KR101488905B1 - Sodium titanate for welding material and method for preparing the same - Google Patents

Sodium titanate for welding material and method for preparing the same Download PDF

Info

Publication number
KR101488905B1
KR101488905B1 KR20130060806A KR20130060806A KR101488905B1 KR 101488905 B1 KR101488905 B1 KR 101488905B1 KR 20130060806 A KR20130060806 A KR 20130060806A KR 20130060806 A KR20130060806 A KR 20130060806A KR 101488905 B1 KR101488905 B1 KR 101488905B1
Authority
KR
South Korea
Prior art keywords
sodium
sodium titanate
source
titanate
welding material
Prior art date
Application number
KR20130060806A
Other languages
Korean (ko)
Other versions
KR20140140664A (en
Inventor
이호상
임재성
조원일
Original Assignee
주식회사 경남케미컬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경남케미컬 filed Critical 주식회사 경남케미컬
Priority to KR20130060806A priority Critical patent/KR101488905B1/en
Publication of KR20140140664A publication Critical patent/KR20140140664A/en
Application granted granted Critical
Publication of KR101488905B1 publication Critical patent/KR101488905B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium

Abstract

본 발명은 용접재료용 티탄산나트륨 및 이의 제조방법에 관한 것이다. 본 발명에 따른 티탄산나트륨은 산화나트륨(Na2O)원 및 산화티탄(TiO2)원을 고주파 유도로에서 배합, 용융, 냉각하여 제조됨으로써, 우수한 내흡습율을 가지는 것으로 확인되었는 바, 용접재료용으로 특히 수소에 의한 취성파괴를 최대한 줄일 수 있는 흡습율이 낮은 저수소계 FCW (Flux Cored Wire)용 용접재료에서 우수한 특성을 발휘하여 산업상 적용 가치가 높다.The present invention relates to sodium titanate for welding materials and a process for producing the same. The sodium titanate according to the present invention was confirmed to have an excellent moisture absorption rate by being produced by mixing a sodium oxide (Na 2 O) source and a titanium oxide (TiO 2 ) source in a high frequency induction furnace, melting and cooling. It is excellent in industrial application because it exhibits excellent characteristics in low hydrogen fluoride cored wire (FCW) welding material which can reduce the brittle fracture caused by hydrogen as much as possible.

Description

용접재료용 티탄산나트륨 및 이의 제조방법{Sodium titanate for welding material and method for preparing the same}[0001] Sodium titanate for welding materials and methods for preparing the same [0002]

본 발명은 용접재료용 티탄산나트륨 및 이의 제조방법에 관한 것이다.
The present invention relates to sodium titanate for welding materials and a process for producing the same.

용접재료에서 용접작업시 용접아크의 안정성과 슬래그 형성을 원활하게 하기 위하여 투입하는 티탄산나트륨은 그 본연의 투입 목적과 함께 가장 절실히 요구되는 구비 특성인 내흡습성이 개선되는 것이다.In order to improve the stability of welding arc and slag formation during welding work in welding materials, sodium titanate to be added is improved in the hygroscopicity, which is the most desirable requirement characteristic with its original application purpose.

조선업계뿐만 아니라 해양구조물 및 극한 지역에 사용되는 기계장치들은 수소에 의한 취성파괴를 최대한 줄이기 위하여 흡습성이 적은 저수소계 용접재료들의 요구가 극대화 되고 있다. In order to minimize the brittle fracture caused by hydrogen, mechanical devices used in marine structures and extreme areas as well as shipbuilding industry are maximizing demand of low hydrogen absorbing materials with low hygroscopicity.

종래의 용접재료용 티탄산나트륨 제조 방법으로서는 수열합성법, 소결법, Arc 전기로법 등이 있다. Conventional methods for producing sodium titanate for a welding material include hydrothermal synthesis, sintering, arc electric furnace, and the like.

티탄산나트륨을 수열합성법으로 제조할 경우, 오토크레이브등 특수 장치로 합성, 여과건조 후 OH기를 제거하기 위하여 650-750℃의 소성을 실시하여 티탄산나트륨을 만들지만 평균입경이 작고 섬유상 혹은 기둥모양 혹은 휘스커상 결정으로 나타나기 때문에 내흡습성이 좋지 않아 용접재료용으로는 적합하지 않다(일본특개평11-130433호).When sodium thiocyanate is produced by hydrothermal synthesis, sodium titanate is produced by firing at 650-750 ° C in order to remove OH groups after synthesis, filtration and drying by a special device such as autoclave, but the average particle size is small and the fibrous, columnar or whisker And thus it is not suitable for welding materials because of its poor hygroscopicity (JP-A No. 11-130433).

또한 티탄산나트륨을 소성법으로 제조할 경우, 산화티타늄원의 크기를 325μm 이하로 하고 소성온도를 700-900℃의 온도로 티탄산나트륨을 합성하였지만 소성에 의한 화학성분의 편차 발생과 입자내부의 기공에 의한 충진성 및 유동성이 불량하고 특히 내흡습성이 좋지 않다(특개2003-112922호).In addition, when sodium thiocyanate was prepared by firing, sodium titanate was synthesized at a temperature of 700-900 ° C with a titanium oxide source size of 325 μm or less. However, The filling property and fluidity are poor and the hygroscopicity is not particularly good (JP-A-2003-112922).

또한, Arc전기로법으로 배합원료를 완전 용융시켜 티탄산나트륨괴를 만들 수 있지만 전원으로 흑연전극 및 흑연분말을 사용해야 하기 때문에 용융합성 중 탄소(Carbon)가 티탄산나트륨 용탕내 침투하여 잔존하고 용접재료에 필요한 탄소함량을 초과하기 때문에 탄소함량을 줄이기 위하여 분쇄 후 550℃ 이상에서 재소성해야 하는 제조공정상의 문제점을 안고 있다.In addition, it is necessary to use graphite electrode and graphite powder as a power source because it is possible to make sodium titanate ingot by completely melting the raw materials by arc electric furnace method. Therefore, it is necessary to use the graphite electrode and the graphite powder as the power source so that carbon is permeated in the sodium titanate melt, The carbon content is exceeded, and therefore, there is a problem of the manufacturer having to re-fired at 550 ° C or higher after crushing in order to reduce the carbon content.

또한 티탄산나트륨을 유도로 용융법으로 제조할 경우에는 용탕물을 유도로 하부로 배출 시는 냉각설비와 용탕물 소결에 의한 재가열 장치와 용탕 혼련 장치(버블링장치)및 용탕 하부 배출 단속 장치등 복잡한 장치가 필요하여 용탕을 취급하기가 용이하지 않고 비용도 많이 들고, 용탕 온도를 관리하기가 어렵기 때문에 내흡습성이 우수한 바람직한 티탄산나트륨을 제조하기 힘들다. In addition, when sodium titanate is produced by induction furnace melting, it is necessary to use complex equipment such as reheating device, molten metal mixing device (bubbling device) and molten metal discharge interruption device by cooling equipment, It is difficult to handle the molten metal, and the cost is high, and it is difficult to control the temperature of the molten metal, so that it is difficult to produce preferable sodium titanate having excellent moisture absorption resistance.

따라서 기존의 방법으로 만들어진 티탄산나트륨은 상기 요구에 부응할 수 없다.Therefore, sodium titanate prepared by the conventional method can not meet the above-mentioned demand.

이러한 문제점을 해결하기 위하여, 원재료들의 완전 용융에 의한 합성과 및 용탕온도 조정에 의한 티탄산나트륨의 결정 성장을 최적화하여 티탄산나트륨의 흡습을 최소화시키는 제조 방법이 요구되고 있다.
In order to solve such a problem, there is a demand for a manufacturing method that minimizes the moisture absorption of sodium titanate by optimizing the synthesis by complete melting of the raw materials and the crystal growth of sodium titanate by adjusting the temperature of the melt.

상기와 같은 문제들을 해결하기 위하여, 본 발명자들은 내흡습성이 우수한 티탄산나트륨을 제조하기 위하여 연구하던 중, 산화티탄(TiO2)원과 산화나트륨(Na2O)원을 배합하여 고주파 유도로에서 티탄산나트륨을 제조할 경우 내흡습성이 뛰어난 용접재료용으로서의 티탄산나트륨의 제조가 가능함을 확인하고 본 발명을 완성하였다.In order to solve the above problems, the inventors of the present invention have studied to prepare sodium titanate having excellent hygroscopicity, and have found that when a mixture of a titanium oxide (TiO 2 ) source and a sodium oxide (Na 2 O) source is mixed in a high frequency induction furnace It is possible to produce sodium titanate for a welding material excellent in moisture absorption resistance when sodium carbonate is produced, and the present invention has been completed.

따라서 본 발명은 용접재료용 티탄산나트륨 및 이의 제조방법을 제공하고자 한다.
Accordingly, the present invention aims to provide sodium titanate for welding materials and a method for producing the same.

본 발명은 용접재료용 티탄산나트륨 및 이의 제조방법을 제공한다.
The present invention provides sodium titanate for a welding material and a process for producing the same.

본 발명에 따른 티탄산나트륨은 우수한 내흡습율을 가지는 것으로 확인되었는 바, 용접재료용으로 특히 수소에 의한 취성파괴를 최대한 줄일 수 있는 흡습율이 낮은 저수소계 FCW (Flux Cored Wire)용 용접재료에서 우수한 특성을 발휘하여 산업상 적용 가치가 높다.
It has been confirmed that sodium titanate according to the present invention has an excellent moisture absorption rate and is excellent in a welding material for low hydrogen fluoride FCW (Flux Cored Wire) which has a low moisture absorptivity which can reduce the brittle fracture due to hydrogen, It has high value in industrial application by demonstrating its characteristics.

도 1은 티탄산나트륨의 제조 장치를 나타낸 도이다.
도 2는 본 발명의 티탄산나트륨의 형상 SEM 사진을 나타낸 도이다.
도 3은 시료별 시간 경과에 따른 흡습율의 변화를 나타낸 도이다.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing an apparatus for producing sodium titanate. FIG.
FIG. 2 is a SEM photograph showing the sodium titanate of the present invention. FIG.
3 is a graph showing changes in moisture absorption rate with time for each sample.

본 발명은 The present invention

(a) 산화티탄(TiO2)원과 산화나트륨(Na2O)원을 70~80:20~30의 중량비로 배합하는 단계; (a) blending a titanium oxide (TiO 2 ) source and a sodium oxide (Na 2 O) source at a weight ratio of 70 to 80: 20 to 30;

(b) 상기 배합된 혼합물을 1200~1500℃의 고주파 유도로에서 용융시키는 단계; 및(b) melting the blended mixture in a high frequency induction furnace at 1200 to 1500 ° C; And

(c) 상기 용융물을 측면 경동 방법으로 냉각시키는 단계; 를 포함하는 용접재료용 티탄산나트륨의 제조방법을 제공한다.(c) cooling the melt in a lateral tilting process; The present invention also provides a method for producing sodium titanate for a welding material.

또한, 본 발명은 상기 제조 방법에 의하여 제조된 용접재료용 티탄산나트륨을 제공한다.The present invention also provides sodium titanate for a welding material produced by the above-mentioned production method.

이하, 본 발명에 대해서 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 용접재료용 티탄산나트륨은 산화티탄과 산화나트륨을 특정 비율로 배합하여 고주파 유도로에서 용융, 냉각하여 제조되는 것을 특징으로 한다.The sodium titanate for welding material according to the present invention is characterized in that titanium dioxide and sodium oxide are mixed in a specific ratio and melted and cooled in a high frequency induction furnace.

본 발명의 티탄산나트륨의 제조방법을 단계별로 상세하게 설명하면 다음과 같다.The process for preparing sodium titanate according to the present invention will be described in detail as follows.

상기 (a)단계는 티탄산나트륨의 제조를 위한 원료를 배합하는 단계로서, 산화티탄원과 산화나트륨원을 70~80:20~30의 중량비로 배합하여 리본믹스, 콘믹스 또는 브이믹스 등의 혼합기에서 혼합한다.The step (a) is a step of blending raw materials for the production of sodium titanate, wherein a titanium oxide source and a sodium oxide source are mixed at a weight ratio of 70 to 80:20 to 30, and mixed with a mixer such as a ribbon mix, a cone mix or a vimix Lt; / RTI >

상기 산화티탄원은 천연루타일(Rutile) 또는 합성루타일(Rutile)이 사용될 수 있으며, 상기 산화나트륨원으로서 탄산나트륨(Na2CO3) 또는 수산화나트륨(NaOH)이 사용될 수 있으나, 이에 한정되지 않는다. The titanium oxide source may be natural rutile or synthetic rutile, and the sodium oxide source may be sodium carbonate (Na 2 CO 3 ) or sodium hydroxide (NaOH) .

상기 (b)단계는 (a)단계에서 배합된 혼합물을 용융시키는 단계로서, 배합된 혼합물을 고주파 유도로를 이용하여 1200℃~1500℃, 바람직하게는 1300℃~1400℃에서 용융시킨다. 상기 온도가 1200℃보다 낮은 경우 티탄산나트륨의 결정형성 정도가 낮아 바람직하지 않으며, 1500℃보다 높은 경우에는 생성되는 티탄산나트륨의 입자 크기가 지나치게 커지고 용탕내의 휘발분이 많아서 바람직하지 않다.In the step (b), the compounded mixture is melted at 1200 ° C to 1500 ° C, preferably 1300 ° C to 1400 ° C using a high frequency induction furnace. When the temperature is lower than 1200 ° C., the degree of formation of sodium titanate is low, which is undesirable. When the temperature is higher than 1500 ° C., the particle size of sodium titanate formed becomes too large and volatile content in the melt is increased.

상기 고주파 유도로는 상용주파수 이상의 주파수를 가진 전원을 사용하는 전기로로 고급특수강을 만드는데 사용하며, 자석생산에서는, 특히, ALNICO-Mag를 생산하는데, 이 고주파 유도로를 사용한다. 사용주파수에 따라서 중간주파 유도로와 고주파 유도로로 구별하기도 한다. 고주파 유도로를 고주파 전기로라고도 하며, 고급특수강(내열강, 고속도강 등)을 만드는데도 사용한다. 피가열물을 용해실에 넣고, 용해실을 감은 코일에 흐르는 고주파 전류의 유도에 의해 피가열물에 전류를 흐르게 하여, 피가열물을 용해시킨다. 사용주파수에 따라 상용 주파수를 넘어, 10kHz까지의 노(爐)를 중간주파 유도로, 10kHz를 넘는 노(爐)를 고주파 유도로라고 구별하기도 한다. 자석의 경우는 온도를 1,710℃까지 올려, 고주파로 유도가열을 이용해, 교반작용을 이끌어 충분히 금속이 용해된 후에, 조형틀에 쇳물을 부어 주조를 하기 시작한다. 이를 주조(Casting)라고 한다.The high-frequency induction furnace is an electric furnace using a power source having a frequency equal to or higher than a commercial frequency, and is used to produce high-grade special steel. In the production of magnets, in particular, ALNICO-Mag is produced. Depending on the frequency of use, an intermediate frequency induction furnace and a high frequency induction furnace may be distinguished. The high-frequency induction furnace is also called a high-frequency electric furnace, and it is also used to make high-grade special steel (heat-resistant steel, high-speed steel, etc.). The object to be heated is placed in a dissolving chamber, and a current is passed through the object to be heated by induction of a high-frequency current flowing through the coil wound around the dissolving chamber to dissolve the object to be heated. Depending on the frequency used, the furnace up to 10 kHz can be distinguished as an intermediate frequency induction furnace and the furnace over 10 kHz as a high frequency induction furnace, beyond the commercial frequency. In the case of magnets, the temperature is raised to 1,710 ° C and induction heating is used at high frequencies to induce agitation, and after the metal has sufficiently melted, the casting begins to be poured into the mold. This is called casting.

상기 고주파 유도로는 주파수가 400~2000KHz이고 전력은 250~500KW이며, 용융도가니(Crucible)는 내부에 수냉이 가능하도록 구리 및 스테인레스관의 조합으로 이루어지며 밀폐 식으로 수냉하는 냉각장치가 부착되어 있다.The high-frequency induction furnace has a frequency of 400 to 2000 KHz and a power of 250 to 500 KW. The crucible is a combination of a copper tube and a stainless steel tube for water-cooling the inside of the crucible, .

상기 (c)단계는 상기 (b)단계에서 생성된 용융물을 냉각시키는 단계로서, 용융물을 측면 경동 방법으로 냉각시킨다. The step (c) is a step of cooling the melt produced in the step (b), wherein the melt is cooled by a side tilting method.

상기 측면 경동 냉각방법은 용융물을 순간적으로 배출하는 방법으로서, 배출라인 및 용융물 저장용기가 부착된 대차에서 티탄산나트륨 용융물을 냉각시킨다.The lateral tide cooling method is a method for instantaneous discharge of a melt, wherein the discharge line and the melter storage vessel are cooled to cool the sodium titanate melt in the bogie.

본 발명의 제조방법은 상기 (c)단계 이후에, 티탄산나트륨을 분쇄하는 단계를 더 포함할 수 있다. The production method of the present invention may further comprise, after the step (c), pulverizing sodium ticarbonate.

상기 분쇄는, 죠크러셔(Jaw crusher), 핀밀(pin mill), 롤브레이크(roll break), 해머밀(hammer mill) 등의 분쇄기를 이용하며, 용접재료로서 알맞은 입경 0.1~0.3mm의 입자 크기로 분쇄한다. 또한, 분쇄 시에 분쇄 강도를 낮춰서 입자 자체의 파괴없이 입자간의 결합(necking)만을 끊어주는 것이 바람직하다.The crushing is carried out by using a crusher such as a jaw crusher, a pin mill, a roll break, a hammer mill and the like and has a suitable particle size of 0.1 to 0.3 mm as a welding material Crush it. In addition, it is preferable to lower the crushing strength at the time of crushing so that only the necking between the particles is broken without breaking the particles themselves.

상기 제조방법으로 제조된 티탄산나트륨은 산화티탄과 산화나트륨이 5~6:1의 중량비로 포함되고 바람직하게는 5.3~5.7:1의 중량비로 포함된다. The sodium titanate prepared by the above method is contained in a weight ratio of titanium oxide to sodium oxide of 5 to 6: 1, preferably in a weight ratio of 5.3 to 5.7: 1.

상기 조성을 가진 티탄산나트륨은 24시간 보관할 경우 흡습율이 0.4% 이내의 우수한 내흡습성을 가진다.Sodium titanate having the above composition has excellent hygroscopicity when it is stored for 24 hours with a moisture absorption rate of 0.4% or less.

본 발명의 제조방법에 의해 제조된 티탄산나트륨은 소결법, 유도로용융법 또는 Arc 전기로법으로 제조된 티탄산나트륨 시료에 비해 더욱 우수한 내흡습율을 나타내어 용접재료용으로 유용하게 사용될 수 있으며, 특히 수소에 의한 취성파괴를 최대한 줄일 수 있는 흡습율이 낮은 저수소계 FCW (Flux Cored Wire)용 용접재료로서 유용하게 쓰일 수 있다.
The sodium titanate produced by the method of the present invention exhibits a better moisture absorptivity than the sodium titanate sample prepared by the sintering method, the induction furnace melting method, or the arc furnace method, and thus can be usefully used for welding materials. Can be usefully used as a welding material for a low-hydrogen-based FCW (Flux Cored Wire) having a low moisture absorption rate which can reduce the brittle fracture caused by the brittle fracture.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 적용되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples.

<실시예 1> 고주파 유도로 공정을 통한 티탄산나트륨의 제조 1Example 1 Preparation of sodium titanate by a high-frequency induction furnace process 1

사용원료인 산화티탄(TiO2)원으로 천연산루타일(Rutile) 95%와 산화나트륨(Na2O)원으로 탄산나트륨(Na2CO3)를 75:25의 중량비로 혼합하여 리본믹스에서 20분간 혼련하였다.Using the raw material titanium oxide (TiO 2) as a source of natural rutile acid (Rutile) sodium carbonate in 95% and a sodium (Na 2 O) circle oxide (Na 2 CO 3) in the ribbon 20 mixes were mixed at a weight ratio of 75: 25 Minute.

그 다음, 고주파 유도로에서 1300℃로 온도를 상승시켜 용융한 후 순간적으로 용융물 배출라인을 통해 용탕을 배출한 후 대차 위에 보관된 용탕저장 도가니에서 자연 냉각을 실시하여 분쇄 및 사별하여 티탄산 나트륨을 제조하였다.Then, after the temperature was raised from the high frequency induction furnace to 1300 ° C., the molten metal was instantaneously discharged through the melt discharge line, and then natural cooling was carried out in a molten metal storage crucible stored on the drum to produce sodium titanate Respectively.

티탄산나트륨의 제조장치는 도 1에 나타내었고, 상기 제조된 티탄산나트륨의 형상을 SEM으로 관찰한 결과를 도 2에 나타내었다. The apparatus for producing sodium thiocyanate was shown in FIG. 1, and the shape of the sodium thiocyanate thus prepared was observed with an SEM. The result is shown in FIG.

도 2에 나타낸 바와 같이, 본 발명의 티탄산나트륨의 형상이 입자형을 나타냄을 확인하였다.
As shown in Fig. 2, it was confirmed that the shape of the sodium titanate of the present invention indicates the particle type.

<실시예 2> 고주파 유도로 공정을 통한 티탄산나트륨의 제조 2&Lt; Example 2 > Preparation of sodium titanate by a high frequency induction furnace process 2

사용원료인 산화티탄(TiO2)원으로 천연산루타일(Rutile) 95%와 산화나트륨(Na2O)원으로 탄산나트륨(Na2CO3)를 76:24의 중량비로 혼합하여 리본믹스에서 20분간 혼련하였다. 그 다음, 고주파 유도로에서 1350℃로 온도를 상승시켜 용융한 후 순간적으로 용융물 배출라인을 통해 용탕을 배출한 후 대차 위에 보관된 용탕저장 도가니에서 자연 냉각을 실시하여 분쇄 및 사별하여 티탄산 나트륨을 제조하였다.
Using the raw material titanium oxide (TiO 2) as a source of natural rutile acid (Rutile) sodium carbonate in 95% and a sodium (Na 2 O) circle oxide (Na 2 CO 3) in the ribbon 20 mixes were mixed at a weight ratio of 76:24 Minute. Then, after the temperature is raised to 1350 ° C in the high frequency induction furnace, the molten metal is instantaneously discharged through the melt discharge line, and natural cooling is carried out in a molten metal storage crucible stored on the truck to produce sodium titanate Respectively.

<비교예 1~3> 제조 방법을 달리한 티탄산나트륨의 제조&Lt; Comparative Examples 1 to 3 > Preparation of sodium titanate with different production methods

비교예 1. 소결법에 의한 티탄산나트륨의 제조Comparative Example 1. Preparation of sodium titanate by sintering

비교예 1로서 소결법을 이용한 티탄산나트륨의 제조방법으로 티탄산나트륨을 제조하였다. As a comparative example 1, sodium titanate was prepared by a method of producing sodium titanate by sintering.

구체적으로, 사용원료인 산화티탄(TiO2)원으로 천연산루타일(Rutile) 95%와 산화나트륨(Na2O)원으로 탄산나트륨(Na2CO3)를 76:24의 중량비로 혼합하였다. 그 다음. 진동밀에서 5분간 분쇄후 결합제로 증류수 5%를 외삽으로 투입하여 성형기계에서 성형체를 제조하였다. 제조된 성형체를 전기로(Muffle furnace)에서 1000℃로 소성하여 티탄산나트륨을 제조하였다.
Specifically, 95% of natural rutile and sodium carbonate (Na2CO3) as a source of sodium oxide (Na2O) were mixed as a raw material of titanium oxide (TiO2) at a weight ratio of 76:24. next. After 5 minutes of pulverization in a vibrating mill, 5% of distilled water was extruded as a binder to prepare a shaped body in a molding machine. The formed body was fired at 1000 캜 in a muffle furnace to prepare sodium titanate.

비교예 2. 유도로를 사용한 티탄산나트륨의 제조Comparative Example 2 Preparation of sodium titanate using an induction furnace

비교예 2로서 실시예 1 내지 2와 같이 유도로를 사용하지만, 용융된 티탄산나트륨을 로하부로 배출하여 티탄산 나트륨을 제조하였다.As Comparative Example 2, an induction furnace was used as in Examples 1 and 2, but the molten sodium titanate was discharged to the lower portion to prepare sodium titanate.

비교예 3. 아크전기로를 이용한 티탄산나트륨의 제조Comparative Example 3. Preparation of sodium titanate using an arc furnace

비교예 3으로서 아크전기로에서 티탄산나트륨을 용융한 후 550℃ 이상의 온도에서 재가열하여 티탄산 나트륨을 제조하였다.
As Comparative Example 3, sodium titanate was melted in an arc furnace and reheated at a temperature of 550 DEG C or higher to prepare sodium titanate.

상기 실시에 1 및 2, 비교예 1 내지 3에서 제조된 티탄산나트륨의 성분을 분석하여 표 1에 나타내었다.The components of sodium titanate prepared in Examples 1 and 2 and Comparative Examples 1 to 3 were analyzed and shown in Table 1.

구분division 화학성분(%)Chemical composition (%) TiO 2 TiO 2 Na2ONa 2 O SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 ZrO2 ZrO 2 Cr2O3 Cr 2 O 3 사용장비Equipment used 비교 예1Comparative Example 1 81.3381.33 15.315.3 1.071.07 0.790.79 0.420.42 0.580.58 0.170.17 소성로Calcining furnace 비교 예2Comparative Example 2 81.8281.82 15.115.1 1.041.04 0.600.60 0.350.35 0.580.58 0.110.11 유도로 하부Guide rail lower 비교 예3Comparative Example 3 82.3182.31 14.614.6 0.100.10 0.530.53 0.420.42 0.600.60 0.150.15 아크로Acro 실시 예1Example 1 81.0881.08 15.615.6 0.100.10 0.820.82 0.370.37 0.610.61 0.160.16 유도로 측면Guide rail side 실시 예2Example 2 81.3781.37 15.215.2 1.11.1 0.660.66 0.500.50 0.630.63 0.150.15 유도로 측면Guide rail side

표 1에 나타낸 바와 같이, 본 발명에 따른 티탄산나트륨은 산화티탄과 산화나트륨이 5~6:1의 중량비로 포함됨을 확인하였다.
As shown in Table 1, it was confirmed that sodium titanate according to the present invention contained titanium oxide and sodium oxide in a weight ratio of 5 to 6: 1.

<실험예 1> 티탄산나트륨의 내흡습성 측정<Experimental Example 1> Measurement of hygroscopicity of sodium titanate

상기 실시예 1 내지 2, 비교예 1 내지 3에 의해 제조된 티탄산나트륨의 흡습율 측정을 위해 각 시료 무게를 20g씩 평량하여 초기수분함량이 0.01~0.1%이고 상대습도 80%인 용기 내에서 보관하여 매 경과 시간마다 흡습량을 측정하였다. 그 결과를 표 2 및 도 3에 나타내었다.
For the measurement of the moisture absorption rate of the sodium titanate prepared in Examples 1 to 2 and Comparative Examples 1 to 3, each sample was weighed by 20 g and stored in a container having an initial moisture content of 0.01 to 0.1% and a relative humidity of 80% And the moisture absorption amount was measured at each elapsed time. The results are shown in Table 2 and FIG.

구분division 경과 시간에 따른 흡습율(%)Absorption rate (%) with elapsed time 00 4시간 경과4 hours elapsed 8시간 경과8 hours elapsed 24시간 경과24 hours elapsed 비교예1Comparative Example 1 0.050.05 1.091.09 1.231.23 1.191.19 비교예2Comparative Example 2 0.040.04 0.610.61 0.680.68 0.580.58 비교예3Comparative Example 3 0.060.06 0.310.31 0.360.36 0.320.32 실시예1Example 1 0.050.05 0.350.35 0.350.35 0.350.35 실시예2Example 2 0.060.06 0.330.33 0.320.32 0.310.31

상기 표 2 및 도 3에 나타난 바와 같이, 실시예 1과 실시예 2에 의해 제조된 티탄산나트륨은 상대습도 80%인 용기 내에서 24시간 보관시 흡습율이 0.4% 이내가 유지되었으며, 다른 제조방법을 통한 티탄산나트륨에 비하여 우수한 내흡습율을 가지는 것을 확인하였다.As shown in Table 2 and FIG. 3, the sodium titanate prepared according to Example 1 and Example 2 retained the moisture absorption rate within 0.4% when stored in a container having a relative humidity of 80% for 24 hours, It has been confirmed that it has an excellent moisture absorption rate as compared with sodium titanate.

Claims (7)

(a) 산화티탄(TiO2)원과 산화나트륨(Na2O)원을 70~80:20~30의 중량비로 배합하는 단계;
(b) 상기 (a) 단계에서 배합된 혼합물을 1200~1500℃의 고주파 유도로에서 용융시키는 단계; 및
(c) 상기 (b) 단계에서 용융된 혼합물을 측면 경동 방법으로 냉각시키는 단계;
를 포함하는, 용접재료용 티탄산나트륨의 제조방법.
(a) blending a titanium oxide (TiO 2 ) source and a sodium oxide (Na 2 O) source at a weight ratio of 70 to 80: 20 to 30;
(b) melting the mixture blended in the step (a) in a high frequency induction furnace at 1200 to 1500 ° C; And
(c) cooling the molten mixture in the step (b) by a side tilt method;
Wherein the method comprises the steps of:
제1항에 있어서, 상기 산화티탄(TiO2)원으로서 천연루타일(Rutile) 또는 합성루타일(Rutile)을 사용하는 것을 특징으로 하는, 용접재료용 티탄산나트륨의 제조방법.The method according to claim 1, wherein natural rutile or synthetic rutile is used as the titanium oxide (TiO 2 ) source. 제1항에 있어서, 상기 산화나트륨(Na2O)원으로서 탄산나트륨(Na2CO3) 또는 수산화나트륨(NaOH)를 사용하는 것을 특징으로 하는, 용접재료용 티탄산나트륨의 제조방법.The method for producing sodium titanate for welding material according to claim 1, wherein sodium carbonate (Na 2 CO 3 ) or sodium hydroxide (NaOH) is used as the sodium oxide (Na 2 O) source. 제1항에 있어서, 상기 고주파 유도로는 주파수가 400~2000KHz이고 전력은 250~500KW이며, 용융도가니(Crucible)는 내부에 수냉이 가능하도록 구리 및 스테인레스관의 조합으로 이루어지며, 밀폐식으로 수냉하는 냉각장치가 부착된 것을 특징으로 하는, 용접재료용 티탄산나트륨의 제조방법.[3] The method of claim 1, wherein the high frequency induction furnace has a frequency of 400 to 2000 KHz and a power of 250 to 500 KW. The crucible is formed of a combination of copper and stainless steel pipes for water- And a cooling device is attached to the upper surface of the substrate. 제1항에 있어서, 상기 (c)단계 이후 티탄산나트륨을 분쇄하는 단계를 더 포함하는 것을 특징으로 하는, 용접재료용 티탄산나트륨의 제조방법.The method for producing sodium titanate for welding material according to claim 1, further comprising a step of grinding sodium titanate after the step (c). 제5항에 있어서, 티탄산나트륨의 평균 입경이 0.1~0.3 mm 가 되도록 분쇄하는 것을 특징으로 하는, 용접재료용 티탄산나트륨의 제조방법.The method for producing sodium titanate for welding material according to claim 5, wherein the powder is pulverized so that the average particle diameter of sodium titanate is 0.1 to 0.3 mm. 제1항 내지 제6항 중 어느 한 항의 제조방법에 의해 제조되며, 산화티탄(TiO2)과 산화나트륨(Na2O)이 5~6:1의 중량비로 포함되고, 0.4% 이내의 내흡습성을 갖는 것을 특징으로 하는, 용접재료용 티탄산나트륨.
6. A process for producing a semiconductor device according to any one of claims 1 to 6, wherein titanium oxide (TiO 2 ) and sodium oxide (Na 2 O) are contained in a weight ratio of 5 to 6: 1, Wherein the titanium nitride powder is a sodium titanate powder.
KR20130060806A 2013-05-29 2013-05-29 Sodium titanate for welding material and method for preparing the same KR101488905B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130060806A KR101488905B1 (en) 2013-05-29 2013-05-29 Sodium titanate for welding material and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130060806A KR101488905B1 (en) 2013-05-29 2013-05-29 Sodium titanate for welding material and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20140140664A KR20140140664A (en) 2014-12-10
KR101488905B1 true KR101488905B1 (en) 2015-02-03

Family

ID=52458369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130060806A KR101488905B1 (en) 2013-05-29 2013-05-29 Sodium titanate for welding material and method for preparing the same

Country Status (1)

Country Link
KR (1) KR101488905B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893144B1 (en) * 2016-05-25 2018-08-31 주식회사 경남케미컬 Friction material comprising potassium titanate and method for preparing the same by melting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206440A (en) * 1994-01-07 1995-08-08 Kubota Corp Production of sodium hexatitanate fiber
JP2528462B2 (en) 1987-04-08 1996-08-28 チタン工業株式会社 Method for producing sodium hexatitanate fine particle powder
JP2001294424A (en) 2000-04-07 2001-10-23 Nippon Steel Weld Prod & Eng Co Ltd Method for manufacturing sodium titanate
KR20060106617A (en) * 2005-04-05 2006-10-12 링컨 글로벌, 인크. Modified flux system in cored electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528462B2 (en) 1987-04-08 1996-08-28 チタン工業株式会社 Method for producing sodium hexatitanate fine particle powder
JPH07206440A (en) * 1994-01-07 1995-08-08 Kubota Corp Production of sodium hexatitanate fiber
JP2001294424A (en) 2000-04-07 2001-10-23 Nippon Steel Weld Prod & Eng Co Ltd Method for manufacturing sodium titanate
KR20060106617A (en) * 2005-04-05 2006-10-12 링컨 글로벌, 인크. Modified flux system in cored electrode

Also Published As

Publication number Publication date
KR20140140664A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
KR101513730B1 (en) High-resistance high-zirconia cast refractory material
US10253219B2 (en) Spherical crystalline silica particles and method for producing same
JP5351162B2 (en) Refractories with high zirconia content and high silica content
TWI481580B (en) Refractory product with high zirconia content
JP6100334B2 (en) Refractory products with high zirconia content
JP5889210B2 (en) Refractory products with high zirconia content
JP5237377B2 (en) Doped refractories with high zirconia content
WO2019092908A1 (en) Alumina-zirconia-silica fused cast refractory and glass melting furnace
TWI593658B (en) High zirconia electroformed refractory
JP5763823B1 (en) High zirconia electric fusion cast refractory
KR101311109B1 (en) High-zirconia casting refractory material
WO2016013384A1 (en) Alumina-zirconia-silica fused-cast refractory, glass melting furnace, and method for producing glass plate
KR101488905B1 (en) Sodium titanate for welding material and method for preparing the same
TW201402519A (en) High zirconia fused cast refractory
WO2017115698A1 (en) Alumina-zirconia-silica refractory, glass melting furnace, and method for manufacturing plate glass
JP2010285334A (en) Method for producing composite oxide fine particle
KR101893144B1 (en) Friction material comprising potassium titanate and method for preparing the same by melting method
WO2016068111A1 (en) Alumina-zirconia-silica fused-cast refractory material, glass furnace, and method for producing sheet glass
WO2016006531A1 (en) Fused-cast alumina-zirconia-silica refractory, glass melting furnace, and method for producing glass plate
CN111201209A (en) Method for producing a fused mass having a high zirconia content
KR101905713B1 (en) Potassium titanate and method for producing thereof
KR102080505B1 (en) Potassium titanate and method for producing thereof
CN114293257B (en) Preparation method of novel blue single-crystal corundum and novel blue single-crystal corundum
WO2021033692A1 (en) Premelted flux
KR100310137B1 (en) Method for manufacturing welding flux

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200206

Year of fee payment: 6