KR100870561B1 - Novel cellulosimicrobium sp??hy-12 strain and xylanase produced from it - Google Patents

Novel cellulosimicrobium sp??hy-12 strain and xylanase produced from it Download PDF

Info

Publication number
KR100870561B1
KR100870561B1 KR1020070092571A KR20070092571A KR100870561B1 KR 100870561 B1 KR100870561 B1 KR 100870561B1 KR 1020070092571 A KR1020070092571 A KR 1020070092571A KR 20070092571 A KR20070092571 A KR 20070092571A KR 100870561 B1 KR100870561 B1 KR 100870561B1
Authority
KR
South Korea
Prior art keywords
xylanase
strain
ala
cellulosimicrobium
activity
Prior art date
Application number
KR1020070092571A
Other languages
Korean (ko)
Inventor
박호용
오현우
박두상
배경숙
허선연
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020070092571A priority Critical patent/KR100870561B1/en
Application granted granted Critical
Publication of KR100870561B1 publication Critical patent/KR100870561B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • C12N9/2482Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/0108Fructan beta-fructosidase (3.2.1.80)

Abstract

Cellulosimicrobium sp. HY^-12 strain separated from intestines of Gryllotalpa orientalis and a xylanase produced from the same are provided to show an excellent xylan-analyzing activity at a wide range of temperature and pH. Xylanase is produced from Cellulosimicrobium sp. HY^-12 strain(KCTC 11155BP). The xylanase has an amino acid sequence produced from strain of a sequence number 3 and a molecular weight of 42 kDa, shows a maximum activation at a pH 5.5 ~ 6.5 and 60°C ~ 70°C. An activity of the xylanase is increased when Zn, K, Mg, Na or Mn is added. A gene ciphers the enzyme.

Description

신규한 셀룰로시미크로비움 sp.HY―12 균주 및 이로부터 생산되는 자일라나제{Novel Cellulosimicrobium sp.HY―12 strain and xylanase produced from it}Novel Cellulosimicrobium sp. HY-12 strain and xylanase produced from it

본 발명은 셀룰로시미크로비움 sp. HY-12(Cellulosimicrobium sp. HY-12) 균주 및 상기 균주로부터 생산되는 자일라나제(xylanase)에 관한 것으로서, 보다 상세하게는 땅강아지(Gryllotalpa orientalis )의 장으로부터 분리한 신규한 장내세균인 셀룰로시미크로비움 sp. HY-12 및 이에 의해 생산되는 신규한 자일라나제에 관한 것이다. The present invention is cellulose microbium sp. HY-12 ( Cellulosimicrobium sp. HY-12) strain and the xylanase produced from the strain, and more specifically, Gryllotalpa micropore evacuation of sp during a novel intestinal bacterial cellulose was separated from the intestine of orientalis). HY-12 and the novel xylanase produced thereby.

곤충은 지구상에서 가장 번성한 생물군으로서 다양한 먹이습성과 높은 생물학적 다양성을 나타내고 있다. 이러한 곤충의 생물특성을 고려한 곤충공생미생물을 유용한 생물자원으로 활용하고자 하는 연구가 증가되고 있으며, 특히 곤충의 생육과 밀접한 관련이 있는 장내 미생물에 대한 연구가 활발히 이루어지고 있다(Dillon, R. J. et.al., Annu . Rev . Entomol, 49, 71-92, 2004). 특히, 식물의 목질부를 가해하는 주요 곤충인 흰개미의 장내미생물로부터 셀룰라제(cellulase), 자일라나제(xylanase) 및 리그니나제(ligninase)를 분리하고자 하는 연구가 오래 전부터 집중적으로 수행되어 왔으며 다양한 연구결과들이 보고되었다(Varma, A. et.al., FEMS Microb Rev, 15, 9-28, 1994; Watanabe, H. et.al., Nature, 394, 330-331, 1998). 그 외에도 초식성 곤충의 섭식특성에 착안하여 자일라나제(xylanase) 또는 셀룰라제(cellulase)를 생산하는 균주를 분리한 사례(Teunissen, M. J. et.al., Arch . Microbiol, 156, 290-296, 1991; Watanabe, H. et.al., Nature, 394, 330-331, 1998), 동물성 먹이를 포식하는 무당거미로부터 고효율의 단백질 분해 효소를 생산하는 균주를 분리하여 산업적으로 응용하고 있는 사례(Lee, G. E. 및 H. Y. Park., Kor . J. Microbiol. 40, 269-274, 2004), 톱하늘소의 장으로부터 고효율의 lipase를 생산하는 균주를 분리하고 동정한 사례(Park, D. S. 및 H. Y. Park., Korean J. Appl. Entomol, 46, 1-9, 2007)와 그 외 나비목, 딱정벌레목을 포함하는 여러 가지 곤충에서 분자생물학적 기법을 활용한 장내 미생물의 생태적 연구들이 보고되고 있다(Egert, M. 및 Friedrich, M., Appl . Environ . Microbiol, 69, 6656-6668, 2003).Insects are the most thriving biomass on the planet, showing a variety of food habits and high biodiversity. In order to utilize insect symbiotic microorganisms in consideration of the biological characteristics of these insects as a useful biological resource, researches on intestinal microorganisms that are closely related to the growth of insects are being actively conducted (Dillon, RJ et.al). ., Annu. Rev. Entomol, 49, 71-92, 2004). In particular, many studies have been conducted to isolate cellulase, xylanase, and ligninase from the intestinal microorganisms of termites, which are the main insects affecting the woody parts of plants. Results have been reported (Varma, A. et.al., FEMS Microb Rev , 15, 9-28, 1994; Watanabe, H. et.al., Nature , 394, 330-331, 1998). In addition, in view of the eating characteristics of the herbivorous insects xylene Rana claim (xylanase) or case, remove the strain producing the cellulase (cellulase) (Teunissen, MJ et.al. , Arch. Microbiol, 156, 290-296, 1991 Watanabe, H. et.al., Nature , 394, 330-331, 1998), and the industrial application of isolated strains that produce highly efficient proteolytic enzymes from sugarless spiders that feed on animal feed (Lee, GE and HY Park., Kor. J. Microbiol . 40, 269-274, 2004), to release the strain producing the lipase with high efficiency from the top section of the long-horned beetle, and identifying cases (Park, Park DS and HY., Korean J . Appl. Entomol, 46, 1-9 , 2007) and other Lepidoptera, ecological study of intestinal microorganisms utilize molecular biological techniques on various insects including Coleoptera have been reported (Egert, M. and Friedrich, M., Appl. Environ. Microbiol, 69, 6656-6668, 2003).

자일란(Xylan)은 식물의 세포벽을 구성하는 헤미세룰로즈(hemicellulose)의 주성분으로 셀룰로즈(cellulose) 다음으로 자연계에 풍부하며 재생 가능한 탄수화물이다. 자일란(Xylan)은 자일로피라노제(xylopyranose)의 β-1,4 결합으로 이루서진 고분자 물질로서 일반적으로 아세틸 그룹(acetyl group), L-아라비노퓨라노 제(L-arabinofuranose) 및 D-글루쿠론산(D-glucuronic acid) 등이 치환된 이질 탄수화물로 존재하고 있다(Biely, P., Trends . Biotechnol., 3, 286-290, 1985). 그러므로 자일란(xylan)을 완전하게 분해하여 당화하기 위해서는 엔도-1,4-β-자일라나제(endo-1,4-β-xylanase), β-자일라나제(β-xylanase), α-글루크로니다제(α-glucuronidase), α-L-아라비노퓨라노제(α-L-arabinofuranose) 및 아세틸에스테라제(acetylesterase) 등의 몇 가지 효소의 협동적 작용이 필요하다(Bachmann, S. L., et.al., Appl . Environ . Microbiol, 57, 2121-2130, 1991). 이 중 자일라나제(xylanase)는 기질에 대한 분해 양식에 따라 엔도자일라나제(endo-β-xylanase), 엑소자일라나제(exo-β-xylanase) 및 자일로시다제(xylosidase)의 세 가지 종류로 구분되어 질 수 있으며 자일란(xylan)의 가수분해 과정에서 가장 중요한 역할을 담당한다.Xylan is the main constituent of hemicellulose, which makes up the cell walls of plants, and after cellulose, it is abundant and renewable carbohydrates in nature. Xylan is a polymer composed of β-1,4 bonds of xylopyranose and is generally an acetyl group, L-arabinofuranose and D-glu. D-glucuronic acid is present as a substituted heterologous carbohydrate (Biely, P., Trends . Biotechnol ., 3, 286-290, 1985). Therefore, endo-1,4-β-xylanase, β-xylanase, and α-gluk are required for glycosylation and glycosylation completely. The cooperative action of several enzymes, such as ro-nicurase (α-glucuronidase), α-L-arabinofuranose and acetylesterase, is required (Bachmann, SL, et.al., Appl. Environ. Microbiol, 57, 2121-2130, 1991). Among these, xylanase is divided into three types, endo-β-xylanase, exo-β-xylanase and xylosidase, depending on the degradation mode for the substrate. It can be classified into types and plays the most important role in the hydrolysis process of xylan.

자일라나제(Xylanase)는 제지의 표백공정, 사료효율 개선, 과일음료의 청징, 제빵의 고품질화 또는 농산 부산물 이용 등에서 널리 이용되고 있으며 다양한 미생물에 의해 생산된다. 제지산업에서는 표백공정에 응용하기 위한 내알칼리성 또는 내열성 자일라나제(xylanase)가 여러 세균으로부터 분리되었으며(Tenkanen, M. et.al., Enzyme . Microb . Technol, 14, 566-574, 1992), 셀룰라제(cellulase)의 활성이 없는 자일라나제(xylanase) 생산균도 다수 보고되어 제지용 셀룰라제(cellulose)의 손실을 줄이고자 하는 연구결과가 보고되었다(Khashin, A. et.al., Appl . Environ . Microbiol , 59, 1725-1730, 1993; Kosugi, A. et.al., J. Bacteriol, 183, 7037-7043, 2001). 또한, 자일라나제(xylanase)를 처리하여 빵의 품질을 개선하거나(Courtin, C. M. et.al., J. Agric . Food . Chem, 47, 1870-1877, 1999), β-자일로시다제(β-xylosidase) 및 자일라나제(xylanase)의 유전자가 도입된 효모로서 농임산 부산물을 미생물이 이용할 수 있도록 당화시키는 연구가 보고되었다(La Grange, D. C. et.al., Appl . Environ . Microbiol , 67, 5512-5519, 2001). 현재 사료산업에서는 자일라나제(xylanase)가 사료첨가용 효소로 시판되어 사용되고 있는데, 상기 효소는 곡물 사료 섭취시 헤미셀룰로즈(hemicellulose)로 인한 가축의 장내의 점질도를 낮추어주는 기능을 함으로써 가축의 소화기 질병을 예방하고 사료효율을 향상시키는 것으로 알려져 있다(McCracken, K. J. et.al., Br . Poult. Sci, 42, 638-642, 2001). Xylanase is widely used in the bleaching process of papermaking, feed efficiency improvement, clarification of fruit drinks, high quality of baking or the use of agricultural by-products, and is produced by various microorganisms. The paper industry has been isolated from several bacteria, the alkali or heat resistance Giles Rana claim (xylanase) for application to the bleaching process (Tenkanen, M. et.al., Enzyme. Microb. Technol, 14, 566-574, 1992), Numerous xylanase-producing bacteria without cellulase activity have been reported, and studies to reduce the loss of cellulose for papermaking have been reported (Khashin, A. et.al., Appl. .. Environ Microbiol, 59, 1725-1730 , 1993; Kosugi, A. et.al., J. Bacteriol, 183, 7037-7043, 2001). In addition, xylanase treatment can be used to improve bread quality (Courtin, CM et.al., J. Agric . Food . Chem , 47, 1870-1877, 1999), or β-xylosidase ( As a yeast in which the genes of β-xylosidase) and xylanase have been introduced, studies have been reported on glycosylation of agroforestry by-products for use by microorganisms (La Grange, DC et.al., Appl . Environ . Microbiol , 67). , 5512-5519, 2001). In the feed industry, xylanase is marketed and used as an enzyme for feed addition. The enzyme acts to lower the intestinal viscosity of livestock due to hemicellulose when eating grain feed. It is known to prevent disease and improve feed efficiency (McCracken, KJ et.al., Br . Poult. Sci , 42, 638-642, 2001).

현재 알려진 국내의 자일라나제 관련 특허로는 자일라나제를 생산하는 신규한 스트렙토마이세스 속 WL-2 균주에 대한 특허(대한민국 공개특허 2001-0111986), 고초균 유래 엔도자일라나제의 신호서열 유전자를 포함한 재조합 플라스미드 및 그를 이용한 외래단백질의 제조방법에 관한 특허(대한민국 공개특허 2000-0034279), 바실러스 속 AMX-4(Bacillus sp. AMX-4) 균주의 자일라나제(xylanase)를 코드하는 신규한 자일라나제 유전자(대한민국 공개특허 2003-0085679) 및 신규한 패니바실러스 sp. HY-8 균주의 자일라나제(대한민국 공개특허 2007-0082329) 등이 있으나 실제로 국내에서 여러 분야에 사용되지 못하고 있는 실정이다. 따라서 새로운 특성을 가지는 자일라나제의 연구가 요구되었다.Currently known domestic xylanase-related patents include a patent for a novel Streptomyces genus JL-2 strain that produces xylanase (Korean Patent Laid-Open Patent 2001-0111986), a signal sequence gene of Bacillus subtilis endozylanase. Patent for a recombinant plasmid containing the method and a method for producing a foreign protein using the same (Korean Patent Publication No. 2000-0034279), a novel xyl encoding the xylanase of Bacillus sp. AMX-4 strain Lanase gene (Korean Patent Laid-Open Publication No. 2003-0085679) and the novel Fanibacilli sp. Xylanase (HK-8 2007-0082329), etc. of the HV-8 strain, but is not actually used in many fields in Korea. Therefore, the study of xylanase with new properties was required.

이에, 본 발명자들은 다양한 곤충으로부터 신규한 자일라나제를 생산하는 고효율의 자일라나제 생산 균주를 선별하여 이로부터 분리된 자일라나제를 분리 정제하고 그 특성을 확인함으로써 본 발명을 완성하였다.  Accordingly, the present inventors completed the present invention by selecting a highly efficient xylanase producing strain that produces novel xylanase from various insects, separating and purifying the xylanase isolated therefrom, and confirming its characteristics.

본 발명의 목적은 땅강아지(Gryllotalpa orientalis)의 장으로부터 분리한 신규한 미생물 셀룰로시미크로비움 sp. HY-12(Cellulosimicrobium sp. HY-12) 균주 및 이로부터 생산되는 신규한 자일라나제를 제공하는 것이다.An object of the present invention is a land dog ( Gryllotalpa) orientalis ) microbial cellulose microbiium sp. It is to provide a Cellulosimicrobium sp. HY-12 (HY-12) strain and a novel xylanase produced therefrom.

상기 목적을 달성하기 위하여, 본 발명은 신규한 셀룰로시미크로비움 sp. HY-12(Cellulosimicrobium sp. HY-12) 균주를 제공한다.In order to achieve the above object, the present invention is a novel cellulose microbiium sp. HY-12 ( Cellulosimicrobium sp. HY-12) strain is provided.

또한, 본 발명은 상기 균주로부터 생산되는 신규한 자일라나제 효소 및 이를 코딩하는 유전자를 제공한다.The present invention also provides a novel xylanase enzyme produced from the strain and a gene encoding the same.

아울러, 본 발명은 셀룰로시미크로비움 sp. HY-12 균주를 이용하여 자일라나제를 생산하는 방법을 제공한다.In addition, the present invention is cellulose microbium sp. Provided are methods for producing xylanase using the HY-12 strain.

본 발명의 신규한 균주인 셀룰로시미크로비움 sp. HY-12(Cellulosimicrobium sp. HY-12) 및 이로부터 생산한 자일라나제는 비교적 넓은 범위의 온도 및 pH에서 우수한 자일란 분해활성을 나타내었으며, 신규성을 가지고 있으므로 자일라나제를 이용하는 여러 연구 및 산업 분야에서 유용하게 사용될 수 있다.Cellulose microbium sp. HY-12 ( Cellulosimicrobium sp. HY-12) and xylanases produced therefrom exhibited excellent xylan degradation activity over a relatively wide range of temperature and pH, and because of its novelty, many research and industrial fields using xylanase It can be usefully used in.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 신규한 셀룰로시미크로비움 sp. HY-12(Cellulosimicrobium sp. HY-12) 균주를 제공한다.The present invention is a novel cellulose microbiium sp. HY-12 ( Cellulosimicrobium sp. HY-12) strain is provided.

본 발명의 미생물은 땅강아지(Gryllotalpa orientalis)의 장으로부터 세균 분리용 배지에 도말하여 형성된 세균 콜로니를 박달나무 자일란(birchwood xylan)이 함유된 제한배지에 접종하여 배양한 후 배양상등액을 조효소액으로 사용하여 귀리 자일란의 분해능이 가장 우수한 균주를 선별하여 자일라나제를 생산하는 미생물을 선별하였다. 선별한 균주의 특성을 분석한 결과, 그람포지티브 간균(Gram-positive bacilli)으로 편모는 가지고 있지 않으며(도 1 참조) 16S rDNA의 부분 염기서열(서열번호 1)을 결정한 결과, 셀룰로시미크로비움 셀루란스 균주와 97%의 상동성을 나타냄을 확인하였다. The microorganism of the present invention is ground dog ( Gryllotalpa) Orientalis ) Inoculated with bacterial colonies formed from the intestinal separation medium from the intestine and inoculated in a restriction medium containing Birchwood xylan and cultured supernatant using the culture supernatant as coenzyme solution The microorganisms producing xylanase were selected by screening. As a result of analyzing the characteristics of the selected strains, Gram-positive bacilli did not have flagella (see Fig. 1), and the partial sequence of 16S rDNA (SEQ ID NO: 1) was determined. 97% homology with the cellulose strain was confirmed.

상기 미생물을 API 20E(BioMerieux) 미생물 동정키트를 이용하여 생리ㆍ생화학적 특성을 조사하였다. 그 결과, 베타-갈락토시다제 및 아세톤을 생산하고 글루코즈(glucose), 만니톨(mannitol), 람노오스(rhamnose), 슈크로즈(sucrose), 아미그다린(amygdalin), 아라비노즈(arabinose)의 탄소원에 대해 양성(positive)으로 나타났다(표 1 참조). 게다가 세포막 지방산 조성을 분석한 결과, anteiso-C15 :0 55.6%, iso-C16 :0 13% 및 anteiso-C17:0 12%가 주 지방산으로 존재하였다(표 2 참조). The microorganisms were examined for physiological and biochemical properties using API 20E (BioMerieux) microorganism identification kit. As a result, it produces beta-galactosidase and acetone and is the carbon source of glucose, mannitol, rhamnose, sucrose, amygdalin and arabinose. Positive for (see Table 1). In addition, the cell membrane fatty acid composition was analyzed, and anteiso-C 15 : 0 55.6% , iso-C 16 : 0 13% and anteiso-C 17: 0 12% were present as main fatty acids (see Table 2).

상기 여러 특성으로 보아 본 균주를 셀룰로시미크로비움 sp.에 속하는 균주로 동정하여 "셀룰로시미크로비움 sp. HY-12"로 명명하고, 상기 균주는 2007년 7월 12일자로 국제기탁기관인 한국생명공학연구원 내 유전자은행에 기탁하였다(기탁번호; KCTC 11155BP).In view of the above characteristics, this strain was identified as a strain belonging to cellulose microbium sp. And named "cellulose microbium sp. HY-12", and the strain was July 12, 2007 It was deposited in the Gene Bank of Korea Research Institute of Bioscience and Biotechnology (Accession Number; KCTC 11155BP).

또한, 본 발명은 상기 균주로부터 생산되는 신규한 자일라나제 효소 및 이를 코딩하는 유전자를 제공한다.The present invention also provides a novel xylanase enzyme produced from the strain and a gene encoding the same.

본 발명자들은 분리 및 동정한 셀룰로시미크로비움 sp. HY-12 균주가 생산하는 자일라나제를 정제하기 위하여 균주를 귀리 자일란을 포함하는 액체배지에서 배양한 후, 침전제를 넣어 수용성 단백질을 침전시키고 침전물을 회수하였다. 상기 침전물을 용해시킨 후 투석막으로 투석하여 DEAE-음이온교환수지 컬럼크로마토그래피, Mono-Q 음이온교환수지 컬럼크로마토그래피를 단계적으로 실시하여 정제하였다(도 2A 참조). The inventors have isolated and identified cellulose microbium sp. In order to purify the xylanase produced by the HY-12 strain, the strain was incubated in a liquid medium containing oat xylan, and then a precipitant was added to precipitate the water-soluble protein, and the precipitate was recovered. After dissolving the precipitate, the dialysis membrane was dialyzed to purify DEAE-anion exchange resin column chromatography and Mono-Q anion exchange resin column chromatography step by step (see FIG. 2A).

상기와 같이, 순수 분리한 자일라나제를 폴리아크릴아마이드 겔 전기영동법으로 분자량을 측정하고(도 2B 참조) 순수분리 된 단백질을 트립신으로 처리한 다음 역상 HPLC로서 분해단편을 분리한 다음 각 단편의 아미노산 서열을 결정하고 이를 바탕으로 축퇴 프라이머(degenerate primer)를 제작하였으며 inverse-PCR과 DNA walking 기법을 활용하여 상기 자일라나제의 전체 염기서열(서열번호 2) 및 아미노산서열(서열번호 3)을 결정하였다. 상기 결과, 274개의 아미노산 잔기로 구성된 분자량 42 kDa의 단백질을 규명하였다. As described above, the molecular weight of the purely isolated xylanase was measured by polyacrylamide gel electrophoresis (see FIG. 2B), the purified protein was treated with trypsin, and the digested fragments were separated by reverse phase HPLC. The degenerate primer was prepared based on the sequence, and the total nucleotide sequence of the xylanase (SEQ ID NO: 2) and amino acid sequence (SEQ ID NO: 3) were determined using inverse-PCR and DNA walking techniques. . As a result, a protein having a molecular weight of 42 kDa consisting of 274 amino acid residues was identified.

셀룰로시미크로비움 sp. HY-12 균주가 생산하는 자일라나제는 세균성 자일라나제로 알려진 아시도설무스 셀룰로리티쿠스(Acidothermus cellulolyticus ) 자일라나제와 52%의 아미노산 서열 상동성을 보였고, 설모비피다 알바(Thermobifida alba) 및 스트렙토마이스 애버미틸리스(Streptomyces avermitilis)의 자일라나제와 47%의 상동성을 보이는 신규한 자일라나제로 밝혀졌다.Cellulose microbium sp. Xylanase produced by the HY-12 strain is acidothermus known as bacterial xylanase. cellulolyticus ) 52% amino acid sequence homology with xylanase , and a novel xylase with 47% homology with xylanase from Thermobifida alba and Streptomyces avermitilis Turned out to be lanase.

본 발명에서는 상기와 같이, 셀룰로시미크로비움 sp. HY-12 균주로부터 분리한 자일라나제를 코딩하는 유전자의 염기서열을 밝혔으므로 당업계 공지된 통상의 방법을 이용하면 상기 유전자를 포함하는 재조합 벡터 및 재조합 벡터가 도입된 형질전환체를 제작할 수 있다.In the present invention, as described above, cellulose microbium sp. Since the nucleotide sequence of the gene encoding the xylanase isolated from the HY-12 strain has been revealed, a recombinant vector containing the gene and a transformant into which the recombinant vector is introduced can be prepared using conventional methods known in the art. .

본 발명에서는 자일라나제의 최적 반응조건을 조사한 결과, 온도조건은 60℃ 내지 70℃ 바람직하게는 70℃에서 최대 활성을 나타내었으며 산도는 pH 5.5 내지 6.5에서 최대 활성을 나타내어 중성 pH에서도 활성이 높은 자일라나제임을 확인하였다(도 3A 및 3B 참조). 열에 대한 안정성을 조사하기 위하여 온도와 시간을 달리하며 정제 효소액을 각 온도에서 30분간 처리 후 잔존 효소활성을 측정한 결과, 50℃보다 낮은 온도에서는 효소활성이 안정하게 유지됨을 확인하였다(도 3C 참조). 또한, 총 9 종류의 금속이온을 첨가하였을때, 자일라나제의 활성은 Fe2 +이온, Cu2 +이온, Ca 및 Co의 첨가 시 활성이 감소되었으나, Mn, Zn, K, Mg, Na 등의 첨가 시에 는 활성이 대체적으로 증가함을 확인하였다(도 3D 참조).In the present invention, the optimum reaction conditions of xylanase were examined, and the temperature conditions showed the maximum activity at 60 ° C. to 70 ° C., preferably 70 ° C., and the acidity showed the maximum activity at pH 5.5 to 6.5. It was confirmed to be xylanase (see FIGS. 3A and 3B). In order to investigate the stability to heat, after the treatment of purified enzyme solution for 30 minutes at each temperature, the remaining enzyme activity was measured, and it was confirmed that the enzyme activity remained stable at a temperature lower than 50 ° C (see FIG. 3C). ). Further, the addition of a total of nine kinds of metal ions, the activity of the xylene Rana agent is Fe 2 + ions, Cu 2 + ions, Ca and was reduced the addition of the activity of Co, Mn, Zn, K, Mg, Na, etc. In addition, it was confirmed that the activity was increased substantially (see Fig. 3D).

또한, 본 발명은 In addition, the present invention

1) 자일란을 포함하는 배지에서 셀룰로시미크로비움 sp. HY-12 균주 또는 형질전환체를 배양한 후 원심분리하여 상층액을 수득하는 단계;1) cellulose microbium sp. In a medium containing xylan. Culturing the HY-12 strain or the transformant and then centrifuging to obtain a supernatant;

2) 상기 단계 1)의 상층액에 침전제를 가하여 수용성 단백질 침전을 유도하는 단계; 2) adding a precipitant to the supernatant of step 1) to induce aqueous protein precipitation;

3) 상기 단계 2)의 침전물에서 불용성 침전물을 제거한 후 투석하여 조효소액을 수득하는 단계; 및 3) removing the insoluble precipitate from the precipitate of step 2) and dialysis to obtain a crude enzyme solution; And

4) 상기 단계 3)의 조효소액을 컬럼 크로마토그래피로 정제하는 단계를 포함하는 자일라나제 생산방법을 제공한다.4) It provides a xylanase production method comprising the step of purifying the crude enzyme solution of step 3) by column chromatography.

상기 방법에서, 단계 2)의 침전제로는 황산 암모늄, 아세톤, 아이소프로판올, 메탄올, 에탄올, 폴리에틸렌글리콜로 이루어진 군으로부터 선택된 어느 하나를 사용할 수 있다. 상기 침전은 다양한 구멍의 크기(pore size)를 가지는 막을 이용한 한외여과법으로 대체하여 농축하는 방법으로 수행할 수 있다. In the above method, as the precipitant of step 2), any one selected from the group consisting of ammonium sulfate, acetone, isopropanol, methanol, ethanol and polyethylene glycol can be used. The precipitation may be performed by concentrating by replacing the ultrafiltration method using a membrane having various pore sizes.

상기 방법에서, 단계 4)의 컬럼 크로마토그래피는 실리카겔, 세파덱스, RP-18, 폴리아미드, 도요펄 및 XAD 수지로 이루어진 군으로부터 선택된 충진제를 이용한 컬럼 크로마토그래피를 수행하여 정제할 수 있다. 컬럼 크로마토그래피는 필요에 따라 적절한 충진제를 선택하여 수차례 실시할 수 있다.In the above method, the column chromatography of step 4) may be purified by performing column chromatography using a filler selected from the group consisting of silica gel, Sephadex, RP-18, polyamide, Toyopearl, and XAD resin. Column chromatography can be carried out several times by selecting the appropriate filler as required.

이하, 본 발명을 실시예에 의해 상세히 설명한다. Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 실시예에 의해서 한정되지는 않는다.However, the following examples are merely illustrative of the present invention, and the content of the present invention is not limited by the examples.

<< 실시예Example 1> 균주 분리 및 선별 1> Strain Isolation and Screening

본 발명자들은 자일라나제(xylanase) 생산 활성을 가지는 미생물의 탐색에 이용된 땅강아지를 대전 인근에서 채집하여 살아있는 상태로 연구실로 운반하여 분류한 후 사용하였다. 자일라나제를 생산하는 세균의 분리를 위해 대상 곤충을 70%(w/w) 에탄올에 1 ~ 2분 정도 침지하여 충체표면의 오염원을 제거한 후, 충체에 묻어 있는 에탄올을 제거하기 위하여 멸균된 증류수로 2회 세척하였다. 세척한 충체를 해부하여 내장을 분리한 다음 완충액(Phospate buffered saline; 0.8% NaCl, 0.02% KCl, 0.144% Na2HPO4, 0.024% KH2PO4)을 넣고 분쇄하였으며, 여기서 얻어진 추출물을 단계적으로 희석하여 0.5% 박달나무 자일란(birchwood xylan)을 첨가한 고체배지에 도말한 다음 25℃에서 2일간 배양후 Congo-red 염색법(Skiper, N. et.al., Science, 230, 958-960, 1985)으로서 자라난 콜로니 주변에 투명환을 형성하는 균주를 1차적으로 선별하였다. 상기의 방법으로 선별된 균주들을 0.5% 박달나무 자일란(birchwood xylan)이 함유된 제한 배지(K2HPO4 7g/L, KH2PO4 2g/L, (NH4)2SO4 1g/L, MgSO4ㆍ7H2O 1.1g/L, 효모 추출물 0.6g/L) 3 ㎖에 접종하여 25℃의 진탕 배양기에서 48시간 배양 및 원심분리한 후 상등액을 회수하여 자일라나제 활 성을 측정하고, 그 중 자일라나제 활성이 우수한 균주를 최종적으로 선별하였다. 상기 효소 활성은 DNS(dinitrosalicylic acid) 정량법(Miller, G. L., Anal . Chem., 55, 952-959, 1959)을 사용하였고, 구체적으로는 100㎕의 효소용액에 100㎕의 기질용액(1% 귀리자일란이 포함된 50mM 인산나트륨, pH 6.0)을 넣고 50℃에서 10분간 반응시킨 후 700㎕의 DNS(3,5-Dinitrosalicylic acid) 용액을 첨가한 다음 100℃에서 5분간 처리한 후 흡광도 540 nm에서 측정하였다. 효소의 1유니트(unit)는 1분 동안에 1μmol의 환원당을 방출시키는 효소양으로 정하였다. The present inventors collected land puppies used in the search for microorganisms having xylanase production activity near Daejeon, transported them to the laboratory in a live state, and used them. To isolate the xylanase-producing bacteria, the target insects were immersed in 70% (w / w) ethanol for 1 to 2 minutes to remove the contaminants from the surface of the carcass, and then sterilized distilled water to remove the ethanol from the carcass. Washed twice. The washed carcasses were dissected to separate the viscera and then pulverized with buffer (Phospate buffered saline; 0.8% NaCl, 0.02% KCl, 0.144% Na 2 HPO 4 , 0.024% KH 2 PO 4 ). After dilution, smear on a solid medium containing 0.5% birch wood xylan and incubate at 25 ° C. for 2 days, followed by Congo-red staining (Skiper, N. et.al., Science , 230, 958-960, 1985). Strains forming transparent rings around colonies grown as) were selected first. Strains selected by the above method were limited to medium containing 0.5% birch wood xylan (K 2 HPO 4 7g / L, KH 2 PO 4 2g / L, (NH 4 ) 2 SO 4 1g / L, Inoculated with 3 g of MgSO 4 ㆍ 7H 2 O 1.1g / L, yeast extract 0.6g / L) and incubated for 48 hours in a shaking incubator at 25 ℃ and centrifuged to recover the supernatant to measure the activity of xylanase, Among them, strains excellent in xylanase activity were finally selected. The enzyme activity was determined by DNS (dinitrosalicylic acid) assay (Miller, GL, Anal . Chem ., 55, 952-959, 1959), specifically 100 μl of substrate solution (1% oat in 100 μl enzyme solution). Add 50mM sodium phosphate (pH 6.0) containing xylan, react for 10 minutes at 50 ℃, add 700μL of DNS (3,5-Dinitrosalicylic acid) solution, treat at 100 ℃ for 5 minutes and absorb at 540 nm. Measured. One unit of enzyme was defined as the amount of enzyme that releases 1 μmol of reducing sugar in one minute.

<< 실시예Example 2> 분리된 균주의 동정 2> Identification of Isolated Strains

본 발명자들은 상기 실시예 1에서 땅강아지의 장으로부터 분리하여 선발된 균주의 동정은 형태적, 생리생화학적, 지방산 조사 및 16S rDNA의 염기서열을 조사하였다. 분리균주의 형태학적 특성을 관찰하기 위해 그람(Gram)염색과 투과전자현미경(Transmission Electron Microscope, TEM)을 사용하여 외형을 조사한 결과, 도 1에서 볼 수 있듯이 0.7 ㎛의 세포크기와 1.75 ㎛의 세포길이를 갖는 막대형이었으며 편모를 가지지 않는 운동성이 없는 간균으로 나타났다. 또한, 미생물의 16S rDNA 염기서열 결정을 위하여 균주의 게놈 DNA를 분리하였으며 PCR을 위한 반응물은 다음과 같은 조성으로 50 ㎕의 반응을 실시하였다. 1 ㎕의 게놈 DNA(50-100ng/㎕)에 10배의 Tag DNA 중합효소 완충액(MgCl2 첨가) 2 ㎕, 2.5mM dNTPs 2 ㎕, 10pmol의 정방향 프라이머(27F: 5'-agagtttgatcmtggctcag-3', 서열번호 4)와 역방 향 프라이머(1492R: 5'-ggttaccttgttacgactt-3', 서열번호 5)를 각각 1 ㎕, 1 ~ 2 단위의 Tag DNA 중합효소(Promega, USA)를 첨가하여 최종 50 ㎕ 반응액이 되도록 증류수를 더하였다. 프라이머들은 진핵세균의 16S rDNA 부위에 해당하는 1373 bp의 뉴클레오티드 증폭을 위해 합성하였다. PCR 반응은 94℃에서 5분간의 변성(denaturation)을 수행한 후 94℃에서 30초의 변성, 50℃에서 30초의 어닐링(annealing), 72℃에서 3분의 연장(extension)을 30회 반복한 후 마지막으로 72℃에서 7분간 연장으로 마무리하고 4℃에서 유지되었다. The inventors of the present invention identified the strains isolated from the intestine of the ground dog in Example 1 were examined morphological, physiological biochemical, fatty acid irradiation and the nucleotide sequence of 16S rDNA. In order to observe the morphological characteristics of the isolated strain, the appearance was examined using Gram staining and Transmission Electron Microscope (TEM). As shown in FIG. 1, the cell size of 0.7 μm and the cells of 1.75 μm were observed. It was rod-shaped with length and appeared to be nonmotile bacilli without flagella. In addition, the genomic DNA of the strain was isolated to determine the 16S rDNA sequence of the microorganism, and the reaction for PCR was 50 μL of the reaction with the following composition. 10-fold Tag DNA polymerase buffer (MgCl 2 ) in 1 μl genomic DNA (50-100 ng / μl) 2 μl, 2.5 μm dNTPs, 2 μl, 10 pmol of forward primer (27F: 5′-agagtttgatcmtggctcag-3 ′, SEQ ID NO: 4) and reverse primer (1492R: 5′-ggttaccttgttacgactt-3 ′, SEQ ID NO: 5) 1 μl and 1 to 2 units of tag DNA polymerase (Promega, USA) were added thereto, and distilled water was added to the final 50 μl reaction solution. Primers were synthesized for nucleotide amplification of 1373 bp corresponding to the 16S rDNA site of eukaryotic bacteria. PCR reaction was performed after 5 minutes of denaturation at 94 ° C, followed by 30 seconds of denaturation at 94 ° C, 30 seconds of annealing at 50 ° C, and 3 minutes of extension at 72 ° C. Finally it was finished by extension at 72 ° C. for 7 minutes and kept at 4 ° C.

그 결과, 확보된 증폭단편의 염기서열(서열번호 1)을 결정하고 유전자원 은행 데이타베이스(Genebank database) 검색결과, 셀룰로시미크로비움 셀루란스 균주와 97%의 상동성을 나타내었다. As a result, the nucleotide sequence (SEQ ID NO: 1) of the obtained amplified fragment was determined, and the result of searching the Genebank database showed a homology of 97% with the cellulose microbiium cellulose strain.

상기 균주의 생리ㆍ생화학적 조사는 25℃에서 수행하였으며 API 20E(BioMerieux)의 상용되는 키트(kit)를 이용하였다. 그 결과 하기 표 1에 나타낸 바와 같이 베타-갈락토시다제 및 아세톤을 생산하고 글루코즈(glucose), 만니톨(mannitol), 람노오스(rhamnose), 슈크로즈(sucrose), 아미그다린(amygdalin), 아라비노즈(arabinose)의 탄소원에 대해 양성(positive)으로 나타났다(표 1 참조). 또한, 분리균의 정확한 동정을 위해서 추가적으로 세포막 지방산 조성을 분석하였다. 세포지방산의 성분 분석과 정량은 MIS library generation software(Microbial ID)를 이용하여 수행하였으며, 결과는 MIDI Aerobe Library(ver. 3.8)와 비교하였다. 그 결과, anteiso-C15 :0 55.6%, iso-C16 :0 13% 및 anteiso-C17:0 12%가 주 지방산으로 존재하였다(표 2 참조). Physiological and biochemical investigation of the strain was carried out at 25 ℃ and used a commercial kit (API) of API 20E (BioMerieux). As a result, beta-galactosidase and acetone were produced as shown in Table 1 below, and glucose, mannitol, rhamnose, sucrose, amygdalin, arabin It was positive for the carbon source of arabinose (see Table 1). In addition, the cell membrane fatty acid composition was further analyzed for accurate identification of isolates. Component analysis and quantification of cell fatty acids were performed using MIS library generation software (Microbial ID), and the results were compared with the MIDI Aerobe Library (ver. 3.8). As a result, anteiso-C 15 : 0 55.6% , iso-C 16 : 0 13% and anteiso-C 17: 0 12% were present as main fatty acids (see Table 2).

상기 여러 특성으로 보아 분리균은 셀룰로시미크비움(Cellulosimicrobium sp.)에 속하는 것으로 동정하였으며 셀룰로시미크비움 sp. HY-12로 명명하였다. 상기 셀룰로시미크로비움 sp. HY-12 균주는 2007년 7월 12일자로 국제기탁기관인 한국생명공학연구원 내 유전자 은행에 기탁하였다(기탁번호; KCTC 11155BP). In view of the above characteristics, the isolate was identified as belonging to Cellulosimicrobium sp. Named HY-12. The cellulose microbium sp. The HY-12 strain was deposited on July 12, 2007 at the Gene Bank of Korea Biotechnology Research Institute, an international depository institution (Accession Number; KCTC 11155BP).

셀룰로시미크비움Cellulosic mibium spsp . . HYHY -12 균주의 형태적, 생리적 특성 Morphological and Physiological Characteristics of -12 Strains 특성 characteristic 반응성Responsive 그람염색(Gram staining) Gram staining ++ 운동(Mortility) Mortility -- 세포 형태(Cell form) Cell form rodrod β-갈락토시다제(galactosidase) β-galactosidase ++ 오르니틴 디카르복실라제(Ornithine decarboxylase) Ornithine decarboxylase -- 구연산 이용(Citrate utilization) Citrate utilization -- H2S 생산 H2S production -- 우레아제(Urease) Urease -- 트립토판 디아미나제(Tryptophane deaminase) Tryptophane deaminase -- 인돌(Indole) 생산 Indole production -- 아세톤(Acetone) 생산 Acetone Production ++ 젤라틴의 단백질분해(Proteolysis of gelatin) Proteolysis of gelatin -- 아르기닌 디하이드로라제(Arginine dihydrolase) Arginine dihydrolase -- 라이신 디카르복실라제(Lysine decarboxylase) Lysine decarboxylase -- 글루코즈(Glucose) Glucose ++ 만니톨(Mannitol) Mannitol ++ 이노시톨(Inositol) Inositol -- 솔비톨(Sorbitol) Sorbitol -- 람노오스(Rhamnose) Rhamnose ++ 슈크로즈(Sucrose) Sucrose ++ 멜리비오스(Melibiose) Melibiose -- 아미그달린(Amygdaline) Amygdaline ++ 아라비노즈(Arabinose) Arabinose ++

셀룰로시미크비움Cellulosic mibium spsp . . HYHY -12 균주의 주요 세포 지방산 Major Cell Fatty Acids of -12 Strains 지방산fatty acid 함량(%)content(%) 14:0 iso 14: 0 iso 1.1±0.71.1 ± 0.7 14:0 14: 0 1.3±0.41.3 ± 0.4 15:0 iso 15: 0 iso 9.5±2.19.5 ± 2.1 15:0 anteiso 15: 0 anteiso 55.6±7.755.6 ± 7.7 16:0 iso 16: 0 iso 13.0±5.413.0 ± 5.4 16:0 16: 0 4.8±2.74.8 ± 2.7 17:0 anteiso 17: 0 anteiso 12.5±1.712.5 ± 1.7 18:1 w7c 18: 1 w7c 0.6±0.60.6 ± 0.6

<< 실시예Example 3>  3> 자일라나제Xylanase 특성 분석 Characterization

<3-1> <3-1> 자일라나제Xylanase 분리 및 정제 Separation and Purification

본 발명자들은 분리, 동정한 셀룰로시미크로비움 sp. HY-12 균주가 생산하는 자일라나제를 아래와 같이 순수 분리하였다. 구체적으로, K2HPO4 7g/L, KH2PO4 2g/L, (NH4)2SO4 1g/L, MgSO4ㆍ7H2O 1.1g/L, 효모 추출물 0.6g/L, 귀리 자일란 3g/L(Sigma Chem. Co.)로 구성되는 액체배지에서 48시간 배양한 후 원심분리하여 회수한 상층액에 황산암모늄 분말을 70% 포화되게 첨가한 다음 원심분리하여 침전물을 회수하였다. 상기의 침전물에 50 mM 인산나트륨(pH 6.0) 완충액을 가하여 침전물을 용해시킨 다음, 12,000 rpm에서 10분간 원심분리하여 불용성 침전을 제거한 다음 20 mM 인산염 완충액(pH 7.0)로 4℃에서 12시간 투석(PIERCE, MW cutoff 10 kDa)하여 조효소액을 얻었다. 효소의 컬럼 크로마토그래피를 위하여 FPLC system(Amersham-Pharmacia Biotech)을 사용하였다. 우선 20 mM 인산염 완충액으로 평형화 된 Hiprep 16/10 DEAE(Amersham Pharmacia Biotech Inc) 컬럼에 샘플을 로딩(loading) 후 0 ~ 0.5M NaCl 선형 농도구배로서 5ml/min의 유속으로 용출하였다. 이때 약 0.35 ~ 0.4 M의 NaCl 농도에서 용출되는 효소활성 분획만을 취하여 20mM bis-Tris buffer로 평형화된 Mono Q HR 5/5 이온교환수지(Amersham Pharmacia Biotech Inc) 컬럼을 이용하여 1ml/min의 유속으로 NaCl의 농도를 0 ~ 0.5M까지 농도구배로서 용출한 다음(도 2A 참조), 약 0.35 M NaCl 농도에서 용출되는 효소활성 분획만을 취하여 정제여부를 SDS-PAGE로 확인하였다. 활성 분획을 동결건조하여 -20℃에 보관하며 사용하였다. The present inventors have isolated and identified cellulose microbium sp. Xylanase produced by the HY-12 strain was purified as follows. Specifically, K 2 HPO 4 7g / L, KH 2 PO 4 2g / L, (NH 4 ) 2 SO 4 1g / L, MgSO 4 7H 2 O 1.1g / L, yeast extract 0.6g / L, oat xylan After incubation for 48 hours in a liquid medium consisting of 3g / L (Sigma Chem. Co.) and added to the supernatant recovered by centrifugation 70% saturated ammonium sulfate powder and then centrifuged to recover the precipitate. 50 mM sodium phosphate (pH 6.0) buffer was added to the precipitate to dissolve the precipitate, followed by centrifugation at 12,000 rpm for 10 minutes to remove insoluble precipitate, followed by dialysis at 4 ° C. with 20 mM phosphate buffer (pH 7.0) for 12 hours. PIERCE, MW cutoff 10 kDa) to obtain a crude enzyme solution. An FPLC system (Amersham-Pharmacia Biotech) was used for column chromatography of the enzyme. First, samples were loaded on a Hiprep 16/10 DEAE (Amersham Pharmacia Biotech Inc) column equilibrated with 20 mM phosphate buffer and eluted at a flow rate of 5 ml / min as a linear gradient of 0 to 0.5 M NaCl. At this time, the enzyme activity fraction eluted at NaCl concentration of about 0.35 to 0.4 M was taken and the mono Q HR 5/5 ion exchange resin (Amersham Pharmacia Biotech Inc) column equilibrated with 20 mM bis-Tris buffer was used at a flow rate of 1 ml / min. The concentration of NaCl was eluted with a concentration gradient from 0 to 0.5M (see FIG. 2A), and only the enzyme activity fraction eluted at about 0.35 M NaCl concentration was taken and purified by SDS-PAGE. The active fractions were lyophilized and used at -20 ° C.

<3-2> <3-2> 자일라나제Xylanase 분자량 및 아미노산 서열 결정 Molecular Weight and Amino Acid Sequencing

상기 실시예 <3-1>에서 순수 분리된 자일라나제를 SDS-PAGE로 분자량을 확인하였다. 도 3B에서 레인 1(lane 1)은 크기를 알고 있는 마커 단백질이고, 레인 2(lane 2)는 배양 상등액을, 레인 3(lane 3)은 Mono Q 컬럼을 거쳐 최종적으로 정제된 자일라나제 단백질을 나타낸 것이다. SDS-PAGE에 의한 분자량을 측정한 결과, 본 발명의 자일라나제는 약 42 kDa의 분자량을 지닌 것으로 나타났다(도 2B 참조). In Example <3-1>, the purely isolated xylanase was confirmed molecular weight by SDS-PAGE. In FIG. 3B, lane 1 is a marker protein of known size, lane 2 is a culture supernatant, and lane 3 is a finally purified xylanase protein via a Mono Q column. It is shown. As a result of measuring the molecular weight by SDS-PAGE, the xylanase of the present invention was found to have a molecular weight of about 42 kDa (see FIG. 2B).

또한, 상기의 분리된 자일라나제의 부분 염기서열을 결정하기 위해 정제된 단백질을 200μg을 진공건조한 다음 25 ㎕의 8M 우레아(urea)와 25㎕ 0.4M 암모늄 바이카보네이트(ammonium bicarbonate)로 용해한 다음 5 ㎕의 45mM DTT를 첨가하여 50℃에서 15분간 반응하였다. 이를 상온에서 냉각 후 100mM 요오드아세트아미드(iodoacetamide) 5㎕를 첨가하여 15분간 상온처리후 60 ㎕의 증류수를 첨가한 다음 5 ㎍의 트립신(Sigma Chem. Co.)을 첨가하여 37℃에서 16시간 반응하였다. 그 결과 얻어진 펩티드 단편을 RP-HPLC에서 0.5% TFA로 평형화 된 C18 역상크로마토그래피 컬럼 (YMC Pack Protein RP, 250 x 4.6 mm)에서 0 ~ 60% 아세토니트릴 선형 농도구배로 분리하고 얻어지는 분획을 기초과학지원연구원에 Applied Biosystems Procise 491 sequencer를 이용하여 단백질의 일부 아미노산 서열을 분석한 결과 아시도설무스 셀룰로리티쿠스(Acidothermus cellulolyticus) 자일라나제와 상동성을 보이는 트립신 분해 단편을 확인할 수 있었다. 이 결과를 바탕으로 NCBI에서 제공하는 자일라나제 서열을 내려받아 상동성이 높은 여러 자일라나제의 서열을 비교하여 높은 아미노산 서열을 중심으로 축퇴성 프라이머를 제작하였고(정방향 프라이머: 5'-atytggcaatgggacgt-'3, 서열번호 6; 역방향 프라이머: 5'-tggtcngcttcgtgrgccca-'3, 서열번호 7), PCR과 DNA walking 기법(DNA walking speedup kit, Seegene)을 통해 셀룰로시미크비움 sp. HY-12 자일라나제의 전체 염기서열과 아미노산 서열을 결정하였다. PCR 증폭 조건은 Hot Start PCR kit(Roche, USA)를 사용하여 상기에 기재된 축퇴성 프라이머 쌍과 주형을 94℃에서 5분 동안 변성시키고, 95℃에서 30초, 40℃에서 30초 및 72℃에서 30초 반응시키고, 72℃에서 7분간 연장시켜 반응을 종결하였다. In addition, in order to determine the partial sequencing of the separated xylanase, 200 μg of the purified protein was vacuum dried, and then dissolved in 25 μl of 8M urea and 25 μl 0.4M ammonium bicarbonate. 45 μl of DTT was added and reacted at 50 ° C. for 15 minutes. After cooling at room temperature, 5 µl of 100 mM ioacetamide was added thereto, followed by normalization for 15 minutes, followed by 60 µl of distilled water, and 5 µg of trypsin (Sigma Chem. Co.). It was. The resulting peptide fragment was separated on a C18 reversed phase chromatography column (YMC Pack Protein RP, 250 x 4.6 mm) equilibrated with 0.5% TFA in RP-HPLC with a 0 to 60% acetonitrile linear gradient and the resulting fraction results in Institute using Applied Biosystems Procise 491 sequencer was analyzed and some amino acid sequence of the protein to know Dorsal mousse cellulose utility kusu (Acidothermus cellulolyticus ) trypsin digestion fragment homologous to xylanase. Based on this result, the xylanase sequence provided by NCBI was downloaded, and the sequences of several highly homologous xylanases were compared to prepare degenerate primers based on high amino acid sequences (forward primer: 5'-atytggcaatgggacgt-). '3, SEQ ID NO: 6; reverse primer: 5'-tggtcngcttcgtgrgccca-'3 (SEQ ID NO: 7), cellulose cymbium sp. Through PCR and DNA walking techniques (DNA walking speedup kit, Seegene). The total nucleotide sequence and amino acid sequence of HY-12 xylanase were determined. PCR amplification conditions were performed using a Hot Start PCR kit (Roche, USA) to denature the degenerate primer pairs and template described above at 94 ° C. for 5 minutes, 30 seconds at 95 ° C., 30 seconds at 40 ° C., and 72 ° C. The reaction was carried out for 30 seconds and extended at 72 ° C. for 7 minutes to terminate the reaction.

그 결과, 본 발명의 자일라나제는 274개의 아미노산 잔기로 구성(서열번호 2)된 단백질로서 유전자원 은행 데이타베이스(Genebank database) 검색결과, 아시도설무스 셀룰로리티쿠스(Acidothermus cellulolyticus) 자일라나제와 52%의 아미노산 서열 상동성을 보였고, 설모비피다 알바(Thermobifida alba) 및 스트렙토마이스 애버미틸리스(Streptomyces avermitilis)의 자일라나제와 47%의 상동성을 보이는 새로운 자일라나제로 판명되었다. As a result, the xylene Rana of the present invention is composed of the 274 amino acid residues (SEQ ID NO: 2) The gene bank data source as a protein base (Genebank database) search results, Syracuse know Dorsal mousse utility Cellulofine (Acidothermus cellulolyticus ) showed 52% amino acid sequence homology with xylanase and thermobifida alba ) and Streptomyces avermitilis have been identified as new xylanase with 47% homology to xylanase.

<3-3> <3-3> 자일라나제Xylanase 생화학적 특성조사 Biochemical Characterization

자일라나제의 최적 반응조건을 조사하기 위하여 반응 온도, 반응액의 pH, 금속이온의 영향을 알아보았다. In order to investigate the optimal reaction conditions of xylanase, the effects of reaction temperature, pH of reaction solution and metal ions were investigated.

효소활성 최적온도는 30 ~ 90℃범위에서 10℃ 간격으로 효소활성을 측정하였고, 온도를 10℃ ~ 90℃의 온도에서 각각 30분간 처리한 후 효소의 잔여 활성을 측정하는 방법을 이용하여 효소의 열안정성을 측정하였다. 효소활성 최적 pH는 50 mM 나트륨 시트레이트 완충용액(Sodium citrate buffer)(pH 3.0-6.0), 50 mM 나트륨 인산염 완충용액(pH 6.0-7.0), 50 mM Tris-HCl 완충용액(pH 7.0-8.0) 및 50 mM 붕산 완충용액(boric acid buffer)(pH 8.0-10.0)을 사용하여 결정하였다. 먼저, 반응 온도 및 pH가 자일라나제의 활성에 미치는 영향을 조사한 결과, pH 5.5 ~ 6.5와 70℃에서 최대 활성을 보여 중성 pH에서 활성이 높은 자일라나제임을 확인하였다(도 3A 및 3B 참조). 또한, 열에 대한 안정성을 조사하기 위하여 온도와 시간을 달리하며 정제 효소액을 각 온도에서 방치한 후 잔존활성을 측정한 결과, 60℃에서 30분간 처리했을 때는 활성이 35% 정도로 감소하였고, 50℃에서는 30분 처리에 의해 잔존활성이 약 84% 정도로 나타났지만, 50℃보다 낮은 온도에서는 효소활성이 안정하게 유지됨을 확인하였다(도 3C 참조). 또한, 자일라나제에 대한 금속이온의 영향을 조사한 결과, 코발트 이온 등 총 9 종류의 금속이온(Sigma Chem. Co.)을 10 mM의 농도로 첨가하여 반응시켰을 때, 자일라나제의 활성은 Fe2 +, Cu2 +, Ca, Co 이온의 첨가 시에는 활성이 감소되었으나, K, Mn, Na 이온의 첨가 시에는 활성이 대체적으로 증가하였다(도 3D 참조). The optimum temperature of enzyme activity was measured at 10 ℃ intervals in the range of 30 ~ 90 ℃, and after 30 minutes of treatment at 10 ℃ ~ 90 ℃ temperature, the enzyme activity was measured by measuring the residual activity of enzyme. Thermal stability was measured. The optimum pH for enzyme activity was 50 mM Sodium Citrate Buffer (pH 3.0-6.0), 50 mM Sodium Phosphate Buffer (pH 6.0-7.0), 50 mM Tris-HCl Buffer (pH 7.0-8.0) And 50 mM boric acid buffer (pH 8.0-10.0). First, the effect of reaction temperature and pH on the activity of xylanase was examined. As a result, the maximum activity was observed at pH 5.5 to 6.5 and 70 ° C., indicating that xylanase was highly active at neutral pH (see FIGS. 3A and 3B). . In addition, in order to investigate the stability to heat, the residual activity was measured after leaving the purified enzyme solution at different temperatures at different temperatures and times. When the treatment was performed at 60 ° C. for 30 minutes, the activity decreased to about 35%. After 30 minutes of treatment, the residual activity was about 84%, but it was confirmed that the enzyme activity remained stable at a temperature lower than 50 ° C (see FIG. 3C). In addition, as a result of investigating the influence of metal ions on xylanase, the activity of xylanase was Fe when 9 kinds of metal ions (Sigma Chem. Co.) including cobalt ions were added and reacted at a concentration of 10 mM 2 + , When the Cu 2 + , Ca, Co ions were added, the activity was decreased, but when the K, Mn, Na ions were added, the activity was generally increased (see FIG. 3D).

도 1은 셀룰로시미크로비움 sp. HY-12(Cellulosimicrobium sp. HY-12) 균주의 전자현미경 사진이고, 1 is cellulose microbium sp. Electron micrograph of the strain of Cellulosimicrobium sp.

도 2는 HY-12 균주로부터 분리한 자일라나제를 컬럼 크로마토그래피로서 분리정제하는 과정(도 2A)과 아크릴아마이드 겔로 전기영동한 결과(도 2B)를 나타낸 그림이고,FIG. 2 is a diagram showing the separation and purification of xylanase from HY-12 strain as column chromatography (FIG. 2A) and electrophoresis with acrylamide gel (FIG. 2B).

도 3은 HY-12 균주로부터 분리한 자일라나제의 생화학적 특성을 나타낸 그래프이다:3 is a graph showing the biochemical properties of xylanase isolated from HY-12 strains:

A: 자일라나제의 최적 반응 pH;    A: optimum reaction pH of xylanase;

B: 자일라나제의 최적 반응 온도;    B: optimum reaction temperature of xylanase;

C: 자일라나제의 열에 대한 안정성; 및    C: stability to heat of xylanase; And

D: 자일라나제에 대한 금속이온의 영향,    D: effect of metal ions on xylanase,

<110> Korea Research Institute of Bioscience and Biotechnology <120> Novel Cellulosimicrobium sp. HY-12 strain and xylanase produced from it <130> 7p-08-12 <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 1373 <212> DNA <213> 16S rDNA of Cellulosimicrobium sp. HY-12 <400> 1 tgaagcccgc ttgctgggtg gatcagtggc gaacgggtga gtaacacgtg agtaacctgc 60 ccctgacttt gggataactc cgggaaaccg gggctaatac cggatatgag ctcttgctgc 120 atggtgaggg ttggaaagat ttatcggttg gggatgggct cgcggcctat cagcttgttg 180 gtggggtgat ggcctaccaa ggcgacgacg ggtagccggc ctgagagggc gaccggccac 240 actgggactg agacacggcc cagactccta cgggaggcag cagtggggaa tattgcacaa 300 tgggcgcaag cctgatgcag cgacgccgcg tgagggatga cggccttcgg gttgtaaacc 360 tctttcagca gggaagaagc gcaagtgacg gtacctgcag aagaagcgcc ggctaactac 420 gtgccagcag ccgcggtaat acgtagggcg caagcgttgt ccggaattat tgggcgtaaa 480 gagctcgtag gcggtttgtc gcgtctgctg tgaaatcccg aggctcaacc tcgggcttgc 540 agtgggtacg ggcagactag agtgcggtag gggagactgg aattcctggt gtagcggtgg 600 aatgcgcaga tatcaggagg aacaccgatg gcgaaggcag gtctctgggc cgcaactgac 660 gctgaggagc gaaagcatgg ggagcgaaca ggattagata ccctggtagt ccatgccgta 720 aacgttgggc actaggtgtg gggctcattc cacgagttcc gtgccgcagc taacgcatta 780 agtgccccgc ctggggagta cggccgcaag gctaaaactc aaaggaattg acgggggccc 840 gcacaagcgg cggagcatgc ggattaattc gatgcaacgc gaagaacctt accaaggctt 900 gacatatacg agaatccgct ggagacagcg gcctctttgg acactcgtat acaggtggtg 960 catggttgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc 1020 ctcgtcccat gttgccagcg ggttatgccg gggactcatg ggagactgcc ggggtcaact 1080 cggaggaagg tggggatgac gtcaaatcat catgcccctt atgtcttggg cttcacgcat 1140 gctacaatgg ccggtacaaa gggctgcgat accgtaaggt ggagcgaatc ccaaaaagcc 1200 ggtctcagtt cggattgggg tctgcaactc gaccccatga agtcggagtc gctagtaatc 1260 gcagatcagc aacgctgcgg tgaatacgtt cccgggcctt gtacacaccg cccgtcaagt 1320 cacgaaagtc ggtaacaccc gaagcccatg gcccaaccct tgtgggggga gtg 1373 <210> 2 <211> 1188 <212> DNA <213> nucleotide sequence of xylanase <400> 2 atggccactg cacctgtcac caccacctct cccaccccgc gacggcaccg ccgagccatc 60 gtgctcggag ccggcatcgc cgtcgtcggc ctggtcgccg cgcccctcgc ggcatccgcc 120 cacggcggct ctccgtgggg ccaccacgcc gtccccggcg cccccagcca cggccacaag 180 ccgcccaccc agcccaccac cggcgacgac accctgcgga gcctcgcggc gccgtcgggc 240 ctgcggatcg gtgcagccat caacaccgac aagctcggca ccgacgacgc ctacacgacg 300 atcgccggcg agcagttctc caccgtcagc ccggagaacg tcatgaagtg ggacacgatc 360 gagcccacgc agggcacgta caacttcgcg ccggccgaca agctcgtggc cttcgcgcag 420 cagcacggcc agctcgtccg cggccacacc ctggtctggc acaaccagct cccgtcctgg 480 ctcaccgccg aagcggacag cctcaccgcc gaccagctcc gggcgatcct caagaagcac 540 atccagaccg aggtcaagca cttcaagggc aagatctggc agtgggacgt cgtcaacgag 600 gccttcgccg acgacggcac gctccgcgac gacatctggt cgcagaagct cggcgacagc 660 tacatcgccg acgcgttccg ctgggcccac gaggccgacc cgaaggccaa gctcttctac 720 aacgactaca acatcgagta cacgggcgcg aagagcgaag ccgtctacgc gatggtcaag 780 aagctgcagg cccagggcgt gcccatcgac ggcgtcggtt tccaggacca cctcgacacg 840 cagtacggca cgccgaacct ccaggagacg atgcagaagt tcgccgacct gggcctcgac 900 accgccgtga ccgaggccga cgtccgcacc acgctccccg tcaccaccgt ggagcagacc 960 gcccagaaca gcatgtggtc gcagtcgctg tccgcgtgcc tgctggtcaa gcgctgcatc 1020 tcgttcaccg tctggggcat cgacgacggc tcgtcctggg tgccgagcac gttcgagggc 1080 gagggcgcgg ccctgctctg ggacgacgac ttccagccga aggcccagtt cggcgtcctc 1140 cagcagacgc tcgagctcgc cgccggggca ccgcgccgga cgcgttga 1188 <210> 3 <211> 395 <212> PRT <213> amino acid sequence of xylanase <400> 3 Met Ala Thr Ala Pro Val Thr Thr Thr Ser Pro Thr Pro Arg Arg His 1 5 10 15 Arg Arg Ala Ile Val Leu Gly Ala Gly Ile Ala Val Val Gly Leu Val 20 25 30 Ala Ala Pro Leu Ala Ala Ser Ala His Gly Gly Ser Pro Trp Gly His 35 40 45 His Ala Val Pro Gly Ala Pro Ser His Gly His Lys Pro Pro Thr Gln 50 55 60 Pro Thr Thr Gly Asp Asp Thr Leu Arg Ser Leu Ala Ala Pro Ser Gly 65 70 75 80 Leu Arg Ile Gly Ala Ala Ile Asn Thr Asp Lys Leu Gly Thr Asp Asp 85 90 95 Ala Tyr Thr Thr Ile Ala Gly Glu Gln Phe Ser Thr Val Ser Pro Glu 100 105 110 Asn Val Met Lys Trp Asp Thr Ile Glu Pro Thr Gln Gly Thr Tyr Asn 115 120 125 Phe Ala Pro Ala Asp Lys Leu Val Ala Phe Ala Gln Gln His Gly Gln 130 135 140 Leu Val Arg Gly His Thr Leu Val Trp His Asn Gln Leu Pro Ser Trp 145 150 155 160 Leu Thr Ala Glu Ala Asp Ser Leu Thr Ala Asp Gln Leu Arg Ala Ile 165 170 175 Leu Lys Lys His Ile Gln Thr Glu Val Lys His Phe Lys Gly Lys Ile 180 185 190 Trp Gln Trp Asp Val Val Asn Glu Ala Phe Ala Asp Asp Gly Thr Leu 195 200 205 Arg Asp Asp Ile Trp Ser Gln Lys Leu Gly Asp Ser Tyr Ile Ala Asp 210 215 220 Ala Phe Arg Trp Ala His Glu Ala Asp Pro Lys Ala Lys Leu Phe Tyr 225 230 235 240 Asn Asp Tyr Asn Ile Glu Tyr Thr Gly Ala Lys Ser Glu Ala Val Tyr 245 250 255 Ala Met Val Lys Lys Leu Gln Ala Gln Gly Val Pro Ile Asp Gly Val 260 265 270 Gly Phe Gln Asp His Leu Asp Thr Gln Tyr Gly Thr Pro Asn Leu Gln 275 280 285 Glu Thr Met Gln Lys Phe Ala Asp Leu Gly Leu Asp Thr Ala Val Thr 290 295 300 Glu Ala Asp Val Arg Thr Thr Leu Pro Val Thr Thr Val Glu Gln Thr 305 310 315 320 Ala Gln Asn Ser Met Trp Ser Gln Ser Leu Ser Ala Cys Leu Leu Val 325 330 335 Lys Arg Cys Ile Ser Phe Thr Val Trp Gly Ile Asp Asp Gly Ser Ser 340 345 350 Trp Val Pro Ser Thr Phe Glu Gly Glu Gly Ala Ala Leu Leu Trp Asp 355 360 365 Asp Asp Phe Gln Pro Lys Ala Gln Phe Gly Val Leu Gln Gln Thr Leu 370 375 380 Glu Leu Ala Ala Gly Ala Pro Arg Arg Thr Arg 385 390 395 <210> 4 <211> 20 <212> DNA <213> Sense primer for 16S rDNA of Cellulosimicrobium sp. HY-12 <400> 4 agagtttgat cmtggctcag 20 <210> 5 <211> 19 <212> DNA <213> Antisense primer for 16S rDNA of Cellulosimicrobium sp. HY-12 <400> 5 ggttaccttg ttacgactt 19 <210> 6 <211> 17 <212> DNA <213> Sense primer for xylanase <400> 6 atytggcaat gggacgt 17 <210> 7 <211> 20 <212> DNA <213> Antisense primer for xylanase <400> 7 tggtcngctt cgtgrgccca 20 <110> Korea Research Institute of Bioscience and Biotechnology <120> Novel Cellulosimicrobium sp. HY-12 strain and xylanase produced          from it <130> 7p-08-12 <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 1373 <212> DNA <213> 16S rDNA of Cellulosimicrobium sp. HY-12 <400> 1 tgaagcccgc ttgctgggtg gatcagtggc gaacgggtga gtaacacgtg agtaacctgc 60 ccctgacttt gggataactc cgggaaaccg gggctaatac cggatatgag ctcttgctgc 120 atggtgaggg ttggaaagat ttatcggttg gggatgggct cgcggcctat cagcttgttg 180 gtggggtgat ggcctaccaa ggcgacgacg ggtagccggc ctgagagggc gaccggccac 240 actgggactg agacacggcc cagactccta cgggaggcag cagtggggaa tattgcacaa 300 tgggcgcaag cctgatgcag cgacgccgcg tgagggatga cggccttcgg gttgtaaacc 360 tctttcagca gggaagaagc gcaagtgacg gtacctgcag aagaagcgcc ggctaactac 420 gtgccagcag ccgcggtaat acgtagggcg caagcgttgt ccggaattat tgggcgtaaa 480 gagctcgtag gcggtttgtc gcgtctgctg tgaaatcccg aggctcaacc tcgggcttgc 540 agtgggtacg ggcagactag agtgcggtag gggagactgg aattcctggt gtagcggtgg 600 aatgcgcaga tatcaggagg aacaccgatg gcgaaggcag gtctctgggc cgcaactgac 660 gctgaggagc gaaagcatgg ggagcgaaca ggattagata ccctggtagt ccatgccgta 720 aacgttgggc actaggtgtg gggctcattc cacgagttcc gtgccgcagc taacgcatta 780 agtgccccgc ctggggagta cggccgcaag gctaaaactc aaaggaattg acgggggccc 840 gcacaagcgg cggagcatgc ggattaattc gatgcaacgc gaagaacctt accaaggctt 900 gacatatacg agaatccgct ggagacagcg gcctctttgg acactcgtat acaggtggtg 960 catggttgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgcaac gagcgcaacc 1020 ctcgtcccat gttgccagcg ggttatgccg gggactcatg ggagactgcc ggggtcaact 1080 cggaggaagg tggggatgac gtcaaatcat catgcccctt atgtcttggg cttcacgcat 1140 gctacaatgg ccggtacaaa gggctgcgat accgtaaggt ggagcgaatc ccaaaaagcc 1200 ggtctcagtt cggattgggg tctgcaactc gaccccatga agtcggagtc gctagtaatc 1260 gcagatcagc aacgctgcgg tgaatacgtt cccgggcctt gtacacaccg cccgtcaagt 1320 cacgaaagtc ggtaacaccc gaagcccatg gcccaaccct tgtgggggga gtg 1373 <210> 2 <211> 1188 <212> DNA <213> nucleotide sequence of xylanase <400> 2 atggccactg cacctgtcac caccacctct cccaccccgc gacggcaccg ccgagccatc 60 gtgctcggag ccggcatcgc cgtcgtcggc ctggtcgccg cgcccctcgc ggcatccgcc 120 cacggcggct ctccgtgggg ccaccacgcc gtccccggcg cccccagcca cggccacaag 180 ccgcccaccc agcccaccac cggcgacgac accctgcgga gcctcgcggc gccgtcgggc 240 ctgcggatcg gtgcagccat caacaccgac aagctcggca ccgacgacgc ctacacgacg 300 atcgccggcg agcagttctc caccgtcagc ccggagaacg tcatgaagtg ggacacgatc 360 gagcccacgc agggcacgta caacttcgcg ccggccgaca agctcgtggc cttcgcgcag 420 cagcacggcc agctcgtccg cggccacacc ctggtctggc acaaccagct cccgtcctgg 480 ctcaccgccg aagcggacag cctcaccgcc gaccagctcc gggcgatcct caagaagcac 540 atccagaccg aggtcaagca cttcaagggc aagatctggc agtgggacgt cgtcaacgag 600 gccttcgccg acgacggcac gctccgcgac gacatctggt cgcagaagct cggcgacagc 660 tacatcgccg acgcgttccg ctgggcccac gaggccgacc cgaaggccaa gctcttctac 720 aacgactaca acatcgagta cacgggcgcg aagagcgaag ccgtctacgc gatggtcaag 780 aagctgcagg cccagggcgt gcccatcgac ggcgtcggtt tccaggacca cctcgacacg 840 cagtacggca cgccgaacct ccaggagacg atgcagaagt tcgccgacct gggcctcgac 900 accgccgtga ccgaggccga cgtccgcacc acgctccccg tcaccaccgt ggagcagacc 960 gcccagaaca gcatgtggtc gcagtcgctg tccgcgtgcc tgctggtcaa gcgctgcatc 1020 tcgttcaccg tctggggcat cgacgacggc tcgtcctggg tgccgagcac gttcgagggc 1080 gagggcgcgg ccctgctctg ggacgacgac ttccagccga aggcccagtt cggcgtcctc 1140 cagcagacgc tcgagctcgc cgccggggca ccgcgccgga cgcgttga 1188 <210> 3 <211> 395 <212> PRT <213> amino acid sequence of xylanase <400> 3 Met Ala Thr Ala Pro Val Thr Thr Thr Ser Pro Thr Pro Arg Arg His   1 5 10 15 Arg Arg Ala Ile Val Leu Gly Ala Gly Ile Ala Val Val Gly Leu Val              20 25 30 Ala Ala Pro Leu Ala Ala Ser Ala His Gly Gly Ser Pro Trp Gly His          35 40 45 His Ala Val Pro Gly Ala Pro Ser His Gly His Lys Pro Pro Thr Gln      50 55 60 Pro Thr Thr Gly Asp Asp Thr Leu Arg Ser Leu Ala Ala Pro Ser Gly  65 70 75 80 Leu Arg Ile Gly Ala Ala Ile Asn Thr Asp Lys Leu Gly Thr Asp Asp                  85 90 95 Ala Tyr Thr Thr Ile Ala Gly Glu Gln Phe Ser Thr Val Ser Pro Glu             100 105 110 Asn Val Met Lys Trp Asp Thr Ile Glu Pro Thr Gln Gly Thr Tyr Asn         115 120 125 Phe Ala Pro Ala Asp Lys Leu Val Ala Phe Ala Gln Gln His Gly Gln     130 135 140 Leu Val Arg Gly His Thr Leu Val Trp His Asn Gln Leu Pro Ser Trp 145 150 155 160 Leu Thr Ala Glu Ala Asp Ser Leu Thr Ala Asp Gln Leu Arg Ala Ile                 165 170 175 Leu Lys Lys His Ile Gln Thr Glu Val Lys His Phe Lys Gly Lys Ile             180 185 190 Trp Gln Trp Asp Val Val Asn Glu Ala Phe Ala Asp Asp Gly Thr Leu         195 200 205 Arg Asp Asp Ile Trp Ser Gln Lys Leu Gly Asp Ser Tyr Ile Ala Asp     210 215 220 Ala Phe Arg Trp Ala His Glu Ala Asp Pro Lys Ala Lys Leu Phe Tyr 225 230 235 240 Asn Asp Tyr Asn Ile Glu Tyr Thr Gly Ala Lys Ser Glu Ala Val Tyr                 245 250 255 Ala Met Val Lys Lys Leu Gln Ala Gln Gly Val Pro Ile Asp Gly Val             260 265 270 Gly Phe Gln Asp His Leu Asp Thr Gln Tyr Gly Thr Pro Asn Leu Gln         275 280 285 Glu Thr Met Gln Lys Phe Ala Asp Leu Gly Leu Asp Thr Ala Val Thr     290 295 300 Glu Ala Asp Val Arg Thr Thr Leu Pro Val Thr Thr Val Glu Gln Thr 305 310 315 320 Ala Gln Asn Ser Met Trp Ser Gln Ser Leu Ser Ala Cys Leu Leu Val                 325 330 335 Lys Arg Cys Ile Ser Phe Thr Val Trp Gly Ile Asp Asp Gly Ser Ser             340 345 350 Trp Val Pro Ser Thr Phe Glu Gly Glu Gly Ala Ala Leu Leu Trp Asp         355 360 365 Asp Asp Phe Gln Pro Lys Ala Gln Phe Gly Val Leu Gln Gln Thr Leu     370 375 380 Glu Leu Ala Ala Gly Ala Pro Arg Arg Thr Arg 385 390 395 <210> 4 <211> 20 <212> DNA <213> Sense primer for 16S rDNA of Cellulosimicrobium sp. HY-12 <400> 4 agagtttgat cmtggctcag 20 <210> 5 <211> 19 <212> DNA <213> Antisense primer for 16S rDNA of Cellulosimicrobium sp. HY-12 <400> 5 ggttaccttg ttacgactt 19 <210> 6 <211> 17 <212> DNA <213> Sense primer for xylanase <400> 6 atytggcaat gggacgt 17 <210> 7 <211> 20 <212> DNA <213> Antisense primer for xylanase <400> 7 tggtcngctt cgtgrgccca 20

Claims (13)

자일라나제를 생산하는 셀룰로시미크로비움 sp. HY-12(Cellulosimicrobium sp. HY-12) 균주(KCTC 11155BP).Cellulose microbium sp. To produce xylanase. HY-12 ( Cellulosimicrobium sp. HY-12) strain (KCTC 11155BP). 제 1항의 균주로부터 생산된 서열번호 3의 아미노산 서열을 갖는 자일라나제(xylanase).A xylanase having the amino acid sequence of SEQ ID NO: 3 produced from the strain of claim 1. 삭제delete 제 2항에 있어서, 상기 자일라나제는 42 kDa의 분자량인 것을 특징으로 하는 자일라나제.3. The xylanase according to claim 2, wherein the xylanase has a molecular weight of 42 kDa. 제 2항에 있어서, 상기 자일라나제는 60℃ ~ 70℃에서 최대 활성을 나타내는 것을 특징으로 하는 자일라나제.The xylanase according to claim 2, wherein the xylanase exhibits maximum activity at 60 ° C to 70 ° C. 제 2항에 있어서, 상기 자일라나제는 pH 5.5 ~ 6.5에서 최대 활성을 나타내는 것을 특징으로 하는 자일라나제.The xylanase of claim 2, wherein the xylanase exhibits maximum activity at pH 5.5 to 6.5. 제 2항에 있어서, 상기 자일라나제는 Zn, K, Mg, Na 또는 Mn 첨가 시 효소활성이 증가하는 것을 특징으로 하는 자일라나제.The xylanase according to claim 2, wherein the xylanase increases enzymatic activity upon addition of Zn, K, Mg, Na or Mn. 제 2항의 효소를 암호화하는 유전자.Gene encoding the enzyme of claim 2. 제 8항에 있어서, 상기 유전자는 서열번호 2로 기재되는 것을 특징으로 하는 유전자. 9. The gene of claim 8, wherein the gene is set forth in SEQ ID NO: 2. 제 8항의 유전자를 포함하는 재조합 벡터.Recombinant vector comprising the gene of claim 8. 제 10항의 재조합 벡터가 도입된 형질전환체.A transformant into which the recombinant vector of claim 10 is introduced. 1) 자일란을 포함하는 배지에서 제 1항의 셀룰로시미크로비움 sp. HY-12 균주 또는 제 11항의 형질전환체를 배양한 후 원심분리하여 상층액을 수득하는 단계;1) Cellulose microbium sp. Of claim 1 in a medium containing xylan. Culturing the HY-12 strain or the transformant of claim 11 and then centrifuging to obtain a supernatant; 2) 상기 단계 1)의 상층액에 침전제를 가하여 수용성 단백질 침전을 유도하는 단계;2) adding a precipitant to the supernatant of step 1) to induce aqueous protein precipitation; 3) 상기 단계 2)의 침전물에서 불용성 침전물을 제거한 후 투석하여 조효소액을 수득하는 단계; 및 3) removing the insoluble precipitate from the precipitate of step 2) and dialysis to obtain a crude enzyme solution; And 4) 상기 단계 3)의 조효소액을 컬럼 크로마토그래피로 정제하는 단계를 포함하는 자일라나제 생산방법.4) xylanase production method comprising the step of purifying the crude enzyme solution of step 3) by column chromatography. 제 12항에 있어서, 단계 2)의 침전제는 황산암모늄, 아세톤, 아이소프로판올, 메탄올, 에탄올 및 폴리에틸렌글리콜로 이루어진 군으로부터 선택되는 것을 특징으로 하는 자일라나제 생산방법.The method of claim 12, wherein the precipitant of step 2) is selected from the group consisting of ammonium sulfate, acetone, isopropanol, methanol, ethanol and polyethylene glycol.
KR1020070092571A 2007-09-12 2007-09-12 Novel cellulosimicrobium sp??hy-12 strain and xylanase produced from it KR100870561B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070092571A KR100870561B1 (en) 2007-09-12 2007-09-12 Novel cellulosimicrobium sp??hy-12 strain and xylanase produced from it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070092571A KR100870561B1 (en) 2007-09-12 2007-09-12 Novel cellulosimicrobium sp??hy-12 strain and xylanase produced from it

Publications (1)

Publication Number Publication Date
KR100870561B1 true KR100870561B1 (en) 2008-11-27

Family

ID=40284769

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070092571A KR100870561B1 (en) 2007-09-12 2007-09-12 Novel cellulosimicrobium sp??hy-12 strain and xylanase produced from it

Country Status (1)

Country Link
KR (1) KR100870561B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403489B1 (en) * 2009-03-27 2014-06-11 한국생명공학연구원 Novel Cellulosimicrobium funkei HY-13 strain and xylanase produced from it
WO2015026150A1 (en) * 2013-08-20 2015-02-26 한국생명공학연구원 Novel alkali-resistant glycoside hydrolase family 10 xylanase produced from micobacterium sp. hy-17 strain
WO2016191169A1 (en) * 2015-05-22 2016-12-01 Dupont Nutrition Biosciences Aps Acetolactate decarboxylase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940000029A (en) * 1992-06-30 1994-01-03 김정순 Meat ssamjang and its manufacturing method
KR950000015A (en) * 1993-06-21 1995-01-03 안토니 터셀라 New type of rose
KR100754479B1 (en) 2006-02-16 2007-09-03 한국생명공학연구원 . -8 Novel Paenibacillus sp. HY-8 strain and xylanase isolated from it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940000029A (en) * 1992-06-30 1994-01-03 김정순 Meat ssamjang and its manufacturing method
KR950000015A (en) * 1993-06-21 1995-01-03 안토니 터셀라 New type of rose
KR100754479B1 (en) 2006-02-16 2007-09-03 한국생명공학연구원 . -8 Novel Paenibacillus sp. HY-8 strain and xylanase isolated from it

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biochem. J. (1994) 299, pp.381-387
Biochem. J. (1995) 307, pp.151-158
Molecular Microbiology (1995) 15(3) pp.431-444

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403489B1 (en) * 2009-03-27 2014-06-11 한국생명공학연구원 Novel Cellulosimicrobium funkei HY-13 strain and xylanase produced from it
WO2015026150A1 (en) * 2013-08-20 2015-02-26 한국생명공학연구원 Novel alkali-resistant glycoside hydrolase family 10 xylanase produced from micobacterium sp. hy-17 strain
WO2016191169A1 (en) * 2015-05-22 2016-12-01 Dupont Nutrition Biosciences Aps Acetolactate decarboxylase
CN107636151A (en) * 2015-05-22 2018-01-26 杜邦营养生物科学有限公司 Acetolactate decarboxylase
CN107636151B (en) * 2015-05-22 2023-04-04 杜邦营养生物科学有限公司 Acetolactate decarboxylase

Similar Documents

Publication Publication Date Title
KR100645284B1 (en) A method for biological processing of fermented soybean peptides with enhanced protease productivity by solid fermentation using bacillus subtilis gr-101 and aspergillus oryzae gb-107 and the use thereof
JP6161190B2 (en) Thermostable keratinase enzyme, method for producing the same, and DNA encoding the same
KR20140119850A (en) Bacillus spp., identified from lugworm and microbial cleaning agent.
Broda et al. Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium.
Aly et al. Production and characterization of phytase from Streptomyces luteogriseus R10 isolated from decaying wood samples.
El-Bondkly et al. Keratinolytic activity from new recombinant fusant AYA2000, derived from endophytic Micromonospora strains
KR100870561B1 (en) Novel cellulosimicrobium sp??hy-12 strain and xylanase produced from it
KR100754479B1 (en) . -8 Novel Paenibacillus sp. HY-8 strain and xylanase isolated from it
Matsuda et al. In vitro suppression of mycelial growth of Fusarium oxysporum by extracellular chitosanase of Sphingobacterium multivorum and cloning of the chitosanase gene csn SM1
Umayaparvathi et al. Purification and characterization of protease from Bacillus cereus SU12 isolated from oyster Saccostrea cucullata
KR20110092511A (en) Novel xylanase produced from cellulosimicrobium funkei hy-13 strain
KR20140061915A (en) Novel microorganism bacillus coagulans km-1, and manufacturing method of fermented soybean meal and fish feed using the same
Pandya et al. Purification and characterization of antifungal chitinase from Bacillus safensis MBCU6 and its application for production of chito-oligosaccharides
Oh et al. Isolation, purification, and enzymatic characterization of extracellular chitosanase from marine bacterium Bacillus subtilis CH2
KR101720658B1 (en) Novel plant growth-promoting bacteria and use thereof
KR101476031B1 (en) Bacillus spp., identified from lugworm and microbial cleaning agent.
KR100526662B1 (en) Gene coding xylanase and recombinant xylanase through transformant thereof
KR101403489B1 (en) Novel Cellulosimicrobium funkei HY-13 strain and xylanase produced from it
KR101091150B1 (en) Novel Bacillus sp.HY―20 strain isolated from Apis melifera and xylanase produced from it
KR20140119847A (en) Bacillus spp., identified from lugworm and microbial cleaning agent.
KR102002251B1 (en) Lactobacillus curvatus JIF001 isolated from Tenebrio molitor mealworm, feeds containing the same
KR100621657B1 (en) New Bacillus subtilis UBT-M02 strain which has an acid and bile acid resistances, feed additive composition using it, and feed of animal having thereof
KR101062309B1 (en) Bacillus rickeniformis secreting cellulase and xylanase and uses thereof
Cho Isolation and characterization of mannanase producing Bacillus amyloliquefaciens CS47 from horse feces
CN114774330B (en) Novel species of cellulolytic female phytes and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151120

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161114

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170921

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181008

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191008

Year of fee payment: 12