KR20090008085A - Electrolyte assembly with improved thermal stability and secondary battery employed with the same - Google Patents

Electrolyte assembly with improved thermal stability and secondary battery employed with the same Download PDF

Info

Publication number
KR20090008085A
KR20090008085A KR1020070071395A KR20070071395A KR20090008085A KR 20090008085 A KR20090008085 A KR 20090008085A KR 1020070071395 A KR1020070071395 A KR 1020070071395A KR 20070071395 A KR20070071395 A KR 20070071395A KR 20090008085 A KR20090008085 A KR 20090008085A
Authority
KR
South Korea
Prior art keywords
electrode assembly
adhesive layer
separator
heating
heat stabilizer
Prior art date
Application number
KR1020070071395A
Other languages
Korean (ko)
Other versions
KR101150258B1 (en
Inventor
현정은
이한호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020070071395A priority Critical patent/KR101150258B1/en
Publication of KR20090008085A publication Critical patent/KR20090008085A/en
Application granted granted Critical
Publication of KR101150258B1 publication Critical patent/KR101150258B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

An electrode assembly is provided to prevent the deterioration or oxidation of a polymer compound within an electrode assembly and to ensure excellent durability and cycleability, and good storage and lifetime property at the high temperature. An electrode assembly is manufactured by laminating a plurality of electrodes in a state where a separation film is interposed, and cross-coupling them through heating/pressurization. The coupling of a separation film and electrode is achieved by heating/pressurizing an adhesive layer formed on the separation film and an electrode which are facing each other. The adhesive layer comprises the microcapsules supported with a thermal stabilizer prior to the heating/pressurization. In a heating/pressurizing process, the shell of microcapsule bursts and is flowed out into the adhesive layer.

Description

열적 안정성이 우수한 전극조립체 및 이를 포함하는 이차전지 {Electrolyte Assembly with Improved Thermal Stability and Secondary Battery Employed with the Same}Electrode assembly with excellent thermal stability and secondary battery comprising same {Electrolyte Assembly with Improved Thermal Stability and Secondary Battery Employed with the Same}

본 발명은 열적 안정성이 우수한 전극조립체 및 이를 포함하는 이차전지에 관한 것으로서, 더욱 상세하게는 다수의 전극들을 분리막이 개재된 상태에서 적층한 후 가열/가압에 의해 상호 결합시킨 구조의 전극조립체로서, 상기 전극과 분리막의 결합은 분리막 상에 형성된 접착층과 전극을 상호 대면한 상태에서 가열/가압함으로써 달성되고, 상기 접착층에는 가열/가압 이전 상태에서 열 안정제가 담지된 미세 캡슐이 포함되어 있으며 상기 가열/가압 과정에서 미세 캡슐의 쉘(shell)이 파열되어 담지된 열 안정제가 접착층으로 유출되거나, 또는 열 안정제가 물리적 결합에 의해 응집되어 형성된 응집체가 포함되어 있는 것을 특징으로 하는 전극조립체에 관한 것이다.The present invention relates to an electrode assembly having excellent thermal stability and a secondary battery including the same, and more particularly, to an electrode assembly having a structure in which a plurality of electrodes are laminated with a separator interposed therebetween and then bonded to each other by heating / pressurization. Coupling of the electrode and the separator is achieved by heating / pressurizing the adhesive layer formed on the separator and the electrode in a mutually facing state, and the adhesive layer includes a microcapsule supporting a heat stabilizer in a state before heating / pressurization. The present invention relates to an electrode assembly, in which a shell of a microcapsule is ruptured during pressurization, and a supported thermal stabilizer flows out to an adhesive layer, or an aggregate formed by agglomerating the thermal stabilizer by physical bonding.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이 차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차전지가 상용화되어 널리 사용되고 있다. 이러한 리튬 이차전지는 일반적으로 리튬 전이금속 산화물을 양극 활물질로 사용하고 흑연계 물질을 음극 활물질로 사용하고 있다. As the technology development and demand for mobile devices increase, the demand for this secondary battery as an energy source is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and voltage have been commercialized and widely used. Such lithium secondary batteries generally use lithium transition metal oxides as positive electrode active materials and graphite-based materials as negative electrode active materials.

리튬 이차전지는 양극의 리튬 이온이 음극으로 삽입(intercalation)되고 탈리(deintercalation)되는 과정을 반복하면서 충방전이 진행된다. 이러한 충방전이 반복되는 경우, 전극 활물질의 종류에 따라 전지의 이론 용량은 차이가 있으나, 대체로 사이클이 진행됨에 따라 충방전 용량이 저하되는 문제점이 발생하게 된다. In the lithium secondary battery, charging and discharging proceed while repeating a process of intercalation and deintercalation of lithium ions of a positive electrode into a negative electrode. When such charge and discharge are repeated, the theoretical capacity of the battery differs depending on the type of electrode active material, but the charge and discharge capacity generally decreases as the cycle progresses.

그 원인의 하나로서, 리튬 이온이 삽입 및 탈리되는 과정에서 음극에 삽입된 리튬 이온이 제대로 이동하지 못하게 되기 때문에 전지의 충방전 용량 및 수명 특성이 감소하기도 한다. 또한, 양극을 구성하는 리튬 전이금속 산화물 중의 전이금속이 전해질에 용출되고 음극에서 석출되는 문제를 들 수 있다.As one of the causes, the charge and discharge capacity and the lifespan characteristics of the battery may be reduced because lithium ions inserted into the negative electrode may not move properly during the insertion and desorption of lithium ions. Moreover, the problem that the transition metal in the lithium transition metal oxide which comprises a positive electrode elutes in an electrolyte, and precipitates in a negative electrode is mentioned.

구체적인 예에서, 양극에 리튬 코발트 산화물을 사용하는 경우, 4.2 V 이상의 고전위에서 코발트 이온이 용출하는 것이 알려져 있다. 이에 따라, 리튬 코발트 산화물의 결정 구조가 파괴되어 전지 용량이 저하되고, 코발트 자체가 강산화제이므로 분리막의 열화를 초래하는 문제가 있다. 이러한 분리막의 열화로 인한 기계적 강도의 약화는 내부 단락 및 전지 성능 저하를 유발한다. 또한, 용출한 코발트 이온이 음극에서 석출되어 수지상 성장을 함으로써 내부단락이 발생하게 되는 문제가 있다. 더욱이, 음극에서 석출된 코발트는 전해질의 분해를 촉진하는 촉매로서 작용하여 전지 내부에 가스를 발생시킨다. 이러한 문제점은 전지가 45℃ 이 상의 고온에 노출되는 경우 더욱 심각해진다.In a specific example, when lithium cobalt oxide is used for the positive electrode, it is known that cobalt ions elute at a high potential of 4.2 V or higher. As a result, the crystal structure of the lithium cobalt oxide is destroyed and the battery capacity is lowered. Therefore, since cobalt itself is a strong oxidizing agent, there is a problem of causing deterioration of the separator. Deterioration of mechanical strength due to such deterioration of the separator causes internal short circuits and battery performance deterioration. In addition, the eluted cobalt ions are precipitated in the cathode to cause dendritic growth, there is a problem that an internal short circuit occurs. Moreover, cobalt precipitated at the negative electrode acts as a catalyst for promoting decomposition of the electrolyte to generate gas inside the cell. This problem is exacerbated when the cell is exposed to high temperatures above 45 ° C.

이와 관련하여, 일본 특허출원공개 제1998-67211호는 양극 내에 산화방지제를 포함하는 기술을 개시하고 있고, 한국 특허출원공개 제2002-020699호 및 일본 특허출원공개 제1998-247517호는 전해액 중에 내산화성 첨가제 또는 산화방지제를 첨가하는 기술을 개시하고 있다. In this regard, Japanese Patent Application Laid-Open No. 1998-67211 discloses a technique of including an antioxidant in a positive electrode, and Korean Patent Application Laid-Open No. 2002-020699 and Japanese Patent Application Laid-open No. 1998-247517 are disclosed in an electrolyte solution. Techniques for adding oxidative additives or antioxidants are disclosed.

그러나, 이러한 산화방지제 등이 전극 또는 전해액 중에 포함되는 경우 전지 내에서 다양한 부반응을 유발하여 전지 성능이 저하되는 문제가 있음이 확인되었다(일본 특허출원공개 제2000-30685호 참조). However, when such an antioxidant or the like is included in the electrode or the electrolyte solution, it was confirmed that there is a problem that the battery performance is reduced by causing various side reactions in the battery (see Japanese Patent Application Laid-Open No. 2000-30685).

이에, 일부 선행기술들에서는 분리막 내에 산화방지제를 첨가하는 기술을 개시하고 있다(일본 특허출원공개 제2000-204174호 및 한국 특허출원공개 제2004-0062441호 참조). 그러나, 상기 기술들에 따르면 분리막을 용융 압출하여 제조하는 공정에서 산화방지제를 첨가하므로, 용융 압출의 고온 공정에서 다수의 산화방지제가 소모되어 버리는 문제가 있다. 반면에, 분리막의 표면에 코팅하는 경우에는, 분리막의 다공성 구조 내부로 침투하여 리튬의 이동도가 저하되므로 레이트 특성이 낮아지는 문제가 있다. Therefore, some prior arts disclose a technique of adding an antioxidant to a separator (see Japanese Patent Application Laid-Open No. 2000-204174 and Korean Patent Application Laid-Open No. 2004-0062441). However, according to the above techniques, since an antioxidant is added in a process of manufacturing a melt-extruded separator, a plurality of antioxidants are consumed in a high temperature process of melt extrusion. On the other hand, in the case of coating on the surface of the separator, there is a problem that the rate characteristic is lowered because the mobility of lithium is penetrated into the porous structure of the separator.

또한, 미국 특허출원공개 제2004-166415호는 분리막과 양극의 사이에 산화성 장벽을 개재하는 기술을 개시하고 있다. 상기 기술에 따르면 산화성 장벽으로서, 폴리프로필렌, 폴리비닐리덴 플루오라이드(PVDF) 등의 할로카본, 금속 산화물 등의 중합체 코팅층을 개시하고 있고, 여기에 산화방지제가 첨가될 수 있음을 개시하고 있다. 그러나, 상기 기술은 전극조립체의 제조를 위한 전극과 분리막의 가열, 가 압 과정에서 산화방지제가 상당량 소모되어 소망하는 효과를 발휘할 수 없는 것으로 확인되었다. 이러한 문제점을 해결하기 위해서는 상대적으로 다량의 산화방지제를 첨가해야 하는데, 이 경우, 전지의 작동 성능이 저하되고, 제조 비용이 상승하며, 전극과 분리막의 결합력이 약해지는 문제가 있다. U.S. Patent Application Publication No. 2004-166415 also discloses a technique for interposing an oxidative barrier between a separator and an anode. According to the above technique, as an oxidative barrier, a polymer coating layer of halocarbon, metal oxide, etc., such as polypropylene, polyvinylidene fluoride (PVDF), and the like is disclosed, and antioxidants can be added thereto. However, it has been confirmed that the above technique is not able to achieve the desired effect due to the considerable consumption of antioxidants during the heating and pressing process of the electrode and the separator for the preparation of the electrode assembly. In order to solve this problem, it is necessary to add a relatively large amount of antioxidant, in this case, there is a problem that the operating performance of the battery is lowered, the manufacturing cost is increased, and the bonding force between the electrode and the separator is weakened.

따라서, 고온에 의해 전극조립체 내에 존재하는 고분자 성분이 산화 또는 열화를 방지하기 위한 물질을 첨가하면서도, 최소량으로 최대의 효과를 발휘할 수 있는 기술에 대한 필요성이 매우 높은 실정이다.Therefore, there is a very high need for a technology capable of exerting a maximum effect in a minimum amount while adding a material for preventing the oxidation or deterioration of the polymer component present in the electrode assembly due to the high temperature.

본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.The present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.

구체적으로, 본 발명의 첫 번째 목적은, 분리막 상에 열 안정제가 담지된 미세 캡슐이 포함되어 있는 접착층을 형성하고, 전극이 대면한 상태에서 가열/가압함으로써 미세 캡슐의 쉘(shell)이 파열되어 열 안정화가 접착층으로 유출되는 것을 특징으로 하는 전극조립체를 제공하는 것이다.Specifically, the first object of the present invention is to form an adhesive layer containing a microcapsule carrying a heat stabilizer on the separator, and the shell of the microcapsule is ruptured by heating / pressurizing in a state where the electrode is facing. It is to provide an electrode assembly, characterized in that the heat stabilization flows out to the adhesive layer.

본 발명의 두 번째 목적은, 열 안정제가 물리적 결합력에 의해 응집되어 형성된 응집체가 포함되어 있는 접착층을 분리막 상에 형성하고, 전극이 대면한 상태에서 가열/가압함으로써 제조되는 것을 특징으로 하는 전극조립체를 제공하는 것이다.A second object of the present invention is to form an electrode assembly, characterized in that the heat stabilizer is formed by forming an adhesive layer containing the aggregate formed by agglomeration by physical bonding force on the separator, and heating / pressurizing the electrode in a facing state. To provide.

따라서, 본 발명에 따른 전극조립체는, 다수의 전극들을 분리막이 개재된 상태에서 적층한 후 가열/가압에 의해 상호 결합시킨 구조의 전극조립체로서, 상기 전극과 분리막의 결합은 분리막 상에 형성된 접착층과 전극을 상호 대면한 상태에서 가열/가압함으로써 달성되고, 상기 접착층에는 가열/가압 이전 상태에서 열 안정제가 담지된 미세 캡슐이 포함되어 있으며, 상기 가열/가압 과정에서 미세 캡슐의 쉘(shell)이 파열되어 담지된 열 안정제가 접착층으로 유출되는 것으로 구성되어 있다.Accordingly, the electrode assembly according to the present invention is an electrode assembly having a structure in which a plurality of electrodes are laminated in a state where a separator is interposed therebetween and then bonded to each other by heating / pressurization. It is achieved by heating / pressing in the state where the electrodes face each other, and the adhesive layer includes a microcapsule carrying a heat stabilizer in a state before heating / pressurizing, and the shell of the microcapsule ruptures during the heating / pressing process. And the supported heat stabilizer flows out into the adhesive layer.

또 다른 바람직한 예에서, 상기 열 안정제는 물리적 결합에 의해 응집되어 형성된 응집체의 형태로 접착층에 포함될 수도 있다. In another preferred embodiment, the heat stabilizer may be included in the adhesive layer in the form of aggregates formed by aggregation by physical bonding.

이러한 열 안정제는 충방전 과정에서 전지가 고온에 노출될 때 생성된 불안정한 자유 라디칼을 포획하는 작용을 한다. 이에 따라, 자유 라디칼에 의해 바인더, 접착층, 분리막 등의 전지 내 고분자 성분이 산화 또는 이중 결합화(polyene)되어 끓어지는 등의 열화 및 이에 따른 전지 작동 성능의 저하를 방지할 수 있다.These thermal stabilizers act to capture unstable free radicals generated when the cell is exposed to high temperatures during charge and discharge. As a result, deterioration such as oxidization or double bonding (polyene) and boiling of the polymer components in the battery such as a binder, an adhesive layer, and a separator by the free radicals, and the deterioration of the battery operation performance can be prevented.

따라서, 분리막 등의 기계적 강도의 약화 또는 바인더 성분이나 접착층의 접착력 저하를 방지함으로써, 전지의 내구성이 향상되고, 충방전 용량의 저하가 방지될 수 있으며, 특히 사이클 특성 및 고온에서의 저장 및 수명 특성이 향상된다. 또한, 열 안정제가 전해액이나 분리막 등에 포함되는 경우와는 달리, 전극조립체의 제조를 위한 가열, 가압 과정 등에서 열 안정제의 낭비가 최소화될 수 있으므로, 작동 신뢰성 및 효율이 높다는 장점이 있다. Therefore, by preventing the weakening of the mechanical strength of the separator or the like or the lowering of the adhesive strength of the binder component or the adhesive layer, the durability of the battery can be improved, and the deterioration of the charge / discharge capacity can be prevented, in particular, the cycle characteristics and the storage and life characteristics at high temperatures. This is improved. In addition, unlike the case in which the heat stabilizer is included in the electrolyte or the separator, waste of the heat stabilizer may be minimized during the heating and pressurization process for manufacturing the electrode assembly, and thus, there is an advantage of high operational reliability and efficiency.

본 발명의 제 1 실시예에서, 열 안정제는 미세 캡슐에 담지된 상태로 분리막 표면의 접착층에 포함되고, 전극조립체의 가열/가압 공정에서 쉘(shell)이 파열되면서 접착층으로 유출된다. In the first embodiment of the present invention, the heat stabilizer is included in the adhesive layer on the surface of the separator in a state of being supported in a microcapsule, and flows out to the adhesive layer while the shell ruptures in the heating / pressing process of the electrode assembly.

앞서 설명한 바와 같이, 열 안정제가 고분자 소재인 분리막 자체에 포함되는 경우, 분리막의 제조를 위한 용융 압출 과정의 고온에서 그것의 상당량이 소모되어, 결과적으로 최종 전지에서는 소망하는 효과를 발휘하지 못하는 문제가 있었다. 또한, 분리막의 접착층에 열 안정제가 직접 포함되는 경우에는, 분리막과 전극의 결합을 위해 이들을 가열/가압하는 과정에서, 역시 열 안정제의 상당량이 고온 조건에서 소모되는 문제가 있었다. 반면에, 본 발명에 따라 열 안정제가 미세 캡슐에 담지된 상태에서 분리막의 접착층에 첨가되는 경우에는, 상기 가열/가압 공정에서 미세 캡슐의 쉘이 파괴되는 과정이 일어나므로, 열 안정제의 불필요한 소모량을 최소화할 수 있다. As described above, when the heat stabilizer is included in the membrane itself, which is a polymer material, a considerable amount thereof is consumed at a high temperature of the melt extrusion process for manufacturing the separator, and as a result, there is a problem in that the final cell does not have a desired effect. there was. In addition, when the heat stabilizer is directly included in the adhesive layer of the separator, a significant amount of the heat stabilizer is also consumed under high temperature conditions in the process of heating / pressurizing the separator and the electrode. On the other hand, when the heat stabilizer is added to the adhesive layer of the separator in a state in which the heat stabilizer is supported in the microcapsules, a process of destroying the shell of the microcapsules occurs in the heating / pressing process, thus reducing unnecessary consumption of the heat stabilizer. It can be minimized.

상기 미세 캡슐의 쉘은 전극조립체의 가열/가압 공정에서 파열될 수 있도록 70 내지 100℃의 온도에서 용융 또는 분해되거나, 3 내지 10 kg/cm2의 압력 하에서 파괴되는 것일 수 있다. 상기 미세 캡슐의 쉘은 그 자체가 전지의 내부 환경에서 불활성이거나, 또는 상기 온도에서 분해되는 것일 수 있다. 한편, 쉘 자체의 용융 또는 파열되는 조건은 재료 자체의 물성이나 분자 크기에 의해 적절히 조절될 수 있다.The shell of the microcapsules may be melted or decomposed at a temperature of 70 to 100 ° C. or broken under a pressure of 3 to 10 kg / cm 2 so that the shell of the microcapsules may be ruptured in the heating / pressurization process of the electrode assembly. The shell of the microcapsules may themselves be inert in the cell's internal environment or decompose at this temperature. On the other hand, the conditions in which the shell itself melts or ruptures can be appropriately controlled by the physical properties or molecular size of the material itself.

이러한 쉘의 소재는 전해질에 불용성이고 전지의 내부 환경에서 불활성을 나타내며, 앞서 설명한 바와 같은 조건에서 용융 또는 파열될 수 있는 물질이라면 특별히 제한되는 것은 아니며, 다양한 종류의 고분자일 수 있다. 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리비닐알코올(PVA), 폴리염화비닐(PVC), 및 이들의 조합으로 이루어진 군에서 선택되는 1 종 이상일 수 있으나, 이들만으로 한정되는 것은 아니다. The material of the shell is not particularly limited as long as it is insoluble in the electrolyte and exhibits inertness in the internal environment of the battery, and may be melted or ruptured under the conditions described above, and may be various kinds of polymers. For example, one or more selected from the group consisting of polyolefins such as polyethylene and polypropylene, polyvinyl alcohol (PVA), polyvinyl chloride (PVC), and combinations thereof, but is not limited thereto.

상기 미세 캡슐의 제조방법은 본 발명에서와 같이 열 안정제가 담지된 캡슐을 제조하는 기술이라면, 특별히 제한되는 것은 아니다. 예를 들어, 상변환 물질을 수용액상에서 유화과정을 통해 분산시키고 그것의 오일상의 표면에서 고분자를 중합하여 제조할 수 있다. 이때의 중합방법으로는 계면 중합, 인-시츄(In-situ) 중합, 코아세르베이션 방법 등이 사용될 수 있다.The method for producing the microcapsules is not particularly limited as long as it is a technique for preparing a capsule on which a heat stabilizer is loaded as in the present invention. For example, the phase change material may be prepared by dispersing in an aqueous solution through an emulsification process and polymerizing a polymer on the surface of its oil phase. In this case, as the polymerization method, interfacial polymerization, in-situ polymerization, coacervation method, or the like may be used.

상기 미세 캡슐의 크기는 대략 1 내지 50 ㎛의 입경을 가지는 것이 바람직하다. 미세 캡슐의 크기가 클수록 가압에 의한 파열이 용이할 수 있으나, 열 안정제의 균일한 분포 측면에서는 단위 중량당 큰 표면적을 가지는 작은 입경의 것이 바람직하다. 그러나, 너무 작은 입경의 캡슐 입자는 자체의 제조가 어려울 수 있고 가열/가압 과정에서 쉘이 파괴되지 않을 수 있으므로, 상기 범위에서 적정하게 결정할 수 있다.The size of the microcapsule preferably has a particle size of approximately 1 to 50 ㎛. The larger the size of the microcapsules, the easier it may be to rupture due to pressure, but in terms of uniform distribution of the heat stabilizer, a small particle size having a large surface area per unit weight is preferable. However, capsule particles of too small a particle size may be difficult to prepare themselves and may not be destroyed in the heating / pressing process, and thus may be appropriately determined in the above range.

본 발명의 제 2 실시예에서, 상기 열 안정제는 물리적 결합에 의해 응집되어 형성된 응집체의 형태로 접착층에 포함될 수 있다. 이 경우, 열 안정제가 화합물의 단위로 접착층에 넓게 분포되어 있는 경우에 비해 가열/가압 과정에서의 소모량 을 줄일 수 있다. In a second embodiment of the present invention, the heat stabilizer may be included in the adhesive layer in the form of aggregates formed by aggregation by physical bonding. In this case, it is possible to reduce the consumption in the heating / pressing process compared to the case where the heat stabilizer is widely distributed in the adhesive layer in units of compounds.

하나의 바람직한 예에서, 상기 응집체는 상대적으로 작은 입경을 갖는 1차 입자 형태의 열 안정제들이 상호 물리적 결합에 의해 응집되어 2차 입자를 형성한 것일 수 있다. 이러한 응집체는 가열/가압 과정에서 1차 입자화되면서 접착층에 넓게 분산될 수 있다. In one preferred example, the aggregate may be a mixture of thermal stabilizers in the form of primary particles having a relatively small particle diameter are aggregated by mutual physical bonding to form secondary particles. Such aggregates may be widely dispersed in the adhesive layer while being primary granulated in the heating / pressing process.

또 다른 바람직한 예에서, 상기 응집체는 상대적으로 작은 입경을 갖는 열 안정제가 소정의 바인더에 의해 결합되어 형성된 것일 수 있다. 이러한 바인더는 분리막 접착층의 접착 성분과 동일할 수도 있고 다를 수도 있다. In another preferred example, the aggregate may be formed by combining a heat stabilizer having a relatively small particle diameter by a predetermined binder. Such a binder may be the same as or different from the adhesive component of the separator adhesive layer.

결과적으로, 응집체의 형태로 분리막 접착층에 포함된 열 안정제는 상대적으로 작은 표면적에 의해 가열/가압 과정에서 고열에 의한 소모량을 최소화할 수 있고, 이러한 가열/가압 과정에서 오히려 응집체가 풀리거나 작은 입경의 입자들로 분해되는 과정을 거치므로, 최종 전극조립체에서 유효한 열 안정제의 양을 최대화할 수 있다. As a result, the heat stabilizer included in the membrane adhesive layer in the form of agglomerates can minimize the consumption due to the high heat during the heating / pressurization process due to the relatively small surface area, and the agglomeration is loosened or the small particle size By disintegrating the particles, it is possible to maximize the amount of heat stabilizer effective in the final electrode assembly.

상기 열 안정제는 크게 1차 열 안정제와 2차 열 안정제로 구분되며, 이들은 작용 메커니즘에 차이가 있다. 상기 1차 열 안정제는 수소 주게(H donor) 또는 라디칼 포획자(radical scavenger)로 작용하여 전지 내에서 산화 작용으로 생성된 불안정한 라디칼을 안정한 형태로 만들어 주는 작용을 한다. 한편, 상기 2차 열 안정제는 불안정한 자유 라디칼이 산소와 결합하여 과산화수소화물을 생성하고, 생성된 과산화수소화물이 재차 산화과정을 거치면서 다른 종류의 자유 라디칼로 확산되는 것을 방지하기 위하여, 과산화수소화물 분해자(hydroperoxide decomposer)의 역 할을 수행한다. The heat stabilizer is largely classified into a primary heat stabilizer and a secondary heat stabilizer, and these have a different mechanism of action. The primary heat stabilizer acts as a hydrogen donor or a radical scavenger to stabilize the unstable radicals produced by oxidation in the cell into a stable form. On the other hand, the secondary heat stabilizer is a hydrogen peroxide decomposer in order to prevent the unstable free radicals are combined with oxygen to form a hydrogen peroxide, and the hydrogen peroxide produced by the oxidation process again to another kind of free radicals. plays the role of a hydroperoxide decomposer.

본 발명에 따른 상기 열 안정제는, 예를 들어, 페놀계 화합물, 환형 아민계 화합물, 세미카르바지드(Semicarbazide), 아민계 화합물, 니트로계 화합물, 포스파이트(phosphite)계 화합물, 불포화 탄화수소계 화합물, 및 티오계 화합물로 이루어진 군에서 선택되는 것일 수 있다. 더욱 바람직하게는, 1차 열 안정제인 페놀계 열 안정제, 2차 열 안정제인 포스파이트계 열 안정제, 또는 이들 모두가 사용될 수 있다. The heat stabilizer according to the present invention, for example, phenolic compound, cyclic amine compound, semicarbazide (Semicarbazide), amine compound, nitro compound, phosphite compound, unsaturated hydrocarbon compound And it may be selected from the group consisting of thio compounds. More preferably, phenolic heat stabilizers as primary heat stabilizers, phosphite heat stabilizers as secondary heat stabilizers, or both may be used.

상기 폐놀계 열 안정제의 바람직한 예로는, 2,2-di(4'-hydroxyphenyl) propane, hydroquinone, p-methoxyphenol, t-butylhydroxy-anisole, n-octadecyl-3-(4-hydroxy-3,5-di-t-butyl-phenyl)propionate, n-octadecyl-3-(4-hydroxy-3,5-di-t-butylphenyl)propionate, pentaerythritol tetrakis-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 1,2-propylene glycol bis-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], stearamido N,N-bis-[ethylene 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,5-di-t-butylhydroquinone, 4,4'-butylidenebis(3-methyl-6-t-butylphenol), 3,5-di-t-butyl-4-hydroxytoluene, 2,2'-methylene-bis(4-ethyl-6-t-butylphenol), triethyleneglycol-bis-[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], pentaerythritoltetrakis[3-(3,5-di-t-butyl-4-hydroxy-phenyl) propionate], 2,6-di-t-butyl-4-methylphenol, t-butylcatechol, 4,4-thiobis(6-t-butyl-m-cresol), tocopherol, and nordihydroguaiaretic acid 등을 들 수 있으나, 이들만으로 한정되는 것은 아니다. 상기 페놀계 열 안정제 중 특히 바람직하게는 n-octadecyl-3-(4-hydroxy-3,5-di-t-butylphenyl)propionate가 사용될 수 있다. Preferred examples of the phenol-based heat stabilizer are 2,2-di (4'-hydroxyphenyl) propane, hydroquinone, p-methoxyphenol, t-butylhydroxy-anisole, n-octadecyl-3- (4-hydroxy-3,5- di-t-butyl-phenyl) propionate, n-octadecyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate, pentaerythritol tetrakis- [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], 1,2-propylene glycol bis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], stearamido N, N-bis- [ethylene 3- (3, 5-di-t-butyl-4-hydroxyphenyl) propionate], 2,5-di-t-butylhydroquinone, 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 3,5-di-t -butyl-4-hydroxytoluene, 2,2'-methylene-bis (4-ethyl-6-t-butylphenol), triethyleneglycol-bis- [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate ], pentaerythritoltetrakis [3- (3,5-di-t-butyl-4-hydroxy-phenyl) propionate], 2,6-di-t-butyl-4-methylphenol, t-butylcatechol, 4,4-thiobis ( 6-t-butyl-m-cresol), tocopherol, and nordihydroguaiaretic acid, but are not limited thereto. Particularly preferred n-octadecyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate may be used among the phenolic heat stabilizers.

상기 환형 아민계 열 안정제는 예를 들어, phenylnaphthylamine, N,N'-diphenyl-p-phenylenediamine, and 4,4'-bis(dimethylbenzyl) diphenylamine 등을 들 수 있고, 상기 세미카르바지드계 열 안정제의 예로는 hydrofluoride, hydrochloride, nitrate, acid sulfate, sulfate, chlorate, formate, acid oxalate, acid maleate, and maleate of semicarbazide; derivatives of semicarbazide such as 1-acetylsemicarbazide, 1-chloroacetylsemicarbazide, 1-dichloroacetyl-semicarbazide, 1-benzoylsemicarbazide, and semicarbazone 등을 들 수 있다. Examples of the cyclic amine thermal stabilizer include phenylnaphthylamine, N, N'-diphenyl-p-phenylenediamine, and 4,4'-bis (dimethylbenzyl) diphenylamine. Examples of the semicarbazide thermal stabilizer include: Hydrofluoride, hydrochloride, nitrate, acid sulfate, sulfate, chlorate, formate, acid oxalate, acid maleate, and maleate of semicarbazide; derivatives of semicarbazide such as 1-acetylsemicarbazide, 1-chloroacetylsemicarbazide, 1-dichloroacetyl-semicarbazide, 1-benzoylsemicarbazide, and semicarbazone.

상기 아민계 열 안정제는 예를 들어, carbohydrazide, thiosemicarbazide, thiosemicarbazone 유도체, thiocarbazide, 및 thiocarbazide 유도체 등일 수 있고, 상기 니트로계 안정제는 nitroanisole, N-nitrosodiphenylamine, nitroaniline, and N-nitrosophenylhydroxylamine aluminum salt 등을 들 수 있다.The amine heat stabilizer may be, for example, carbohydrazide, thiosemicarbazide, thiosemicarbazone derivative, thiocarbazide, and thiocarbazide derivative, and the like, and the nitro-based stabilizer may include nitroanisole, N-nitrosodiphenylamine, nitroaniline, and N-nitrosophenylhydroxylamine aluminum salt. .

상기 불포화 탄화수소계 열 안정제는 특별히 제한되지 않으며, 예를 들어, styrene, 1,3-hexadiene, and methyl styrene 등일 수 있고, 상기 티오계 열 안정제로는 dilauryl thiodipropionate, dimyristylthiopropionate, distearylthiodipropionate, dodecylmercaptan, 1,3-diphenyl-2-thiourea 등을 들 수 있다. The unsaturated hydrocarbon-based heat stabilizer is not particularly limited, and may be, for example, styrene, 1,3-hexadiene, and methyl styrene, and the thio-based heat stabilizer may be dilauryl thiodipropionate, dimyristylthiopropionate, distearylthiodipropionate, dodecylmercaptan, 1,3 -diphenyl-2-thiourea, etc. are mentioned.

상기 포스파이트(phosphite)계 열 안정제는 예를 들어, triphenyl phosphite, diphenylisodecyl phosphite, phenyldiisodecyl phosphite, 4,4'-butylidene-bis(3-methyl-6-t-butylphenyl-di-tri-decyl)phosphate, cyclic neopentanetetrayl-bis(octa-decyl)phosphite, tris(nonylphenyl)phosphite, and tris(dinonyl)phosphite. dioctadecyl-3,5-di-t-butyl-4-hydroxybenzylphosphonate, di-n-octadecyl-1-(3,5-di-t-butyl-4-hydroxy-phenyl)-ethanephosphonate 등을 들 수 있으나, 이들만으로 한정되는 것은 아니다. The phosphite thermal stabilizer is, for example, triphenyl phosphite, diphenylisodecyl phosphite, phenyldiisodecyl phosphite, 4,4'-butylidene-bis (3-methyl-6-t-butylphenyl-di-tri-decyl) phosphate, cyclic neopentanetetrayl-bis (octa-decyl) phosphite, tris (nonylphenyl) phosphite, and tris (dinonyl) phosphite. dioctadecyl-3,5-di-t-butyl-4-hydroxybenzylphosphonate, di-n-octadecyl-1- (3,5-di-t-butyl-4-hydroxy-phenyl) -ethanephosphonate, and the like. It is not limited only.

상기 열 안정제의 총 함량은 분리막 접착층의 전체 중량에 대하여 바람직하게는 0.01 ~ 1 중량%로 포함될 수 있다. 상기 열 안정제의 함량이 너무 적으면 첨가에 따른 효과를 얻을 수 없고, 반대로 너무 많으면 전해액과의 높은 친화성으로 인한 과량의 전해액이 흡수, 팽윤되어 전극과 분리막의 결합력이 약화될 수 있고, 전지 내에서 다양한 부반응을 유발할 수 있으므로 바람직하지 않다. The total content of the heat stabilizer may be included in an amount of preferably 0.01 to 1% by weight based on the total weight of the membrane adhesive layer. If the content of the thermal stabilizer is too small, the effect of the addition may not be obtained. On the contrary, if the content of the thermal stabilizer is too high, an excessive amount of the electrolyte may be absorbed and swelled due to high affinity with the electrolyte, thereby weakening the binding force between the electrode and the separator. This is undesirable because it can cause various side reactions.

상기 접착층은 분리막의 어느 일면 또는 양면에 형성될 수 있고, 그것의 두께는 0.5 내지 10 ㎛인 것이 바람직하다. 접착층의 두께가 너무 얇으면, 소정의 결합력을 제공하기 어렵고, 반대로 너무 두터우면, 리튬 이온의 이동을 방해하여 전지의 내부 저항 증가 및 레이트 특성의 저하를 유발할 수 있다.The adhesive layer may be formed on any one or both sides of the separator, the thickness thereof is preferably 0.5 to 10 ㎛. If the thickness of the adhesive layer is too thin, it is difficult to provide a predetermined bonding force and, on the contrary, too thick, it may interfere with the movement of lithium ions, causing an increase in the internal resistance of the battery and a decrease in the rate characteristic.

상기 접착층 또는 접착제 소재는 전극조립체 내부에서 전기화학적 반응을 유발하지 않는 것이라면 특별히 제한되지 않으며, 공지의 접착 물질들이 그대로 사용될 수 있으며, 예를 들어 아크릴계, 실리콘계 또는 에폭시계 물질, 고무 계열, 셀룰로우즈 계열의 고분자 물질 등일 수 있다. The adhesive layer or adhesive material is not particularly limited as long as it does not cause an electrochemical reaction in the electrode assembly, and well-known adhesive materials may be used as it is, for example, acrylic, silicone or epoxy based materials, rubber based, cellulose It may be a series polymer material.

하나의 바람직한 예에서, 상기 접착층 또는 접착제 소재는 상기 전극 활물질 들 간의 결합 및 전류 집전체와의 결합을 위한 바인더 성분과 동일한 것일 수 있다. 그러한 접착층 성분 또는 접착제의 예로는 폴리불화비닐리덴(PVdF), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등이 사용될 수 있다. 이 중 특히 바람직하게는 PVdF가 사용될 수 있다. In one preferred example, the adhesive layer or adhesive material may be the same as the binder component for bonding between the electrode active material and the current collector. Examples of such adhesive layer components or adhesives include polyvinylidene fluoride (PVdF), carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like can be used. Especially preferably, PVdF can be used.

본 발명에 따른 상기 전극조립체는, 분리막이 개재된 상태에서 양극, 음극의 전극이 다수 개 적층된 구조를 갖는다. The electrode assembly according to the present invention has a structure in which a plurality of electrodes of a positive electrode and a negative electrode are stacked in a state where a separator is interposed.

상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있으며, 바람직하게는 폴리올레핀(polyolefin) 수지 다공막일 수 있다. 특히, 폴리프로필렌 수지의 경우 상대적을 산화되기 쉬운 물질이므로 본 발명에 적용되는 경우 더욱 바람직할 수 있다. 한편, 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체전해질이 분리막을 겸할 수도 있다. The separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally from 0.01 to 10 ㎛ ㎛, thickness is generally 5 ~ 300 ㎛. As such a separator, for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; A sheet or a nonwoven fabric made of glass fiber or polyethylene may be used, and preferably, a polyolefin resin porous membrane. In particular, polypropylene resin may be more preferable when applied to the present invention because it is a material that is relatively easy to oxidize. On the other hand, when a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.

이차전지용 전극은 전극 활물질과 바인더 및 선택적으로 도전재, 충진제 등을 혼합한 전극 합제를 집전체에 코팅하여 제조된다. 예를 들어, 상기 슬러리를 금속 호일 등의 집전체 상에 도포한 후 건조 및 프레싱하여 제조될 수 있다. The secondary battery electrode is manufactured by coating an electrode mixture, in which an electrode active material, a binder, and optionally a conductive material, a filler, and the like are mixed with a current collector. For example, the slurry may be prepared by applying a slurry on a current collector such as a metal foil, followed by drying and pressing.

상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.The positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.

상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. The positive electrode current collector is generally made to a thickness of 3 to 500 μm. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver or the like can be used. The current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.

상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The positive electrode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Li 1 + x Mn 2 - x O 4 (Where x is 0 to 0.33), lithium manganese oxides such as LiMnO 3 , LiMn 2 O 3 , LiMnO 2, and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1-x M x O 2 , wherein M = Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and x = 0.01 to 0.3; Formula LiMn 2-x M x O 2 (wherein M = Co, Ni, Fe, Cr, Zn or Ta and x = 0.01 to 0.1) or Li 2 Mn 3 MO 8 (wherein M = Fe, Co, Lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 and the like, but are not limited to these.

상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 경우에 따라서는 양극 활물질에 도전성의 제 2 피복층이 부가됨으로 인해 상기 도전재의 첨가를 생략할 수도 있다.The conductive material is typically added in an amount of 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. In some cases, since the conductive second coating layer is added to the positive electrode active material, the addition of the conductive material may be omitted.

상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. The binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 50 wt% based on the total weight of the mixture including the positive electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.

이와 같이, 바인더 성분으로는 폴리불화비닐리덴 등의 고분자 물질이 일반적 으로 사용되는 바, 전지가 고온에 노출되는 경우 이중결합화되면서 저분자량을 가지게 됨으로써 용매화(solvation)된다. 이 경우, 전극 활물질 상호간 및 전류집전체와의 결합력이 저하되면서 전지의 열화가 심각하게 발생될 수 있다. 반면, 본 발명에 따른 전극조립체에는 열 안정제가 포함되어 있어서 바인더 성분의 이중결합화를 방지할 수 있으므로 전지 용량 및 사이클 특성이 향상될 수 있다. As such, a high molecular material such as polyvinylidene fluoride is generally used as the binder component. When the battery is exposed to high temperature, it is solvated by having a low molecular weight while being double bonded. In this case, deterioration of the battery may occur seriously while the bonding strength between the electrode active materials and the current collector is lowered. On the other hand, since the electrode assembly according to the present invention includes a heat stabilizer to prevent the double bond of the binder component can be improved battery capacity and cycle characteristics.

상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. Examples of the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.

음극은 음극 집전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.The negative electrode is manufactured by applying and drying a negative electrode material on the negative electrode current collector, and if necessary, the components as described above may be further included.

상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is generally made to a thickness of 3 to 500 ㎛. Such a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.

상기 음극 재료는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.The negative electrode material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 <x ≦ 1; 1 ≦ y ≦ 3; 1 ≦ z ≦ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like can be used.

본 발명은 또한 상기 전극조립체에 리튬염 함유 비수계 전해액이 함침되어 구조로 이루어져 있는 리튬 이차전지를 제공한다. The present invention also provides a lithium secondary battery having a structure in which a lithium salt-containing non-aqueous electrolyte solution is impregnated into the electrode assembly.

리튬염 함유 비수계 전해질은, 비수계 전해액과 리튬염으로 이루어져 있다.A lithium salt containing non-aqueous electrolyte consists of a non-aqueous electrolyte solution and a lithium salt.

상기 비수계 전해액로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 부틸렌 카보네이트, 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸설폭사이드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양성자성 유기용매가 사용될 수 있다. Examples of the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), Gamma-butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxo Run, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate Aprotic organic solvents such as derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.

하나의 바람직한 예에서, 상기 비수계 전해액은 비양성자성 유기 용매인 EC, DEC, DMC, EMC 및 이들의 혼합 용매일 수 있고, 더욱 바람직하게는, EC/ DEC의 혼합 용매, EC/EMC의 혼합 용매, 또는 EC/EMC/DMC의 혼합 용매가 사용될 수 있다. 특히, DMC의 경우 이온전도성이 높기 때문에, 충방전 사이클 특성이 향상하는 반면에, 고온 보존시 다량의 가스가 발생하는 문제가 있으나, 본 발명에서와 같이 열 안정제가 분리막 접착층에 포함되어 있는 경우에는 음극 상의 피막이 안정화되어 고온 보존시 가스 발생을 효과적으로 억제할 수 있다는 장점이 있다. In one preferred embodiment, the non-aqueous electrolyte may be EC, DEC, DMC, EMC and mixed solvents thereof, which are aprotic organic solvents, more preferably, a mixed solvent of EC / DEC, a mixture of EC / EMC Solvents or mixed solvents of EC / EMC / DMC can be used. Particularly, in the case of DMC, since the ion conductivity is high, the charge / discharge cycle characteristics are improved, but there is a problem in that a large amount of gas is generated during high temperature storage. However, when the heat stabilizer is included in the adhesive layer as in the present invention, Since the film on the cathode is stabilized, there is an advantage that it is possible to effectively suppress the generation of gas during high temperature storage.

상기 리튬염은 상기 비수계 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is easy to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.

또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다. In addition, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate triamide. Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride, etc. It may be. In some cases, in order to impart nonflammability, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.

본 발명은 또한, 상기 제 1 실시예 및 제 2 실시예에 따른 전극조립체를 제 조하는 방법을 제공한다. The present invention also provides a method of manufacturing the electrode assembly according to the first embodiment and the second embodiment.

상기 제 1 실시예에 따른 전극조립체는,The electrode assembly according to the first embodiment,

(i) 접착층 성분을 유기 용매에 용해시킨 후, 열 안정제가 담지된 미세 캡슐을 분산시켜 코팅액을 제조하는 단계; (i) dissolving the adhesive layer component in an organic solvent, and then dispersing the microcapsules loaded with a heat stabilizer to prepare a coating solution;

(ii) 분리막의 양면 또는 일면에 상기 단계(i)에서 제조된 코팅액을 코팅하여 접착층을 형성하는 단계; 및(ii) coating the coating solution prepared in step (i) on both or one side of the separator to form an adhesive layer; And

(iii) 상기 접착층이 형성된 분리막을 양극과 음극 사이에 개재하고 가열/가압 공정을 수행하는 단계; (iii) interposing a separator formed with the adhesive layer between an anode and a cathode and performing a heating / pressing process;

를 포함하는 것으로 구성될 수 있다. It may be configured to include.

또한, 상기 제 2 실시예에 따른 전극조립체는, In addition, the electrode assembly according to the second embodiment,

(i) 열 안정제를 유기 용매에 용해시킨 후, 응집제 또는 접착제를 첨가하여 열 안정제의 응집체를 제조하는 단계; (i) dissolving the heat stabilizer in an organic solvent and then adding a flocculant or an adhesive to prepare agglomerates of the heat stabilizer;

(ii) 접착층 성분을 유기 용매에 용해시킨 후, 상기 단계(i)에서 제조된 응집체를 분산시켜 코팅액을 제조하는 단계; (ii) dissolving the adhesive layer component in an organic solvent, and then dispersing the aggregate prepared in step (i) to prepare a coating solution;

(iii) 분리막의 양면 또는 일면에 상기 단계(ii)에서 제조된 코팅액을 코팅하여 접착층을 형성하는 단계; 및(iii) forming an adhesive layer by coating the coating solution prepared in step (ii) on both or one side of the separator; And

(iv) 상기 접착층이 형성된 분리막을 양극과 음극 사이에 개재하고 가열/가압 공정을 수행하는 단계;(iv) interposing a separator formed with the adhesive layer between an anode and a cathode and performing a heating / pressing process;

를 포함하는 것으로 구성될 수 있다.It may be configured to include.

본 발명에 따른 전극조립체의 제조시 열 안정제는 캡슐에 담지된 형태이거나 열안정제의 응집체의 형태로 분리막 접착층의 형성을 위한 코팅액에 분산되고, 접착층 성분을 유기 용매에 용해시킨 후 코팅액의 최종 제조 단계에서 첨가하므로, 가열/가압 과정의 이전 상태에 충분히 그 형태가 유지될 수 있다. 이에 따라, 열 안정제가 그 자체로 접착층에 넓게 분포하는 경우에 비해 가열/가압 공정에서의 소모량이 최소화될 수 있다. 따라서, 상대적으로 전지의 고온 상태에서 전극조립체 내부에 포함된 고분자 성분에서 발생된 라디칼을 포획할 수 있는 유효량이 높게 유지될 수 있으므로 작동 신뢰성이 높다. In the preparation of the electrode assembly according to the present invention, the heat stabilizer is dispersed in a coating solution for forming a separator adhesive layer in the form of a capsule or in the form of agglomerates of a heat stabilizer, and after dissolving the adhesive layer component in an organic solvent, the final manufacturing step of the coating solution. Since it is added at, the form can be sufficiently maintained in the previous state of the heating / pressurization process. Accordingly, the consumption in the heating / pressing process can be minimized as compared with the case where the heat stabilizer is itself widely distributed in the adhesive layer. Therefore, since the effective amount capable of capturing the radicals generated from the polymer component included in the electrode assembly in the relatively high temperature state of the battery can be maintained high, the operation reliability is high.

상기 접착층 성분 또는 열 안정제를 용해하기 위한 유기 용매로는, 예를 들어, N-메틸-2-피롤리돈(NMP), N,N-디메틸포름아미드, 테트라히드로퓨란, 디메틸아세트아미드, 디메틸술폭시드, 헥사메틸술폰아미드, 테트라메틸요소, 아세톤, 메틸에틸케톤 등이 사용될 수 있으며, 이들은 단독 또는 2종 이상의 혼합 용매 형태로 사용될 수도 있다. 특히 바람직하게는, NMP가 사용될 수 있다. Examples of the organic solvent for dissolving the adhesive layer component or the heat stabilizer include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, and dimethyl sulfoxide. Seeds, hexamethylsulfonamides, tetramethylurea, acetone, methylethylketone, and the like can be used, and these may be used alone or in the form of two or more mixed solvents. Especially preferably, NMP can be used.

상기 코팅액의 도포 방법은 특별히 제한되지 않으며, 예를 들어, 닥터 블레이트 코팅법, 스프레이 코팅법, 스크린 프린팅법 등이 사용될 수 있다.The coating method of the coating liquid is not particularly limited, and for example, a doctor bleed coating method, a spray coating method, a screen printing method, or the like may be used.

상기 가열/가압 공정은 분리막과 전극 간의 충분한 결합 강도를 달성할 수 있도록 70 내지 100℃의 온도, 3 내지 10 kg/cm2의 압력 하에서 1 내지 10 분간 수행하는 것이 바람직하고, 더욱 바람직하게는, 80 내지 90℃의 온도, 4 내지 6 kg/cm2의 압력 하에서 3 내지 5 분간 수행할 수 있다. The heating / pressing process is preferably performed for 1 to 10 minutes at a temperature of 70 to 100 ° C. and a pressure of 3 to 10 kg / cm 2 so as to achieve sufficient bonding strength between the separator and the electrode. It may be carried out for 3 to 5 minutes at a temperature of 80 to 90 ℃, a pressure of 4 to 6 kg / cm 2 .

상기 가열/가압 공정에서, 온도가 너무 높을 경우 전극 또는 분리막의 열화 가 발생할 수 있고, 압력이나 처리 시간이 너무 높거나 긴 경우 전극조립체의 변형이 초래될 수 있으므로 바람직하지 않다. 반대의 경우, 분리막과 전극 간의 충분한 결합력이 발휘될 수 없으므로 문제가 있다.In the heating / pressing process, if the temperature is too high, deterioration of the electrode or the separator may occur, and if the pressure or the treatment time is too high or long, the electrode assembly may be deformed, which is not preferable. In the opposite case, there is a problem because sufficient bonding force between the separator and the electrode cannot be exerted.

이하의 실시예에서 본 발명을 더욱 상세하게 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.In the following Examples, the present invention will be described in more detail, but the scope of the present invention is not limited thereto.

[실시예 1]Example 1

1.One. 열 안정제를 Heat stabilizer 담지한Supported 미세 캡슐 및 이를 포함하는 코팅액의 제조 Preparation of microcapsules and coating liquid containing same

폴리스티렌(polystyrene: PS)을 디클로메탄(dichloromethane: DCM)에 용해시켜 25 ml의 분산용액(a)을 제조하였다. 또한, 0.1 중량%의 n-octadecyl-3-(4-hydroxy-3,5-di-t-butyl phenyl)propionate를 포함하는 250 ml의 수용액(b)을 제조하였다. 분산용액(a)을 수용액(b)에 첨가하여 오일/물(oil/water) 에멀젼을 형성하였다. 그런 다음, DCM을 증발시켜 제거함으로써, 대략 30 ㎛ 크기의 PS 캡슐을 얻었다. 이를 증류수에 여러 차례 세척하여 최종적인 캡슐을 제조하였다. Polystyrene (PS) was dissolved in dichloromethane (DCM) to prepare 25 ml of a dispersion (a). In addition, 250 ml of an aqueous solution (b) containing 0.1 wt% of n-octadecyl-3- (4-hydroxy-3,5-di-t-butyl phenyl) propionate was prepared. The dispersion (a) was added to the aqueous solution (b) to form an oil / water emulsion. Then, DCM was evaporated to remove, thereby obtaining a PS capsule of approximately 30 μm size. This was washed several times in distilled water to prepare a final capsule.

한편, 3 중량%의 PVdF를 NMP에 용해시키고 교반하였다. 그런 다음, 상기 제조된 캡슐을 분산시켜 코팅액을 제조하였다. Meanwhile, 3% by weight of PVdF was dissolved in NMP and stirred. Then, the prepared capsules were dispersed to prepare a coating solution.

2.2. 전지의 제조Manufacture of batteries

음극은 93 중량%의 탄소 활물질(오사카 가스사의 MCMB10-28)과 7 중량%의 폴 리비닐리덴 디플루오라이드(PVDF, Elf Atochem 사의 Kynar 761)를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 혼합기(Ika 사의 Mixer)에서 2 시간 동안 혼합한 후, 구리 호일 집전체에 코팅하고, 130℃에서 건조하여 제조하였다. The negative electrode is N-methyl-2-pyrrolidone (93% by weight of a carbon active material (MCMB10-28 from Osaka Gas) and 7% by weight of polyvinylidene difluoride (PVDF, Kynar 761 from Elf Atochem) NMP) was added and mixed in a mixer (mixer manufactured by Ika) for 2 hours, and then coated on a copper foil current collector and dried at 130 ° C.

양극은 91 중량%의 LiCoO2, 3 중량%의 PVDF (Kynar 761) 및 6 중량%의 도전성 탄소(Lonza 사의 KS-6)를 용매인 N-메틸-2-피롤리돈(NMP)에 혼합하여 혼합기(Ika 사의 Mixer)에서 2 시간 동안 혼합한 후, 알루미늄 호일 집전체에 코팅하고, 130℃에서 건조하여 제조하였다.The positive electrode was prepared by mixing 91% by weight of LiCoO 2 , 3% by weight of PVDF (Kynar 761) and 6% by weight of conductive carbon (KS-6 from Lonza) in a solvent, N-methyl-2-pyrrolidone (NMP). After mixing for 2 hours in a mixer (mixer manufactured by Ika), it was coated on an aluminum foil current collector, and dried at 130 ° C to prepare.

분리막의 베어 필름으로 폴리프로필렌 계열의 분리막(CelgardTM 2400)을 사용하였으며, 양면에 상기 제조한 코팅액을 대략 5 ㎛의 두께로 스프레이 코팅 방식으로 코팅한 후, 12 시간 동안 실온에서 방치, 건조하여 접착층이 코팅된 분리막을 제조하였다. Polypropylene-based separator (Celgard TM 2400) was used as a bare film of the separator, and the coating solution was coated on both sides by a spray coating method with a thickness of approximately 5 μm, and then left at room temperature for 12 hours and dried to form an adhesive layer. This coated separator was prepared.

그런 다음, 코팅된 분리막을 상기 제조한 음극과 양극 사이에 개재하여 적층한 후, 85℃의 온도, 5 kg/cm2의 압력 하에서 5 분간 가열/가압 공정으로 전극과 분리막을 결합시켜 전극조립체를 제조하였다. 제조된 전극조립체를 파우치형 케이스에 수납하고 전해액을 주입한 후 열융착하여 파우치형의 리튬 이차전지를 제조하였다. 전해액으로는 1 M LiPF6 EC/DMC 용액을 사용하였다.Then, the coated separator is laminated between the prepared negative electrode and the positive electrode, and then the electrode assembly is bonded by combining the electrode and the separator by a heating / pressing process for 5 minutes under a temperature of 85 ° C. and a pressure of 5 kg / cm 2 . Prepared. The prepared electrode assembly was accommodated in a pouch-type case, an electrolyte solution was injected, and heat-sealed to prepare a pouch-type lithium secondary battery. 1 M LiPF 6 EC / DMC solution was used as the electrolyte.

[실시예 2] Example 2

전해액으로 1 M LiPF6 EC/EMC/DMC의 용액을 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다. A battery was prepared in the same manner as in Example 1, except that a solution of 1 M LiPF 6 EC / EMC / DMC was used as the electrolyte.

[비교예 1] Comparative Example 1

분리막을 코팅하지 않았다는 점을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다. A battery was manufactured in the same manner as in Example 1, except that the separator was not coated.

[비교예 2]Comparative Example 2

미세 캡슐을 포함하는 코팅액 대신에, 3 중량%의 PVdF 및 n-octadecyl-3-(4-hydroxy-3,5-di-t-butyl phenyl)propionate 1 중량%를 NMP에 용해시켜 코팅액을 제조하였고, 상기 코팅액을 분리막의 양극과 대면하는 면에 코팅하였다는 점을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다. Instead of the coating solution containing the microcapsules, 3% by weight of PVdF and 1% by weight of n-octadecyl-3- (4-hydroxy-3,5-di-t-butyl phenyl) propionate were dissolved in NMP to prepare a coating solution. The battery was manufactured in the same manner as in Example 1, except that the coating solution was coated on a surface of the separator facing the positive electrode.

[실험예] 수명 특성 평가 실험[Experimental Example] Life characteristic evaluation experiment

실시예 1 및 2와 비교예 1 및 2에서 각각 제조한 전지들을 45℃에서 0.5 C로 충방전을 200 회 실시한 후, 1 회 방전 용량 대비 100 회 및 200 회의 방전 용량 유지율을 계산하여 하기 표 1에 나타내었다.After charging and discharging the battery prepared in Examples 1 and 2 and Comparative Examples 1 and 2 at 0.5 C at 200 ° C. 200 times, the discharge capacity retention rate of 100 times and 200 times compared to the one time discharge capacity was calculated. Shown in

<표 1>TABLE 1

Figure 112007051775422-PAT00001
Figure 112007051775422-PAT00001

상기 표 1에서 보는 바와 같이, 열 안정제인 n-octadecyl-3-(4-hydroxy-3,5-di-t-butyl phenyl)propionate를 첨가하지 않은 비교예 1과 열 안정제를 접착층에 직접 첨가한 비교예 2의 전지에 비해, n-octadecyl-3-(4-hydroxy-3,5-di-t-butyl phenyl)propionate 담지 캡슐을 전해액과 음극에 각각 첨가한 실시예 1 및 2의 전지는 높은 용량 유지율을 나타내었다. 이는 200 회 이상의 충방전시 더욱 유의적으로 나타남을 알 수 있다. As shown in Table 1, Comparative Example 1 and the heat stabilizer was added directly to the adhesive layer without the addition of n-octadecyl-3- (4-hydroxy-3,5-di-t-butyl phenyl) propionate as a heat stabilizer Compared with the battery of Comparative Example 2, the cells of Examples 1 and 2 in which the n-octadecyl-3- (4-hydroxy-3,5-di-t-butyl phenyl) propionate supporting capsule were added to the electrolyte and the negative electrode, respectively, were higher. Dose retention was shown. This can be seen that more than 200 times more significant discharge.

이상의 수명 특성 결과로부터, 실시예 1 및 2에서와 같이 열 안정화 담지 캡슐을 접착층에 첨가한 후 가열/가압을 수행하면, 상기 가열/가압 과정에서 캡슐의 쉘이 파괴되면서 비로서 열 안정제가 접착층으로 유출되므로, 비교예 2에서와 같이 열 안정제를 직접 접착층에 첨가한 후 가열/가압을 수행하는 경우에 열 안정제의 상당량이 소모되는 문제점을 해결할 수 있음을 알 수 있다.From the results of the above life characteristics, as shown in Examples 1 and 2, when the heat stabilized supporting capsule is added to the adhesive layer and then heated / pressed, the shell of the capsule is destroyed during the heating / pressing process, and the heat stabilizer is converted into the adhesive layer. Since it flows out, it can be seen that a problem in which a considerable amount of the heat stabilizer is consumed when the heat stabilizer is added after the heat stabilizer is directly added to the adhesive layer as in Comparative Example 2 is performed.

또한, 유효량의 열 안정제가 전극과 분리막 사이의 접착층에 포함됨으로써, 비교예 1 및 2와 비교하여, 전지 내 고분자 재료의 열화가 방지되어 전지의 내구성, 전지 용량 및 고온 사이클 특성이 향상되고, 가열/가압 공정에서 열 안정제의 소모량을 최소함으로써 작동 성능 및 효율이 우수함을 알 수 있다.In addition, the effective amount of the heat stabilizer is included in the adhesive layer between the electrode and the separator, thereby preventing deterioration of the polymer material in the battery as compared with Comparative Examples 1 and 2, improving battery durability, battery capacity and high temperature cycle characteristics, and heating. It can be seen that the operating performance and efficiency are excellent by minimizing the consumption of the heat stabilizer in the / pressurization process.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

이상에서 설명한 바와 같이, 본 발명에 따른 전극조립체는 캡슐에 담지된 형태나 응집체의 형태로 열 안정제가 분리막 접착층에 첨가된 후 전극조립체의 제조를 위한 가열/가압 과정에서 상기 열 안정제가 접착층으로 유출되므로, 최종 전극조립체 내에서 열 안정제의 유효량을 높일 수 있다. 따라서, 이러한 열 안정제를 포함하는 리튬 이차전지는 내구성이 향상되고, 충방전 용량의 저하가 방지될 수 있으며, 특히 사이클 특성 및 고온에서의 저장 및 수명 특성이 우수하다. 또한, 전극조립체의 제조를 위한 가열, 가압 과정 등에서 유발될 수 있는 열 안정제의 낭비를 최소화함으로써 작동 신뢰성 및 효율이 높다는 장점이 있다.As described above, in the electrode assembly according to the present invention, after the heat stabilizer is added to the separator adhesive layer in the form of a capsule or in the form of agglomerates, the heat stabilizer flows out to the adhesive layer in the heating / pressurization process for manufacturing the electrode assembly. Therefore, the effective amount of the heat stabilizer in the final electrode assembly can be increased. Therefore, the lithium secondary battery including such a heat stabilizer is improved in durability and can be prevented from lowering in charge and discharge capacity, and particularly excellent in cycle characteristics and storage and life characteristics at high temperatures. In addition, there is an advantage that the operation reliability and efficiency is high by minimizing the waste of the heat stabilizer that can be caused during the heating, pressurization process, etc. for the production of the electrode assembly.

Claims (19)

다수의 전극들을 분리막이 개재된 상태에서 적층한 후 가열/가압에 의해 상호 결합시킨 구조의 전극조립체로서, 상기 전극과 분리막의 결합은 분리막 상에 형성된 접착층과 전극을 상호 대면한 상태에서 가열/가압함으로써 달성되고, 상기 접착층에는 가열/가압 이전 상태에서 열 안정제가 담지된 미세 캡슐이 포함되어 있으며, 상기 가열/가압 과정에서 미세 캡슐의 쉘(shell)이 파열되어 담지된 열 안정제가 접착층으로 유출되는 것을 특징으로 하는 전극조립체. An electrode assembly having a structure in which a plurality of electrodes are laminated in a state in which a separator is interposed and then bonded to each other by heating / pressing, wherein the bonding of the electrode and the separator is performed by heating / pressing the adhesive layer formed on the separator and the electrodes facing each other. It is achieved by the, the adhesive layer includes a microcapsule loaded with a heat stabilizer in the state before heating / pressing, the shell of the microcapsules during the heating / pressing process (rupture of the shell (shell) of the microcapsules are leaked to the adhesive layer) Electrode assembly, characterized in that. 제 1 항에 있어서, 상기 미세 캡슐의 쉘은 70 내지 100℃의 온도에서 용융되거나, 3 내지 10 kg/cm2의 압력 하에서 파열되는 것을 특징으로 하는 전극조립체. The electrode assembly of claim 1, wherein the shell of the microcapsules is melted at a temperature of 70 to 100 ° C or ruptured under a pressure of 3 to 10 kg / cm 2 . 제 2 항에 있어서, 상기 미세 캡슐의 쉘은 폴리올레핀으로 이루어진 것을 특징으로 하는 전극조립체.The electrode assembly of claim 2, wherein the shell of the microcapsules is made of polyolefin. 제 1 항에 있어서, 상기 미세 캡슐의 크기는 대략 1 내지 50 ㎛의 입경을 가지는 것을 특징으로 하는 전극조립체.The electrode assembly of claim 1, wherein the microcapsules have a particle size of about 1 to 50 μm. 다수의 전극들을 분리막이 개재된 상태에서 적층한 후 가열/가압에 의해 상 호 결합시킨 구조의 전극조립체로서, 상기 전극과 분리막의 결합은 분리막 상에 형성된 접착층과 전극을 상호 대면한 상태에서 가열/가압함으로써 달성되고, 상기 접착층에는 열 안정제가 물리적 결합에 의해 응집되어 형성된 응집체가 포함되어 있는 것을 특징으로 하는 전극조립체. An electrode assembly having a structure in which a plurality of electrodes are laminated in a state in which a separator is interposed and then mutually bonded by heating / pressurization, wherein the bonding of the electrode and the separator is performed by heating and / or facing the electrode and the adhesive layer formed on the separator. The electrode assembly, which is achieved by pressurization, wherein the adhesive layer includes agglomerates formed by agglomeration of heat stabilizers by physical bonding. 제 5 항에 있어서, 상기 응집체는 상대적으로 작은 입경을 갖는 1차 입자 형태의 열 안정제들이 상호 물리적 결합에 의해 응집되어 2차 입자를 형성한 구조로 이루어진 것을 특징으로 하는 전극조립체.The electrode assembly according to claim 5, wherein the aggregate has a structure in which thermal stabilizers in the form of primary particles having a relatively small particle diameter are aggregated by mutual physical bonding to form secondary particles. 제 5 항에 있어서, 상기 응집체는 열 안정제가 소정의 바인더에 의해 결합되어 있는 구조로 이루어진 것을 특징으로 하는 전극조립체. The electrode assembly according to claim 5, wherein the aggregate has a structure in which a heat stabilizer is bonded by a predetermined binder. 제 7 항에 있어서, 상기 바인더는 PVdF인 것을 특징으로 하는 전극조립체.8. The electrode assembly of claim 7, wherein the binder is PVdF. 제 1 항 또는 제 5 항에 있어서, 상기 열 안정제는, 페놀계 화합물, 환형 아민계 화합물, 세미카르바지드(Semicarbazide), 아민계 화합물, 니트로계 화합물, 인계 화합물, 불포화 탄화수소계 화합물, 및 티오계 화합물로 이루어진 군에서 선택되는 것을 특징으로 하는 전극조립체. The heat stabilizer according to claim 1 or 5, wherein the heat stabilizer is a phenolic compound, a cyclic amine compound, a semicarbazide, an amine compound, a nitro compound, a phosphorus compound, an unsaturated hydrocarbon compound, and a thio compound. Electrode assembly, characterized in that selected from the group consisting of a compound. 제 9 항에 있어서, 상기 페놀계 화합물은 2,2-di(4'-hydroxyphenyl) propane, hydroquinone, p-methoxyphenol, t-butylhydroxy-anisole, n-octadecyl-3-(4-hydroxy-3,5-di-t-butyl-phenyl)propionate, pentaerythritol tetrakis-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 1,2-propylene glycol bis-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], stearamido N,N-bis-[ethylene 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,5-di-t-butylhydroquinone, 4,4'-butylidenebis(3-methyl-6-t-butylphenol), 3,5-di-t-butyl-4-hydroxytoluene, 2,2'-methylene-bis(4-ethyl-6-t-butylphenol), triethyleneglycol-bis-[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], pentaerythritoltetrakis[3-(3,5-di-t-butyl-4-hydroxy-phenyl) propionate], 2,6-di-t-butyl-4-methylphenol, t-butylcatechol, 4,4-thiobis(6-t-butyl-m-cresol), tocopherol, and nordihydroguaiaretic acid로 이루어진 군에서 선택되는 것을 특징으로 하는 전극조립체. The method of claim 9, wherein the phenolic compound is 2,2-di (4'-hydroxyphenyl) propane, hydroquinone, p-methoxyphenol, t-butylhydroxy-anisole, n-octadecyl-3- (4-hydroxy-3,5 -di-t-butyl-phenyl) propionate, pentaerythritol tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 1,2-propylene glycol bis- [3- (3,5 -di-t-butyl-4-hydroxyphenyl) propionate], stearamido N, N-bis- [ethylene 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,5-di-t -butylhydroquinone, 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 3,5-di-t-butyl-4-hydroxytoluene, 2,2'-methylene-bis (4-ethyl-6- t-butylphenol), triethyleneglycol-bis- [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], pentaerythritoltetrakis [3- (3,5-di-t-butyl-4-hydroxy-phenyl ) propionate], 2,6-di-t-butyl-4-methylphenol, t-butylcatechol, 4,4-thiobis (6-t-butyl-m-cresol), tocopherol, and nordihydroguaiaretic acid Electrode assembly, characterized in that. 제 10 항에 있어서, 상기 페놀계 화합물은, n-octadecyl-3-(4-hydroxy-3,5-di-t-butylphenyl)propionate인 것을 특징으로 하는 전극조립체.The electrode assembly of claim 10, wherein the phenolic compound is n-octadecyl-3- (4-hydroxy-3,5-di-t-butylphenyl) propionate. 제 1 항 또는 제 5 항에 있어서, 상기 열 안정제의 총 함량은 분리막 접착층의 전체 중량에 대하여 0.01 ~ 1 중량%로 포함되는 것을 특징으로 하는 전극조립체.The electrode assembly of claim 1 or 5, wherein the total amount of the heat stabilizer is included in an amount of 0.01 to 1 wt% based on the total weight of the membrane adhesive layer. 제 1 항 또는 제 5 항에 있어서, 상기 분리막 접착층은 0.5 내지 10 ㎛의 두께를 갖는 것을 특징으로 하는 전극조립체. The electrode assembly of claim 1 or 5, wherein the separator adhesive layer has a thickness of 0.5 to 10 µm. 제 1 항 또는 제 5 항에 있어서, 상기 분리막은 폴리올레핀계 다공성 분리막인 것을 특징으로 하는 전극조립체. The electrode assembly according to claim 1 or 5, wherein the separator is a polyolefin-based porous separator. 제 1 항 또는 제 5 항에 따른 전극조립체에 리튬염 함유 비수계 전해액이 함침되어 있는 것을 특징으로 하는 리튬 이차전지. A lithium secondary battery comprising a lithium salt-containing non-aqueous electrolyte solution in an electrode assembly according to claim 1 or 5. (i) 접착층 성분을 유기 용매에 용해시킨 후, 열 안정제가 담지된 미세 캡슐을 분산시켜 코팅액을 제조하는 단계;(i) dissolving the adhesive layer component in an organic solvent, and then dispersing the microcapsules loaded with a heat stabilizer to prepare a coating solution; (ii) 분리막의 양면 또는 일면에 상기 단계(i)에서 제조된 코팅액을 코팅하여 접착층을 형성하는 단계; 및 (ii) coating the coating solution prepared in step (i) on both or one side of the separator to form an adhesive layer; And (iii) 상기 접착층이 형성된 분리막을 양극과 음극 사이에 개재하고 가열/가압 공정을 수행하는 단계;(iii) interposing a separator formed with the adhesive layer between an anode and a cathode and performing a heating / pressing process; 를 포함하는 제 1 항에 따른 전극조립체의 제조방법.Method of manufacturing an electrode assembly according to claim 1 comprising a. (i) 열 안정제를 유기 용매에 용해시킨 후, 응집제 또는 접착제를 첨가하여 열 안정제의 응집체를 제조하는 단계; (i) dissolving the heat stabilizer in an organic solvent and then adding a flocculant or an adhesive to prepare agglomerates of the heat stabilizer; (ii) 접착층 성분을 유기 용매에 용해시킨 후, 상기 단계(i)에서 제조된 응 집체를 분산시켜 코팅액을 제조하는 단계; (ii) dissolving the adhesive layer component in an organic solvent, and then dispersing the aggregate prepared in step (i) to prepare a coating solution; (iii) 분리막의 양면 또는 일면에 상기 단계(ii)에서 제조된 코팅액을 코팅하여 접착층을 형성하는 단계; 및(iii) forming an adhesive layer by coating the coating solution prepared in step (ii) on both or one side of the separator; And (iv) 상기 접착층이 형성된 분리막을 양극과 음극 사이에 개재하고 가열/가압 공정을 수행하는 단계; (iv) interposing a separator formed with the adhesive layer between an anode and a cathode and performing a heating / pressing process; 를 포함하는 제 5 항에 따른 전극조립체의 제조방법.Method of manufacturing an electrode assembly according to claim 5 comprising a. 제 16 항 또는 제 17 항에 있어서, 상기 유기 용매는 NMP인 것을 특징으로 하는 전극조립체의 제조방법. 18. The method of claim 16 or 17, wherein the organic solvent is NMP. 제 16 항 또는 제 17 항에 있어서, 상기 가열/가압 공정은 70 내지 100℃의 온도 및 3 내지 10 kg/cm2의 압력 하에서 1 내지 10 분간 수행되는 것을 특징으로 하는 전극조립체의 제조방법. 18. The method of claim 16 or 17, wherein the heating / pressing process is performed for 1 to 10 minutes at a temperature of 70 to 100 ° C. and a pressure of 3 to 10 kg / cm 2 .
KR1020070071395A 2007-07-16 2007-07-16 Electrolyte assembly with improved thermal stability and secondary battery employed with the same KR101150258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070071395A KR101150258B1 (en) 2007-07-16 2007-07-16 Electrolyte assembly with improved thermal stability and secondary battery employed with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070071395A KR101150258B1 (en) 2007-07-16 2007-07-16 Electrolyte assembly with improved thermal stability and secondary battery employed with the same

Publications (2)

Publication Number Publication Date
KR20090008085A true KR20090008085A (en) 2009-01-21
KR101150258B1 KR101150258B1 (en) 2012-06-12

Family

ID=40488507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070071395A KR101150258B1 (en) 2007-07-16 2007-07-16 Electrolyte assembly with improved thermal stability and secondary battery employed with the same

Country Status (1)

Country Link
KR (1) KR101150258B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446163B1 (en) * 2012-06-04 2014-10-01 주식회사 엘지화학 Separator for electrochemical devices with improved adhesion, and electrochemical devices containing the same
KR101497348B1 (en) * 2012-04-18 2015-03-05 주식회사 엘지화학 Method for Preparing Integrated Electrode Assembly for Lithium Secondary Battery and Integrated Electrode Assembly Prepared Using the Same
WO2015041472A1 (en) * 2013-09-17 2015-03-26 주식회사 엘지화학 Separation film having excellent thermal stability and secondary battery comprising same
WO2015046893A1 (en) * 2013-09-25 2015-04-02 주식회사 엘지화학 Method for manufacturing electrode assembly
KR20160133135A (en) * 2015-05-12 2016-11-22 주식회사 엘지화학 Battery Cell Comprising Electrolyte-Containing Member for Supplying Electrolyte
US20200235434A1 (en) * 2017-11-13 2020-07-23 Lg Chem, Ltd. Electrode assembly and method for manufacturing the same
KR20220088084A (en) 2020-12-18 2022-06-27 재단법인대구경북과학기술원 Secondary battery separator, manufacturing method thereof, and lithium secondary battery including the secondary battery separator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804991B1 (en) * 2005-01-15 2008-02-20 주식회사 엘지화학 Surface-treated current collector and lithium secondary battery using the same
WO2007008006A1 (en) * 2005-07-13 2007-01-18 Lg Chem, Ltd. Lithium secondary battery containing capsule for controlled-release of additives
KR100927246B1 (en) * 2006-09-11 2009-11-16 주식회사 엘지화학 Electrode mixture containing clay mineral and electrochemical cell using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497348B1 (en) * 2012-04-18 2015-03-05 주식회사 엘지화학 Method for Preparing Integrated Electrode Assembly for Lithium Secondary Battery and Integrated Electrode Assembly Prepared Using the Same
KR101446163B1 (en) * 2012-06-04 2014-10-01 주식회사 엘지화학 Separator for electrochemical devices with improved adhesion, and electrochemical devices containing the same
CN104769744B (en) * 2013-09-17 2017-09-08 株式会社Lg化学 Barrier film with improved heat endurance and the secondary cell comprising it
WO2015041472A1 (en) * 2013-09-17 2015-03-26 주식회사 엘지화학 Separation film having excellent thermal stability and secondary battery comprising same
US9793528B2 (en) 2013-09-17 2017-10-17 Lg Chem, Ltd. Separator with improved thermal stability and secondary battery comprising the same
US10135090B2 (en) 2013-09-25 2018-11-20 Lg Chem, Ltd. Method for manufacturing electrode assembly
EP2892101A4 (en) * 2013-09-25 2015-09-02 Lg Chemical Ltd Method for manufacturing electrode assembly
CN104718655A (en) * 2013-09-25 2015-06-17 株式会社Lg化学 Method for manufacturing electrode assembly
WO2015046893A1 (en) * 2013-09-25 2015-04-02 주식회사 엘지화학 Method for manufacturing electrode assembly
KR20160133135A (en) * 2015-05-12 2016-11-22 주식회사 엘지화학 Battery Cell Comprising Electrolyte-Containing Member for Supplying Electrolyte
US20200235434A1 (en) * 2017-11-13 2020-07-23 Lg Chem, Ltd. Electrode assembly and method for manufacturing the same
US11784352B2 (en) 2017-11-13 2023-10-10 Lg Energy Solution, Ltd. Electrode assembly and method for manufacturing the same
KR20220088084A (en) 2020-12-18 2022-06-27 재단법인대구경북과학기술원 Secondary battery separator, manufacturing method thereof, and lithium secondary battery including the secondary battery separator

Also Published As

Publication number Publication date
KR101150258B1 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
US10622669B2 (en) Lithium-sulfur battery separation film having composite coating layer including polydopamine, manufacturing method therefor, and lithium-sulfur battery comprising same
EP2863457B1 (en) Lithium secondary battery comprising multilayered active material layer
JP5791031B2 (en) Secondary battery electrode binder and secondary battery using the same
KR101054745B1 (en) Electrochemical Device Additives for Improved Safety
US20180138503A1 (en) Cathode for lithium-sulfur battery, manufacturing method therefor, and lithium-sulfur battery containing same
CN102522539B (en) Cathode active material and lithium secondary battery containing the same
KR101607024B1 (en) Lithium secondary battery
US20180040899A1 (en) Positive electrode for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101150258B1 (en) Electrolyte assembly with improved thermal stability and secondary battery employed with the same
CN101345326A (en) Battery
KR20150034825A (en) Separator for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US9252421B1 (en) Surface modification of active material structures in battery electrodes
EP3553850A1 (en) Secondary battery
JPWO2019021891A1 (en) Electrode for electrochemical device, electrochemical device, and method for manufacturing electrode for electrochemical device
KR101590678B1 (en) Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
KR20170094720A (en) Electrode with improved safety and method of making the same
US20140093759A1 (en) Lithium-ion secondary battery
JP6664482B2 (en) Electrolyte solution containing polydopamine, lithium-sulfur battery containing the same
KR100858417B1 (en) Secondary Battery Having Improved Safety by Surface-treatment of Endothermic Inorganic Material
KR101750329B1 (en) Separator comprising micro capsules, fabricating method thereof and secondary battery comprising the same
KR20210034966A (en) Binder for Anode of lithium secondary batteries and Anode for lithium secondary batteries comprising the binder
CN109891665B (en) Case material for secondary battery having improved safety and secondary battery including the same
KR20170113458A (en) Cathode with improved safety and lithium secondary battery comprising the same
KR20070008087A (en) Lithium secondary battery containing thermally degradable capsule containing additives for overcharge protection
KR20170062170A (en) Heat resisting separator for secondary battery and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160523

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 8