KR101472993B1 - Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17 - Google Patents

Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17 Download PDF

Info

Publication number
KR101472993B1
KR101472993B1 KR1020130098776A KR20130098776A KR101472993B1 KR 101472993 B1 KR101472993 B1 KR 101472993B1 KR 1020130098776 A KR1020130098776 A KR 1020130098776A KR 20130098776 A KR20130098776 A KR 20130098776A KR 101472993 B1 KR101472993 B1 KR 101472993B1
Authority
KR
South Korea
Prior art keywords
xylanase
ala
microbacterium
strain
enzyme
Prior art date
Application number
KR1020130098776A
Other languages
Korean (ko)
Inventor
박호용
손광희
김도영
신동하
조한영
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020130098776A priority Critical patent/KR101472993B1/en
Priority to PCT/KR2014/007718 priority patent/WO2015026150A1/en
Priority to CN201480046416.5A priority patent/CN105531364B/en
Application granted granted Critical
Publication of KR101472993B1 publication Critical patent/KR101472993B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Abstract

The present invention relates to a novel alkali-resistant xylanase corresponding to glycoside hydrolase family 10 (GH10) isolated from a Microbacterium sp. HY-17 strain. In particular, the xylanase has stability in an alkali environment and effectively hydrolyzes various kinds of xylans to hydrolyze β-glucan and decompose cellobiose. Accordingly, the xylanase of the present invention can be usefully used as an enzyme for the food industry, an enzyme for a fodder, a biomass pre-treating enzyme, and an enzyme for various industries including the pulp industry.

Description

마이크로박테리움 속 HY-17 균주로부터 생산되는 신규한 알카리 내성 글리코시드 하이드로레이즈 패밀리 10 자일라나제{Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17}A novel alkali-tolerant glycoside hydrolase family produced from a microbacterium genus HY-17, comprising a novel alkaline-resistant glycoside hydrolase family comprising 10 to 30 microbacterium sp. strain HY-17}

본 발명은 마이크로박테리움 속(Microbacterium sp.) HY-17 균주에서 분리된 글리코시드 하이드로레이즈 그룹 10(glycoside hydrolase family 10, GH10)에 해당하는 신규한 알칼리 내성의 성질을 갖는 자일라나제에 관한 것이다.
The present invention relates to xylene Rana claim having the novel properties of the alkali-resistant for the micro tumefaciens in (Microbacterium sp.) HY-17 10 The glycoside dihydro raise group isolated from strains (glycoside hydrolase family 10, GH10) .

다양한 탄소원을 원료로 사용하기 위하여 많은 연구가 진행되고 있다. 이러한 원료에 포함된 전분계(Starch) 다당(polysaccharides)은 가수분해가 용이하여 주로 식품산업에서 이용하고 있다. 따라서, 다양한 산업군에서 탄소원을 원료로 사용하기 위해 비전분계 다당(Non starch polysaccharides)의 필요성이 대두되고 있다.  Many studies have been conducted to use various carbon sources as raw materials. Starch polysaccharides contained in these raw materials are mainly used in the food industry because they are easily hydrolyzed. Therefore, the need for non starch polysaccharides is emerging for carbon sources as raw materials in various industries.

자일란(Xylan)은 비전분계 다당으로, 목질, 식물, 그리고 곡물부산물에 존재한다. 비 전분계 다당은 셀룰로스(cellulose)와 헤미셀룰로스(hemicellulose)로 구분할 수 있으며, 헤미셀룰로스의 중요한 성분이 자일란(xylan)이다. 자일라나제는 이러한 자일란(xylan)을 자일로스, 자일로바이오스 등으로 가수분해하는 효소이다. Xylan is a non-aggregated polysaccharide, present in woody, plant, and grain by-products. Non-starch polysaccharides can be classified into cellulose and hemicellulose, and an important component of hemicellulose is xylan. Xylanase is an enzyme that hydrolyzes such xylan to xylose, xylobiose, and the like.

자일라나제는 식품산업에 있어서 고점도 다당체(high viscous polysaccharide)의 물성개선과 색도 개선에 이용이 가능하고, 자일로올리고당 제조공정에 사용되고 있다. 또한, 사료의 가수분해효율을 증대시켜 동물의 장내 흐름성 개선과 소화효율 증대를 통하여 다양한 곡물 또는 곡물부산물을 사료원료로 이용이 가능할 수 있다.Xylanase can be used for improving the physical properties and chromaticity of high viscous polysaccharides in the food industry and is being used in the production process of xylooligosaccharides. In addition, by improving the hydrolysis efficiency of the feed, improving the intestinal flow of the animal and increasing the digestion efficiency, various cereals or cereal by-products can be used as feed materials.

최근 산업용 효소와 관련된 부분에서는, 녹색기술을 바탕으로 케미컬(chemical) 사용환경에서 생물학적(biological) 사용환경으로 점차 변화되고 있다. 산업용 자일라나제는 펄프(pulp)에서 헤미셀룰로스의 리그닌-다당 복합체(lignin polysaccharide complex)를 제거하는 블리칭(bleaching) 공정에 사용하고 있다. 펄프의 블리칭 공정은 리그닌을 효과적으로 제거하기 위하여 전통적으로 유기용매를 이용하였으나, 이러한 공정은 환경에 유해하다. 또한, 바이오에너지 산업에 있어서 사탕수수나 옥수수를 이용하는 1세대 바이오에너지에서 비목질 또는 목질과 같은 난분해성의 헤미셀룰로스를 이용하는 2세대 바이오에너지에 필수적인 자일라나제의 활용가치가 증대되고 있다. 따라서, 자일라나제를 이용하여 효과적인 친환경 공정을 개발할 수 있다.Recently, industrial enzymes are gradually changing from chemical use to biological use environment based on green technology. Industrial xylanases are used in bleaching processes to remove the lignin polysaccharide complex of hemicellulose from pulp. The bleaching process of pulp traditionally used organic solvents to effectively remove lignin, but this process is harmful to the environment. In addition, in the bio-energy industry, the first-generation bioenergy using sugarcane or corn is increasingly used as an essential xenlanase for second-generation bioenergy using non-wood degradable hemicellulose such as woody or woody. Therefore, an effective eco-friendly process can be developed using xylanase.

자일란(xylan)은 식물계 바이오매스의 주요한 성분으로, 자일라나제(xylanase)를 이용하여 이를 가수분해 할 수 있다. 베타-1,4-자일로스 구조로 결합된 자일란을 가수분해하는 글리코사이드 하이드로레이즈 패밀리(glycoside hydrolase family, GH family)는 5, 8, 10, 11, 30, 그리고 43의 6가지로 알려져 있다.(http://www.cazy.org, Luo et al., 2010). 그 중에서 자일라나제의 대표적인 그룹은 글리코시드 하이드롤라제 패밀리(GH family) 10과 11이다.Xylan is a major component of plant biomass and can be hydrolyzed using xylanase. The glycoside hydrolase family (GH family), which hydrolyzes the xylan bound to the beta-1,4-xylose structure, is known as 6, 5, 8, 10, 11, 30 and 43. (http://www.cazy.org, Luo et al., 2010). Among them, a representative group of xylanase is the glycoside hydrolase family (GH family) 10 and 11.

탄수화물 폴리머(carbohydrate polymer)의 해중합(depolymerization)에 관여하는 베타-1,4-자일라나제(β-1,4-xylanase)는 각각의 산업적 이용가치에 따라 활용하기 위하여 생화학적 특성이 중요하다. 특히, 공정에 있어서의 pH 에 따라 효소의 사용량 증감되기 때문에 다양한 pH 영역에서 안정한 효소가 필요하다.
The biochemical properties of beta-1,4-xylanase (beta-1,4-xylanase) involved in depolymerization of carbohydrate polymers are important for their utility value. In particular, since the amount of the enzyme used is increased or decreased depending on the pH in the process, a stable enzyme is required in various pH ranges.

이에, 본 발명자들은 마이크로박테리움 속(Microbacterium sp.) HY-17 균주로부터 글리코시드 하이드롤라제-10 (GH-10 domain)에 해당하는 알칼리 내성의 신규한 엔도-베타-1,4-자일라나제(endo-β-1,4-xylanase)를 확인하였고, 그 유전자 서열과 아미노산 서열을 분석하였다. 또한, 상기 자일라나제 효소의 기질에 대한 특성 및 온도와 pH에 대한 특성을 분석하여 산업적으로 유용함을 확인함으로써 본 발명을 완성하였다.
Thus, the inventors of the present invention have found that a novel endo-beta-1,4-xylanase resistant to the glycoside hydrolase-10 (GH-10 domain) from microbacterium sp. HY- (Endo-β-1,4-xylanase) was identified, and its gene sequence and amino acid sequence were analyzed. Further, the present invention has been completed by confirming that the above-described xylanase enzyme is useful for industrial purposes by analyzing the characteristics of the enzyme and the temperature and pH.

본 발명의 목적은 자일라나제를 생산하는 마이크로박테리움 속(Microbacterium sp.) HY-17 균주(KCTC 12338BP)를 제공하는 것이다.An object of the present invention is to provide a micro tumefaciens in producing the xylene Rana (Microbacterium sp.) HY-17 strain (KCTC 12338BP).

본 발명의 또 다른 목적은 상기 균주로부터 생산되는 서열번호 7로 기재되는 아미노산 서열을 갖는 자일라제(xylanase)를 제공하는 것이다.Yet another object of the present invention is to provide xylanase having the amino acid sequence of SEQ ID NO: 7 produced from said strain.

본 발명의 또 다른 목적은, A further object of the present invention is to provide

1) 상기 자일라나제를 암호화하는 서열번호 8로 기재되는 염기 서열을 가지는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터를 숙주세포에 도입한 형질전환체를 배양한 후 원심분리하여 조효소액을 수득하는 단계; 및,1) culturing a transformant into which a recombinant expression vector comprising a polynucleotide having the nucleotide sequence of SEQ ID NO: 8 encoding the xylanase is introduced into a host cell, followed by centrifuging to obtain a crude enzyme solution; And

2) 상기 단계 1)에서 수득된 조효소액에서 자일라나제를 정제하는 단계를 포함하는 자일라나제 생산 방법을 제공하는 것이다.2) purifying the xylanase in the crude enzyme solution obtained in the step 1).

본 발명의 또 다른 목적은 자일라나제를 유효성분으로 포함하는 사료 첨가제를 제공하는 것이다.It is still another object of the present invention to provide a feed additive comprising xylanase as an active ingredient.

본 발명의 또 다른 목적은 자일라나제를 유효성분으로 포함하는 식품 첨가제를 제공하는 것이다.It is still another object of the present invention to provide a food additive containing xylanase as an active ingredient.

본 발명의 또 다른 목적은 자일라나제를 유효성분으로 포함하는 제지공정용 조성물을 제공하는 것이다.
Another object of the present invention is to provide a composition for papermaking process comprising xylanase as an active ingredient.

상기 과제를 해결하기 위하여, 본 발명은 자일라나제를 생산하는 마이크로박테리움 속(Microbacterium sp.) HY-17 균주(KCTC 12338BP)를 제공한다.In order to achieve the foregoing object, the present invention provides a micro tumefaciens in producing the xylene Rana (Microbacterium sp.) HY-17 strain (KCTC 12338BP).

또한, 본 발명은 상기 균주로 부터 생산되는 서열번호 7로 기재되는 아미노산 서열을 갖는 자일라제(xylanase)를 제공하는 것이다.In addition, the present invention provides xylanase having the amino acid sequence of SEQ ID NO: 7 produced from said strain.

상기 자일라나제는 서열번호 8로 기재되는 염기서열을 갖는 것이 바람직하나 이에 한정되지 않는다.The xylanase preferably has the nucleotide sequence of SEQ ID NO: 8, but is not limited thereto.

또한, 본 발명은 In addition,

1) 상기 자일라나제를 암호화하는 서열번호 8로 기재되는 염기 서열을 가지는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터를 숙주세포에 도입한 형질전환체를 배양한 후 원심분리하여 조효소액을 수득하는 단계; 및,1) culturing a transformant into which a recombinant expression vector comprising a polynucleotide having the nucleotide sequence of SEQ ID NO: 8 encoding the xylanase is introduced into a host cell, followed by centrifuging to obtain a crude enzyme solution; And

2) 상기 단계 1)에서 수득된 조효소액에서 자일라나제를 정제하는 단계를 포함하는 자일라나제 생산 방법을 제공한다.2) purifying xylanase in the crude enzyme solution obtained in the step 1).

또한, 본 발명은 자일라나제를 유효성분으로 포함하는 사료 첨가제를 제공하는 것이다.The present invention also provides a feed additive comprising xylanase as an active ingredient.

또한, 본 발명은 자일라나제를 유효성분으로 포함하는 식품 첨가제를 제공하는 것이다.The present invention also provides a food additive comprising xylanase as an active ingredient.

또한, 본 발명은 자일라나제를 유효성분으로 포함하는 제지공정용 조성물을 제공하는 것이다.
The present invention also provides a composition for paper making comprising xylanase as an active ingredient.

본 발명은 마이크로박테리움 속(Microbacterium sp.) HY-17 균주에서 분리된 글리코시드 하이드로레이즈 그룹 10(glycoside hydrolase family 10, GH10)에 해당하는 효소와 상동성을 가지는 신규한 자일라나제로, 구체적으로 상기 자일라나제는 알칼리 환경에서 안정성을 가지고, 다양한 자일란을 효과적으로 가수분해하며, 베타글루칸을 가수분해하고, 셀로바이오스를 분해하는 신규한 효소이다. 이에, 본 발명의 자일라나제는 식품산업용 효소, 사료용 효소, 바이오매스 전처리 효소, 펄프 공정용 등의 다양한 산업군에 유용한 효소로 사용될 수 있다.
The present invention is a novel Giles Lana having a micro tumefaciens in the enzyme and the homologous corresponding to (Microbacterium sp.) HY-17 a-glycoside dihydro-raised Group 10 (glycoside hydrolase family 10, GH10 ) isolated from strain zero, specifically The xylanase is a novel enzyme that has stability in an alkaline environment, effectively hydrolyzes various xylans, hydrolyzes beta-glucan, and decomposes cellobiose. Accordingly, the xylanase of the present invention can be used as an enzyme useful in various industries such as enzyme for food industry, enzyme for feed, biomass pretreatment enzyme, and pulp process.

도 1은 본 발명에서 분리한 신규 자일라나제(XylH)의 유전자 서열을 나타낸 도이다.
도 2는 본 발명에서 분리한 신규 자일라나제(XylH)의 아미노산 서열을 나타낸 도이다.
도 3은 본 발명의 자일라나제(XylH)의 최적 반응조건을 조사하기 위하여 버치우드 자일란(birchwood xylan)을 기질로 하여 반응 pH와 온도에 대한 영향을 나타낸 도이다.
Brief Description of the Drawings Fig. 1 is a diagram showing the gene sequence of a novel xylanase (XylH) isolated in the present invention.
2 is a diagram showing the amino acid sequence of a novel xylanase (XylH) isolated in the present invention.
FIG. 3 is a graph showing the effect of the birchwood xylan on the reaction pH and temperature in order to investigate the optimum reaction conditions of xylanase (XylH) of the present invention.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 자일라나제를 생산하는 마이크로박테리움 속(Microbacterium sp.) HY-17(Microbacterium sp. HY-17) 균주(KCTC 12338BP)를 제공한다.The present invention provides a microbacterium sp. HY-17 ( Microbacterium sp. HY-17) strain (KCTC 12338BP) producing xylanase.

또한, 본 발명은 상기 균주로부터 생산되는 서열번호 7로 기재되는 아미노산 서열을 갖는 자일라나제(Xylanase)를 제공한다.In addition, the present invention provides a xylanase having an amino acid sequence represented by SEQ ID NO: 7 produced from said strain.

상기 자일라나제는 서열번호 8로 기재되는 염기서열을 갖는 것이 바람직하나 이에 한정되지 않는다.The xylanase preferably has the nucleotide sequence of SEQ ID NO: 8, but is not limited thereto.

상기 자일라나제는 42 kda의 분자량인 것이 바람직하나 이에 한정되지 않는다.The xylanase preferably has a molecular weight of 42 kda, but is not limited thereto.

상기 자일라나제는 pH 5.5 내지 pH 10.0에서 최대 활성을 나타내는 것이 바람직하나 이에 한정되지 않는다.The xylanase preferably exhibits the maximum activity at pH 5.5 to 10.0, but is not limited thereto.

상기 자일라나제는 60℃에서 최대 활성을 나타내는 것이 바람직하나 이에 한정되지 않는다.The xylanase preferably exhibits the maximum activity at 60 ° C, but is not limited thereto.

상기 자일라나제는 엔도-베타-1,4-자일라나제(endo-β-1,4-xylanase) 활성을 나타내는 것이 바람직하나 이에 한정되지 않는다.The xylanase preferably exhibits endo-beta-1,4-xylanase activity, but is not limited thereto.

상기 자일라나제는 글리코시드 하이드롤라제-10 도메인(glycoside hydrolase-10 domain, GH-10 domain)인 것이 바람직하나 이에 한정되지 않는다.
The xylanase is preferably a glycoside hydrolase-10 domain (GH-10 domain), but is not limited thereto.

본 발명의 구체적인 실시예에서, 본 발명자들은 마이크로박테리움 속(Microbacterium sp.) HY-17 균주(수탁번호: KCTC 12338BP)의 게놈 DNA에서 GH10(glycoside hydrolase family 10) 계열의 자일라나제의 유전자서열을 기반으로 제작한 프라이머를 이용하여 자일라나제 단백질을 암호화하는 폴리뉴클레오티드 서열을 증폭하여 클로닝(GenBank accession number : KF233593)한 후, 유전자 서열을 분석하여 NCBI 데이터베이스에서 단백질 블라스트 서베이(Protein blast survey)를 를 이용하여 아미노산 서열을 분석한 결과, 자일라나제(XylH)는 GH10에 해당하는 활성 도메인인 것으로 확인되었다. 또한, 유전자 서열 분석에서 1167 bp의 ORF(open reading frame), 또는 388 개의 아미노산으로 이루어진 것으로 확인되었고, 분자량은 41,584 Da 으로 pI 4.84로 확인하였다. SignalP 3.0 데이터베이스 상에서 분비시그널 영역을 조사한 결과, 자일라나제는 최종 358 개의 아미노산으로 이루어진 것을 확인하였고, 분자량은 38,632 Da, pI 4.67로 확인되었다(도 1 및 도 2 참조).In a particular embodiment of the present invention, the inventors have found that micro tumefaciens in (Microbacterium sp.) HY-17 strain: gene sequence (accession No. KCTC 12338BP) genomic DNA from GH10 of (glycoside hydrolase family 10) of the series Giles Rana claim (GenBank accession number: KF233593) was amplified by using a primer constructed based on the genomic DNA encoding the polynucleotide encoding the xylanase protein. Then, the gene sequence was analyzed and the protein blast survey was performed in the NCBI database , It was confirmed that xylanase (XylH) was an active domain corresponding to GH10. In the gene sequence analysis, it was confirmed that it consisted of 1167 bp ORF (open reading frame) or 388 amino acids, and the molecular weight was 41,584 Da, which was confirmed to be pI 4.84. As a result of examining the secretion signal region in the SignalP 3.0 database, it was confirmed that the xylanase was composed of the final 358 amino acids, and the molecular weight was found to be 38,632 Da and pI 4.67 (see FIGS. 1 and 2).

또한, 자일라나제의 최적 반응조건을 확인하기 위하여 버치우드자일란(birchwood xylan)을 기질로 하여 반응 pH와 온도에 대한 영향을 확인한 결과, 상기 자일라나제(XylH)는 pH 9.0, 60℃에서 가장 높은 활성을 보였으며, pH 5.5~10.0 범위에서 1시간동안 75% 이상의 활성을 확인하였다. 또한, pH 4.5~11 범위에서 50% 이상의 활성을 유지하였고, 반응온도에 있어서는 37~50℃에서 1시간동안 90% 이상의 잔존활성을 유지하는 것을 확인하였다(도 3 참조). In order to confirm the optimal reaction conditions of xylanase, the effect of pH and temperature on the reaction pH was examined using birchwood xylan as a substrate. As a result, the xylanase (XylH) And showed activity over 75% for 1 hour at pH 5.5 ~ 10.0. Further, it was confirmed that the activity was maintained at 50% or more in the pH range of 4.5 to 11, and the remaining activity was maintained at 90% or more for 1 hour at 37 to 50 ° C at the reaction temperature (see FIG. 3).

또한, 자일라나제의 다양한 자일란 및 당 기질에 대한 분해능을 DNS 정량법을 이용하여 확인한 결과, 평가된 자일란 물질 중 귀리 스펠트 자일란이 자일라나제에 의해 가장 효과적으로 가수분해되었고, 비치우드 자일란, 버치우드 자일란 순으로 가수분해 활성을 나타내는 것을 확인하였다. 또한, 보리유래의 글루칸(β-1,3/β-1,4-d-glucan from barley), PNP-셀로바이오사이드(PNP-cellobioside), PNP-자일로피라노사이드(PNP-xylopyranoside)에 대하여 높은 활성을 나타내는 것을 확인하였다(표 1 참조).In addition, the resolving power of xylanase to various xylan and sugar substrates was confirmed by DNS quantitation. As a result, it was found that among the evaluated xylan substances, olyth-spelled xylan was most efficiently hydrolyzed by xylanase, Xylan were hydrolyzed in this order. In addition, it is also possible to use the barley-derived glucan (β-1,3 / β-1,4-d-glucan from barley), PNP-cellobioside and PNP-xylopyranoside (See Table 1).

또한, 자일란 분해산물의 특성을 고성능 액상 크로마토그래피(Hihg performance liquid chromatography, HPLC) 분석법을 이용하여 확인한 결과, 버치우드 자일란에 대한 가수분해 산물은 X2(71.2%(w/v))와 X3(28.8%(w/v))로 나타내는 것을 확인하였다. 또한, 상기 자일라나제는 트랜스자일로실레이션(transxylosylation) 활성을 가지는 것을 확인하였다(표 2 참조).The hydrolysis product of the xylen disaccharides was verified by high performance liquid chromatography (HPLC) using X2 (71.2% (w / v)) and X3 (28.8 % (w / v)). In addition, it was confirmed that the xylanase had a transxylosylation activity (see Table 2).

따라서, 본 발명은 마이크로박테리움 속(Microbacterium sp.) HY-17(Microbacterium sp. HY-17) 균주(KCTC 12338BP)로부터 글리코시드 하이드롤라제-10 (GH-10 domain)에 해당하는 알칼리 내성의 신규한 엔도-베타-1,4-자일라나제(endo-β-1,4-xylanase)를 확인하였고, 그 유전자 서열과 아미노산 서열 분석, 상기 자일라나제 효소의 기질에 대한 특성 및 온도와 pH에 대한 특성을 분석함으로써 상기 자일라나제를 다양한 산업군에 유용하게 사용할 수 있음을 확인하였다.
Accordingly, the present invention relates to a method for producing a microorganism belonging to the genus Microbacterium sp. HY-17 ( Microbacterium sp. HY-17) (KCTC 12338BP) The endo-β-1,4-xylanase was identified, and its gene sequence and amino acid sequence analysis, the characteristics of the xylanase enzyme and the temperature and pH The inventors have confirmed that the xylanase can be usefully used in various industries.

또한, 본 발명은 In addition,

1) 자일라나제를 암호화하는 서열번호 8로 기재되는 염기 서열을 가지는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터를 숙주세포에 도입한 형질전환체를 뱅양한 후 원심분리하여 조효소액을 수득하는 단계; 및,1) introducing a recombinant expression vector containing a polynucleotide having the nucleotide sequence of SEQ ID NO: 8 encoding xylanase into a host cell, and then transforming the transformant to obtain a crude enzyme solution; And

2) 상기 단계 1)에서 수득된 조효소액에서 자일라나제를 정제하는 단계를 포함하는 자일라나제 생산방법을 제공한다.2) purifying xylanase in the crude enzyme solution obtained in the step 1).

상기 숙주세포는 대장균을 포함한 원핵세포, 효모, 동물세포, 곤충세포를 포함하는 진핵세포로 이루어진 군으로부터 선택하여 이용하는 것이 바람직하나 이에 한정되지 않는다.The host cell is preferably selected from the group consisting of prokaryotes including E. coli, yeast, animal cells, and eukaryotic cells, but is not limited thereto.

본 발명은 마이크로박테리움 속 HY-17 균주로부터 분리한 신규한 자일라나제를 코딩하는 신규한 유전자의 염기서열을 확인하였으므로 당업계 공지된 통상의 방법을 이용하면 상기 유전자를 포함하는 재조합 벡터를 제작할 수 있다. 본 발명의 재조합 벡터는 상용화된 벡터를 이용할 수 있으나 이에 한정되는 것은 아니며, 당업자가 적합한 재조합 벡터를 제조하여 이용하는 것도 무방하다.Since the present invention has confirmed the nucleotide sequence of a novel gene encoding a novel xylanase isolated from a strain of microbacterium HY-17, a recombinant vector containing the gene can be produced using conventional methods known in the art . The recombinant vector of the present invention may use a commercially available vector, but the present invention is not limited thereto, and a recombinant vector suitable for a person skilled in the art may be prepared and used.

상기 방법에 있어서, 단계 2)는 1) 상기 형질전환체의 배양액을 원심분리하여 수득한 상층액에 침전제를 가하여 수용성 단백질 침전을 유도하는 단계;In this method, step 2) comprises: 1) inducing precipitation of a soluble protein by adding a precipitant to the supernatant obtained by centrifuging the culture solution of the transformant;

2) 상기 방법에 있어서, 단계 1)의 침전물에서 불용성 침전물을 제거한 후 투석하여 조효소액을 수득하는 단계; 및,2) In the above method, the insoluble precipitate is removed from the precipitate of step 1), followed by dialysis to obtain a crude enzyme solution; And

3) 상기 방법에 있어서, 단계 2)의 조효소액을 컬럼 크로마토그래피로 정제하는 단계를 포함하는 방법으로 수행되는 것이 바람직하나 이에 한정되지 않는다.3) In the above method, it is preferable, but not limited, to carry out the method including the step of purifying the crude enzyme solution of step 2) by column chromatography.

상기 방법에 있어서, 배지는 본 발명의 마이코박테이움 속 HY-17 균주 또는 본 발명의 형질전환체에 적합한 배지를 당업자에게 공지된 상용 배지 중에서 선별하여 사용하는 것이 바람직하다.In the above method, it is preferable to use a medium suitable for the Mycobacterium sp. Strain HY-17 of the present invention or the transformant of the present invention in a commercial medium known to those skilled in the art.

상기 방법에 있어서, 단계 1)의 침전제로는 황산 암모늄, 아세톤, 아이소프로판올, 메탄올, 에탄올, 폴리에틸렌글리콜로 이루어진 군으로부터 선택된 어느 하나를 사용할 수 있다. 상기 침전은 다양한 구멍의 크기(pore size)를 가지는 막을 이용한 한외여과법으로 대체하여 농축하는 방법으로 수행할 수 있다. In the above method, any one selected from the group consisting of ammonium sulfate, acetone, isopropanol, methanol, ethanol, and polyethylene glycol may be used as the precipitating agent in step 1). The precipitation can be carried out by a method of concentration by replacing with ultrafiltration using membranes having various pore sizes.

상기 방법에 있어서, 단계 3)의 컬럼 크로마토그래피는 실리카겔, 세파덱스, RP-18, 폴리아미드, 도요펄 및 XAD 수지로 이루어진 군으로부터 선택된 충진제를 이용한 컬럼 크로마토그래피를 수행하여 정제할 수 있다. 컬럼 크로마토그래피는 필요에 따라 적절한 충진제를 선택하여 수차례 실시할 수 있다.
In this method, column chromatography in step 3) can be carried out by performing column chromatography using a filler selected from the group consisting of silica gel, Sephadex, RP-18, polyamide, Toyo Pearl and XAD resin. The column chromatography can be carried out several times by selecting an appropriate filler as necessary.

또한, 본 발명은 자일라나제를 유효성분으로 포함하는 사료 첨가제를 제공한다.The present invention also provides a feed additive comprising xylanase as an active ingredient.

본 발명의 신규 자일라나제는 특이성을 갖고 효율적으로 자일란을 분해하는 것을 확인 함으로써, 상기 자일라나제를 사료 첨가제로 유효하게 사용될 수 있다.The novel xylanase of the present invention can be effectively used as a feed additive by confirming that it has specificity and efficiently decomposes xylan.

본 발명의 사료첨가제는 식물 세포벽을 분해할 수 있는 효소가 없어서 세포벽 내에 들어있는 곡물의 전분이나 단백질 이용 효율이 매우 떨어지는, 돼지나 닭 같은 단위동물(non-ruminant)의 사료에 첨가되어 세포벽의 주요 성분인 자일란을 당화함으로써 사료의 가치를 향상시킬 수 있다.The feed additive of the present invention is added to feeds of non-ruminants such as pigs and chickens which have no enzymes capable of decomposing plant cell walls, It is possible to improve the value of the feed by saccharifying the component xylan.

본 발명의 사료첨가제의 유효성분인 자일라나제가 첨가될 사료에 대해 0.01 내지 10 중량부로 구성되는 것이 바람직하며, 자일라나제가 0.05 내지 5 중량부로 구성되는 것이 더욱 바람직하며, 자일라나제가 0.12 중량부로 구성되는 것이 가장 바람직하다.It is preferable that 0.01 to 10 parts by weight of the xylanase is added to the feed to be added as the active ingredient of the feed additive of the present invention, more preferably 0.05 to 5 parts by weight of the xylanase, and 0.12 parts by weight of the xylanase .

또한, 상기 사료첨가제는 추가적으로 단위동물에 허용되는 담체를 함유할 수 있다. 본 발명에 있어서는 상기 사료첨가제를 그대로 또는 공지의 담체, 안정제 등을 가할 수 있으며, 필요에 따라 비타민, 아미노산류, 미네랄 등의 각종 양분, 항산화제 및 기타의 첨가제 등을 가할 수도 있으며, 그 형상으로서는 분체, 과립, 펠릿, 현탁액 등의 적당한 상태일 수 있다. 본 발명의 사료첨가제를 공급하는 경우는 단위동물에 대하여 단독으로 또는 사료에 혼합하여 공급할 수 있다.
In addition, the feed additive may additionally contain a carrier that is acceptable to the unit animal. In the present invention, the feed additive may be added as it is or a known carrier, stabilizer and the like may be added. Various nutrients such as vitamins, amino acids and minerals, antioxidants and other additives may be added as needed, Powders, granules, pellets, suspensions, and the like. When the feed additive of the present invention is supplied, it can be supplied to the unit animal singly or mixed with the feed.

또한, 본 발명은 자일라나제를 유효성분으로 포함하는 식품 첨가제 조성물을 제공한다.The present invention also provides a food additive composition comprising xylanase as an active ingredient.

본 발명의 신규 자일라나제는 특이성을 갖고 효율적으로 자일란을 분해하는 것을 확인 함으로써, 상기 자일라나제를 식품 첨가제 조성물로 유효하게 사용될 수 있다.
The novel xylanase of the present invention has specificity and confirms efficient decomposition of xylan, so that the xylanase can be effectively used as a food additive composition.

또한, 본 발명은 자일라나제를 유효성분으로 포함하는 제지공정용 조성물을 제공한다.The present invention also provides a composition for the papermaking process comprising xylanase as an active ingredient.

본 발명의 신규 자일라나제는 특이성을 갖고 효율적으로 자일란을 분해하는 것을 확인 함으로써, 상기 자일라나제를 제지공정용 조성물로 유효하게 사용될 수 있다.
The novel xylanase of the present invention has specificity and confirms efficient decomposition of xylan, so that the xylanase can be effectively used as a composition for papermaking process.

이하, 본 발명을 실시예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to examples.

단, 하기 실시예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.
However, the following examples are illustrative of the present invention in detail, and the present invention is not limited to the examples.

<실시예 1> 자일라나제(Xylanase)를 생산하는 마이크로박테리움 속(Microbacterium sp.) 균주 분리Example 1 Isolation of Microbacterium sp. Strain Producing Xylanase

본 발명자들은 땅강아지의 장내 공생미생물중에서 자일란을 가수분해하는 효소활성을 갖는 미생물을 분리하였다. The present inventors have isolated microorganisms having enzymatic activity for hydrolyzing xylan among intestinal symbiotic microorganisms of the dogs.

구체적으로, 자일란을 가수분해하는 미생물을 선택적으로 분리하기 위하여, M9 mineral salts agar medium(Difco)을 기본배지로 사용하였고, 5 g/L yeast extract (Difco)와 2 g/L azo-xylan (Megazyme)을 함유하는 선택배지를 사용하였다. 선택배지에 미생물 현탁액을 계열희석법(serial dilution method)으로 생리식염수에 희석한 다음, 각각의 선택배지에 100 ㎕씩 분주하고, 25~35℃에서 18~36시간동안 배양하였다. 각각의 배지에서 azo-xylan이 분해되어 나타나는 투명환을 형성하는 미생물 집락(colony)을 선택적으로 분리하였다. 분리된 미생물을 동정하기 위하여 27F 프라이머(서열번호: 1) 와 1492R 프라이머(서열번호: 2) 쌍으로 16S rDNA 서열에 대한 PCR을 수행하였다. PCR을 통하여 확보한 16S rDNA 서열은 ABI prism BigDye Terminator Cylcle Sequencing Ready Reaction kit와 ABI 3730x1 DNA analyzer(Applied Biosystems)를 이용하여 분석하였다. 최종적으로 확보한 16S rDNA 서열은 NCBI 데이터베이스의 블라스트(Blast) 프로그램과 EzTaxon 서버의 유전자등록번호(Genebank)에서 유전자 서열을 분석하였다. 자일란을 분해하는 균주의 16S rDNA 서열을 분석한 결과 마이크로박테리움 속(Microbacterium sp.)으로 동정 되었고, 마이크로박테리움 속(Microbacterium sp.) HY-17 로 명명하여 국제기탁기관인 한국생명공학연구원 내 유전자 은행에 기탁하였다(수탁번호: KCTC 12338BP).In order to selectively isolate the microorganisms hydrolyzing xylan, 5 g / L yeast extract (Difco) and 2 g / L azo-xylan (Megazyme ) Was used. The microbial suspension in the selective medium was diluted with physiological saline by a serial dilution method, and 100 μl of each suspension was dispensed into each of the selective mediums and cultured at 25 to 35 ° C for 18 to 36 hours. In each medium, the microorganism colony forming the transparent ring in which the azo-xylan was decomposed was selectively isolated. PCR was performed on the 16S rDNA sequence as a pair of 27F primer (SEQ ID NO: 1) and 1492R primer (SEQ ID NO: 2) to identify the isolated microorganism. The 16S rDNA sequence obtained by PCR was analyzed using ABI prism BigDye Terminator Cylcle Sequencing Ready Reaction kit and ABI 3730x1 DNA analyzer (Applied Biosystems). The finally obtained 16S rDNA sequence was analyzed in the Blast program of the NCBI database and in the Genebank of the EzTaxon server. The analysis of the 16S rDNA sequence of the strain that degrades xylan micro tumefaciens in (Microbacterium sp.) Has been identified as micro tumefaciens in (Microbacterium sp.) HY-17 named by the international deposit agency genes within the Korea Research Institute of Bioscience and Biotechnology to (Accession No .: KCTC 12338BP).

서열번호 1: 5`-AGACTTTGATCMTGGCTCAG-3`; 및SEQ ID NO: 1: 5`-AGACTTTGATCMTGGCTCAG-3`; And

서열번호 2: 5`-AAGTCGTAACAAGGTAACC-3`.
SEQ ID NO: 2: 5'-AAGTCGTAACAAGGTAACC-3`.

<< 실시예Example 2>  2> 자일라나제Xylanase (( XylanaseXylanase )의 )of 클로닝Cloning

자일란을 분해하는 마이크로박테리움 속(Microbacterium sp.) HY-17 균주(수탁번호: KCTC 12338BP)의 게놈 DNA에서 GH10(glycoside hydrolase family 10) 계열의 자일라나제의 유전자서열을 기반으로 제작한 프라이머를 이용하여 자일라나제 단백질을 암호화하는 폴리뉴클레오티드 서열을 증폭하여 클로닝하였다. A primer based on the genomic sequence of GY10 (glycoside hydrolase family 10) in the genomic DNA of Microbacterium sp. HY-17 (accession number: KCTC 12338BP) A polynucleotide sequence encoding the xylanase protein was amplified and cloned.

구체적으로, 상기 균주로부터 게놈 DNA를 분리한 다음, 상기 게놈 DNA를 주형으로 하여 10× 완충액(MgCl2), 2.5mM dNTPs, 5× 완충액, FastStart Taq DNA 중합효소(Roche) 및, MF-10 정방향 프라이머(서열번호: 3) 와 MR-10 역방향 프라이머(서열번호: 4) 쌍을 이용하여 자일라나제 유전자에 대한 PCR을 수행하였다. 이때, PCR 조건은 95℃에서 5분, 95℃에서 30초간 변성, 50℃에서 30초간 어닐링, 72℃에서 40초간 신장의 조건으로 35회 반복한 다음, 72℃에서 7분 동안 최후신장을 수행하는 조건으로 수행하였다. 상기 PCR을 통해 수득한 375 bp의 자일라나제의 PCR 산물을 DNA Walking SpeedUp premix kit(Seegene, 한국)을 이용하여 게놈 워킹(Genome walking) 및 네스티드-PCR(nested-PCR)을 수행하여 전체 xy1K2 유전자에 대한 PCR 산물을 수득하였다. DNA Wakling 기법을 이용하여 확보한 전체 서열은 FMF 프라이머(서열번호: 5) 와 RMF 프라이머(서열번호: 6) 쌍을 이용하여 95℃에서 5분, 95℃에서 30초간 변성, 50℃에서 30초간 어닐링, 72℃에서 40초간 신장의 조건으로 35회 반복한 다음, 72℃에서 7분 동안 최후신장을 수행하는 조건으로 PCRd을 수행하여 xylH 유전자를 확보하였다. Specifically, the genomic DNA was isolated from the strain, and then the genomic DNA was used as a template in 10 × buffer (MgCl 2), 2.5 mM dNTPs, 5 × buffer, FastStart Taq DNA polymerase (Roche), and MF-10 forward primer (SEQ ID NO: 3) and MR-10 reverse primer (SEQ ID NO: 4) were used to perform PCR on the xylanase gene. The PCR conditions were as follows: denaturation at 95 DEG C for 5 minutes, denaturation at 95 DEG C for 30 seconds, annealing at 50 DEG C for 30 seconds, extension at 72 DEG C for 40 seconds, and then final extension at 72 DEG C for 7 minutes Lt; / RTI &gt; The PCR product of 375 bp of xylanase obtained through the above PCR was subjected to genome walking and nested-PCR using a DNA Walking SpeedUp premix kit (Seegene, Korea) to obtain total xy1K2 PCR products were obtained. The entire sequence obtained using the DNA Wakling technique was amplified by PCR using the pair of FMF primer (SEQ ID NO: 5) and RMF primer (SEQ ID NO: 6) for 5 minutes at 95 ° C, 30 seconds at 95 ° C, 30 seconds at 50 ° C The PCR was performed under the condition of annealing, repeating 35 times at 72 캜 for 40 seconds under the condition of extension, and then performing final extension at 72 캜 for 7 minutes to obtain the xylH gene.

상기 전체 XylH 유전자의 PCR 산물 및 pET-28a(+) 벡터(Novagen, 미국)를 NdeI 및 HindⅢ 제한효소로 각각 절단한 후 정제하였다. 상기 정제한 벡터 및 PCR 산물을 약 100 ng씩 사용하여, TaKaRa 사의 리가아제(ligase) 1 unit을 첨가하여 16℃에서 16시간 반응시켰다. 라이게이션(ligation) 반응 후 BL21(Novagen)에 형질전환하여 카나마이신이 함유된 플레이트에서 선별한 후 적절한제한효소로 절단하여 원하는 DNA 절편이 든 플라스미드를 확보하였으며 DNA 시퀀싱(sequencing)을 통해 최종적으로 클론을 확인하였다. 그런 다음, 상기 제조된 발현벡터를 'pET-XylH'로 명명하였다. 또한, 상기의 자일라나제 유전자 서열은 유전자 은행에 그 서열을 등록하였다(GenBank accession number : KF233593). The PCR product of the whole XylH gene and the pET-28a (+) vector (Novagen, USA) were digested with NdeI and HindIII restriction enzymes and purified. About 100 ng of each of the purified vector and the PCR product was used, and 1 unit of a ligase of TaKaRa was added thereto, followed by reaction at 16 ° C for 16 hours. After ligation reaction, BL21 (Novagen) was transformed and screened with plates containing kanamycin. The plasmid was digested with appropriate restriction enzymes to obtain a plasmid having the desired DNA fragment. DNA sequencing was performed to finally obtain a clone Respectively. Then, the prepared expression vector was named 'pET-XylH'. In addition, the above xylanase gene sequence was registered in the gene bank (GenBank accession number: KF233593).

서열번호 3: 5`-TGGGACGTCSTCAACGAG-3`;SEQ ID NO: 3: 5`-TGGGACGTCSTCAACGAG-3`;

서열번호 4: 5`-GACGTCSGCCTCSGTGAC-3`;SEQ ID NO: 4: 5'-GACGTCSGCCTCSGTGAC-3`;

서열번호 5: 5`-CATATGGCGCCTCCCGGATTCAGC-3`; 및 SEQ ID NO: 5: 5'-CATATGGCGCCTCCCGGATTCAGC-3`; And

서열번호 6: 5`-AAGCTTTCAGCCGCGTCGGGGC-3`.
SEQ ID NO: 6: 5`-AAGCTTTCAGCCGCGTCGGGGC-3`.

<< 실시예Example 3>  3> 자일라나제Xylanase (( XylanaseXylanase )의 정제) Tablets

상기 <실시예 2>에서 제조한 pET-XylH 발현벡터를 대장균에서 과발현시킨 재조합 XylH(rXylH)를 분리하였다. The recombinant XylH (rXylH) in which the pET-XylH expression vector prepared in Example 2 was over-expressed in E. coli was isolated.

구체적으로, 각 발현벡터를 형질전환시킨 대장균을 액체 LB 배지에 접종한 뒤, 37℃에서 흔들면서 배양하였다. 각각의 대장균 배양액의 OD600 값이 0.4 내지 0.5에 이르렀을 때 1.0 mM의 IPTG를 첨가한 뒤 30℃에서 5시간 더 흔들면서 배양시켰다. 상기 배양액을 원심분리하여 음파분쇄기로 세포를 분쇄한 뒤 관찰한 결과 rXylH는 활성화 포함체(inclusion bodies)를 20 mM 이미다졸(imidazole), 0.5 M 염화나트륨을 포함하는 20 mM 인산나트륨 완충욕액(sodium phosphate buffer pH 7.4)으로 가용화시켜 주었다. 가용화된 rXylH 세포 분쇄물을 HisTrap HP(GE Healthcare, 스웨덴)(5-ml) 컬럼을 이용하여 재접힘 및 정제한 후, 액체 크로마토그래피(LC) system(Amersham Pharmacia Biotech, 스웨덴)를 수행하였다. 공지의 방법인 HiLoad 26/60 Superdex 200 prep-grade(Amersham Biosciences, 스웨덴) 컬럼을 이용한 겔 투과 크로마토그래피를 수행하여 정제된 rXylH 단백질의 전기영동 동질성을 확인하였다. 상기에서 정제한 rXylH 단백질을 브래드포드 시약(Bio-Rad, 미국)을 이용하여 단백질을 정량한 후, 동결건조하여 -20℃에 보관하였다.
Specifically, Escherichia coli transformed with each expression vector was inoculated into a liquid LB medium and cultured at 37 DEG C with shaking. When the OD 600 value of each E. coli culture reached 0.4-0.5, 1.0 mM IPTG was added, followed by further shaking at 30 ° C for 5 hours. The culture broth was centrifuged, and the cells were pulverized with a sonicator. As a result, rXylH was detected by incubating inclusion bodies with 20 mM imidazole, 20 mM sodium phosphate (pH 7.4) containing 0.5 M sodium chloride buffer pH 7.4). The solubilized rXylH cell lysate was refolded and purified using a His-Trap HP (GE Healthcare, Sweden) (5-ml) column and then subjected to a liquid chromatography (LC) system (Amersham Pharmacia Biotech, Sweden). The electrophoretic homology of the purified rXylH protein was confirmed by gel permeation chromatography using a HiLoad 26/60 Superdex 200 prep-grade (Amersham Biosciences, Sweden) column, a known method. Protein was quantified using the Bradford reagent (Bio-Rad, USA), purified from the above rXylH protein, and lyophilized and stored at -20 ° C.

<< 실시예Example 4>  4> 자일라나제Xylanase (( XylanaseXylanase )의 활성 측정) Activity measurement

자일라나제의 활성 측정을 하기 위하여, DNS(Dinitrosalicylic acid) 정량법(Miller GL, Anal.Chem., 55:952-959, 1959)을 사용하였다.Din (dinitrosalicylic acid) assay (Miller GL, Anal. Chem., 55: 952-959, 1959) was used to measure the activity of xylanase.

구체적으로, 1%(w/v) 비치우드자일란(beechwood xylan)을 포함하는 50 mM 글리신 수산화나트륨 완충용액(glycine-NaOH buffer pH 9.0)에 단계별 희석한 100 ㎕의 효소용액을 넣고 55℃에서 15분간 반응시킨 후 750 ㎕의 DNS(3,5-Dinitrosalicylic acid) 용액을 첨가한 다음 100℃에서 5분간 방치한 후 흡광도 540 ㎚에서 측정하였다. 효소의 1 유닛(unit)은 1분 동안에 1 μ㏖의 환원당을 방출시키는 효소의 양으로 정하였다.
Specifically, 100 μl of the enzyme solution diluted stepwise was added to 50 mM glycine sodium hydroxide buffer (pH 9.0) containing 1% (w / v) beechwood xylan, After reacting for a minute, 750 μl of a solution of 3,5-dinitrosalicylic acid (DNS) was added, and the solution was allowed to stand at 100 ° C. for 5 minutes, and the absorbance was measured at 540 nm. One unit of enzyme was defined as the amount of enzyme that released 1 mu mol of reducing sugar per minute.

<< 실시예Example 5>  5> 자일라나제Xylanase (( XylanaseXylanase )의 특성 분석)

<5-1> 서열분석<5-1> Sequence analysis

본 발명자들은 NCBI 데이터베이스에서 단백질 블라스트 서베이(Protein blast survey)를 를 이용하여 아미노산 서열을 분석하였다.The inventors analyzed the amino acid sequence using the protein blast survey in the NCBI database.

그 결과 도 1 및 도 2에서 나타낸 바와 같이, 본 발명의 자일라나제(XylH)는 GH10에 해당하는 활성 도메인인 것을 확인하였다. 또한, 유전자 서열 분석에서 1167 bp의 ORF(open reading frame), 또는 388 개의 아미노산으로 이루어진 것으로 확인 되었고, 분자량은 41,584 Da 으로 pI 4.84로 확인하였다. SignalP 3.0 데이터베이스 상에서 분비시그널 영역을 조사한 결과, 자일라나제는 최종 358 개의 아미노산으로 이루어진 것을 확인하였고, 분자량은 38,632 Da, pI 4.67로 확인하였다(도 1 및 도 2).
As a result, as shown in FIG. 1 and FIG. 2, it was confirmed that the xylanase (XylH) of the present invention was an active domain corresponding to GH10. In the gene sequence analysis, it was confirmed that it consisted of 1167 bp ORF (open reading frame) or 388 amino acids, and the molecular weight was 41,584 Da, which was confirmed to be pI 4.84. As a result of examining the secretion signal region in the SignalP 3.0 database, it was confirmed that the xylanase was composed of the final 358 amino acids and the molecular weight was 38,632 Da and pI 4.67 (FIGS. 1 and 2).

<5-2> 자일라나제의 생화학적 특성<5-2> Biochemical properties of xylanase

본 발명의 자일라나제(XylH)의 최적 반응조건을 확인하기 위하여 버치우드 자일란(birchwood xylan)을 기질로 하여 반응 pH와 온도에 대한 영향을 확인하였다. In order to confirm the optimal reaction conditions of the xylanase (XylH) of the present invention, the effect on the reaction pH and temperature was confirmed using birchwood xylan as a substrate.

구체적으로, 효소활성 최적 pH는 50 mM 시트르산나트륨 완충용액(sodium citrate buffer)(pH 3.5-5.5), 50 mM 인산나트륨 완충용액(sodium phosphate buffer)(pH 5.5-7.5), 50 mM 트리스염산 완충용액(Tris-HCl buffer)(pH 7.5-9.0) 및 50 mM 글리신수산화나트륨 완충용액(glycine-NaOH buffer)(pH 9.0-10.5)을 사용하여 55℃에서 15동안 반응하여 측정하였다.Specifically, the optimal enzyme activity was determined by measuring the activity of the enzyme activity in 50 mM sodium citrate buffer (pH 3.5-5.5), 50 mM sodium phosphate buffer (pH 5.5-7.5), 50 mM tris hydrochloride buffer solution (Tris-HCl buffer) (pH 7.5-9.0) and 50 mM glycine-NaOH buffer (pH 9.0-10.5) at 55 ° C for 15 hours.

또한, 효소의 pH에 대한 안정성을 확인하기 위하여, 각각의 pH별로 조제된 완충용액에 4℃에서 1시간동안 방치한 후, <실시예 4>의 조건에서 효소활성을 측정하였고, 효소의 최적반응 온도는 30~70℃범위에서 5℃ 간격으로 효소활성을 측정하였고, 온도에 대한 안정성은 각각의 온도별(37, 45, 50, 55, 60℃)로 15, 30, 그리고 60분 동안 반응하여 잔존활성을 측정하였다.In order to confirm the stability of the enzyme against pH, the enzyme activity was measured under the conditions of Example 4 after standing at 4 ° C for 1 hour in a buffer solution prepared for each pH, and the optimum reaction of the enzyme The enzyme activity was measured at 5 ° C intervals in the temperature range of 30 ~ 70 ℃. The stability of the enzyme was measured at 37, 45, 50, 55, 60 ℃ for 15, 30, Residual activity was measured.

그 결과, 도 3에 나타낸 바와 같이, 본 발명의 자일라나제(XylH)는 pH 9.0, 60℃에서 가장 높은 활성을 보였으며, pH 5.5~10.0 범위에서 1시간동안 75% 이상의 활성을 보였다. 또한, pH 4.5~11 범위에서 50% 이상의 활성을 유지하는 것을 확인 하였고, 반응온도에 있어서 37~50℃에서 1시간 동안 90% 이상의 잔존활성을 유지 하는 것을 확인하였다(도 3).
As a result, as shown in FIG. 3, xylanase (XylH) of the present invention showed the highest activity at pH 9.0 and 60 ° C, and showed activity over 75% for 1 hour at pH 5.5 to 10.0. Further, it was confirmed that the activity was maintained at 50% or more in the pH range of 4.5 to 11, and it was confirmed that the residual activity was maintained at 90% or more for 1 hour at 37 to 50 ° C at the reaction temperature (FIG.

<5-3> 자일라나제의 기질 특이성<5-3> Substrate specificity of xylanase

본 발명의 자일라나제(XylH)의 다양한 자일란 및 당 기질에 대한 분해능을 상기 <실시예 4>의 DNS 정량법을 이용하여 확인하였다. 비치우드 자일란(beechwood xylan), 버치우드 자일란(birchwood xylan), 오트스펠트 자일란(oatspelt xylan)등의 다양한 1% (w/v) 자일로스 폴리머)와 전분(starch), 펙틴(pectin), 글루칸(glucan) 등의 1%(w/v) 폴리머, 그리고 5mM PNP(p-nitrophenyl)당 유도체 등을 이용하여 기질 특이성을 확인하였다. 각각의 기질을 포함하는 50 mM 글리신 수산화나트륨 완충용액(glycine-NaOH buffer pH 9.0)에 희석한 효소 용액(0.05 ml)를 포함하는 표준 분석 혼합물(0.5 ml)을 45℃에서 10분 동안 효소 반응을 수행하여 비교하였다. 자일란 또는 PNP-당 유도체에 대한 자일라나제 활성의 1 유니트(unit)는 표준 분석 조건하에서 1분당 1 μmol의 환원당 또는 PNP를 생산하는데 필요한 효소의 양으로 정의되었다. The resolving ability of the xylanase (XylH) of the present invention against various xylan and sugar substrates was confirmed by the DNS assay of Example 4 above. (W / v) xylose polymers such as beechwood xylan, birchwood xylan, and oatspelt xylan) and starch, pectin, glucan, (w / v) polymer such as glucan, and 5 mM PNP (p-nitrophenyl) derivative were used to confirm the substrate specificity. The standard assay mixture (0.5 ml) containing the enzyme solution (0.05 ml) diluted in 50 mM glycine sodium hydroxide buffer (pH 9.0) containing each substrate was subjected to enzymatic reaction at 45 ° C for 10 minutes Respectively. One unit of xylanase activity for xylan or PNP-sugar derivatives was defined as the amount of enzyme required to produce 1 μmol of reducing sugar or PNP per minute under standard analytical conditions.

그 결과, 표 1에 나타낸 바와 같이, 평가된 자일란 물질 중 귀리 스펠트 자일란이 자일라나제(XylH)에 의해 가장 효과적으로 가수분해되었고, 비치우드 자일란, 버치우드 자일란 순으로 가수분해 활성을 나타내었다. 또한, 보리유래의 글루칸(β-1,3/β-1,4-d-glucan from barley), PNP-셀로바이오사이드(PNP-cellobioside), PNP-자일로피라노사이드(PNP-xylopyranoside)에 대하여 높은 활성을 나타내는 것을 확인하였다(표 1).
As a result, as shown in Table 1, among the evaluated xylan substances, the oat spelled xylan was hydrolyzed most efficiently by xylanase (XylH), and showed hydrolytic activity in the order of beech woody xylan and birchwood xylan. In addition, it is also possible to use the barley-derived glucan (β-1,3 / β-1,4-d-glucan from barley), PNP-cellobioside and PNP-xylopyranoside (Table 1). &Lt; tb &gt;&lt; TABLE &gt;

기질(Substrate)Substrate 특이적활성(Specific activity(IU/㎎))a Specific activity (IU / mg) a 버치우드 자일란(birch wood Xylan)Birch wood Xylan 72.2 ± 0.372.2 ± 0.3 비치우드 자일란(beech wood Xylan)Beech wood Xylan 82.7 ± 1.382.7 ± 1.3 귀리 스펠트 자일란(oat spelts Xylan)Oat spelts Xylan 92.3 ± 1.092.3 ± 1.0 밀 아라비노 자일란Millarabinozaylan 52.6 ± 5.052.6 ± 5.0 자일로글루칸(Xyloglucan)Xyloglucan NDND 가용성 녹말(Soluble starch)Soluble starch (Soluble starch) NDND 펙틴(Pectin)Pectin NDND 로커스트빈검(Locust bean gum)Locust bean gum NDND 보리유래의 글루칸(b-1,3/b-1,4-d-Glucan from barley)Glucan from barley (b-1,3 / b-1,4-d-Glucan from barley) 2.3 ± 0.52.3 ± 0.5 카르복시 메틸셀룰로오스(Carboxy methylcellulose)Carboxy methylcellulose (Carboxy methylcellulose) NDND PNP-셀룰로비오사이드(PNP-cellobioside)PNP-cellobioside &lt; RTI ID = 0.0 &gt; 118.5 ± 0.6118.5 ± 0.6 PNP-글루코피라노사이드(PNP-glucopyranoside)PNP-glucopyranoside (PNP-glucopyranoside) NDND PNP-자일로피라노사이드(PNP-xylopyranoside)PNP-xylopyranoside (PNP-xylopyranoside) 30.4 ± 1.130.4 ± 1.1 PNP-만노피라노사이드(PNP-mannopyranoside)PNP-mannopyranoside (PNP-mannopyranoside) NDND PNP-갈락토피라노사이드(PNP-galactopyranoside)PNP-galactopyranoside &lt; RTI ID = 0.0 &gt; (PNP-galactopyranoside) NDND

<5-4> 자일란 분해산물의 특성<5-4> Characteristics of Xylen Decomposition Products

상기 <실시예 4>와 동일한 방법으로, 버치우드 자일란(birchwood xylan, BX), 자일로바이오스(xylobiose, X2), 자일로트리오스(xylotriose, X3), 자일로데트라오스(xylotetraose, X4), 그리고 자일로펜토스(xylopentose, X5)를 기질로 하여 반응 혼합물을 100℃에서 5분간 가열하여 효소 반응을 정지시킨 다음, 가수분해 산물을 용출용액 A(0.05% 포말산/멸균수) 용출용액 B(0.05% 포말산/멸균수: 아세토니트릴/메탄올 = 6:4)의 이동상의 조건하에 Asahipak NH2P-50 2D 컬럼(5㎛, 2.0×150㎜, Shodex)을 이용한 고성능 액상 크로마토그래피(High performance liquid chromatography, HPLC) 분석법을 수행하여 측정하였다(Kim DY et al., 2011). In the same manner as that of Example 4, a mixture of birchwood xylan, BX, xylobiose (X2), xylotriose (X3), xylotetraose (X4), and The enzyme reaction was stopped by heating the reaction mixture at 100 ° C for 5 minutes using xylopentose (X5) as a substrate, and the hydrolyzate was dissolved in the eluting solution A (0.05% formalin / sterilized water) eluting solution B High Performance Liquid Chromatography (HPLC) using an Asahipak NH2P-50 2D column (5 탆, 2.0 x 150 mm, Shodex) under the moving phase conditions of 0.05% Folic acid / sterilized water: acetonitrile / methanol = 6: , HPLC) assay (Kim DY et al., 2011).

그 결과, 표 2에 나타낸 바와 같이, 버치우드 자일란에 대한 가수분해 산물은 X2(71.2%(w/v))와 X3(28.8%(w/v))로 나타나는 것을 확인하였다. 자일로바이오스, 자일로트리오스 등의 자일로올리고당(xylooligosaccharides)에 대한 가수분해 활성에서, 자일로트리오스(xylotriose)에 대한 가수분해 산물은 X2(45.8%(w/v)), X3(38.9%(w/v)), X4(12.3%(w/v)) 및 X5(3.1%(w/v))로, 자일로테트라오스(xylotetraose)에 대한 가수분해 산물은 X2(34.1%(w/v), X3(38.3%(w/v), X4(22.7%(w/v)) 및 X5(5.0%(w/v))로, 자일로펜토스(xylopentose)에 대한 가수분해 산물은 X2(25.9%(w/v)), X3(35.9%(w/v)), X4(23.4(w/v)), X5(12.1%(w/v)) 및 X6(2.8%(w/v))로 분해하였다. 이러한 결과, 상기 자일라나제는 트랜스자일로실레이션(transxylosylation) 활성을 가지는 것을 확인하였다(표 2).
As a result, as shown in Table 2, it was confirmed that the hydrolysis product for birchwood xylenes was represented by X2 (71.2% (w / v)) and X3 (28.8% (w / v)). The hydrolysis products for xylotriose were X2 (45.8% (w / v)) and X3 (38.9% (w / v)) in the hydrolytic activity of xylooligosaccharides such as xylotriose and xylotriose The hydrolysis products for Xylotetraose were X2 (34.1% w / v), X4 (12.3% (w / v)) and X5 (3.1% ), X3 (38.3% (w / v), X4 (22.7% (w / v)) and X5 (5.0% (w / v)), xylopentose hydrolysis products were X2 (W / v)), X3 (35.9% (w / v)), X4 (23.4 (w / v)), X5 (12.1% ). As a result, it was confirmed that the xylanase had a transxylosylation activity (Table 2).

기질(Substrate)
Substrate
가수분해반응에 의한 형성된 산물의 조성물(%)
(Composition (%) a of products formed by hydrolysis reaction)
Composition (%) of product formed by hydrolysis reaction
(Composition (%) of products formed by hydrolysis reaction)
X2X2 X3X3 X4X4 X5X5 X6X6 X2X2 100.0100.0 X3X3 45.845.8 38.938.9 12.312.3 3.13.1 X4X4 34.134.1 38.338.3 22.722.7 5.05.0 X5X5 25.925.9 35.935.9 23.423.4 12.112.1 2.82.8 버치우드 자일란
(birchwood Xylan)
Birchwood Jaylan
(birchwood Xylan)
71.271.2 28.828.8

본 발명의 마이크로박테리움 속(Microbacterium sp.) HY-17 균주에서 분리된 GH10(glycoside hydrolase family 10) 계열의 효소와 상동성을 가지는 신규한 알칼리 내성의 자일라나제는 물성개량과 올리고당 생산공정 등과 같은 식품산업, 사료용 곡물의 활용을 위한 사료산업, 화학공정을 대체하기 위한 펄프와 바이오에너지용 원료의 전처리 공정에 필요한 전처리 공정 등의 다양한 유용하게 이용될 수 있다. 따라서 효소를 이용한 공정을 통하여 보다 친환경적인 공정의 개발, 소화효율 개선을 통한 가축의 건강, 다양한 곡물 또는 부산물의 부가가치를 향상시킬 수 있는 소재로 개발이 가능한 효소이다.
Micro tumefaciens in (Microbacterium sp.) Of the present invention as HY-17 a GH10 (glycoside hydrolase family 10) isolated from the strain of the novel alkali-resistant having an enzyme and the homology sequence xylene Rana agent properties improved and oligosaccharide production process The same food industry, the feed industry for the utilization of feed grains, pulp for replacing chemical processes, and pretreatment processes for pretreatment of raw materials for bioenergy. Therefore, it is an enzyme that can be developed as a material that can improve the health of livestock through the improvement of digestion efficiency, the added value of various grains or by-products through processes using enzymes, development of more environmentally friendly processes.

한국생명공학연구원Korea Biotechnology Research Institute KCTC12338BPKCTC12338BP 2012121720121217

<110> Korea Research Institute of Bioscience and Biotechnology <120> Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17 <130> 13P-07-24 <160> 8 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 27 F <400> 1 agactttgat cmtggctcag 20 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 1492R <400> 2 aagtcgtaac aaggtaacc 19 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MF-10 forward <400> 3 tgggacgtcs tcaacgag 18 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MF-10 reverse <400> 4 gacgtcsgcc tcsgtgac 18 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> FMF <400> 5 catatggcgc ctcccggatt cagc 24 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RMF <400> 6 aagctttcag ccgcgtcggg gc 22 <210> 7 <211> 388 <212> PRT <213> Mycobacterium <400> 7 Met Arg Arg Ser Ile Arg Ser Leu Leu Val Ala Thr Ala Ala Ala Thr 1 5 10 15 Ala Leu Val Leu Pro Leu Cys Ala Ala Thr Ala Ala Ser Ala Ala Pro 20 25 30 Pro Gly Phe Ser Asn Ala Asp Lys Asp Ala Leu Arg Asn Gln Ala Pro 35 40 45 Arg Asp Leu Ala Ile Gly Ser Ala Val Trp Ala Gln Gln His Leu Val 50 55 60 Gly Tyr Asp Ala Ser Ala Pro Thr Glu Phe Gln Gln Val Leu Ala Gly 65 70 75 80 Gln Phe Ser Ser Leu Thr Pro Glu Asn Asp Met Lys Trp Asp Ala Val 85 90 95 His Pro Ala Pro Gly Val Tyr Asp Phe Thr Ser Ala Asp Ala Leu Ile 100 105 110 Ala Phe Ala Glu Ala Asn His Gln Gln Val Arg Gly His Thr Leu Leu 115 120 125 Trp His Ser Gln Asn Pro Ala Trp Val Thr Ala Ala Ser Ala Thr Trp 130 135 140 Thr Cys Asp Asp Ala Arg Ala Val Leu Glu Asp His Ile Arg Thr Val 145 150 155 160 Val Gly His Phe Lys Gly Lys Ile Tyr Glu Trp Asp Val Ala Asn Glu 165 170 175 Ile Phe Gln Asp Glu Trp Asp Asn Gly Gly Val Lys Leu Arg Thr Thr 180 185 190 Ala Asn Pro Phe Leu Lys Ala Cys Ala Ala Asp Pro Val Gly Leu Leu 195 200 205 Ala Asp Ala Phe Arg Trp Ala His Glu Ala Asp Pro Asp Ala Val Leu 210 215 220 Phe Leu Asn Asp Tyr Asn Ala Glu Gly Ile Asn Ala Lys Thr Asp Ala 225 230 235 240 Tyr Tyr Ala Leu Ala Gln Gln Leu Leu Ala Ala Gly Ala Pro Leu Gly 245 250 255 Gly Phe Gly Ala Gln Gly His Leu Ser Leu Leu Tyr Gly Phe Asp Thr 260 265 270 Ser Ile Gln Ala Asn Phe Glu Arg Ser Ala Ala Leu Gly Leu Lys Val 275 280 285 Ala Val Thr Glu Ala Asp Val Arg Ile Pro Leu Gln Glu Gly Glu Thr 290 295 300 Gly Pro Thr Pro Glu Gln Val Ala Val Gln Ala Glu Arg Tyr Asp Ala 305 310 315 320 Met Leu Gln Ala Cys Leu Asn Val Thr Ala Cys Ser Ser Phe Thr Val 325 330 335 Trp Gly Phe Ser Asp Ala Tyr Ser Trp Val Pro Gly Val Phe Pro Gly 340 345 350 Glu Gly Trp Ala Thr Ile Thr Asp Glu Lys Phe Thr Pro Lys Pro Ala 355 360 365 Phe Tyr Ala Leu Leu Gly Ser Leu Arg Asp Ala Thr Pro Gly Thr Ser 370 375 380 Pro Arg Arg Gly 385 <210> 8 <211> 1167 <212> DNA <213> Mycobacterium <400> 8 atgcgccgat cgatcagatc gctgctggtg gccacggctg ccgccaccgc tctcgtcctt 60 cccctctgcg ccgcgaccgc ggccagcgcc gcgcctcccg gattcagcaa cgccgacaag 120 gatgcgctgc gcaaccaagc gccccgcgac ctcgccatcg gcagcgcagt ctgggcgcag 180 cagcacctcg tcggctacga cgcctctgcg ccgaccgagt tccagcaggt gctcgccggc 240 cagttctcgt cgctgacgcc cgagaacgac atgaaatggg atgccgtcca ccccgcgccg 300 ggcgtgtacg acttcacgtc ggcggacgcg ctgatcgcat tcgccgaggc gaaccaccag 360 caggtgcgcg gacacacgct gctgtggcac agccagaacc cggcatgggt gacggcggcc 420 agcgccacct ggacgtgcga cgacgcacgg gccgtgctgg aggaccacat ccgcaccgtc 480 gtcggtcact tcaaaggcaa gatctacgag tgggacgtgg ccaacgagat cttccaggac 540 gagtgggaca acgggggcgt gaagctgcgc accacggcga acccgttcct caaggcctgc 600 gccgcggatc cggtcgggct cctggcggac gcgttccgct gggcccatga ggccgacccc 660 gacgcggtgc tgttcctgaa cgactacaac gccgagggca tcaacgcgaa gaccgacgcc 720 tactacgcgc tcgcgcagca gctgctggcg gcgggtgcac cgctcggcgg cttcggcgcg 780 cagggccacc tcagcctgct gtacggcttc gacacgtcca tccaggccaa cttcgagcgc 840 tccgccgccc tcggcctcaa ggtggcggtg acggaggccg acgtgcgcat cccgctgcag 900 gagggcgaga cgggcccgac gcccgagcag gtcgcggtgc aggccgagcg ctacgacgcg 960 atgctgcagg cctgcctcaa cgtcacggca tgctcctcct tcacggtgtg gggcttctcg 1020 gacgcctact cgtgggtccc gggcgtcttc cccggcgagg gctgggcgac gatcaccgac 1080 gagaagttca cgccgaagcc cgccttctac gcgctgctcg gctcgctgcg cgacgcgaca 1140 ccgggcacct cgccccgacg cggctga 1167 <110> Korea Research Institute of Bioscience and Biotechnology <120> Novel xylanase containing a novel alkali resistance glycoside          hydrolase family, GH family 10 from Microbacterium sp. strain          HY-17 <130> 13P-07-24 <160> 8 <170> Kopatentin 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 27 F <400> 1 agactttgat cmtggctcag 20 <210> 2 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 1492R <400> 2 aagtcgtaac aaggtaacc 19 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MF-10 forward <400> 3 tgggacgtcs tcaacgag 18 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> MF-10 reverse <400> 4 gacgtcsgcc tcsgtgac 18 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> FMF <400> 5 catatggcgc ctcccggatt cagc 24 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RMF <400> 6 aagctttcag ccgcgtcggg gc 22 <210> 7 <211> 388 <212> PRT <213> Mycobacterium <400> 7 Met Arg Arg Ser Ile Arg Ser Leu Leu Val Ala Thr Ala Ala Ala Thr   1 5 10 15 Ala Leu Val Leu Pro Ala Ala Ala Ala Ala Ala Ala Ala Pro              20 25 30 Pro Gly Phe Ser Asn Ala Asp Lys Asp Ala Leu Arg Asn Gln Ala Pro          35 40 45 Arg Asp Leu Ala Ile Gly Ser Ala Val Trp Ala Gln Gln His Leu Val      50 55 60 Gly Tyr Asp Ala Ser Ala Pro Thr Glu Phe Gln Gln Val Leu Ala Gly  65 70 75 80 Gln Phe Ser Ser Leu Thr Pro Glu Asn Asp Met Lys Trp Asp Ala Val                  85 90 95 His Pro Ala Pro Gly Val Tyr Asp Phe Thr Ser Ala Asp Ala Leu Ile             100 105 110 Ala Phe Ala Glu Ala Asn His Gln Gln Val Arg Gly His Thr Leu Leu         115 120 125 Trp His Ser Gln Asn Pro Ala Trp Val Thr Ala Ala Ser Ala Thr Trp     130 135 140 Thr Cys Asp Asp Ala Arg Ala Val Leu Glu Asp His Ile Arg Thr Val 145 150 155 160 Val Gly His Phe Lys Gly Lys Ile Tyr Glu Trp Asp Val Ala Asn Glu                 165 170 175 Ile Phe Gln Asp Glu Trp Asp Asn Gly Gly Val Lys Leu Arg Thr Thr             180 185 190 Ala Asn Pro Phe Leu Lys Ala Cys Ala Ala Asp Pro Val Gly Leu Leu         195 200 205 Ala Asp Ala Phe Arg Trp Ala His Glu Ala Asp Pro Asp Ala Val Leu     210 215 220 Phe Leu Asn Asp Tyr Asn Ala Glu Gly Ile Asn Ala Lys Thr Asp Ala 225 230 235 240 Tyr Tyr Ala Leu Ala Gln Gln Leu Leu Ala Ala Gly Ala Pro Leu Gly                 245 250 255 Gly Phe Gly Ala Gln Gly His Leu Ser Leu Leu Tyr Gly Phe Asp Thr             260 265 270 Ser Ile Gln Ala Asn Phe Glu Arg Ser Ala Ala Leu Gly Leu Lys Val         275 280 285 Ala Val Thr Glu Ala Asp Val Arg Ile Pro Leu Gln Glu Gly Glu Thr     290 295 300 Gly Pro Thr Pro Glu Gln Val Ala Val Gln Ala Glu Arg Tyr Asp Ala 305 310 315 320 Met Leu Gln Ala Cys Leu Asn Val Thr Ala Cys Ser Ser Phe Thr Val                 325 330 335 Trp Gly Phe Ser Asp Ala Tyr Ser Trp Val Pro Gly Val Phe Pro Gly             340 345 350 Glu Gly Trp Ala Thr Ile Thr Asp Glu Lys Phe Thr Pro Lys Pro Ala         355 360 365 Phe Tyr Ala Leu Leu Gly Ser Leu Arg Asp Ala Thr Pro Gly Thr Ser     370 375 380 Pro Arg Arg Gly 385 <210> 8 <211> 1167 <212> DNA <213> Mycobacterium <400> 8 atgcgccgat cgatcagatc gctgctggtg gccacggctg ccgccaccgc tctcgtcctt 60 cccctctgcg ccgcgaccgc ggccagcgcc gcgcctcccg gattcagcaa cgccgacaag 120 gatgcgctgc gcaaccaagc gccccgcgac ctcgccatcg gcagcgcagt ctgggcgcag 180 cagcacctcg tcggctacga cgcctctgcg ccgaccgagt tccagcaggt gctcgccggc 240 cagttctcgt cgctgacgcc cgagaacgac atgaaatggg atgccgtcca ccccgcgccg 300 ggcgtgtacg acttcacgtc ggcggacgcg ctgatcgcat tcgccgaggc gaaccaccag 360 caggtgcgcg gacacacgct gctgtggcac agccagaacc cggcatgggt gacggcggcc 420 agcgccacct ggacgtgcga cgacgcacgg gccgtgctgg aggaccacat ccgcaccgtc 480 gtcggtcact tcaaaggcaa gatctacgag tgggacgtgg ccaacgagat cttccaggac 540 gagtgggaca acgggggcgt gaagctgcgc accacggcga acccgttcct caaggcctgc 600 gccgcggatc cggtcgggct cctggcggac gcgttccgct gggcccatga ggccgacccc 660 gacgcggtgc tgttcctgaa cgactacaac gccgagggca tcaacgcgaa gaccgacgcc 720 tactacgcgc tcgcgcagca gctgctggcg gcgggtgcac cgctcggcgg cttcggcgcg 780 cagggccacc tcagcctgct gtacggcttc gacacgtcca tccaggccaa cttcgagcgc 840 tccgccgccc tcggcctcaa ggtggcggtg acggaggccg acgtgcgcat cccgctgcag 900 gagggcgaga cgggcccgac gcccgagcag gtcgcggtgc aggccgagcg ctacgacgcg 960 atgctgcagg cctgcctcaa cgtcacggca tgctcctcct tcacggtgtg gggcttctcg 1020 gacgcctact cgtgggtccc gggcgtcttc cccggcgagg gctgggcgac gatcaccgac 1080 gagaagttca cgccgaagcc cgccttctac gcgctgctcg gctcgctgcg cgacgcgaca 1140 ccgggcacct cgccccgacg cggctga 1167

Claims (13)

자일라나제를 생산하는 마이크로박테리움 속(Microbacterium sp.) HY-17(Microbacterium sp. HY-17) 균주(KCTC 12338BP).
Microbacterium sp. HY-17 ( Microbacterium sp. HY-17) strain (KCTC 12338BP) producing xylanase.
제 1항의 균주로부터 생산되는 서열번호 7로 기재되는 아미노산 서열을 갖는 자일라나제(xylanase).
7. An xylanase having an amino acid sequence represented by SEQ ID NO: 7 produced from the strain of claim 1.
제 2항에 있어서, 상기 자일라나제는 42 kda의 분자량인 것을 특징으로 하는 자일라니제.
3. The xylanase according to claim 2, wherein the xylanase has a molecular weight of 42 kda.
제 2항에 있어서, 상기 자일라나제는 pH 5.5 내지 pH 10.0에서 최대 활성을 나타내는 것을 특징으로 하는 자일라나제.
3. The xylanase according to claim 2, wherein the xylanase exhibits maximum activity at pH 5.5 to pH 10.0.
제 2항에 있어서, 상기 자일라나제는 60℃에서 최대 활성을 나타내는 것을 특징으로 하는 자일라나제.
3. The xylanase according to claim 2, wherein the xylanase exhibits maximum activity at 60 &lt; 0 &gt; C.
제 2항에 있어서, 상기 자일라나제는 엔도-β-1,4-자일라나제((endo-β-1,4-xylanase) 활성을 나타내는 것을 특징으로 하는 자일라나제.
3. The xylanase according to claim 2, wherein the xylanase exhibits endo-beta-1,4-xylanase activity.
제 2항에 있어서, 상기 자일라나제는 글리코시드 하이드롤라제-10 도메인(glycoside hydrolase-10 domain, GH-10 domain)인 것을 특징으로 하는 자일라나제.
3. The xylanase according to claim 2, wherein the xylanase is a glycoside hydrolase-10 domain (GH-10 domain).
제 2항의 1)자일라나제를 암호화하는 서열번호 8로 기재되는 염기서열을 가지는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터를 숙주세포에 도입한 형질전환체를 배양한 후 원심분리하여 조효소액을 수득하는 단계; 및,
2)상기 단계 1)에서 수득된 조효소액에서 자일라나제를 정제하는 단계를 포함하는 자일라나제 생산 방법.
A method for producing a recombinant vector comprising the steps of: 1) culturing a transformant into which a recombinant expression vector comprising a polynucleotide having the nucleotide sequence of SEQ ID NO: 8 encoding xylanase has been introduced into a host cell and then centrifuging to obtain a crude enzyme solution step; And
2) purifying xylanase in the crude enzyme solution obtained in the step 1).
제 8항에 있어서, 상기 숙주세포는 대장균을 포함한 원핵세포, 효모, 동물세포 및 곤충세포로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 자일라나제 생산방법.
9. The method according to claim 8, wherein the host cell is any one selected from the group consisting of prokaryotes including E. coli, yeast, animal cells, and insect cells.
제 8항에 있어서, 상기 단계 2)는
1) 제 8항의 형질전환체의 배양액을 원심분리하여 수득한 상층액에 침전제를 가하여 수용성 단백질 침전을 유도하는 단계;
2) 상기 단계 1)의 침전물에서 불용성 침전물을 제거한 후 투석하여 조효소액을 수득하는 단계; 및,
3) 상기 단계 2)의 조효소액을 컬럼 크로마토그래피로 정제하는 단계를 포함하는 방법으로 수행되는 것을 특징으로 하는 자일라나제 생산방법.
9. The method of claim 8, wherein step (2)
1) inducing precipitation of a soluble protein by adding a precipitant to the supernatant obtained by centrifuging the culture solution of the transformant of claim 8;
2) removing the insoluble precipitate from the precipitate of step 1) and then dialyzing to obtain a crude enzyme solution; And
3) purifying the crude enzyme solution of step 2) by column chromatography.
제 2항의 자일라나제를 유효성분으로 포함하는 사료 첨가제
A feed additive comprising the xylanase of claim 2 as an active ingredient
제 2항의 자일라나제를 유효성분으로 포함하는 식품 첨가제.
A food additive comprising the xylanase of claim 2 as an active ingredient.
제 2항의 자일라나제를 유효성분으로 포함하는 제지공정용 조성물.
A composition for papermaking process comprising the xylanase of claim 2 as an active ingredient.
KR1020130098776A 2013-08-20 2013-08-20 Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17 KR101472993B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020130098776A KR101472993B1 (en) 2013-08-20 2013-08-20 Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17
PCT/KR2014/007718 WO2015026150A1 (en) 2013-08-20 2014-08-20 Novel alkali-resistant glycoside hydrolase family 10 xylanase produced from micobacterium sp. hy-17 strain
CN201480046416.5A CN105531364B (en) 2013-08-20 2014-08-20 New the 10th family's zytase of alkali resistance glycoside hydrolase produced from Microbacterium HY-17 bacterial strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130098776A KR101472993B1 (en) 2013-08-20 2013-08-20 Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17

Publications (1)

Publication Number Publication Date
KR101472993B1 true KR101472993B1 (en) 2014-12-18

Family

ID=52483871

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130098776A KR101472993B1 (en) 2013-08-20 2013-08-20 Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17

Country Status (3)

Country Link
KR (1) KR101472993B1 (en)
CN (1) CN105531364B (en)
WO (1) WO2015026150A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190088832A (en) * 2018-01-19 2019-07-29 한국생명공학연구원 The function of the novel xylanase and lysine domains produced by Luteimicrobium xylanilyticum HY-24, a microorganism in the intestinal tract of Massicus raddei

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018237B (en) * 2017-12-15 2020-12-22 武汉轻工大学 Alkaline xylanase strain, screening method thereof and preparation method of xylanase

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2217280T3 (en) * 1994-06-09 2004-11-01 Innogenetics N.V. METHOD FOR DETECTION OF ANTIBIOTIC RESISTANCE SPECTRUM OF MICROBACTERIAL SPECIES.
UA51326C2 (en) * 2002-02-22 2005-01-17 Inst Exprm & Clinical Veterina Tuberculinogenic strain of avian micobacterium m. avium iecvm uaas intended for preparing purified tuberculin for the poultry
CN1238501C (en) * 2002-09-29 2006-01-25 中国科学院上海生命科学研究院 Novel externally tangent-beta-1,4-glucanase/internally tangent-beta-1,4-xylanase and application thereof
KR100870561B1 (en) * 2007-09-12 2008-11-27 한국생명공학연구원 Novel cellulosimicrobium sp??hy-12 strain and xylanase produced from it
KR101018790B1 (en) * 2008-08-14 2011-03-03 한국화학연구원 A Paenibacillus sp. HPL-001 strain for producing xylanase and a xylanase produced thereby and a producing method thereof
KR101219514B1 (en) * 2010-02-09 2013-01-11 한국생명공학연구원 Novel xylanase produced from Cellulosimicrobium funkei HY-13 strain

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ki-Hong Yoon 등. The Korean Journal of Microbiology. Vol. 47, No. 3, 페이지 225-230 (2011.)*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190088832A (en) * 2018-01-19 2019-07-29 한국생명공학연구원 The function of the novel xylanase and lysine domains produced by Luteimicrobium xylanilyticum HY-24, a microorganism in the intestinal tract of Massicus raddei
KR102044517B1 (en) * 2018-01-19 2019-11-13 한국생명공학연구원 The function of the novel xylanase and lysine domains produced by Luteimicrobium xylanilyticum HY-24, a microorganism in the intestinal tract of Massicus raddei

Also Published As

Publication number Publication date
WO2015026150A1 (en) 2015-02-26
CN105531364A (en) 2016-04-27
CN105531364B (en) 2019-08-23

Similar Documents

Publication Publication Date Title
Sanz et al. Expression of an α‐1, 3‐glucanase during mycoparasitic interaction of Trichoderma asperellum
Wang et al. Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity
KR20110119386A (en) Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof
Bouraoui et al. The GH51 α-L-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans
Mirande et al. Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A
Hua et al. A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity
Raj et al. A highly thermostable xylanase from Stenotrophomonas maltophilia: purification and partial characterization
Bouiche et al. Differential antioxidant activity of glucuronoxylooligosaccharides (UXOS) and arabinoxylooligosaccharides (AXOS) produced by two novel xylanases
HOU et al. Novel cold‐adaptive Penicillium strain fs010 secreting thermo‐labile xylanase isolated from yellow sea
Lee et al. Genetic and functional characterization of a novel GH10 endo-β-1, 4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24
US20120309074A1 (en) Novel xylanase produced from cellulosimicrobium funkei hy-13
Fu et al. Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis
Gao et al. Expression of a thermostable β-1, 3-glucanase from Trichoderma harzianum in Pichia pastoris and use in oligoglucosides hydrolysis
Bagewadi et al. Purification, characterization, gene cloning and expression of GH-10 xylanase (Penicillium citrinum isolate HZN13)
Wang et al. A novel, alkali-tolerant thermostable xylanase from Saccharomonospora viridis: direct gene cloning, expression and enzyme characterization
KR101472993B1 (en) Novel xylanase containing a novel alkali resistance glycoside hydrolase family, GH family 10 from Microbacterium sp. strain HY-17
KR101415165B1 (en) Novel mannanase produced from Cellulosimicrobium sp. HY-13 strain
Ramachandran et al. Characterization of a β-1, 4-mannanase from a newly isolated strain of Pholiota adiposa and its application for biomass pretreatment
KR101634957B1 (en) Novel xylanase from Streptomyces sp. HY-14 strain
CN103013873A (en) Strain generating heat-stable Beta-glucanase and application of strain
Park et al. An ${\beta} $-1, 4-Xylanase with Exo-Enzyme Activity Produced by Paenibacillus xylanilyticus KJ-03 and Its Cloning and Characterization
US20110287515A1 (en) Protein and dna sequence encoding a cold adapted xylanase
Kalinina et al. Expression of the Xylanase Gene from Paenibacillus brasilensis X1 in Pichia pastoris and Characteristics of the Recombinant Enzyme
KR101803073B1 (en) Penicillium verruculosum COKE4E Having a Producing Ability of Lignocellulolytic Enzyme
Brumm et al. Identification, cloning and characterization of Dictyoglomus turgidum CelA, an endoglucanase with cellulase and mannanase activity

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171107

Year of fee payment: 4