describe the invention in more detail but not limited thereto the scope of the invention.

실시예 Example

증류단계 Distillation step

팜바이오디젤 3,000g을 10 torr 및 185℃ 조건의 증류장치에서 C16 팜바이오디젤과 C18 팜바이오디젤을 4:6의 비율로 분리했을 경우의 조성 및 물성은 아래의 표와 같다. Palm biodiesel 3,000g for 10 torr and 185 ℃ C16 and C18 Palm Palm biodiesel in a distillation apparatus of the condition biodiesel 4: Composition and physical properties of the separation when a ratio of 6 is shown in the table below.

팜 C16/C18 바이오디젤의 성분 비율 Palm C16 / C18 ratio of the components of biodiesel

끓는점, Boiling point,
C16 팜 C16 farm
바이오디젤 Biodiesel
C18 팜 C18 farm
바이오디젤 Biodiesel
Palm
바이오디젤 Biodiesel
C16:0 C16: 0
(Methyl Palmitate) (Methyl Palmitate)
338 338 90.5 % 90.5% 8.1 % 8.1% 43.5 % 43.5%
C18:0 C18: 0
(Methyl Stearate) (Methyl Stearate)
352 352 2.2 % 2.2% 5.9 % 5.9% 4.3 % 4.3%
C18:1 (Methyl Oleate) C18: 1 (Methyl Oleate) 349 349 6.8 % 6.8% 65.9 % 65.9% 39.8 % 39.8%
C18:2 C18: 2
(Methyl Linoleate) (Methyl Linoleate)
366 366 0.2 % 0.2% 18.3 % 18.3% 10.2 % 10.2%
C18:3 C18: 3
(Methyl Linolenate) (Methyl Linolenate)
- - 0.1 % 0.1% 0.5 % 0.5% 0.3 % 0.3%

팜 C16/C18 바이오디젤의 주요 물성 Palm C16 / C18 key physical properties of the biodiesel

유럽규격 European standards C16 팜 C16 farm
바이오디젤 Biodiesel
C18 팜 C18 farm
바이오디젤 Biodiesel
Palm
바이오디젤 Biodiesel
요오드가, g/100g Iodine value, g / 100g < 120 <120 7 7 88 88 55 55
유동점, ℃ Pour point, ℃ < 0 <0
(국내규격) (National standards)
30 30 -1 -One 13 13
10% 잔류탄소, wt% 10% carbon residue, wt% < 0.30 <0.30 0.05 이하 0.05 0.15 0.15 0.10 0.10
산화안정도, hr Oxidation stability, hr > 6.0 > 6.0 > 20 > 20 6.0 6.0 6.9 6.9
세탄가 Cetane > 51 > 51 72 72 55 55 65 65

가수분해단계 Hydrolysis step

C16 팜바이오디젤 470g, 물 45g, 염기촉매(Sodium Metoxide) 1g을 1,000cc 둥근 플라스크에 넣고 둥근 플라스크를 진공증발기에 부착한다. Into the C16 Palm biodiesel 470g, water, 45g, a base catalyst (Sodium Metoxide) 1g to 1,000cc round bottom flask and attached to a round bottom flask to a vacuum evaporator.

둥근 플라스크 내부압력 200 torr, 수조의 온도 60℃에서 진공증발기를 45분간 구동시킨다. A vacuum evaporator in a round flask, the internal pressure 200 torr, the temperature of the water bath 60 ℃ drives 45 minutes. 이때 가수분해가 일어나면서 생성되는 메탄올은 진공증발기에서 제거되면서 C16 팜바이오디젤은 C16 팜지방산으로 전환된다. The methanol is hydrolyzed while the wake generated while being removed from the vacuum evaporator is C16 Palm biodiesel is converted to C16 fatty acids palm. 진공증발기의 압력을 40 torr로 낮추어서 미반응 물과 잔류 메탄올을 제거한다. Lowering the pressure in the vacuum evaporator to 40 torr to remove unreacted water and residual methanol. 압력을 풀고 얻어진 C16팜지방산 용액을 50℃ 조건에서 종이필터에 통과시켜서 염기촉매를 제거한다. For C16 palm fatty acid solution obtained release the pressure is passed through the filter paper at 50 ℃ conditions to remove the basic catalyst.

C16 팜바이오디젤과 C16 팜지방산 C16 C16 palm biodiesel and palm fatty acid

C16 팜 C16 farm
바이오디젤 Biodiesel
C18 팜 C18 farm
지방산 fatty acid
구조식 constitutional formula RCOOCH 3 RCOOCH 3 RCOOH RCOOH
요오드가, g/100g Iodine value, g / 100g 10 이하 below 10 10 이하 below 10
전산가, mgKOH/g Jeonsanga, mgKOH / g 0.5 0.5 202 202

수첨반응단계 Hydrogenation step

도3과 같은 CoMo촉매 100cc가 채워진 촉매반응기에 C16 팜 지방산(100 cc/hr) 과 수소(0.5 Nℓ/hr)를 통과시키면서 촉매 층의 평균온도를 370℃까지 서서히 승온하여 유지시킨 다음, 그로부터 4시간 이후부터 액상 생성물을 포집하기 시작하여 총 10시간 동안 액상 생성물을 포집하였다. The catalytic reactor the CoMo catalyst 100cc filled as shown in Fig. 3 C16 palm fatty acid (100 cc / hr) and hydrogen (0.5 Nℓ / hr) was passed through was maintained by slowly raising the average temperature of the catalyst layer to 370 ℃ then, from which 4 began to collect the liquid product from the liquid product was collected after the time for a total of 10 hours. 포집된 생성물로부터 수분을 층 분리하여 제거한 후, 남은 액상 생성물의 성분을 분석하였다. After removing the water layer separated from the collected product, it was analyzed for the remaining components of the liquid product.

수첨반응기 액상 투입물 및 액상 생성물 비교 Hydrogenation reactors compared to the liquid inputs and liquid product

액상 투입물 Liquid Charge 액상 생성물 Liquid product
구분 division C16팜 지방산 C16 fatty acids, palm C15/C16 C15 / C16
n-파라핀 혼합물 n- paraffin mixture
water
부피 (무게) Volume (weight)
수율 yield
995 cc (850 g) 995 cc (850 g)
100% 100%
935 cc (720 g) 935 cc (720 g)
84.7% 84.7%
(99 g) (99 g)
11.6% 11.6%
조성, wt% Composition, wt% 지방산 혼합물 Fatty acid mixture
C16:0 90.5 C16: 0 90.5
C18:0 2.2 C18: 0 2.2
C18:1 6.8 C18: 1 6.8
C18:2 0.2 C18: 2 0.2
C18:3 0.1 C18: 3 0.1
n- 파라핀 혼합물 n- paraffin mixture
Lighters 1 Lighters 1
n-C15 27 n-C15 27
n-C16 62 n-C16 62
n-C17 2.5 n-C17 2.5
n-C18 5.5 n-C18 5.5
Heaviers 1.5 Heaviers 1.5
비중 importance 0.85 0.85 0.77 0.77
유동점, ℃ Pour point, ℃ 30 30 14 14
세탄가 Cetane 72 72 98 98

유동성향상제에 대한 영향평가 Impact on the fluidity improver rating

C16 팜 바이오디젤과 C15/C16 n-파라핀 혼합물을 각각 경유에 혼합하였을 경우 유동성향상제(Wax Anti-settling Flow Improver)의 주입농도에 따른 필터막힘점을 측정하여 비교하였다. If the mixture via the C16 hayeoteul Palm biodiesel and C15 / C16 n- paraffins mixture respectively were compared by measuring the filter clogging point according to the injection concentration of the fluidity-improving agent (Wax Anti-settling Flow Improver). 필터막힘점은 경유의 저온유동성을 나타내는 중요한 지표이며, 국내 정유사의 동절기 품질기준은 "-20℃ 이하"이다. Filter plugging point is an important indicator of the low temperature fluidity of diesel oil, winter quality standards of Korean refiners is "below -20 ℃".

표8. Table 8. C16 팜 바이오디젤 및 n-파라핀 혼합물 이 유동성향상제의 성능에 미치는 영향 Effect C16 Palm biodiesel and n- paraffin mixture on the performance of the flow improver


샘플명 Sample patients
경유 혼합비율, v% Via mixing ratio, v% 유동성향상제 농도별 Each fluidity-improving agent concentration
필터막힘점, ℃ Filter plugging point, ℃
등유 Kerosene 경질 reshuffle
가스오일 Gas oil
C16 팜 C16 farm
바이오 Bio
디젤 diesel
C15/C16 C15 / C16
n-파라핀 n- paraffins
혼합물 mixture
유동성 liquidity
향상제 Enhancer
0 ppm 0 ppm
유동성 liquidity
향상제 Enhancer
600 ppm 600 ppm
유동성 liquidity
향상제 Enhancer
1,000ppm 1,000ppm
기준 standard 30 30 70 70 0 0 0 0 -7 -7 -21 -21 -24 -24
1-1 1-1 30 30 68 68 2 2 0 0 -8 -8 -19 -19 -21 -21
1-2 1-2 30 30 65 65 5 5 0 0 -9 -9 -17 -17 -18 -18
1-3 1-3 30 30 60 60 10 10 0 0 -6 -6 -10 -10 -10 -10
2-1 2-1 30 30 68 68 0 0 2 2 -8 -8 -21 -21 -24 -24
2-2 2-2 30 30 65 65 0 0 5 5 -9 -9 -21 -21 -22 -22
2-3 2-3 30 30 60 60 0 0 10 10 -10 -10 -19 -19 -20 -20

상기 표와 도4에서 보는 바와 같이, C16 팜 바이오디젤의 경우는 2%만 혼합되어도 필터막힘점이 상승하여 필터막힘점 기준(-20℃ 이하)을 충족하기 위해서는 유동성향상제의 주입율을 1,000ppm 으로 늘려야 하는 것으로 관찰되었다. The injection rate of the order, as shown in Figure 4 and the table, in the case of C16 Palm biodiesel blend may be only 2% filter plugging point rises to meet the filter plugging point standards (the -20 ℃) ​​fluidity-improving agent to 1,000ppm It was observed to increase. 하지만 C15/C16 n-파라핀 혼합물의 경우는 경유에 5% 배합될 때까지 필터막힘점의 변화가 없었으며, 10% 정도 배합되어도 유동성향상제의 주입율을 1,000ppm으로 늘리면 필터막힘점 기준을 충족하는 것으로 관찰되었다. However, if the C15 / C16 n- paraffins mixture showed no change in filter plugging point until the blended 5% in gas oil, it may be blended by 10% to increase the injection rate of the fluidity-improving agent to 1,000ppm meet filter plugging point reference to be observed.

이상에서 살펴본 바와 같이, 본 발명에 따른 바이오디젤은 기존의 대두 바이오디젤의 원료인 대두유 보다 저렴한 팜 오일을 활용하고, 이의 적절한 가공을 통하여 국내외 기준을 만족시키는 저온유동성을 달성할 수 있는바, 산업적, 환경적으로 보다 활발한 활용이 가능하다. As described above, bio-diesel according to the invention the bar can achieve the low temperature fluidity of utilizing a cheap palm oil than the conventional raw material for soybean biodiesel soybean oil, and satisfy national and international standards through its proper processing, industrial , it is possible to more actively utilize the environment.

Claims (5)

  1. a) 팜 바이오디젤을 증류하여 C16 팜 바이오디젤과 C18 팜 바이오디젤로 분리시키는 단계; a) by distilling palm biodiesel separating C16 to C18 Palm Palm biodiesel and biodiesel;
    b) 상기 C16 팜 바이오디젤을 가수분해하여 C16 팜 지방산 및 메탄올로 전환시키는 단계; b) converting a C16 palm fatty acid and methanol to hydrolyze the C16 Palm biodiesel; And
    c) 상기 C16 팜 지방산 또는 상기 a)단계의 C16 팜 바이오디젤을 수첨반응시켜 C15/C16 파라핀 혼합물로 전환시키는 단계; c) step of the C16 fatty acid or palm above a) to hydrogenation to C16 Palm biodiesel phase switch to the C15 / C16 paraffin mixture;
    를 포함하는 것을 특징으로 하는, 팜 오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법. From, palm oil, comprising a step of including the process for producing biodiesel and good low temperature fluidity.
  2. 제 1항에 있어서, 상기 증류는 5 내지 20torr의 압력에서, 180℃ 내지 230℃의 온도조건에서 행하여지는 것을 특징으로 하는 팜 오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법. The method of claim 1, wherein the distillation is at a pressure of from 5 to 20torr, a method for producing a good low temperature fluidity of biodiesel from palm oil, characterized in that is conducted at a temperature condition of 180 ℃ to 230 ℃.
  3. 제 1항에 있어서, 상기 가수분해 반응은 물을 C16팜 바이오디젤에 대하여 1/ 15 이상의 중량비로 혼합하고, 염기촉매를 상기 혼합물에 대하여 0.1중량%이상으로 첨가시키는 것을 특징으로 하는, 팜 오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법. The method of claim 1 wherein the hydrolysis reaction is water, C16 mixed in a 1/15 or greater weight ratio with respect to the palm biodiesel and from, palm oil, comprising a step of addition of at least 0.1 wt% of the base catalyst to the mixture method for manufacturing the low-temperature fluidity is good biodiesel.
  4. 제 1항에 있어서, 상기 수첨반응이 CoMo계 또는 NiMo계 촉매가 채워진 연속 반응기에서 촉매부피에 대하여, C16 팜 바이오디젤 또는 C16팜 지방산인 액상투입물의 시간당 통과 배수 (LHSV)는 2 hr - 1 이하, 수소와 상기 액상투입물의 부피비(H 2 to Oil Ratio)는 3 ㎥/㎘ 이상, 수소분압은 30bar 이상, 촉매 층의 평균온도(BAT)는 330℃ 이상인 조건에서 행해지는 것을 특징으로 하는, 팜 오일로부터 저온유동성이 양호한 바이오디젤을 제조하는 방법. The method of claim 1, wherein the hydrogenation reaction is CoMo based or NiMo catalyst is with respect to the catalyst volume in the filled continuous reactor, C16 Palm biodiesel or C16 palm fatty acid per hour passing through a multiple (LHSV) of the liquid phase inputs is 2 hr - 1 or less , hydrogen, and a volume ratio of the liquid inputs (H 2 to Oil Ratio) is 3 ㎥ / ㎘ above, hydrogen partial pressure, characterized in that is carried out at an average temperature (BAT) is a condition less than 330 ℃ above 30bar, catalyst layer, palm method for producing a good low temperature fluidity of biodiesel from the oil.
  5. 제 1항 내지 제 4항 중 어느 하나의 항에 따라 제조된 저온유동성이 양호한 바이오디젤이, 경유에 2 내지 10부피%로 함유되는 것을 특징으로 하는 바이오디젤을 포함하는 경유. Wherein the first to fourth through, including biodiesel, characterized in that contained in any one of a good low temperature fluidity of the biodiesel produced according to this further, 2 to 10% by volume of the indirect section.
KR20070008991A 2007-01-29 2007-01-29 Method of making biodiesel with good low-temperature performance from palm oil KR101353895B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070008991A KR101353895B1 (en) 2007-01-29 2007-01-29 Method of making biodiesel with good low-temperature performance from palm oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070008991A KR101353895B1 (en) 2007-01-29 2007-01-29 Method of making biodiesel with good low-temperature performance from palm oil
PCT/KR2008/000538 WO2008093990A1 (en) 2007-01-29 2008-01-29 Method of making biodiesel with good low-temperature performance from palm oil

Publications (2)

Publication Number Publication Date
KR20080070988A true KR20080070988A (en) 2008-08-01
KR101353895B1 true KR101353895B1 (en) 2014-01-23

Family

ID=39674250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070008991A KR101353895B1 (en) 2007-01-29 2007-01-29 Method of making biodiesel with good low-temperature performance from palm oil

Country Status (2)

Country Link
KR (1) KR101353895B1 (en)
WO (1) WO2008093990A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004406A1 (en) 2008-01-14 2009-07-23 Lurgi Gmbh Process and apparatus for producing hydrocarbons
KR101234121B1 (en) * 2010-07-16 2013-02-19 에스케이이노베이션 주식회사 Preparing method of organic phase change material from animal and vegetable oil
WO2013114381A1 (en) * 2012-01-30 2013-08-08 Venkata Sudhakar Edupuganti Two stage process of producing fatty acid esters from palm fatty acid distillate (pfad) using acid chloride route for biodiesel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081881A2 (en) * 1981-12-15 1983-06-22 Societe Des Produits Nestle S.A. A process for the solvent fractionation of palm oil stearines and products obtained with said process
US20090069610A1 (en) 2006-12-01 2009-03-12 North Carolina State University Process for conversion of biomass to fuel
US20110192075A1 (en) 2010-04-06 2011-08-11 Heliae Development, Llc Methods of and Systems for Producing Biofuels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244037B2 (en) * 1982-02-10 1987-09-17 Nippon Oils & Fats Co Ltd
KR100983546B1 (en) * 2003-06-04 2010-09-24 말레이지언 팜 오일 보드 Palm diesel with low pour point
CA2471791C (en) * 2003-06-23 2012-06-05 Infineum International Limited Compositions comprising animal or vegetable derived oil and ethylene-vinyl ester copolymer
US8163043B2 (en) * 2005-06-10 2012-04-24 Malaysian Palm Oil Board Palm-based biodiesel foundation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081881A2 (en) * 1981-12-15 1983-06-22 Societe Des Produits Nestle S.A. A process for the solvent fractionation of palm oil stearines and products obtained with said process
US20090069610A1 (en) 2006-12-01 2009-03-12 North Carolina State University Process for conversion of biomass to fuel
US20110192075A1 (en) 2010-04-06 2011-08-11 Heliae Development, Llc Methods of and Systems for Producing Biofuels

Also Published As

Publication number Publication date Type
KR20080070988A (en) 2008-08-01 application
WO2008093990A1 (en) 2008-08-07 application

Similar Documents

Publication Publication Date Title
Ong et al. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review
Yusuf et al. Overview on the current trends in biodiesel production
Patil et al. Optimization of biodiesel production from edible and non-edible vegetable oils
Sharma et al. Development of biodiesel from karanja, a tree found in rural India
Barnwal et al. Prospects of biodiesel production from vegetable oils in India
Murugesan et al. Bio-diesel as an alternative fuel for diesel engines—a review
Demirbas Biodiesel
Nakpong et al. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand
Smith et al. Improving the low-temperature properties of biodiesel: Methods and consequences
Moser Biodiesel production, properties, and feedstocks
Tariq et al. Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil
Demirbas Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods
Salvi et al. Biodiesel resources and production technologies–A review
Wang et al. Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L.
Schinas et al. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece
Atadashi et al. High quality biodiesel and its diesel engine application: a review
US6190427B1 (en) Diesel fuel composition
Abdullah et al. Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil
US7279018B2 (en) Fuel composition for a diesel engine
El Diwani et al. Development and evaluation of biodiesel fuel and by-products from jatropha oil
Lang et al. Preparation and characterization of bio-diesels from various bio-oils
Sahoo et al. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils
US20040128905A1 (en) Fuel compositions
Canoira et al. Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties
Ramos et al. Influence of fatty acid composition of raw materials on biodiesel properties

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 5