KR101497348B1 - Method for Preparing Integrated Electrode Assembly for Lithium Secondary Battery and Integrated Electrode Assembly Prepared Using the Same - Google Patents

Method for Preparing Integrated Electrode Assembly for Lithium Secondary Battery and Integrated Electrode Assembly Prepared Using the Same Download PDF

Info

Publication number
KR101497348B1
KR101497348B1 KR1020130042674A KR20130042674A KR101497348B1 KR 101497348 B1 KR101497348 B1 KR 101497348B1 KR 1020130042674 A KR1020130042674 A KR 1020130042674A KR 20130042674 A KR20130042674 A KR 20130042674A KR 101497348 B1 KR101497348 B1 KR 101497348B1
Authority
KR
South Korea
Prior art keywords
lithium
secondary battery
electrode assembly
formula
electrode
Prior art date
Application number
KR1020130042674A
Other languages
Korean (ko)
Other versions
KR20130117349A (en
Inventor
박태진
김지현
김대홍
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20130117349A publication Critical patent/KR20130117349A/en
Application granted granted Critical
Publication of KR101497348B1 publication Critical patent/KR101497348B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 이차전지용 일체형 전극조립체의 제조방법으로서, 전극과 분리막을 결합시킬 수 있도록, (i) 양극, 음극 및 상기 양극과 음극 사이에 개재되는 부직포 분리막에 의해 적층체를 형성하는 단계; (ii) 상기 적층체를 열처리 하는 단계; 및 (iii) 상기 열처리 된 적층체에 압력을 가하는 단계;를 포함하는 일체형 전극조립체의 제조방법 및 상기 제조방법으로 제조된 일체형 전조립체를 제공한다.A method of manufacturing an integrated electrode assembly for a secondary battery, the method comprising: (i) forming a laminate by a positive electrode, a negative electrode, and a nonwoven fabric separator interposed between the positive electrode and the negative electrode; (ii) heat-treating the laminate; And (iii) applying pressure to the heat-treated laminate. The present invention also provides an integrated preform assembly manufactured by the method.

Description

리튬 이차전지용 일체형 전극조립체의 제조방법 및 이를 사용하여 제조되는 일체형 전극조립체 {Method for Preparing Integrated Electrode Assembly for Lithium Secondary Battery and Integrated Electrode Assembly Prepared Using the Same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an integrated electrode assembly for a lithium secondary battery,

본 발명은 이차전지용 일체형 전극조립체의 제조방법으로서, 더욱 상세하게는, (i) 양극, 음극 및 상기 양극과 음극 사이에 개재되는 부직포 분리막에 의해 적층체를 형성하는 단계; (ii) 상기 적층체를 열처리 하는 단계; 및 (iii) 상기 열처리 된 적층체에 압력을 가하는 단계;를 포함하는 과정에 의해, 전극과 분리막을 결합시킨 일체형 전극조립체의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an integrated electrode assembly for a secondary battery, and more particularly, to a method of manufacturing an integrated electrode assembly for a secondary battery, comprising the steps of: (i) forming a laminate by a positive electrode, a negative electrode, and a nonwoven fabric separator interposed between the positive electrode and the negative electrode; (ii) heat-treating the laminate; And (iii) applying a pressure to the heat-treated laminate, wherein the electrode and the separator are combined with each other.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices have increased, there has been a rapid increase in demand for secondary batteries as energy sources. Among such secondary batteries, lithium secondary batteries, which exhibit high energy density and operational potential, long cycle life, Batteries have been commercialized and widely used.

또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.In recent years, there has been a growing interest in environmental issues, and as a result, electric vehicles (EVs) and hybrid electric vehicles (HEVs), which can replace fossil-fueled vehicles such as gasoline vehicles and diesel vehicles, And the like. Although a nickel metal hydride (Ni-MH) secondary battery is mainly used as a power source for such an electric vehicle (EV) and a hybrid electric vehicle (HEV), a lithium secondary battery having a high energy density, a high discharge voltage, Research is being actively carried out, and some are commercialized.

리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해질이 함침되어 있는 구조로 이루어져 있다.The lithium secondary battery has a structure in which a non-aqueous electrolyte containing a lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode coated with an active material on an electrode current collector.

분리막은 일반적으로 접촉하고 있는 전지의 구성 성분에 대하여 안정성 및 내열화성(resistant to degradation)이 있어야 하고, 높은 전해전기전도율을 나타낼 수 있어야 하며, 분리막을 제조 및 가공하거나 전지에 사용될 때 양 전극 사이의 접촉을 방지하면서 분리막의 원형을 유지할 수 있을 정도의 충분한 강도를 지니고 있어야 한다.The separator should have stability and resistant to degradation and generally exhibit a high electrolytic conductivity for the components of the battery which are in contact with each other. When the separator is manufactured and processed or used in a cell, It should have sufficient strength to maintain the original shape of the membrane while preventing contact.

특히, 리튬 이차전지는 다른 타입의 전지에 비하여, 우수한 저장수명 및 고에너지 밀도를 제공할 수 있는 반면에 리튬의 반응성이 매우 크므로, 만일 전지가 과열되어 열폭주가 일어나거나 분리막이 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 그러나, 리튬 이차전지에 통상적으로 사용되는 분리막인 다공성 폴리올레핀계 필름은 열에 의해 수축되어 내부 단락을 일으키는 등의 문제점이 있다.Particularly, the lithium secondary battery can provide an excellent storage life and a high energy density as compared with other types of batteries. However, since the reactivity of lithium is very high, if the battery is overheated and thermal runaway occurs, There is a high possibility of causing an explosion. However, the porous polyolefin-based film, which is a separator commonly used in lithium secondary batteries, is shrunk by heat and causes internal short-circuit.

따라서, 고온에서 안정성을 갖고 외부 충격에 대한 전지의 안정성을 향상시킬 수 있는 기술에 대한 필요성이 매우 높은 실정이다.Therefore, there is a great need for a technique that has stability at a high temperature and can improve the stability of a battery against an external impact.

본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems of the prior art and the technical problems required from the past.

본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 양극, 음극 및 부직포 분리막의 적층체를 열처리한 후 압력을 가하는 방법에 의해 소망하는 물성을 제공하는 전극조립체를 제조할 수 있음 것을 확인하고, 본 발명을 완성하기에 이르렀다.The inventors of the present application have conducted intensive research and various experiments and have succeeded in various experiments. As described later, an electrode assembly for providing desired physical properties by applying a heat treatment to a laminate of an anode, a cathode and a non- And the present invention has been accomplished.

따라서, 본 발명은 이차전지용 일체형 전극조립체를 제조하는 방법으로서, (i) 양극, 음극 및 상기 양극과 음극 사이에 개재되는 부직포 분리막에 의해 적층체를 형성하는 단계; (ii) 상기 적층체를 열처리 하는 단계; 및 (iii) 상기 열처리 된 적층체에 압력을 가하는 단계;를 포함하여 전극과 분리막을 결합시키는 일체형 전극조립체의 제조방법을 제공한다.Accordingly, the present invention provides a method of manufacturing an integrated electrode assembly for a secondary battery, comprising the steps of: (i) forming a laminate by a positive electrode, a negative electrode, and a nonwoven fabric separator interposed between the positive electrode and the negative electrode; (ii) heat-treating the laminate; And (iii) applying pressure to the heat-treated laminate, wherein the electrode and the separator are bonded to each other.

상기 열처리는 부직포 분리막 소재의 융점의 -20℃ 내지 +20℃ 범위 내에서 이루어질 수 있고, 이 경우 부직포를 이루는 섬유들이 만나는 부분이 용융되었다가 다시 고화되면서 부직포 자체의 강도가 높아지는 한편, 일부 부직포 섬유들이 전극과 용융 결합되어, 전극과의 결합력도 높아진다.The heat treatment may be performed within a range of -20 ° C to + 20 ° C of the melting point of the nonwoven fabric separator. In this case, the portion where the nonwoven fabric fibers meet is melted and solidified again to increase the strength of the nonwoven fabric itself. Are fusion-bonded with the electrodes, so that the bonding force with the electrodes also increases.

너무 높은 온도까지 열처리를 하는 경우 부직포 분리막이 완전히 녹아 그 기능을 제대로 할 수 없게 되며, 반대로 너무 낮은 경우는 열처리함에 따른 효과를 얻지 못한다.If the heat treatment is performed to an excessively high temperature, the nonwoven fabric separator completely melts and the function of the nonwoven fabric separator becomes insufficient. Conversely, if the temperature is too low, the effect of heat treatment is not obtained.

이러한 부직포 자체의 강도 및 전극과의 결합력은 적절한 압력을 인가하여 더욱 증가한다.The strength of the nonwoven fabric itself and the bonding force with the electrode are further increased by applying appropriate pressure.

압력이 너무 작은 경우 원하는 효과를 얻지 못하고 너무 큰 켱우에는 부직포 분리막의 장점인 함침성 등을 살릴 수 없으므로, 상세하게는 10 내지 30 톤의 압력을 인가할 수 있다. If the pressure is too small, the desired effect can not be obtained. If the pressure is too large, the impregnation property, which is an advantage of the nonwoven fabric separator, can not be utilized. Therefore, 10 to 30 tons of pressure can be applied.

상기 부직포 분리막은, 상세하게는, 평균 굵기가 0.5 내지 10 um, 더욱 상세하게는, 1 내지 7 um인 극세사를 이용하여, 기공의 장경(기공의 최장 직경)이 0.1 내지 70 um인 기공들을 포함하도록 형성하는 것이 바람직하다. 장경이 0.1 um 미만인 기공들을 다수 갖는 부직포는 제조하기 어렵고, 기공의 장경이 70 um을 초과하면 기공 크기로 인하여 절연성 저하의 문제점이 발생할 수 있다. 또한, 부직포 분리막의 두께는 5 내지 300 um인 것이 바람직하다.More specifically, the nonwoven fabric separating membrane includes pores having a major axis of pores (maximum diameter of pores) of 0.1 to 70 μm using microfine fibers having an average thickness of 0.5 to 10 μm, more specifically, 1 to 7 μm As shown in Fig. It is difficult to manufacture nonwoven fabrics having many pores having a long diameter of less than 0.1 μm, and when the long diameter of the pores exceeds 70 μm, there may arise a problem of lowering the insulating property due to the pore size. The thickness of the nonwoven fabric separator is preferably 5 to 300 μm.

상기 부직포 분리막은 폴리에틸렌(polyethylene: PE), 폴리에틸렌테레프탈레이트(polyethylene terephthalate: PET), 폴리프로필렌(polypropylene: PP), 폴리테트라 플루오로에틸렌(polytetrafluoro ethylene: PTFE), 폴리플루오린화비닐리덴(polyvinylidine fluoride: PVdF), 폴리염화비닐(polyvinylchloride: PVC)로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 형성될 수 있다. 경우에 따라서는, 둘 이상의 소재로 이루어진 섬유들을 사용하여 부직포 분리막을 형성할 수도 있다.The nonwoven fabric separation membrane may be formed of a material selected from the group consisting of polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinylchloride (PVC), and the like. In some cases, the nonwoven fabric separating film may be formed by using fibers made of two or more materials.

상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조 및 프레싱하여 제조되며, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가하기도 한다.The anode is prepared by applying a mixture of a cathode active material, a conductive material and a binder on a cathode current collector, followed by drying and pressing. If necessary, a filler may be further added to the mixture.

상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. The cathode current collector generally has a thickness of 3 to 500 mu m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.

상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2 -x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 and Cu 2 V 2 O 7 ; A Ni-site type lithium nickel oxide expressed by the formula LiNi 1-x M x O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga and x = 0.01 to 0.3); Formula LiMn 2-x M x O 2 ( where, M = Co, Ni, Fe , Cr, and Zn, or Ta, x = 0.01 ~ 0.1 Im) or Li 2 Mn 3 MO 8 (where, M = Fe, Co, Ni, Cu, or Zn); A lithium manganese composite oxide having a spinel structure represented by LiNi x Mn 2-x O 4 ; LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion; Disulfide compounds; Fe 2 (MoO 4 ) 3 , and the like. However, the present invention is not limited to these.

하나의 구체적인 예에서, 상기 양극 활물질은 하기 화학식 1로 표시되는 고전위 산화물인 스피넬 구조의 리튬 망간 복합 산화물일 수 있다. In one specific example, the cathode active material may be a lithium manganese composite oxide having a spinel structure which is a high-potential oxide represented by the following formula (1).

LixMyMn2-yO4-zAz (1) Li x M y Mn 2 - y O 4 - z z (1)

상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고, Wherein 0 < y < 2, 0 z < 0.2,

M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, ;

A는 -1 또는 -2가의 하나 이상의 음이온이다.A is one or more of an anion of -1 or -2.

상세하게는, 상기 화학식 1의 리튬 망간 복합 산화물은 하기 화학식 2로 표시되는 리튬 니켈 망간 복합 산화물일 수 있으며, 더욱 상세하게는 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4일 수 있다.In detail, the lithium manganese composite oxide represented by Formula 1 may be a lithium nickel manganese composite oxide represented by Formula 2, and more specifically, LiNi 0.5 Mn 1.5 O 4 or LiNi 0.4 Mn 1.6 O 4 .

LixNiyMn2-yO4 (2)Li x Ni y Mn 2-y O 4 (2)

상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.In the above formula, 0.9? X? 1.2 and 0.4? Y? 0.5.

상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is usually added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.

상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt% based on the total weight of the mixture containing the cathode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.

상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for suppressing the expansion of the anode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. Examples of the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.

상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.The negative electrode is prepared by applying, drying and pressing an anode active material on an anode current collector, and may optionally further include a conductive material, a binder, a filler, and the like as described above.

상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is generally made to have a thickness of 3 to 500 mu m. Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.

상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있다.The negative electrode active material may include, for example, carbon such as non-graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0≤x≤1 ), Li x WO 2 (0≤x≤1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen, 0 &lt; x &lt; Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, and Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide and the like can be used.

하나의 구체적인 예에서, 상기 음극 활물질은 하기 화학식 3으로 표시되는 리튬 금속 산화물일 수 있다. In one specific example, the negative electrode active material may be a lithium metal oxide represented by the following formula (3).

LiaM’bO4-cAc (3)Li a M ' b O 4-ca c (3)

상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; In the above formula, M 'is at least one element selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al and Zr;

a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며;a and b are 0.1? a? 4; Is determined according to the oxidation number of M 'in the range of 0.2? B? 4;

c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고;c is determined according to the oxidation number in the range of 0? c <0.2;

A는 -1 또는 -2가의 하나 이상의 음이온이다.A is one or more of an anion of -1 or -2.

상세하게는, 상기 화학식 3의 리튬 금속 산화물은 하기 화학식 4로 표시되는 리튬 티타늄 산화물(LTO)일 수 있고, 구체적으로 Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4, Li1.14Ti1.71O4 등 일 수 있으나, 리튬 이온을 흡장/방출할 수 있는 것이면 그 조성 및 종류에 있어 별도의 제한은 없으며, 더욱 상세하게는, 충방전시 결정 구조의 변화가 적고 가역성이 우수한 스피넬 구조의 Li1.33Ti1.67O4 또는 LiTi2O4일 수 있다.Specifically, the lithium metal oxide represented by Formula 3 may be a lithium titanium oxide (LTO) represented by the following Formula 4, and specifically, Li 0.8 Ti 2.2 O 4 , Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O 4, etc. However, there is no particular limitation on the composition and kind of lithium ions capable of intercalating / deintercalating lithium ions, and more specifically, It may be a spinel structure of Li 1.33 Ti 1.67 O 4 or LiTi 2 O 4 having a small change and excellent reversibility.

LiaTibO4 (4)Li a Ti b O 4 (4)

상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.In the above formula, 0.5? A? 3, 1? B? 2.5.

상기 리튬 티타늄 산화물(LTO)은 특히 수분제거를 위해 고온에서 건조과정이 필요하므로 고온 안정성이 우수한 부직포 분리막은 이러한 전지에 적용에 더욱 효과적이다.Since the lithium titanium oxide (LTO) is required to be dried at a high temperature in order to remove moisture, the nonwoven fabric separator having excellent high temperature stability is more effective for application to such a battery.

이 경우, LTO의 높은 전위로 인하여 상대적으로 고전위를 가지는 상기 화학식 2로 표시되는 LixNiyMn2-yO4의 스피넬 리튬 니켈 망간 복합 산화물을 양극 활물질로 사용하는 것이 바람직하다.In this case, it is preferable to use the spinel lithium nickel manganese composite oxide of Li x Ni y Mn 2-y O 4 represented by the above formula (2) having a relatively high potential due to the high potential of LTO as the cathode active material.

본 발명은 상기 제조방법으로 제조되는 일체형 전극조립체 및 상기 일체형 전극조립체를 포함하는 이차전지를 제공하며, 상세하게는 리튬 이차전지를 제공한다. The present invention provides an integrated electrode assembly manufactured by the above manufacturing method and a secondary battery including the integral electrode assembly, and more particularly, to a lithium secondary battery.

상기 리튬 이차전지는 상기 일체형 전극조립체에 리튬염 함유 전해액을 함침시킴으로써 제조된다.The lithium secondary battery is manufactured by impregnating the integral electrode assembly with a lithium salt-containing electrolyte.

상기 리튬염 함유 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.The electrolyte solution containing the lithium salt is composed of an electrolyte solution and a lithium salt. The electrolyte solution may be a non-aqueous organic solvent, an organic solid electrolyte, or an inorganic solid electrolyte, but is not limited thereto.

상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma -Butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane , Acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate Nonionic organic solvents such as tetrahydrofuran derivatives, ethers, methyl pyrophosphate, ethyl propionate and the like can be used.

상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer containing an ionic dissociation group and the like may be used.

상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.

상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.

또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.For the purpose of improving the charge / discharge characteristics and the flame retardancy, the electrolytic solution is preferably mixed with an organic solvent such as pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, . In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (Fluoro-Ethylene Carbonate, PRS (Propene sultone), and the like.

하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.In one specific example, LiPF 6, LiClO 4, LiBF 4, LiN (SO 2 CF 3) 2 , such as a lithium salt, a highly dielectric solvent of DEC, DMC or EMC Fig solvent cyclic carbonate and a low viscosity of the EC or PC of And then adding it to a mixed solvent of linear carbonate to prepare a lithium salt-containing non-aqueous electrolyte.

또한, 본 발명은 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩을 제공하고, 상기 전지팩을 포함하는 디바이스를 제공한다.Also, the present invention provides a battery module including the secondary battery as a unit battery, a battery pack including the battery module, and a device including the battery pack.

상기 디바이스의 구체적인 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the device include a power tool which is powered by an electric motor and moves; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; And a power storage system, but the present invention is not limited thereto.

상기에서 설명한 바와 같이, 본 발명에 따른 이차전지용 일체형 전극조립체의 제조방법은 전극과 부직포 분리막을 결합시켜 외부 충격 및 열 등에 의한 전지의 불량 발생률이 낮추고 성능 열화 없이 안정성을 향상시키는 효과가 있다.INDUSTRIAL APPLICABILITY As described above, the method for manufacturing an integrated electrode assembly for a secondary battery according to the present invention combines an electrode and a nonwoven fabric separator to reduce the incidence of defective batteries due to external impact and heat, and improve stability without deteriorating performance.

도 1은 실험예 1에 따라 비교예 1의 전지의 침상관통실험(nail test) 결과를 나타내는 그래프이다;
도 2는 실험예 1에 따라 실시예 1의 전지의 침상관통실험(nail test) 결과를 나타내는 그래프이다
1 is a graph showing the nail test result of the battery of Comparative Example 1 according to Experimental Example 1;
2 is a graph showing the nail test results of the cell of Example 1 according to Experimental Example 1

이하, 본 발명에 따른 실시예들을 참조하여 더욱 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to embodiments thereof, but the scope of the present invention is not limited thereto.

<실시예 1 >&Lt; Example 1 >

이차전지의 제조Manufacture of Secondary Battery

평균 입경(D50)이 8.66㎛이고, 비표면적(BET)이 4.01 m2/g인 음극 활물질(Li1.33Ti1.67O4), 도전재(Denka black), 바인더(PVdF)를 93.5: 2: 4.5 의 중량비로 NMP에 넣고 믹싱하여 음극 합제를 제조하고, 20 ㎛ 두께의 구리 호일에 상기 음극 합제를 200 ㎛ 두께로 코팅한 후 압연 및 건조하여 음극을 제조하였다.A negative electrode active material (Li 1.33 Ti 1.67 O 4 ), a conductive material (Denka black) and a binder (PVdF) having an average particle diameter (D50) of 8.66 탆 and a specific surface area (BET) of 4.01 m 2 / To prepare a negative electrode material mixture. The negative electrode material mixture was coated on a copper foil having a thickness of 20 占 퐉 to a thickness of 200 占 퐉, rolled and dried to prepare a negative electrode.

또한, 양극으로는 LiNi0.5Mn1.5O4를 양극 활물질로 사용하고 도전재(Denka black), 바인더(PVdF)를 각각 90: 5: 5 의 중량비로 NMP에 넣고 믹싱한 후 20 ㎛ 두께의 알루미늄 호일에 코팅하고, 압연 및 건조하여 양극을 제조하였다.In addition, the positive electrode include LiNi 0.5 Mn 1.5 O 4 using as a cathode active material and a conductive material (Denka black), a binder (PVdF) to each of 90: 5: 5 into the NMP in a weight ratio of mixing after 20 ㎛ thick aluminum foil having a , Rolled and dried to prepare a positive electrode.

이렇게 제조된 음극과 양극 사이에 폴리프로필렌으로 이루어진 부직포 분리막(두께: 16 ㎛)을 개재하여 적층체를 형성하고 이를 부직포 분리막 융점의 ±20℃ 부근에서 열처리한 후, 20 톤의 압력을 가하여 전극조립체를 제조하였다. 이렇게 제조된 전극조립체를 파우치형 전지케이스에 수납한 후, 1 M의 LiPF6이 포함된 카보네이트 계열의 복합 용액을 전해질로 주입한 다음, 밀봉하여 리튬 이차전지를 조립하였다.
A layered product was formed between the thus-prepared negative electrode and the positive electrode through a nonwoven fabric separator made of polypropylene (thickness: 16 占 퐉), and the resultant laminate was subjected to heat treatment at about ± 20 ° C of the melting point of the nonwoven fabric separator. . The electrode assembly thus prepared was housed in a pouch-shaped battery case, and then a carbonate-based composite solution containing 1 M of LiPF 6 was injected into the electrolyte, followed by sealing to assemble the lithium secondary battery.

<비교예 1> &Lt; Comparative Example 1 &

상기 실시예 1에서 분리막으로서 부직포 분리막이 아닌, 통기도 350 s/ml, 두께 16 ㎛의 폴리프로필렌으로 이루어진 다공성 분리막을 사용하고, 전극조립체에 아무런 처리를 하지 않은 것을 제외하고 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
In the same manner as in Example 1 except that a porous separator made of polypropylene having an air permeability of 350 s / ml and a thickness of 16 탆 was used instead of the nonwoven fabric separator as the separator in Example 1, A secondary battery was manufactured.

<실험예 1><Experimental Example 1>

전지 안전성의 정도를 평가하기 위해, 직경 2.5 mm 못(nail)을 이용하여 실시예 1 및 비교예 1의 전지의 중앙을 8 cm/sec의 속도로 관통시킨 후, 전지 표면의 온도 변화와 전압 강하를 측정하였고, 비교예 1의 전지에 따른 결과를 도 1에, 실시예 1의 전지에 따른 결과를 도 2에 나타내었다.In order to evaluate the degree of cell safety, the center of the cells of Example 1 and Comparative Example 1 was passed through at a rate of 8 cm / sec using a 2.5 mm nail, and then the temperature change and the voltage drop The results of the battery of Comparative Example 1 are shown in Fig. 1, and the results of the battery of Example 1 are shown in Fig.

도 1을 참조하면, 비교예 1의 전지는 침상 관통시 최대 온도가 약 340℃까지 상승하여 발화가 일어남에 따라, 전압 강하를 보임을 알 수 있다. 반면, 도 2를 참조하면, 실시예 1의 전지는 최대 온도가 70℃를 넘지 않고, 급격한 전압 강하 역시 나타나지 않아 안전성 테스트를 무리 없이 통과함을 알 수 있다. Referring to FIG. 1, it can be seen that the battery of Comparative Example 1 exhibited a voltage drop as the maximum temperature of the battery was increased to about 340 ° C. during the needle penetration and ignition occurred. On the other hand, referring to FIG. 2, it can be seen that the battery of Example 1 does not exceed the maximum temperature of 70 ° C and does not exhibit a sharp voltage drop so that it passes the safety test without fail.

이는 양극, 음극 및 부직포 분리막의 적층체에 열처리를 하고 압력을 가함으로써 전극조립체의 기계적 강도가 향상되고, 녹는점이 높은 부직포에 의한 높은 고온 안정성으로 전지 안전성을 개선시킬 수 있음을 보여준다.
This shows that the mechanical strength of the electrode assembly can be improved by applying heat and pressure to the laminate of the positive electrode, negative electrode and nonwoven fabric separator, and battery safety can be improved due to high high temperature stability due to the high melting point nonwoven fabric.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (17)

이차전지용 일체형 전극조립체를 제조하는 방법으로서, 전극과 분리막을 결합시킬 수 있도록,
양극, 음극 및 상기 양극과 음극 사이에 개재되는 부직포 분리막에 의해 적층체를 형성하는 단계;
상기 적층체를 부직포 분리막 소재의 융점의 -20℃ 내지 +20℃ 범위 내에서 열처리 하는 단계; 및
상기 열처리 된 적층체에 10 내지 30 톤으로 압력을 가하는 단계;
를 포함하는 것을 특징으로 하는 일체형 전극조립체 제조방법.
A method of manufacturing an integrated electrode assembly for a secondary battery, the method comprising:
Forming a laminate by a positive electrode, a negative electrode, and a nonwoven fabric separator interposed between the positive electrode and the negative electrode;
Subjecting the laminate to a heat treatment at a temperature ranging from -20 ° C to + 20 ° C of the melting point of the nonwoven fabric separator material; And
Applying a pressure of 10 to 30 tons to the heat-treated laminate;
Wherein the electrode assembly includes a first electrode and a second electrode.
제 1 항에 있어서, 상기 부직포 분리막은 폴리에틸렌(polyethylene: PE), 폴리에틸렌테레프탈레이트(polyethylene terephthalate: PET), 폴리프로필렌(polypropylene: PP), 폴리테트라 플루오로에틸렌(polytetrafluoro ethylene: PTFE), 폴리플루오린화비닐리덴(polyvinylidine fluoride: PVdF), 폴리염화비닐(polyvinylchloride: PVC)로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 형성된 것을 특징으로 하는 일체형 전극조립체 제조방법.The nonwoven fabric separator according to claim 1, wherein the nonwoven fabric separator is formed of a material selected from the group consisting of polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polytetrafluoroethylene (PTFE), polyfluorinated Wherein the electrode assembly is formed of one or a mixture of two or more selected from the group consisting of polyvinylidene fluoride (PVdF) and polyvinylchloride (PVC). 제 1 항에 있어서, 상기 양극은 양극 활물질로서 하기 화학식 1로 표시되는 스피넬 구조의 리튬 망간 복합 산화물을 포함하는 고전압 양극인 것을 특징으로 하는 일체형 전극조립체 제조방법:
LixMyMn2-yO4-zAz (1)
상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고,
M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
A는 -1 또는 -2가의 하나 이상의 음이온이다.
The method of claim 1, wherein the anode is a high-voltage anode comprising a lithium manganese composite oxide having a spinel structure represented by the following general formula (1) as a cathode active material:
Li x M y Mn 2 - y O 4 - z z (1)
Wherein 0 < y < 2, 0 z < 0.2,
M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, ;
A is one or more of an anion of -1 or -2.
제 3 항에 있어서, 상기 화학식 1의 리튬 망간 복합 산화물은 하기 화학식 2로 표시되는 리튬 니켈 망간 복합 산화물(Lithium Nickel Manganese complex Oxide: LNMO)인 것을 특징으로 하는 일체형 전극조립체 제조방법:
LixNiyMn2-yO4 (2)
상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
The method according to claim 3, wherein the lithium manganese composite oxide represented by Formula 1 is Lithium Nickel Manganese Complex Oxide (LNMO) represented by Formula 2:
Li x Ni y Mn 2-y O 4 (2)
In the above formula, 0.9? X? 1.2 and 0.4? Y? 0.5.
제 4 항에 있어서, 상기 화학식 2의 리튬 니켈 망간 복합 산화물(LNMO)은 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4인 것을 특징으로 하는 일체형 전극조립체 제조방법.The method according to claim 4, wherein the lithium nickel manganese composite oxide (LNMO) of Formula 2 is LiNi 0.5 Mn 1.5 O 4 or LiNi 0.4 Mn 1.6 O 4 . 제 1 항에 있어서, 상기 음극은 음극 활물질로서 하기 화학식 3으로 표시되는 리튬 금속 산화물을 포함하는 것을 특징으로 하는 일체형 전극조립체 제조방법:
LiaM’bO4-cAc (3)
상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고;
a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며;
c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고;
A는 -1 또는 -2가의 하나 이상의 음이온이다.
The method according to claim 1, wherein the negative electrode comprises a lithium metal oxide represented by the following general formula (3) as an anode active material:
Li a M ' b O 4-ca c (3)
In the above formula, M 'is at least one element selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al and Zr;
a and b are 0.1? a? 4; Is determined according to the oxidation number of M 'in the range of 0.2? B? 4;
c is determined according to the oxidation number in the range of 0? c <0.2;
A is one or more of an anion of -1 or -2.
제 6 항에 있어서, 상기 화학식 3의 리튬 금속 산화물은 하기 화학식 4로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)인 것을 특징으로 하는 일체형 전극조립체 제조방법:
LiaTibO4 (4)
상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
The method according to claim 6, wherein the lithium metal oxide represented by Formula 3 is Lithium Titanium Oxide (LTO) represented by Formula 4 below:
Li a Ti b O 4 (4)
In the above formula, 0.5? A? 3, 1? B? 2.5.
제 7 항에 있어서, 상기 리튬 티타늄 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4인 것을 특징으로 하는 일체형 전극조립체 제조방법.8. The method of claim 7, wherein the lithium titanium oxide is Li 1.33 Ti 1.67 O 4 or LiTi 2 O 4 . 삭제delete 삭제delete 제 1 항 내지 제 8 항 중 어느 하나에 따른 제조방법으로 제조되는 것을 특징으로 하는 일체형 전극조립체.9. An integrated electrode assembly produced by the manufacturing method according to any one of claims 1 to 8. 제 11 항에 따른 일체형 전극조립체를 포함하는 것을 특징으로 하는 이차전지.A secondary battery comprising the integral electrode assembly according to claim 11. 제 12 항에 있어서, 상기 이차전지는 리튬 이차전지인 것을 특징으로 하는 이차전지.13. The secondary battery according to claim 12, wherein the secondary battery is a lithium secondary battery. 제 12 항에 따른 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.A battery module comprising a secondary battery according to claim 12 as a unit cell. 제 14 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.A battery pack comprising the battery module according to claim 14. 제 15 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.A device comprising a battery pack according to claim 15. 제 16 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.17. The device of claim 16, wherein the device is an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a system for power storage.
KR1020130042674A 2012-04-18 2013-04-18 Method for Preparing Integrated Electrode Assembly for Lithium Secondary Battery and Integrated Electrode Assembly Prepared Using the Same KR101497348B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120040143 2012-04-18
KR1020120040143 2012-04-18

Publications (2)

Publication Number Publication Date
KR20130117349A KR20130117349A (en) 2013-10-25
KR101497348B1 true KR101497348B1 (en) 2015-03-05

Family

ID=49636133

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130042674A KR101497348B1 (en) 2012-04-18 2013-04-18 Method for Preparing Integrated Electrode Assembly for Lithium Secondary Battery and Integrated Electrode Assembly Prepared Using the Same

Country Status (1)

Country Link
KR (1) KR101497348B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084178B2 (en) 2016-09-22 2018-09-25 Grst International Limited Method of preparing electrode assemblies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076975A (en) * 1999-03-30 2000-12-26 니시무로 타이죠 Secondary battery
KR20090008085A (en) * 2007-07-16 2009-01-21 주식회사 엘지화학 Electrolyte assembly with improved thermal stability and secondary battery employed with the same
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076975A (en) * 1999-03-30 2000-12-26 니시무로 타이죠 Secondary battery
KR20090008085A (en) * 2007-07-16 2009-01-21 주식회사 엘지화학 Electrolyte assembly with improved thermal stability and secondary battery employed with the same
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084178B2 (en) 2016-09-22 2018-09-25 Grst International Limited Method of preparing electrode assemblies
KR20190039836A (en) * 2016-09-22 2019-04-15 쥐알에스티 인터내셔널 리미티드 Method for manufacturing electrode assembly
KR102072519B1 (en) 2016-09-22 2020-03-03 쥐알에스티 인터내셔널 리미티드 Method of manufacturing the electrode assembly

Also Published As

Publication number Publication date
KR20130117349A (en) 2013-10-25

Similar Documents

Publication Publication Date Title
KR101968980B1 (en) Case for Secondary Battery Comprising an insulating layer and Lithium Secondary Battery Comprising the Same
KR101545886B1 (en) Multi Layered Electrode and the Method of the Same
KR101793270B1 (en) The Electrodes and the Secondary Battery Comprising the Same
KR101542052B1 (en) The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
KR101595333B1 (en) Electrode for Secondary Battery Improved Energy Density and Lithium Secondary Battery Comprising the Same
KR101445602B1 (en) Secondary Battery Having Improved Safety
KR101527748B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101495302B1 (en) Multi Layered Electrode and the Method of the Same
KR101510078B1 (en) Electrode Assembly and Lithium Secondary Battery Comprising the Same
KR101506451B1 (en) Anode for Secondary Battery
KR101517885B1 (en) The Method for Preparing Secondary Battery and the Secondary Battery Prepared by Using the Same
KR101506452B1 (en) Cathode for Secondary Battery
KR101514303B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101445600B1 (en) Secondary Battery Having Improved Safety
KR101451193B1 (en) Lithium Battery Having Higher Performance
KR101470334B1 (en) Method for Preparing Non-woven Fabric Separator Having Improved Mechanical Property and Separator Prepared Using the Same
KR101596494B1 (en) Electrode Current Collector Comprising Nonconductor for Preventing Internal Short-Circuit
KR20150014828A (en) Cathode Mixture with Improved Safety and Secondary Battery Comprising the Same
KR101617418B1 (en) Secondary Battery Having Crown Ether Compound for Preventing Deposition of Manganese and the Same
KR101514297B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101493255B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101531645B1 (en) Method of Secondary Battery
KR101497348B1 (en) Method for Preparing Integrated Electrode Assembly for Lithium Secondary Battery and Integrated Electrode Assembly Prepared Using the Same
KR101822991B1 (en) The Method for Preparing Lithium Secondary Battery and the Lithium Secondary Battery Prepared by Using the Same
KR20130118243A (en) Electrode for secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 6