KR101501085B1 - 돼지 췌장의 발달단계별 차이를 나타내는 단백질을 포함하는 이종기관이식 거부반응 검출을 위한 신규한 항원 및 이를 포함하는 검출용 키트 - Google Patents

돼지 췌장의 발달단계별 차이를 나타내는 단백질을 포함하는 이종기관이식 거부반응 검출을 위한 신규한 항원 및 이를 포함하는 검출용 키트 Download PDF

Info

Publication number
KR101501085B1
KR101501085B1 KR20140053237A KR20140053237A KR101501085B1 KR 101501085 B1 KR101501085 B1 KR 101501085B1 KR 20140053237 A KR20140053237 A KR 20140053237A KR 20140053237 A KR20140053237 A KR 20140053237A KR 101501085 B1 KR101501085 B1 KR 101501085B1
Authority
KR
South Korea
Prior art keywords
rejection response
detecting
protein
pancreas
kit
Prior art date
Application number
KR20140053237A
Other languages
English (en)
Inventor
이순신
성제경
황승용
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Priority to KR20140053237A priority Critical patent/KR101501085B1/ko
Application granted granted Critical
Publication of KR101501085B1 publication Critical patent/KR101501085B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/715Assays involving receptors, cell surface antigens or cell surface determinants for cytokines; for lymphokines; for interferons
    • G01N2333/7155Assays involving receptors, cell surface antigens or cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]

Abstract

본 발명은 돼지와 인간의 이종기관이식에서 거부반응 여부를 확인할 수 있는 단백질 항원과 이를 포함하는 이종기관이식의 거부반응 여부 검출용 키트에 관한 것으로, 보다 상세하게는, 돼지의 발달 단계별 번역과정에 차이를 나타내는 단백질 항원을 포함하는 이종기관이식의 거부반응 여부 검출을 위한 항원 및 이의 검출용 키트에 관한 것이다.
본 발명에서, 우리는 2-DE 및 MALDI-TOF를 이용하여 췌장의 발달 단계에 대한 단백질 조절(4일 된 신생아, 19일 된 새끼돼지 및 14개월 된 어른 미니어쳐 피그)을 보고하였다. 3가지 다른 단계의 이미지로부터, 다르게 조절되는 총 13개의 스팟이 확인되었고, 9개의 스팟이 MALDI-TOF MS로 확인되었다. 본 발명에 나타난 데이터는 미니어쳐 피그 췌장의 발달단계에 관련된 중요한 방향을 제공하며, 이는 이후의 췌장에 대한 프로테옴 분석에 도움이 될 것이며, 이종기관이식에 대한 장애물들의 이해를 증진시킬 것이다. 이를 이용하면, 발달단계별로 다르게 조절되는 신규한 항원으로서, 이종기관이식에서 거부반응을 검출하는 데 유용하게 사용될 수 있을 것이다.

Description

돼지 췌장의 발달단계별 차이를 나타내는 단백질을 포함하는 이종기관이식 거부반응 검출을 위한 신규한 항원 및 이를 포함하는 검출용 키트{New Antigen for Detecting Rejection Response Including Miniature Pig Pancreas Protein According to Developmental Stages and the Kit for Detecting Rejection Response Includign the Same}
본 발명은 돼지와 인간의 이종기관이식에서 거부반응 여부를 확인할 수 있는 단백질 항원과 이를 포함하는 이종기관이식의 거부반응 여부 검출용 키트에 관한 것으로, 보다 상세하게는, 돼지 췌장의 발달 단계별 번역과정에 차이를 나타내는 단백질 항원을 포함하는 이종기관이식의 거부반응 여부 검출을 위한 항원 및 이의 검출용 키트에 관한 것이다.
인간 장기 기증이 점차 부족해지고 있기 때문에, 인간에 대한 이식을 위해 동물의 장기 사용에 대한 관심이 점차 증가하고 있다[1-3]. 인간이 아닌 영장류로부터의 장기 이식이 인간 장기를 대체하기 위해 연구되어 왔다. 그러나, 영장류의 장기를 이용하는 것은 위험할 수 있으며, 그들의 장기가 성인의 이식에는 너무 적을 수 있다[1]. 돼지는 이종기관이식에 매우 적합한 후보이다[4, 5]. 더욱이, 잠재적인 이종기관이식 소스로서, 돼지는 엄격한 bioexclusion의 조건하에서 관리되어야만 한다. 선택적인 브리딩 시스템에 의해 생산된 미니어쳐 피크가 바람직하다[6, 7]. 미니어쳐 피그는 인간과 많은 생리학적 유사성이 있고, 인간이 아닌 영장류과 비교하여 사육 및 조작에 잇점을 제공한다[8]. 흔히, 미니어쳐 피그로부터 사용되는 조직은 심장, 신장, 간 및 췌장이다. 췌장은 인슐린을 통한 내분비성, 외분비성 및 글루코즈 신진대사를 조절한다. 돼지 췌장 조직은 당뇨환자에게 이종기관이식 치료의 좋은 재료이다[9-11].
인간이 아닌 영장류나 다른 종으로의 돼지 췌장의 이종기관이식은 보고된 바 있다[12-14]. 그러나, 돼지에서 췌장 단백질 발현의 특징은 잘못 이해되고 있는 반면, 인간과 설치류에서의 췌장 단백질 발현은 잘 규명되어 있다.
현재, 췌장 단백질 발현은 4일 된 신생아 미니어쳐피그, 19일 된 새끼돼지 및 14개월 된 어른 미니어쳐 피그를 이용하여 연대기적으로 조사하였다. 발달과정 동안 다르게 발현되는 단백질은 2-DE(two dimensional electrophoresis)와 MALDI-TOF MS(matrix assisted laser desorption/ionization-time of flight mass spectrometry)로 밝혀내었다. Swiss-Prot 및 NCBI 데이터베이스에서 확인된 돼지 단백질의 저장소는 상대적으로 부족한 반면, 이러한 소스는 현재 다르게 발현되는 단백질을 동정하는 것을 보조하는데 사용된다. 이 데이터는 미래의 프로테옴 분석을 도울 것이다.
상기와 같은 종래기술의 문제점을 해결하기 위하여, 본 발명은 이종기관이식에 있어서, 돼지와 인간의 이종기관이식에서 거부반응 여부를 확인할 수 있는 단백질 항원과 이를 포함하는 검출용 키트를 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위해 본 발명은 발달 단계별 돼지 췌장에 있는 단백질에 있어서, 췌장 트리아실글리세롤 리파아제(pancreatic triacylglycerol lipase, 스팟 2), 티로신-풍부 단백질 1 전구체(tyrosine-rich protein 1 precursor, 스팟 6), 인터루킨-1 수용체 타입 I 전구체(interleukin-1 receptor type I precursor, 스팟 8), 췌장 알파 아밀라아제 전구체(Pancreatic alpha amylase precursor, 스팟 3), 고속이동군단백질 B2(high mobility group protein B2, 스팟 13), 헤모글로빈 알파-서브유닛 스팟들(스팟 4 및 스팟 5), 비스포스포글리세라테뮤타아제(2, 3-bisphosphoglycrerate mutase; 스팟 11) 또는 알파-에놀라아제(2-phospho-D-glyceratehydro-lyase; 스팟 9) 중 어느 하나 이상을 포함하는 이종기관이식 거부반응 검출용 항원을 제공한다.
또한, 본 발명은 상기 항원을 포함하는 이종기관이식의 거부반응 검출용 키트를 제공한다.
조직 이식은 인간의 조직이 부족하여 한계가 있다. 이러한 장애를 극복하기 위해 인간 조직 대신 동물 조직의 사용함으로써, 많은 연구가 수행되어 왔다. 돼지의 조직 특히, 미니어쳐 피그의 조직은 인간이 아닌 영장류의 것보다 이종기관이식에 사용되어 왔다. 이식을 위한 분자 파일링이 인간과 설치류에서 잘 알려진 반면, 돼지에 대한 상황은 거의 잘 알려져 있지 않다. 현재의 연구는 2D-gel 전기영동 및 MALDI-TOF를 이용하여 췌장 프로테옴(4일 된 신생아 미니어쳐피그, 19일 된 새끼돼지 및 14개월 된 어른 미니어쳐 피그)의 발달단계의 단백질 조절을 연구하였다.
13개의 다르게 발현되는 스팟이 관찰되었고, 9개가 동정되었다. 본 연구에서 제공되는 데이터는 미니어쳐 피그의 췌장의 발달과 관련된 중요한 방향을 제공하며, 이는 췌장의 이후의 프로테옴 분석에 도움이 될 것이며, 이종기관이식에 대한 장애물들의 이해를 증진시킬 것이다. 이를 이용하면, 발달단계별로 다르게 조절되는 신규한 항원으로서, 이종기관이식에서 거부반응을 검출하는 데 유용하게 사용될 수 있을 것이다.
도 1은 발달단계에 따른 4일, 19일 및 14개월 된 미니어쳐 피그 췌장의 2 DE 겔을 나타낸 것이며, 이는 쿠마시 블루 염색으로 가시화되었다. 1 mg 단백질 샘플이 pH3-10 비 선형 IPG strip (24 cm)에 분리되었고, 이후, 2차원으로 8-18% 구배 SDS-PAGE gel로 분리되었다. 단백질들은 Coomassie brilliant blue G-250로 탐지되었고, ImageMasterTM 2D Platinum Software version 5.0를 이용하여 비교되었다; A: 4일 미니어쳐 피그(신생아)의 2DE 겔, B: 19일 미니어쳐 피그의 2DE 겔, C: 14개월 미니어쳐 피그의 2DE 겔. 검은 원은 4일 미니어쳐 신생아 피그, 19일 미니어쳐 새끼돼지 피그, 14개월된 미니어쳐 어른 피그췌장에 13가지 다르게 발현되는 단백질 스팟을 나타낸다.
도 2는 발달 단계에 따른 췌장의 대체 스팟의 2DE 이미지이다. 원은 다르게 발현되는 단백질 스팟을 나타내며, 점선으로 나타낸 원은 감소 발현된 패턴을 나타낸다. 다른 3단계의 발현 패턴은 단순 선 그래프로 표시되었다. 상대 광학 밀도(ROD)는 가장 낮은 단백질 광학밀도(가장 낮은 광학밀도는 각 스팟의 '1'로 나타냄)와 비교하여 선 아래에 상대 숫자로서 나타내었다.
도 3은 MALDI-TOF MS를 이용한 펩티드 질량 핑거프린팅에 의해 확인된 미니어쳐 피그 췌장 2D-gel의 단백질을 나타낸 표이다.
본 발명은 돼지와 인간의 이종기관이식에서 거부반응 여부를 확인할 수 있는 단백질 항원과 이를 포함하는 이종기관이식의 거부반응 여부 검출용 키트에 관한 것으로, 보다 상세하게는, 돼지의 발달 단계별 번역과정에 차이를 나타내는 단백질 항원을 포함하는 이종기관이식의 거부반응 여부 검출을 위한 항원 및 이의 검출용 키트에 관한 것이다.
이하, 실시예를 통하여 본 발명을 상세히 설명하나, 이들이 발명의 내용을 제한하는 것은 아니다.
< 실시예 1 : 실험 동물 >
미니어처 피그는 서울대의 동물자원 개발센터(Center for Animal Resource Development)의 공기 오염 없는 시설에서 사육되었다. 다른 발달단계를 가지는 3마리의 돼지(4일 된 신생아 미니어쳐피그, 19일 된 새끼돼지 및 14개월 된 어른 미니어쳐 피그)가 사용되었다. 이들은 24±2℃에서 12/12(light/dark)사이클로 동일한 온도 조건하에 있었다. 공기와 물은 필터링되었고, 모든 장비와 음식은 사용 전에 살균되었다. 이 연구는 서울대의 동물실험 관련 위원회(Institutional Animal Care and Use Committee, SNU-IACUC approval number: SNU-060613-5)에 의한 동물 사용 프로토콜로서 승인되었다. 근주마취(Intramuscular anesthesia)는 매번 아프고, 고통스러운 과정을 통해 2 mL 케타민(ketamine) HCl (50 mg/mL/kg), 1 mL 자일라진(xylazin) (2.3 mg/mL/kg) 및 1 mL 아트로핀 설페이트(Atropine sulfate) (0.5 mg/mL/ 10 kg)의 혼합액을 사용하여 진행되었다. 각각 돼지의 복부는 면도하여 폴리비닐피롤리돈-아이오다인(polyvinylpyrrolidone-iodine)으로 소독하였다. 동물들은 접착 묶음으로 외과 평판에 고정되었다. 중앙 개복술(median laparotomy)이 수행되었다. 동물들의 췌장은 무균상태에서 잘라내어져서, 실험실에서 이식되는 동안, 액화 질산염 탱크에 보관되었다.
< 실시예 2 : 2 DE 샘플 준비 >
각각의 돼지 췌장(각 단계별 하나의 미니어쳐)은 췌장은 실험 후 완전히 제거되어, 사용될 때까지 -70℃에서 보관되었다. 간단히 말해, 마취 하에서 미니어쳐 피그의 복막은 췌장 제거 전에 큰 덩어리의 아이스를 채워넣음으로써, 미리 차게 유지되었다. 췌장은 동물로부터 즉시 일반적인 췌장의 말단에서 수집되어, 액체 질소에서 스냅 냉동되었고, -70℃에서 보관되었다.
냉동된 췌장 조직(1 g)은 분쇄기에서 액체 질소의 계속적인 추가 조건하에서 미세 가루로 분쇄되었다. 가루는 정상적으로 900 μL 용해 버퍼(7 M 우레아(urea), 2M 티오우레아(thiourea), 2% w/v CHAPS, 2% pharmalyte pH3-10, 100 mM DTE)에서 현탁하였다. 샘플들은 1시간 동안 4℃에서 50,000 rpm 으로 원심분리되었다. 상등액은 조심스럽게 제거되고, -70℃에서 즉시 냉동되었다.
< 실시예 3 : 2 DE >
2D-PAGE(2D-polyacrylamide gel electrophoresis)는 상술한 바에 따라 수행되었다[15]. 1mg의 전체 단백질을 포함하는 부분 표본은 용해 버퍼로 희석되어 전체 부피가 450μL이 되었다. 샘플들은 240 mm, 고정화, 비선형 pH 3-10 IPG Drystrip (Amersham Pharmacia Biotech, NJ)로 처리되고, 적어도 12시간 동안 재수화되었다. 재수화(rehydration) 후, 스트립은 약 90,000 Vh (EttanTMIPGphorTM II IEF systems; Amersham Pharmacia Biotech)을 얻기 위해 3시간 동안 30V, 1시간 동안 100 V, 1 시간 동안 200 V, 1시간 동안 500 V, 1시간 동안 1000 V 및 최종적으로 11시간 동안 8,000 V에서 포커싱되었다. 일단 등전점 전기영동이 끝난 후, 스트립은 20% v/v 글리세롤, 2% w/v SDS 및 0.01% w/v full term for BPB with 10 mM 트리뷰틸 포스파인(Tributyl phosphine, (Flukachemie, Switzerland))를 포함하는 6M 요소(urea)에서 평형화되었다. SDS-PAGE는 EttanDalt system (Amersham Pharmacia, NJ)을 이용하여 축적 겔 없이 8-18% 분리 겔을 이용하여 분리된 겔-스팟 경향의 확인을 위해 각 단계별 그룹마다 2번씩 수행되었다. 2차원 전기영동은 20℃에서 3 W/gel로 밤새 수행되었다. 겔은 쿠마쉬 G-250 (Bio-Rad Laboratories, Hercules, USA)로 염색되었다.
< 실시예 4 : 단백질 시각화 및 이미지 분석 >
겔은 상술한 바와 같이 쿠마시 G-250 (Bio-Rad)로 염색되었다[12]. 염색된 겔은 GS 800 포토미터(Bio-Rad)를 이용하여 스캔되었고, ImageMasterTM 2D Platinum Software version 5.0 (GeneBio, Geneva, Switzerland)를 이용하여 분석되었다. 디지털화된 2DE 겔 이미지는 매칭 방식으로 비교되었다(Image master 5.0; Amersham Biosciences). 그룹들 중 다르게 발현되는 스팟들은(>3-fold 및 <1/3-fold)이 분석되고, 설명되었다.
< 실시예 5 : In - gel digestion >
스팟은 상술한 바에 따라(Gorg et al., 2000), 50 mM 탄산수소암모늄 pH 8.0에서 12.5 ng/μL 트립신(Promega, USA)을 이용하여 작은 조각으로 잘려졌다[16]. MALDI-TOF MS 분석을 위해, 트립신 펩티드가 POROS 50 R2 column (Applied BioSystems, USA)에 집중되었다. 컬럼을 70% 아세토나이트릴(can)로 5% FA, 100% can 및 5% FA로 여러 번 세척한 후에 샘플들은 POROS 50 R2 컬럼에 로딩되어 5% FA로 세척되었다. 샘플들은 10 mg/mL α-시아노-4-하이드록시-시아믹 애시드(cinnamic acid, (Sigma-Aldrich, USA))로 구성된 2 μL of 매트릭스 용액으로 희석시키고, MALDI 샘플 플레이트에 떨어뜨렸다[24].
< 실시예 6 : MALDI - TOF 단백질 확인 >
MALDI-TOF MS는 337 nm 질소 레이저를 가진 Voyager DE-PRO 스펙트로미터(Applied Biosystems)을 이용하여 수행되었다. 기구는 가속화 전압 20 kV, 양이온 반사 모드, 전압 그리드 74.5%, 가이드 와이어 전압 0% 및 지연 시간 120 ns로 작동되었다. 스펙트럼은 트립신 자기 분해 산물(842.51 [M+H] 및 2211.11 [M+H])을 이용하고, Mascot (Matrix Science, UK)를 이용한 Swiss-Prot 확인 단백질 및 NCBI 데이터베이스를 조사하여, 내적으로 측정되었다. Monoisotopic peaks [MH+]가 선택되었고, 모든 다른 조사는 50 ppm mass tolerance로 분석되었다.
< Results >
다르게 발현되는 돼지 췌장 단백질이 확인되었고, 발달 단계별로 비교하였다. 췌장 단백질이 추출되어 2D-PAGE로 분석되었다. 분해된 단백질은 쿠마시 블루 염색으로 시각화된 후, 2DE는 독립적으로 매치된 샘플 3쌍에 대해 각각 3번 반복되었다(도 1). 각 샘플에 대해, 분석을 위해 가장 최상의 도 1 해상도를 갖는 3 겔이 선택되었다. Image masterTM software (Geneva Bioinformatics, Switzerland)를 이용하여 스팟 강도가 분석되었다. 탐지된 289 단백질 스팟들 중에서, 13개의 다른 스팟들이 확인되었다. 3배 이상 증가되거나, 1/3이하로 감소된 단백질 스팟이 선택되고, 겔로부터 분리된 후, digestion 되었다. 펩티드 핑거프린팅은 MALDI-TOF MS로 수행되었다. 펩티드 질량 데이터는 Mascot으로 확인되었다. 다르게 발현되는 13개 스팟이 확인되었다. 이들 중 9개가 확인되었고, 이들의 기능은 http://www.ebi.ac.uk/ego 의 검색에 기초하여 확립되었다(도 3).
선택된 스팟 강도의 증가 및 감소는 신생아 미니어쳐 피그에서 어른 미니어쳐 피그까지 미니어쳐 피그의 비교에 의해 연대순으로 확인되었다(도 2). 췌장 트리아실글리세롤 리파아제(pancreatic triacylglycerol lipase, 스팟 2), 티로신-풍부 단백질 1 전구체(tyrosine-rich protein 1 precursor, 스팟 6) 및 인터루킨-1 수용체 타입 I 전구체(interleukin-1 receptor type I precursor, 스팟 8)은 감소 및 증가 조절되었다. 스팟 10은 유사한 강도를 나타냈음에도 불구하고, 정확한 확인이 이루어지지 못하였다. 췌장 알파 아밀라아제 전구체(Pancreatic alpha amylase precursor, 스팟 3)과 고속이동군단백질 B2(high mobility group protein B2, 스팟 13)은 모두 증가 조절되었다. 스팟 1 및 스팟 7은 유사한 강도 패턴을 나타내었으나, 정확한 동정은 이루어지지 않았다. 헤모글로빈 알파-서브유닛 스팟들(스팟 4 및 스팟 5)는 나란히 나타났다; 스팟 강도는 다양하였고, 각각 감소조절되거나, 감소조절되고, 불변하였다. 비스포스포글리세라테뮤타아제(2, 3-bisphosphoglycrerate mutase; 스팟 11) 발현은 불변하거나, 증가조절되었다. 알파-에놀라아제(2-phospho-D-glyceratehydro-lyase; 스팟 9) 및 스팟 12의 발현은 각각 증가조절되고, 감소조절되었다. 유사한 강도를 나타내는 스팟 12는 정확히 확인되지 못하였다.
본 연구는 발달 단계에 따른 미니어쳐 피그에서 췌장의 단백질 발현에 대한 첫번째 발명이다.
무병균 미니어쳐 피그를 이용하여 췌장의 이종기관이식이 수년간 동안 개발되어 왔음에도 불구하고, 발달 단계(본 발명에서 4일 된 신생아 미니어쳐피그, 19일 된 새끼돼지 및 14개월 된 어른 미니어쳐 피그)에 따른 연대기분석한 연구는 거의 없었다. 췌장에서 단백질 발현의 수정에 대한 전체적인 이해는 유용한 생물학적 임상학적 정보를 제공할 수 있다. 등전점 3-10 및 10-100 kDa의 분자량을 갖는 약 300개의 단백질이 탐지되었다. 289 스팟 중, 13개의 단백질 스팟이 발달과정동안 현저하게 변화되었으며; 이들 중 9개의 스팟이 기능적으로 동일하였다. 밝혀진 단백질들 중, 췌장의 기능과 직접적으로 관련된 것은 거의 없었다. 가령, 췌장 트리아실글리세롤 리파아제(pancreatic triacylglycerol lipase)는 효과적인 식이 트리글리세라이드 소화에 필요하다[18, 19]. 이들 효소가 지방의 대사에 중요한 역할을 함에도 불구하고, 그 발현은 발달과정이나 조직에 따라 다양하다[19]. 췌장 알파 아밀라아제 전구체는 췌장과 침샘에서 발견되었다[20]. 알파-아밀라아제는 그 생합성과정 동안 글리코실화 조직인 전형적인 분비 단백질이다[21, 22]. 글리코실화는 알파-아밀라아제 분자의 생합성 동안 단백질 가수분해과정에 의해 진행된다[23]. 포유류의 인터루킨-1 수용체 타입 1 톨-유사 수용체 슈퍼패밀리(interleukin-1 receptor type 1-Toll-like receptor superfamily)는 선천적인 면역, 염증 반응, 스트레스 반응 및 치명적인 면역 장애에 중요한 역할을 한다[24-27]. 이는 멤브레인간 단백질 가공을 거친다[28]. 인터루킨-1 수용체 타입 1과 췌장염 간의 관계에 대해 많은 연구가 보고되어 왔다[29-31].
또한, 타입 2 당뇨의 염증은 인터루킨-1 수용체 타입 1과 연결되어 있다[30]. 알파-에놀라아제(Alpha-enolase)는 해당경로(glycolytic pathway)에 중요한 48-kDa 단백질로서, 2-포스포글리세린산(2-phosphoglycerate)으로부터 포스포에놀피루브산염(phosphoenolpyruvate)의 형성과정을 촉매하며, 글리코실화에서 ATP 생성을 중개하는 높은 에너지를 생성한다[33].
오랜 시간 동안 돼지와 인간 간의 이종기관이식에 대한 수많은 연구가 있었음에도 불구하고, 발달단계 동안 이러한 변화가 특정 발달단계에서 중요한 변화이건 아니건 간에, 다양한 조직의 프로테옴 수정은 고려되지 못해왔다.
또한, 돼지 췌장 조직의 프로테옴에 대한 데이터도 부족했으며[5], 이식 관련 프로테옴 발현 관계 및 인간과 미니어쳐 피그 간의 차이를 조사하려는 노력이 없었다. 단백질 보체의 수정에 대한 지식은 이종기관이식에 장애가 되는 면역학적 장벽, 미생물학적 차이와 종간 차이에 의해 야기되는 문제점을 극복할 수 있는 가치있는 정보를 제공할 수 있다.
현재 데이터로부터, 발달단계에서 췌장 단백질의 수정은 다양한 효소 활성 및 면역반응을 포함하는 것으로 보이며, 혈액학상 관련성을 가지고 있는 것으로 보인다. 데이터 범위가 기술적 문제에 의해 장애를 겪고 있음에도 불구하고, 데이터는 췌장 발달과정 동안 단백질 발현의 최초의 참고자료를 제공하며, 이는 이종기관이식과 관련하여 돼지 췌장의 추후의 프로테옴 분석에 유용할 것이다.
상기에 제시된 실시예는 예시적인 것으로 이 분야에서 통상의 지식을 가지는 자는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 제시된 실시예에 대한 다양한 변형 및 수정 고안을 만들 수 있을 것이다. 이러한 변형 및 수정 고안에 의하여 본 발명의 범위는 제한되지 않는다.
< References >
1. Cooper DK, Gollackner B, Sachs DH. Will the pig solve the transplantation backlog Annu Rev Med 2002; 53: 133-147.
2. Platt JL. Physiologic barriers to xenotransplantation. Transplant Proc 2000; 32(7): 1547-1548.
3. Ryu JM, Kim DH, Lee MY, Lee SH, Park JH, Yun SP, Jang MW, Kim SH, Rho GJ, Han HJ. Imaging evaluation of the liver using multi-detector row computed tomography in micropigs as potential living liver donors. J Vet Sci 2009; 10(2): 93-98.
4. Ibrahim Z, Busch J, Awwad M, Wagner R, Wells K, Cooper DK. Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation 2006; 13(6), 488-499.
5. Tucker A, Belcher C, Moloo B, Bell J, Mazzulli T, Humar A, Hughes A, McArdle P, Talbot A. The production of transgenic pigs for potential use in clinical xenotransplantation: baseline clinical pathology and organ size studies. Xenotransplantation 2002; 9(3): 203-208.
6. Ando A, Ota M, Sada M, Katsuyama Y, Goto R, Shigenari A, Kawata H, Anzai T, Iwanaga T, Miyoshi Y, Fujimura N, Inoko H. Rapid assignment of the swine major histocompatibility complex (SLA) class I and II genotypes in Clawn miniature swine using PCR-SSP and PCR-RFLP methods. Xenotransplantation 2005;12(2): 121-126.
7. Park CG, Kim JS, Shin JS, Kim YH, Kim SJ. Current Status and Future Perspectives of xenotransplantation. J Korean SocTranplant 2009; 23(3): 203-213.
8. Vodicka P, Smetana K Jr, Dvorankova B, Emerick T, Xu YZ, Ourednik J, Ourednik V, Motlik J. The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 2005; 1049:161-171.
9. Choi JS, Cho YK, Y oon SH, Kwon SO, Koo DB, Yu K. Proteomic analysis of porcine pancreas development. BMB Rep 2009; 42(10): 661-666.
10. Han HJ, Kang SS, Park SH. Tissue specific expression of lipid metabolism related molecules in digestive organs of miniature pigs. Lab Anim Res 2010; 26(3): 273-278.
11. Lee MS, Song KD, Yang HJ, Solis CD, Kim SH, Lee WK. Development of a type II diabetic mellitus animal model using Micropig® Lab Anim Res 2012; 28(3): 205-208.
12. Cozzi E, Bosio E. Islet xenotransplantation: current status of preclinical studies in the pig-to-nonhuman primate model. Curr Opin Organ Transplant 2008; 13(2): 155-158.
13. Marigliano M, Bertera S, Grupillo M, Trucco M, Bottino R. Pigto-nonhuman primates pancreatic islet xenotransplantation: an overview. Curr Diab Rep 2011; 11(5): 402-412.
14. Rood PP, Buhler LH, Bottino R, Trucco M, Cooper DK. Pig-tononhuman primate islet xenotransplantation: a review of current problems. Cell Transplant 2006; 15(2): 89-104.
15. Steiner S, Anderson NL. Pharmaceutical proteomics. Ann N Y Acad Sci 2000; 919: 48-51.
16. Grog A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000; 21(6): 1037-1053.
17. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996; 68(5): 850-858.
18. Lewe ME. The triglyceride lipases of the pancreas. J Lipid Res 2002; 43(12): 2007-2016.
19. Mahan JT, Heda GD, Rao RH, Mansbach CM 2nd. The intestine expresses pancreatic triacylglycerol lipase: regulation by dietary lipid. Am J Physiol Gastrointest Liver Physiol 2001; 280(6):G1187-1196.
20. Hagenbuchle O, Bovey R, Young RA. Tissue-specific expression of mouse-alpha-amylase genes: nucleotide sequence of isoenzyme mRNAs from pancreas and salivary gland. Cell 1980; 21(1): 179-187.
21. Doyon Y, Home W, Daull P, LeBel D. Effect of C-domain Nglycosylation and deletion on rat pancreatic alpha-amylase secretion and activity. Biochem J 2002; 362(Pt 1): 259-264.
22. Miyata S, Akazawa T. Biosynthesis of rice seed alpha-amylase:proteolytic processing and glycosylation of precursor polypeptides by microsomes. J Cell Biol 1983; 96(3): 802-806.
23. Miyata S, Akazawa T. alpha-Amylase biosynthesis: evidence for temporal sequence of NH2-terminal peptide cleavage and protein glycosylation. Proc Natl Acad Sci USA 1982; 79(21): 6566-6568.
24. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004; 4(7): 499-511.
25. Creagh EM, O?eill LA. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 2006; 27(8): 352-357.
26. Subramaniam S, Stansberg C, Cunningham C. The interleukin 1 receptor family. Dev Comp Immunol 2004; 28(5): 415-428.
27. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17(1), 1-14.
28. Elzinga BM, Twomey C, Powell JC, Harte F, McCarthy JV. Interleukin-1 receptor type 1 is a substrate for gamma-secretasedependent regulated intramembrane proteolysis. J Biol Chem 2009; 284(3): 1394-1409.
29. Abcouwer SF, Norman J, Fink G, Carter G, Lustig RJ, Souba WW. Tissue-specific regulation of glutamine synthetase gene expression in acute pancreatitis is confirmed by using interleukin-1 receptor knockout mice. Surgery 1996; 120(2): 255-263.
30. Chentouf M, Dubois G, Jahannaut C, Castex F, Lajoix AD, Gross R, Peraldi-Roux S. Excessive food intake, obesity and inflammation process in Zucker fa/fa rat pancreatic islets. PLoS One 2011; 6(8): e22954.
31. Fink GW, Norman JG. Specific changes in the pancreatic expression of the interleukin 1 family of genes during experimental acute pancreatitis. Cytokine 1997; 9(12): 1023-1027.
32. Subramanian A, Miller DM. Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 2000; 275(8): 5958-5965.
33. Wold, F. (1971) The Enzymes; (Boyer, P.D., ed) 3rd Ed. 5, pp. 499-508, Academic Press, New York, USA.

Claims (2)

  1. 발달 단계별 돼지 췌장에서 발현되는 단백질에 있어서, 췌장 트리아실글리세롤 리파아제(pancreatic triacylglycerol lipase), 티로신-풍부 단백질 1 전구체(tyrosine-rich protein 1 precursor), 인터루킨-1 수용체 타입 I 전구체(interleukin-1 receptor type I precursor), 췌장 알파 아밀라아제 전구체(Pancreatic alpha amylase precursor), 고속이동군단백질 B2(high mobility group protein B2), 헤모글로빈 알파-서브유닛 스팟들, 비스포스포글리세라테뮤타아제(2, 3-bisphosphoglycrerate mutase) 또는 알파-에놀라아제(2-phospho-D-glyceratehydro-lyase) 중 어느 하나 이상을 포함하는 이종기관이식 거부반응 검출용 항원.
  2. 제1항의 항원을 포함하는 이종기관이식의 거부반응 검출용 키트.
KR20140053237A 2014-05-02 2014-05-02 돼지 췌장의 발달단계별 차이를 나타내는 단백질을 포함하는 이종기관이식 거부반응 검출을 위한 신규한 항원 및 이를 포함하는 검출용 키트 KR101501085B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20140053237A KR101501085B1 (ko) 2014-05-02 2014-05-02 돼지 췌장의 발달단계별 차이를 나타내는 단백질을 포함하는 이종기관이식 거부반응 검출을 위한 신규한 항원 및 이를 포함하는 검출용 키트

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20140053237A KR101501085B1 (ko) 2014-05-02 2014-05-02 돼지 췌장의 발달단계별 차이를 나타내는 단백질을 포함하는 이종기관이식 거부반응 검출을 위한 신규한 항원 및 이를 포함하는 검출용 키트

Publications (1)

Publication Number Publication Date
KR101501085B1 true KR101501085B1 (ko) 2015-03-12

Family

ID=53027080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20140053237A KR101501085B1 (ko) 2014-05-02 2014-05-02 돼지 췌장의 발달단계별 차이를 나타내는 단백질을 포함하는 이종기관이식 거부반응 검출을 위한 신규한 항원 및 이를 포함하는 검출용 키트

Country Status (1)

Country Link
KR (1) KR101501085B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504097A (ja) * 1993-12-23 1998-04-14 ユニヴァーサイト キャソリーキュ デ ロウヴェイン 臓器拒絶反応のマーカー
JP2001517459A (ja) * 1997-09-24 2001-10-09 ベス イスラエル ディーコネス メディカル センター 移植組織の拒絶反応を評価する方法
JP2002514895A (ja) * 1995-09-28 2002-05-21 アレクション、ファーマスーティカルズ、インコーポレーテッド ブタ細胞相互作用タンパク質

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504097A (ja) * 1993-12-23 1998-04-14 ユニヴァーサイト キャソリーキュ デ ロウヴェイン 臓器拒絶反応のマーカー
JP2002514895A (ja) * 1995-09-28 2002-05-21 アレクション、ファーマスーティカルズ、インコーポレーテッド ブタ細胞相互作用タンパク質
JP2001517459A (ja) * 1997-09-24 2001-10-09 ベス イスラエル ディーコネス メディカル センター 移植組織の拒絶反応を評価する方法

Similar Documents

Publication Publication Date Title
Qiu et al. Comparative proteomic analysis of egg white proteins under various storage temperatures
Lu et al. Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows
Désert et al. Comparison of different electrophoretic separations of hen egg white proteins
Castagna et al. Exploring the hidden human urinary proteome via ligand library beads
Darewicz et al. Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes
Giansanti et al. The nutraceutical properties of ovotransferrin and its potential utilization as a functional food
Zimmerman et al. Proteome and peptidome of human acquired enamel pellicle on deciduous teeth
Zhang et al. Towards posttranslational modification proteome of royal jelly
Atwood et al. Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling
Makkar et al. Chicken egg shell membrane associated proteins and peptides
Rehault-Godbert et al. Effect of embryonic development on the chicken egg yolk plasma proteome after 12 days of incubation
Zeghir-Bouteldja et al. Comparative proteome profiling of hydatid fluid from Algerian patients reveals cyst location-related variation in Echinococcus granulosus
Farkaš Apocrine secretion: new insights into an old phenomenon
Bocian et al. Proteome and Peptidome of Vipera berus berus Venom
He et al. Antioxidative peptides from proteolytic hydrolysates of false abalone (Volutharpa ampullacea perryi): Characterization, identification, and molecular docking
Violette et al. Recruitment of glycosyl hydrolase proteins in a cone snail venomous arsenal: further insights into biomolecular features of Conus venoms
Jamunaa et al. Cytotoxicity of Southeast Asian snake venoms
Zhang et al. Two novel multi-functional peptides from meat and visceral mass of marine snail Neptunea arthritica cumingii and their activities in vitro and in vivo
Wang et al. Quantitative comparative integrated proteomic and phosphoproteomic analysis of chicken egg yolk proteins under diverse storage temperatures
Geng et al. Mass spectrometry and two-dimensional electrophoresis to characterize the glycosylation of hen egg white ovomacroglobulin
Pessoa et al. Analysis of protein composition and bioactivity of Neoponera villosa venom (Hymenoptera: Formicidae)
Akkurt Arslan et al. Proteomic analysis of tears and conjunctival cells collected with Schirmer strips using timsTOF Pro: Preanalytical considerations
Naveed et al. Purification, characterization and bactericidal action of lysozyme, isolated from Bacillus subtillis BSN314: a disintegrating effect of lysozyme on gram-positive and gram-negative bacteria
KR101501085B1 (ko) 돼지 췌장의 발달단계별 차이를 나타내는 단백질을 포함하는 이종기관이식 거부반응 검출을 위한 신규한 항원 및 이를 포함하는 검출용 키트
Chemonges et al. Characterisation of the circulating acellular proteome of healthy sheep using LC-MS/MS-based proteomics analysis of serum

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180306

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 6