KR101468942B1 - Novel Naphthalene Diimide polymers and organic electronic device - Google Patents

Novel Naphthalene Diimide polymers and organic electronic device Download PDF

Info

Publication number
KR101468942B1
KR101468942B1 KR1020120128443A KR20120128443A KR101468942B1 KR 101468942 B1 KR101468942 B1 KR 101468942B1 KR 1020120128443 A KR1020120128443 A KR 1020120128443A KR 20120128443 A KR20120128443 A KR 20120128443A KR 101468942 B1 KR101468942 B1 KR 101468942B1
Authority
KR
South Korea
Prior art keywords
organic semiconductor
organic
naphthalene diimide
compound
bis
Prior art date
Application number
KR1020120128443A
Other languages
Korean (ko)
Other versions
KR20140062610A (en
Inventor
김윤희
권순기
김란
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020120128443A priority Critical patent/KR101468942B1/en
Priority to PCT/KR2013/010307 priority patent/WO2014077590A1/en
Publication of KR20140062610A publication Critical patent/KR20140062610A/en
Application granted granted Critical
Publication of KR101468942B1 publication Critical patent/KR101468942B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3327Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkene-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications

Abstract

본 발명은 유기박막트랜지스터(organic thin film transistors: OTFTs)등 유기 전자 소자용 유기반도체 화합물 및 그의 용도에 관한 것이다. 보다 구체적으로, 본 발명은 나프탈렌 다이이미드 유도체와 전자 주게 및 전자 끌게 화합물과의 공중합을 통해 새로운 유기반도체 화합물인 나프탈렌 다이이미드 중합체 합성 및 이를 유기 반도체 층으로 사용하는 유기 전자 소자에 관한 것이다.The present invention relates to organic semiconductor compounds for organic electronic devices such as organic thin film transistors (OTFTs) and their uses. More specifically, the present invention relates to synthesis of a naphthalene diimide polymer which is a new organic semiconductor compound through copolymerization of a naphthalene diimide derivative with an electron donor and an electron donating compound, and an organic electronic device using the naphthalene diimide polymer as an organic semiconductor layer.

Description

신규한 나프탈렌 다이이미드를 포함하는 중합체 및 이를 이용한 유기 전자 소자 {Novel Naphthalene Diimide polymers and organic electronic device} TECHNICAL FIELD [0001] The present invention relates to novel naphthalene diimide polymers and organic electronic devices using the same,

본 발명은 유기박막트랜지스터(organic thin film transistors: OTFTs)등 유기 전자 소자용 유기반도체 화합물 및 그의 용도에 관한 것이다. 보다 구체적으로, 본 발명은 나프탈렌 다이이미드 유도체와 전자 주게 및 전자 끌게 화합물과의 공중합을 통해 새로운 유기반도체 화합물인 나프탈렌 다이이미드 중합체 합성 및 이를 유기 반도체 층으로 사용하는 유기 전자 소자에 관한 것이다.The present invention relates to organic semiconductor compounds for organic electronic devices such as organic thin film transistors (OTFTs) and their uses. More specifically, the present invention relates to synthesis of a naphthalene diimide polymer which is a new organic semiconductor compound through copolymerization of a naphthalene diimide derivative with an electron donor and an electron donating compound, and an organic electronic device using the naphthalene diimide polymer as an organic semiconductor layer.

유기 박막 트랜지스터(OTFT)는 현재 특히 저렴한 제조 비용, 대형화, 플렉서블한 전자 소자의 제작 가능성으로 인해 집중 연구 활동의 대상이 되고 있다. 특히, 고분자 유기반도체를 이용할 경우 용액공정으로 쉽게 박막을 형성할 수 있다는 장점 때문에 저분자 유기반도체 화합물에 비해 제조 원가가 절감 될 수 있다는 장점을 가지고 있다.Organic thin film transistors (OTFTs) are now being targeted for intensive research activities due to their low cost, large size, and the possibility of producing flexible electronic devices. In particular, when a polymer organic semiconductor is used, the manufacturing cost can be reduced as compared with a low molecular weight organic semiconductor compound because it can easily form a thin film by a solution process.

현재까지 개발된 대표적인 고분자계 유기 박막 트랜지스터용 반도체 화합물로는 P3HT[폴리(3-헥실티오펜)]과 F8T2[폴리(9,9-디옥틸플루오렌-코-비티오펜)]이 있다. OTFT의 성능은 여러 가지가 있으나, 그 중 중요한 평가척도는 전하이동도와 점멸비(on/off ratio)이며, 가장 중요한 평가 척도는 전하이동도이다. 전하이동도는 반도체 재료의 종류, 박막형성방법(구조 및 형태학), 구동전압 등에 따라 다르게 나타난다.Typical semiconductor compounds for polymeric organic thin film transistors developed to date include P3HT [poly (3-hexylthiophene)] and F8T2 [poly (9,9-dioctylfluorene-co-bithiophene)]. The performance of OTFT is various, but important evaluation scale is charge mobility and on / off ratio, and the most important evaluation measure is charge mobility. The charge mobility varies depending on the kind of the semiconductor material, the thin film forming method (structure and morphology), the driving voltage, and the like.

유기 박막 트랜지스터의 구성 요소로는 전극(소스, 드레인), 높은 열안정성이 요구되는 기판 및 게이트전극, 높은 절연성과 유전상수를 가져야 하는 절연체, 그리고 전하를 잘 이동시키는 반도체 등이 있으나, 이 중에서 가장 극복해야 할 문제점이 많으며, 핵심적인 재료는 유기반도체이다. 유기반도체는 분자량에 따라 저분자 유기반도체 및 고분자 유기반도체로 나눌 수 있으며, 전자 또는 정공전달 여부에 따라 n-형 유기반도체 또는 p-형 유기반도체로 분류한다. 일반적으로, 유기 반도체층 형성시 저분자 유기반도체를 이용하는 경우, 저분자 유기반도체는 정제하기가 용이하여 불순물을 거의 제거할 수 있으므로 전하이동특성이 우수하다. 그러나, 이러한 유기반도체는 스핀코팅 및 프린팅이 불가능하여 진공증착을 통해 박막을 제조해야 하므로, 고분자 유기반도체에 비해 제조공정이 복잡하고, 비용이 많이 드는 단점이 있다. 고분자 유기반도체의 경우, 고순도의 정제가 어려우나, 내열성이 우수하고, 스핀코팅 및 프린팅이 가능하여 제조공정 및 비용, 대량생산에 있어서 유리한 장점이 있다. Organic thin film transistors include electrodes (source and drain), substrates and gate electrodes that require high thermal stability, insulators that have high dielectric constant and dielectric constant, and semiconductors that move charges well. There are many problems to be overcome, and the key material is organic semiconductor. Organic semiconductors can be classified into low-molecular organic semiconductors and polymeric organic semiconductors according to molecular weight, and classified into n-type organic semiconductors or p-type organic semiconductors depending on whether electrons or holes are delivered. In general, when a low molecular weight organic semiconductor is used in the formation of an organic semiconductor layer, the low molecular weight organic semiconductor is easy to purify and can remove almost any impurities. However, since such organic semiconductors can not be spin-coated and printed, a thin film must be produced by vacuum deposition, and thus the manufacturing process is complicated and costly compared to polymer organic semiconductors. In the case of polymer organic semiconductors, purification with high purity is difficult, but heat resistance is excellent, and spin coating and printing are possible, which is advantageous in manufacturing process, cost, and mass production.

유기 반도체 재료의 개발을 위해서 많은 연구가 현재까지 이루어지고 있지만, 아직까지 고분자계 반도체 재료의 개발은 저분자계 반도체 재료의 개발에 못 미치고 있는 실정이다. 따라서, 유연하고, 제조원가가 낮은 유기 박막 트랜지스터를 이용한 전자장치의 개발을 위해서는 고분자계 반도체 재료의 개발이 시급한 실정이다. 일반적으로, 고분자의 전하이동도는 저분자에 비해 떨어진다고 알려져 있지만, 제조공정이나 비용면에서 충분히 이를 극복할 수 있는 재료라고 할 수 있다. 대표적으로 acenes 및 heteroacenes는 효율적인 p-형 반도체, rylene의 diimides, 특히 perylene과 나프탈렌 유도체는 산화안정성이 있는 n-형 반도체 재료로서 개발되었다. 그러나 지금까지 개발된 재료는 주로 p-형 반도체 재료로서 n-형 반도체 재료는 그 수나 성능이 이미 개발되어진 p-형 반도체 재료에 미치지 못하므로 충분한 연구가 필요하다. 특히 각광받는 재료 중의 하나인 나프탈렌 다이이미드를 모체로 하는 많은 재료가 개발되었는데, 나프탈렌 다이이미드에 바이티오펜(bithiophene)이 중합된 전하 이동도가 0.85 cm2V-1S-1인 고분자 재료가 이미 개발되었다. 그러나 지금까지 개발된 재료 보다 더욱 고안정성, 고이동성을 나타내는 고분자 반도체 재료의 개발이 필요하다.Although many researches have been made so far for the development of organic semiconductor materials, the development of polymer based semiconductor materials has not been developed yet. Therefore, in order to develop an electronic device using an organic thin film transistor which is flexible and has a low manufacturing cost, development of a polymer-based semiconductor material is in urgent need. In general, the charge mobility of polymers is known to be lower than that of low molecular weight materials, but it can be said to be a material that can sufficiently overcome the manufacturing process and cost. Typically, acenes and heteroacenes are efficient p-type semiconductors, and rylene diimides, especially perylene and naphthalene derivatives, have been developed as n-type semiconductor materials with oxidation stability. However, the materials developed so far are mainly p-type semiconductor materials, and the number and performance of n-type semiconductor materials do not reach the p-type semiconductor materials which have already been developed. In particular, a number of materials have been developed using naphthalene diimide as one of the materials of interest, such as naphthalene diimide, bithiophene, and a polymer material having a charge mobility of 0.85 cm 2 V -1 S -1 It has already been developed. However, it is necessary to develop a polymer semiconductor material that exhibits higher stability and higher mobility than the materials developed so far.

한국공개특허 제 10-2008-0063803호 “박막트랜지스터용 n-형 반도체 물질”은 N,N'-다이아릴 나프탈렌-1,4,5,8-비스(다이카복스이미드)화합물을 박막 트랜지스터용 n-형 채널 반도체 필름에서 반도체 물질로서 사용함에 관한 것으로, 전자 디바이스용 박막 트랜지스터에서 이들 물질의 용도 및 이러한 트랜지스터 및 디바이스를 제조하는 방법에 관하여 개시되어 있다. 그러나 열적안정성 및 기계적 안정성면 또한, 전하이동도와 점멸비에서 충분한 효과를 나타내지 못하는 단점이 있다. Korean Patent Laid-Open No. 10-2008-0063803 entitled " N-type semiconductor material for a thin film transistor " refers to an N-type semiconductor material for a thin film transistor, type channel semiconductor films, and the use of these materials in thin film transistors for electronic devices and a method for manufacturing such transistors and devices. However, thermal stability and mechanical stability also have disadvantages in that they do not exhibit sufficient effects in terms of charge mobility and flicker rate.

한국공개특허 제 10-2008-0063803호 (2008.07.07)Korean Patent Laid-Open No. 10-2008-0063803 (2008.07.07)

본 발명은 전자 끌게 물질 중 하나인 나프탈렌 다이이미드 유도체와 전자 주게 및 전자 끌게 화합물과의 공중합을 통해 새로운 유기 반도체 화합물인 나프탈렌 다이이미드 중합체를 제공하고, 이를 유기 반도체 층으로 사용한 유기 전자 소자를 제공하는데 그 목적이 있다.The present invention provides a naphthalene diimide polymer as a novel organic semiconductor compound through copolymerization of a naphthalene diimide derivative, which is one of the electron attracting materials, with an electron donor and an electron attracting compound, and provides an organic electronic device using the naphthalene diimide polymer as an organic semiconductor layer It has its purpose.

또한 본 발명은 비닐렌기 또는 아세틸렌기가 도입된 방향족 재료인 전자 주게 물질을 교대중합시킬 수 있어, 공기 안정성을 가지며 주 사슬의 공면성(coplanarity)를 증가시키고 확장된 공액구조를 갖게 함으로서 충분한 파이 전자 확장을 나타낼 수 있는 이중결합을 포함하는 나프탈렌 다이이미드 중합체를 제공하는데 그 목적이 있다.Further, the present invention can alternately polymerize an electron-donating substance which is an aromatic material into which an aromatic vinylene group or an acetylene group is introduced, has air stability, increases the coplanarity of the main chain and has an extended conjugated structure, In which the naphthalene diimide polymer has a double bond.

또한, 본 발명은 높은 용해도를 가지며 높은 분자량을 가져 점성이 있어 상온에서의 스핀 코팅이 용이하여 용액공정이 가능하고, 반도체 층으로 사용한 유기 전자 소자를 제공하여 높은 전하 이동도를 가질 수 있는 유기 반도체 화합물인 나프탈렌 다이이미드 중합체를 제공하는데 그 목적이 있다.The present invention also provides an organic electronic device having a high solubility, a high molecular weight, a viscosity, a spin coating process at room temperature, a solution process, and an organic electronic device used as a semiconductor layer, Naphthalene < / RTI > diimide polymer.

상기의 목적을 달성하기 위한 본 발명의 일 양태로, 하기 화학식 1로 표시되는 나프탈렌 다이이미드 유도체에 관한 것이다.According to one aspect of the present invention, there is provided a naphthalene diimide derivative represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure 112012093380044-pat00001
Figure 112012093380044-pat00001

[상기 화학식 1에서, [In the above formula (1)

R1및 R2는 각각 독립적으로 C1-C50 알킬, C6-C50 아릴, C1-C50알콕시 또는

Figure 112012093380044-pat00002
이고;R 1 and R 2 are each independently C 1 -C 50 Alkyl, C 6 -C 50 Aryl, C 1 -C 50 alkoxy or
Figure 112012093380044-pat00002
ego;

Z1 및 Z2, L1 , L2 , L3는 각각 독립적으로 하기 구조에서 선택되고, Z1 및 Z2는 치환 또는 비치환 될 수 있고;Z 1 and Z 2 , L 1 , L 2 and L 3 are each independently selected from the following structures, Z 1 and Z 2 may be substituted or unsubstituted;

Figure 112012093380044-pat00003
Figure 112012093380044-pat00003

Figure 112012093380044-pat00004
Figure 112012093380044-pat00004

V1 및 V2

Figure 112012093380044-pat00005
또는
Figure 112012093380044-pat00006
V 1 And V 2 is
Figure 112012093380044-pat00005
or
Figure 112012093380044-pat00006

으로 치환되거나 비치환 될 수 있고;≪ / RTI >

X1내지 X7는 각각 독립적으로 S, Se, O, N, NH 또는 NR'이고;X 1 to X 7 are each independently S, Se, O, N, NH or NR ';

A1및 A2는 각각 독립적으로 수소, 시아노 또는 -COOR''이고;A 1 and A 2 are each independently hydrogen, cyano or -COOR ";

R' 및 R''는 각각 독립적으로 C1-C50 알킬 또는 C6-C50 아릴이고;R 'and R''are independently C 1 -C 50 each Alkyl or C 6 -C 50 Aryl;

R3 내지 R31은 각각 독립적으로 수소, 히드록시기, 아미노, C1-C50 알킬, C6-C50아릴, C1-C50 알콕시, 모노 또는 다이 C1-C50 알킬아미노, C1-C50 알콕시카보닐 또는 C1-C50 알킬카보닐옥시이고;R 3 To R 31 are independently hydrogen, hydroxyl, amino, C 1 -C 50 each Alkyl, C 6 -C 50 aryl, C 1 -C 50 alkoxy, mono or di C 1 -C 50 Alkylamino, C 1 -C 50 Alkoxycarbonyl or C 1 -C 50 Alkylcarbonyloxy;

Z는 1내지 20의 정수이고, m 또는 y는 0 내지 2의 정수이며, n은 1 내지 1,000의 정수이다.]Z is an integer of 1 to 20, m or y is an integer of 0 to 2, and n is an integer of 1 to 1,000.

또한 본 발명의 다른 양태로는 상기의 나프탈렌 다이이미드 중합체를 유기반도체층에 포함하는 유기 박막 트랜지스터에 관한 것이다.
Another aspect of the present invention relates to an organic thin film transistor including the naphthalene diimide polymer in an organic semiconductor layer.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 본 발명은 유기박막트랜지스터(organic thin film transistors: OTFTs)등 유기 전자 소자용 유기반도체 화합물 및 그의 용도에 관한 것이다. 보다 구체적으로, 본 발명은 나프탈렌 다이이미드 유도체와 전자 주게 및 전자 끌게 화합물과의 공중합을 통해 새로운 p-형과 n-형 유기반도체 화합물인 나프탈렌 다이이미드 중합체 합성 및 이를 유기 반도체 층으로 사용하는 유기 전자 소자에 관한 것이다.The present invention relates to organic semiconductor compounds for organic electronic devices such as organic thin film transistors (OTFTs) and their uses. More specifically, the present invention relates to the synthesis of naphthalene diimide polymer, which is a new p-type and n-type organic semiconductor compound, through copolymerization of a naphthalene diimide derivative with an electron donor and an electron donor compound, Device.

본 발명의 유기 반도체 화합물은 하기 화학식 1로 표시되는 나프탈렌 다이이미드 중합체를 의미하는 것으로, 비닐렌기 또는 아세틸렌기의 도입으로 주 사슬의 공면성(coplanarity)을 증가시키고 확장된 공액 구조를 갖게 함으로서 전자밀도를 향상시켜 분자간 상호작용을 높여주며 높은 이동도를 나타내게 할 수 있다.The organic semiconducting compound of the present invention means a naphthalene diimide polymer represented by the following formula (1). By introducing a vinylene group or an acetylene group, the coplanarity of the main chain is increased and an extended conjugated structure is obtained. To increase intermolecular interaction and to exhibit high mobility.

[화학식 1][Chemical Formula 1]

Figure 112012093380044-pat00007
Figure 112012093380044-pat00007

[상기 화학식 1에서, [In the above formula (1)

R1및 R2는 각각 독립적으로 C1-C50 알킬, C6-C50 아릴, C1-C50알콕시 또는

Figure 112012093380044-pat00008
이고;R 1 and R 2 are each independently C 1 -C 50 Alkyl, C 6 -C 50 Aryl, C 1 -C 50 alkoxy or
Figure 112012093380044-pat00008
ego;

Z1 및 Z2, L1 , L2 , L3는 각각 독립적으로 하기 구조에서 선택되고, Z1 및 Z2는 치환 또는 비치환 될 수 있고;Z 1 and Z 2 , L 1 , L 2 and L 3 are each independently selected from the following structures, Z 1 and Z 2 may be substituted or unsubstituted;

Figure 112012093380044-pat00009
Figure 112012093380044-pat00009

Figure 112012093380044-pat00010
Figure 112012093380044-pat00010

V1 및 V2

Figure 112012093380044-pat00011
또는
Figure 112012093380044-pat00012
으로 치환되거나 비치환 될 수 있고;V 1 And V 2 is
Figure 112012093380044-pat00011
or
Figure 112012093380044-pat00012
≪ / RTI >

X1내지 X7는 각각 독립적으로 S, Se, O, N, NH 또는 NR'이고;X 1 to X 7 are each independently S, Se, O, N, NH or NR ';

A1및 A2는 각각 독립적으로 수소, 시아노 또는 -COOR''이고;A 1 and A 2 are each independently hydrogen, cyano or -COOR ";

R' 및 R''는 각각 독립적으로 C1-C50 알킬 또는 C6-C50 아릴이고;R 'and R " are each independently COne-C50 Alkyl or C6-C50 Aryl;

R3 내지 R31은 각각 독립적으로 수소, 히드록시기, 아미노, C1-C50 알킬, C6-C50아릴, C1-C50 알콕시, 모노 또는 다이 C1-C50 알킬아미노, C1-C50 알콕시카보닐 또는 C1-C50 알킬카보닐옥시이고;R 3 To R 31 are independently hydrogen, hydroxyl, amino, C 1 -C 50 each Alkyl, C 6 -C 50 aryl, C 1 -C 50 Alkoxy, mono or di C 1 -C 50 Alkylamino, C 1 -C 50 Alkoxycarbonyl or C 1 -C 50 Alkylcarbonyloxy;

Z는 1내지 20의 정수이고, m 또는 y는 0 내지 2의 정수이며, n은 1 내지 1,000의 정수이다.]Z is an integer of 1 to 20, m or y is an integer of 0 to 2, and n is an integer of 1 to 1,000.

또한, 상기 화학식 1에서 상기 R1및 R2는 각각 독립적으로 C1-C50 알킬, C6-C50 아릴, C1-C50알콕시 또는

Figure 112012093380044-pat00013
일 수 있으며, 바람직하게는
Figure 112012093380044-pat00014
또는
Figure 112012093380044-pat00015
에서 선택될 수 있다. In Formula 1, R 1 and R 2 are each independently C 1 -C 50 Alkyl, C 6 -C 50 Aryl, C 1 -C 50 alkoxy or
Figure 112012093380044-pat00013
And preferably,
Figure 112012093380044-pat00014
or
Figure 112012093380044-pat00015
≪ / RTI >

[상기 R31 내지 R35은 각각 독립적으로 수소, 히드록시기, 아미노, C1-C50 알킬, C6-C50아릴, C1-C50 알콕시, 모노 또는 다이 C1-C50 알킬아미노, C1-C50 알콕시카보닐 또는 C1-C50 알킬카보닐옥시이고;[R 31 To R 35 are independently hydrogen, hydroxyl, amino, C 1 -C 50 each Alkyl, C 6 -C 50 aryl, C 1 -C 50 Alkoxy, mono or di C 1 -C 50 Alkylamino, C 1 -C 50 Alkoxycarbonyl or C 1 -C 50 Alkylcarbonyloxy;

상기 R32 내지 R35의 알킬, 아릴, 알콕시, 알킬아미노, 알콕시사보닐 또는 알킬카노닐옥시는 수소, 히드록시기 또는 아미노로 더 치환될 수 있으며;The R 32 Alkyl, aryl, alkoxy, alkylamino, alkoxy, or alkylcarbonyloxy of R < 35 > may be further substituted with hydrogen, hydroxy or amino;

Z는 1내지 20의 정수이다,]Z is an integer from 1 to 20,

상기 화학식 1에서

Figure 112012093380044-pat00016
하기 구조에서 선택될 수 있다.In Formula 1,
Figure 112012093380044-pat00016
Can be selected from the following structures.

Figure 112012093380044-pat00017
Figure 112012093380044-pat00017

Figure 112012093380044-pat00018
Figure 112012093380044-pat00018

[상기 X1, X2, X3, A1, A2, R3, R4, R5, R6, R7 및 R8은 상기 화학식 1에서의 정의와 동일하다.][Wherein X 1 , X 2 , X 3 , A 1 , A 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 have the same meanings as defined in Formula 1]

보다 바람직하게 상기

Figure 112012093380044-pat00019
하기 구조에서 선택될 수 있다.
More preferably,
Figure 112012093380044-pat00019
Can be selected from the following structures.

Figure 112012093380044-pat00020
Figure 112012093380044-pat00020

Figure 112012093380044-pat00021
Figure 112012093380044-pat00021

Figure 112012093380044-pat00022
Figure 112012093380044-pat00022

본 발명의 나프탈렌 다이이미드 중합체는 구체적으로 하기 화합물로부터 선택된다.The naphthalene diimide polymers of the present invention are specifically selected from the following compounds.

Figure 112012093380044-pat00023
Figure 112012093380044-pat00023

Figure 112012093380044-pat00024
Figure 112012093380044-pat00024

Figure 112012093380044-pat00025
Figure 112012093380044-pat00025

Figure 112012093380044-pat00026
Figure 112012093380044-pat00026

Figure 112012093380044-pat00027
Figure 112012093380044-pat00027

Figure 112012093380044-pat00028
Figure 112012093380044-pat00028

Figure 112012093380044-pat00029
Figure 112012093380044-pat00029

Figure 112012093380044-pat00030
Figure 112012093380044-pat00030

Figure 112012093380044-pat00031
Figure 112012093380044-pat00031

Figure 112012093380044-pat00032
Figure 112012093380044-pat00032

Figure 112012093380044-pat00033
Figure 112012093380044-pat00033

Figure 112012093380044-pat00034
Figure 112012093380044-pat00034

[상기 n은 1 내지 1,000의 정수이다.][Wherein n is an integer of 1 to 1,000]

또한 더욱 구체적으로 본 발명의 나프탈렌 다이이미드 중합체는 하기 화학식에서 선택 될 수 있다.More specifically, the naphthalene diimide polymers of the present invention can be selected from the following formulas.

Figure 112012093380044-pat00035
Figure 112012093380044-pat00035

[상기 n은 1 내지 1,000의 정수이다.]
[Wherein n is an integer of 1 to 1,000]

본 발명에 따른 나프탈렌 다이이미드 중합체를 제조하기 위한 방법으로, 알킬화 반응, 그리냐드 커플링 반응, 스즈키 커플링 반응, 스틸레 커플링 반응 등을 통하여 최종 화합물을 제조할 수 있다. 본 발명에 따른 유기반도체 화합물은 상기의 제조방법으로 한정하는 것은 아니며, 상기의 제조방법 이외에도 통상의 유기화학 반응에 의하여 제조될 수 있다.As a method for producing the naphthalene diimide polymer according to the present invention, a final compound can be prepared through an alkylation reaction, a Grignard coupling reaction, a Suzuki coupling reaction, a styrene coupling reaction or the like. The organic semiconductor compound according to the present invention is not limited to the above-mentioned production method, and can be produced by a conventional organic chemical reaction other than the above-mentioned production method.

본 발명에 따른 나프탈렌 다이이미드 중합체는 유기 전자 소자의 유기 반도체층 형성용 물질로 사용될 수 있으며, 구체적으로 유기 박막 트랜지스터(OTFT) 또는 유기태양전지(OPV)등에 사용가능하다. The naphthalene diimide polymer according to the present invention can be used as a material for forming an organic semiconductor layer of an organic electronic device, and can be specifically used for an organic thin film transistor (OTFT) or an organic solar battery (OPV).

일예를 들어, 이를 적용한 유기 박막 트랜지스터의 제조방법는 하기와 같다.For example, a method of manufacturing an organic thin film transistor using the method is as follows.

하기 도 1를 참조하여 설명하면, 기판(11)으로는 통상적인 유기박막트랜지스터에 사용하는 n-형 실리콘을 사 용하는 것이 바람직하다. 이 기판에는 게이트 전극의 기능이 포함되어 있다. 기판으로 n-형 실리콘외에 표면 평활성, 취급용이성 및 방수성이 우수한 유리기판 또는 투명한 플라스틱 기판을 사용할 수도 있다. 이 경우에는 게이트 전극이 기판위에 더해져야 한다. 기판으로서 채용가능한 물질로는 유리, 폴리에틸렌나프탈레이트(Polyethylenenaphthalate:PEN), 폴리에틸렌테레프탈레이트(Polyethylterephthalate:PET), 폴리카보네이트(Polycarbonate:PC), 폴리비닐알콜(Polyvinylalcohol:PVP), 폴리아크릴레이트(Polyacrylate), 폴리이미드(Polyimide), 폴리노르보넨(Polynorbornene) 및 폴리에테르설폰(Polyethersulfone: PES)로 예시될 수 있다.Referring to FIG. 1, the substrate 11 is preferably an n-type silicon used for a typical organic thin film transistor. This substrate contains the function of a gate electrode. In addition to the n-type silicon, a glass substrate or a transparent plastic substrate having excellent surface smoothness, ease of handling, and waterproofness may be used as the substrate. In this case, the gate electrode must be added to the substrate. Examples of materials that can be used as the substrate include glass, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), polyvinyl alcohol (PVP), polyacrylate , Polyimide, polynorbornene, and polyethersulfone (PES).

상기 OTFT 소자를 구성하는 게이트 절연층(12)으로서는 통상적으로 사용되는 유전율이 큰 절연체를 사용할 수 있으며, 구체적으로 Ba0 .33Sr0 .66TiO3(BST), Al2O3, Ta2O5, La2O5, Y2O3 및 TiO2로 이루어진 군으로부터 선택된 강유전성 절연체, PdZr0 .33Ti0 .66O3(PZT), Bi4Ti3O12, BaMgF4, SrBi2(TaNb)2O9, Ba(ZrTi)O3(BZT), BaTiO3, SrTiO3, Bi4Ti3O12, SiO2, SiNx 및 AlON로 이루어진 군으로부터 선택된 무기 절연체, 또는 폴리이미드(polyimide), BCB(benzocyclobutene), 파릴렌(parylene), 폴리아크46-12릴레이트(polyacrylate), 폴리비닐알콜(polyvinylalcohol) 및 폴리비닐페놀(polyvinylphenol) 등의 유기 전연체를 사용할 수 있다. An insulated gate constituting the OTFT device layer 12, as can be used with a large dielectric constant insulators conventionally used, specifically Ba 0 .33 Sr 0 .66 TiO 3 (BST), Al 2 O 3, Ta 2 O 5 , La 2 O 5 , Y 2 O 3 and TiO 2 , a ferroelectric insulator selected from the group consisting of PdZr 0 .33 Ti 0 .66 O 3 (PZT), Bi 4 Ti 3 O 12 , BaMgF 4 , SrBi 2 ) 2 O 9, Ba (ZrTi ) O 3 (BZT), BaTiO 3, SrTiO 3, Bi4Ti 3 O 12, SiO 2, SiNx , and an inorganic insulator selected from the group consisting of AlON, or a polyimide (polyimide), BCB (benzocyclobutene ), Parylene, polyacrylate, polyvinyl alcohol, and polyvinylphenol can be used.

본 발명의 유기 박막 트랜지스터의 구성은 도 1에 나타낸 바와 같이 기판(11)/게이트전극(16)/절연층(12)/유기반도체층(13)/소스(14), 드레인 전극(15)의탑-컨택트(top-contact) 뿐만 아니라 기판/게이트전극/절연층/소스, 드레인 전극/유기반도체층의 바텀-컨택트(bottom-contact)의 형태를 모두 포함한다. 또한 소스(14) 및 드레인 전극(15)과 유기반도체층(13) 사이에 표면처리로서 HMDS(1,1,1,3,3,3-hexamethyldisilazane), OTS(octadecyltrichlorosilane) 또는 OTDS(octadecyltrichlorosilane)를 코팅하거나 하지 않을 수도 있다.1, the structure of the organic thin film transistor according to the present invention includes a substrate 11, a gate electrode 16, an insulating layer 12, an organic semiconductor layer 13, a source 14, a drain electrode 15, -Bottom-contact of the substrate / gate electrode / insulating layer / source / drain electrode / organic semiconductor layer as well as the top-contact. (1,1,1,3,3,3-hexamethyldisilazane), OTS (octadecyltrichlorosilane), or OTDS (octadecyltrichlorosilane) as a surface treatment is applied between the source 14 and the drain electrode 15 and the organic semiconductor layer 13. [ It may or may not be coated.

본 발명에 따른 나프탈렌 다이이미드 중합체를 채용하는 유기반도체층은 진공 증착법, 스크린 인쇄법, 프린팅법, 스핀캐스팅법, 스핀코팅법, 딥핑법 또는 잉크분사법을 통하여 박막으로 형성될 수 있으며, 이 때, 상기 유기반도체층의 증착은 40 ℃ 이상에서 고온 용액을 이용하여 형성될 수 있고, 그 두께는 500 Å내외가 바람직하다.The organic semiconductor layer employing the naphthalene diimide polymer according to the present invention may be formed into a thin film by a vacuum deposition method, a screen printing method, a printing method, a spin casting method, a spin coating method, a dipping method, or an ink jetting method. The deposition of the organic semiconductor layer may be performed using a high temperature solution at 40 DEG C or higher and a thickness of about 500 ANGSTROM is preferable.

상기 게이트 전극(16) 및 소스 및 드레인 전극(14 및 15)은 전도성 물질이면가능하나, 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 크롬(Cr) 및 인듐틴산화물(ITO)로 이루어진 군으로부터 선택된 물질로 형성되는 것이 바람직하다.The gate electrode 16 and the source and drain electrodes 14 and 15 may be formed of a conductive material and may be formed of a metal such as gold (Au), silver (Ag), aluminum (Al), nickel (Ni), chromium (Cr) Oxide (ITO).

또한 본 발명에 따른 나프탈렌 다이이미드 중합체는 OTFT 외에도 OPV 등 유기 반도체 재료를 사용하는 유기전자 소자 전반에 사용이 가능하다.
The naphthalene diimide polymer according to the present invention can be used in all organic electronic devices using organic semiconductor materials such as OPV in addition to OTFTs.

본 발명은 나프탈렌 다이이미드 유도체와 전자 주게 및 전자 끌게 화합물과 공중합을 통해 새로운 유기 반도체 화합물인 나프탈렌 다이이미드 중합체를 합성할 수 있으며, 이는 반도체의 n-형 또는 p-형 고분자 재료로 사용할 수 있다. 본 발명에 따라 제조되는 유기 반도체 화합물인 나프탈렌 다이이미드 중합체는 열적, 기계적 물성이 우수하여 안정성이 우수하면서 분자간 상호 작용이 높아 이동도 특성 도한 높은 새로운 p-형 및 n-형 유기 반도체 재료가 될 수 있는 효과가 있다. 또한 공중합체의 주게 성질들을 조절하며 양극성(ambipolar)특성또한 가질 수 있는 고안정성, 고이동도 특성을 가지는 유기 반도체 재료가 될 수 있는 효과가 있다. The present invention can synthesize a naphthalene diimide polymer which is a new organic semiconductor compound through copolymerization of a naphthalene diimide derivative with an electron donor and an electron donating compound and can be used as an n-type or p-type polymeric material of a semiconductor. The naphthalene diimide polymer, which is an organic semiconductor compound produced according to the present invention, is highly p- and n-type organic semiconducting materials having excellent thermal and mechanical properties and high stability and high mobility, There is an effect. In addition, it has an effect of being an organic semiconductor material having high stability and high mobility characteristics, which can control the properties of the copolymer and have ambipolar characteristics.

이에 따라 발명에 따른 나프탈렌 다이이미드 중합체는 OTFT 외에도 OPV 등 유기 반도체 재료를 사용하는 유기전자 소자 전반에 사용이 가능한 장점이 있다.
Accordingly, the naphthalene diimide polymer according to the present invention has an advantage that it can be used in all organic electronic devices using an organic semiconductor material such as OPV in addition to an OTFT.

도 1 - 기판/게이트/절연층(소스,드레인)/반도체 층으로 제조되는 일반적인
유기박막트랜지스터의 구조를 보여주는 단면도
도 2 - 실시예 1에서 제조된 유기 반도체 화합물 PNDIBTE의 열중량분석(TGA)
도 3 - 실시예 1에서 제조된 유기 반도체 화합물 PNDIBTE의 시차열량분석(DSC)
도 4 - 실시예 1에서 제조된 유기 반도체 화합물 PNDIBTE의 액체 상태의 UV 흡수 및 고체 상태의 UV 스펙트럼을 나타낸 그래프
도 5 실시예 1에서 제조된 유기 반도체 화합물 PNDIBTE의 순환식 전압전류법(cyclic voltammetry) 곡선
도 6 컴퓨터 시뮬레이션(DFT)을 통해 실시예 1의 HOMO와 LUMO 구조를 예측한 도면
도 7- 실시예 1에 따른 유기 반도체 화합물 PNDIBTE를 이용하여 제작된 소자의 특성을 나타내는 도면
도 8 - 실시예 2에서 제조된 유기 반도체 화합물 PNDIBTBTE의 열중량분석(TGA)
도 9 - 실시예 2에서 제조된 유기 반도체 화합물 PNDIBTBTE의 시차열량분석(DSC)
도 10 - 실시예 2에서 제조된 유기 반도체 화합물 PNDIBTBTE의 액체 상태의 UV 흡수 및 고체 상태의 UV 스펙트럼을 나타낸 그래프
도 11 실시예 2에서 제조된 유기 반도체 화합물 PNDIBTBTE의 순환식 전압전류법(cyclic voltammetry) 곡선
도 12 컴퓨터 시뮬레이션(DFT)을 통해 실시예 2의 HOMO와 LUMO 구조를 예측한 도면
도 13 - 실시예 2에 따른 유기 반도체 화합물 PNDIBTBTE를 이용하여 제작된 소자의 특성을 나타내는 도면
도 14 - 실시예 3에서 제조된 유기 반도체 화합물 PNDIBSE의 열중량분석(TGA)
도 15 - 실시예 3에서 제조된 유기 반도체 화합물 PNDIBSE의 시차열량분석(DSC)
도 16 - 실시예 3에서 제조된 유기 반도체 화합물 PNDIBSE의 액체 상태의 UV 흡수 및 고체 상태의 UV 스펙트럼을 나타낸 그래프
도 17 실시예 3에서 제조된 유기 반도체 화합물 PNDIBSE의 순환식 전압전류법(cyclic voltammetry) 곡선
도 18 컴퓨터 시뮬레이션(DFT)을 통해 실시예 3의 HOMO와 LUMO 구조를 예측한 도면
Figure 1 - Typical of a substrate / gate / insulating layer (source, drain) / semiconductor layer
Sectional view showing the structure of an organic thin film transistor
2 - Thermogravimetric analysis (TGA) of the organic semiconductor compound PNDIBTE prepared in Example 1
Figure 3 - Differential calorimetric analysis (DSC) of the organic semiconductor compound PNDIBTE prepared in Example 1,
4 is a graph showing UV absorption in a liquid state and UV spectrum in a solid state of the organic semiconductor compound PNDIBTE prepared in Example 1
5 A cyclic voltammetry curve of the organic semiconductor compound PNDIBTE prepared in Example 1
FIG. 6 is a drawing for predicting the HOMO and LUMO structure of Example 1 through computer simulation (DFT)
7 is a drawing showing the characteristics of a device manufactured using the organic semiconductor compound PNDIBTE according to Example 1
8 - Thermogravimetric analysis (TGA) of the organic semiconductor compound PNDIBTBTE prepared in Example 2
Figure 9 - Differential calorimetric analysis (DSC) of the organic semiconductor compound PNDIBTBTE prepared in Example 2,
10 is a graph showing UV absorption in a liquid state and UV spectrum in a solid state of the organic semiconductor compound PNDIBTBTE prepared in Example 2
11 A cyclic voltammetry curve of the organic semiconductor compound PNDIBTBTE prepared in Example 2
Figure 12: Prediction of the HOMO and LUMO structure of Example 2 through computer simulation (DFT)
13 - Diagrams showing characteristics of a device manufactured using the organic semiconductor compound PNDIBTBTE according to Example 2
14 - Thermogravimetric analysis (TGA) of the organic semiconductor compound PNDIBSE prepared in Example 3
15 - Differential calorimetric analysis (DSC) of the organic semiconductor compound PNDIBSE prepared in Example 3,
16 - graph showing UV absorption in a liquid state and UV spectrum in a solid state of the organic semiconductor compound PNDIBSE prepared in Example 3
17 A cyclic voltammetry curve of the organic semiconductor compound PNDIBSE prepared in Example 3
FIG. 18 is a drawing for predicting the HOMO and LUMO structure of Example 3 through computer simulation (DFT).

이하에서, 본 발명의 상세한 이해를 위하여 본 발명의 대표 화합물을 들어 본 발명에 따른 나프탈렌 다이이미드의 공중합체, 이의 제조방법 및 소자의 특성을 설명하나, 이는 단지 그 실시 양태를 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, for the purpose of a detailed understanding of the present invention, the characteristics of the naphthalene diimide copolymer, the production method thereof, and the device according to the present invention will be described with reference to the representative compound of the present invention, , And are not intended to limit the scope of the present invention.

[제조예 1][Production Example 1]

(E)-1,2- (E) -1,2- 비스Bis (( 싸이오펜Thiophene -2-일)-2 days) 에텐Ethene ((E)-1,2-((E) -1,2- bisbis (( thiophenthiophen -2--2- ylyl )ethene)의 합성) ethene) Synthesis of

Figure 112012093380044-pat00036
Figure 112012093380044-pat00036

플라스크에 싸이오펜-2-카르발데하이드(5.6 g, 50 mmol)을 넣고 테트라하이드로류란(THF) (100 mL)에 녹인 후 -18℃로 온도를 낮추고 티타늄(IV)클로라이드(6.5 mL) 30분 동안 천천히 적하한다. 30분 동안 교반 후에 아연분말(7.8 g)을 30분에 걸쳐 투입한다. -18℃에서 30분 동안 교반 뒤에 상온으로 올리고 3시간 30분 동안 환류시킨다. 그 후 얼음물을 부어 반응종결 시킨 뒤 필터로 무기물을 필터하면서 메틸렌클로라이드로 씻어내려 추출하고 수분제거 후 헥산으로 재결정하여 노란색 고체로 목적화합물인 (E)-1,2-비스(싸이오펜-2-일)에텐을 얻었다.(4.7 g, 수득률: 98%). 1HNMR (300MHz,CDCl3)[ppm]δ7.18(d,2H),7.05(s,2H),7.04(d,2H),6.99(m,2H).To the flask was added thiophene-2-carbaldehyde (5.6 g, 50 mmol), dissolved in tetrahydrofuran (THF) (100 mL), cooled to -18 ° C and treated with titanium (IV) chloride Gt; min. ≪ / RTI > After stirring for 30 minutes, zinc powder (7.8 g) is added over 30 minutes. After stirring at -18 占 폚 for 30 minutes, the mixture is warmed to room temperature and refluxed for 3 hours and 30 minutes. Then, the reaction mixture was poured into ice water and the reaction was terminated. The reaction mixture was filtered with a filter, washed with methylene chloride, and then extracted with water. The water was removed and recrystallized with hexane to obtain the desired compound (E) -1,2- Yl) ethene (4.7 g, yield: 98%). 1 H NMR (300 MHz, CDCl 3 ) [ppm] 隆 7.18 (d, 2H), 7.05 (s, 2H), 7.04 (d, 2H), 6.99 (m, 2H).

[제조예 2][Production Example 2]

(E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐 ((E)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene)의 합성(E) -1,2-bis (5- (trimethylstannyl) thiophen-2-yl) ethene) (E) synthesis

Figure 112012093380044-pat00037
Figure 112012093380044-pat00037

플라스크에 (E)-1,2-비스(싸이오펜-2-일)에텐 (1.78 g, 9.6 mmol)을 테트라하이드로퓨란/헥산의 혼합용매 (부피비 2/1, 50 mL)에 녹인 후 2몰의 n-부틸리튬이 있는 시클로헥산(11 ml, 22 mmol)을 -78℃에서 천천히 가하고 30분간 교반시킨다. 상온으로 올려 1시간동안 환류시킨 후 다시 반응물을 -78℃로 온도를 내린다. 동온도에서 상기 반응물에 1몰의 트리메틸틴 클로라이드가 용해되어 있는 테트라하이드로퓨란(22 mL, 22 mmol)천천히 적하시키고, 2시간 동안 상온에서 교반시킨다. 에테르로 추출하고, 무수황산마그네슘으로 수분을 제거하고, 용매를 농축한 후 에탄올로 재결정하여 하얀색의 바늘모양의 목적 화합물인 (E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐을 얻었다(3.88 g, 수득률: 80%). 1H NMR(300MHz,CDCl3)[ppm]δ7.11(d,2H),7.08(s,2H),7.07(d,2H),0.36(s,18H).(E) -1,2-bis (thiophen-2-yl) ethene (1.78 g, 9.6 mmol) was dissolved in a mixed solvent of tetrahydrofuran / hexane (volume ratio 2/1, 50 mL) Butyllithium in cyclohexane (11 ml, 22 mmol) was added slowly at -78 [deg.] C and stirred for 30 minutes. After returning to room temperature and refluxing for 1 hour, the temperature of the reaction mixture is lowered to -78 ° C. Tetrahydrofuran (22 mL, 22 mmol) in which 1 mol of trimethyltin chloride had been dissolved was slowly added dropwise to the reaction solution at the same temperature and stirred at room temperature for 2 hours. The reaction mixture was extracted with ether, and water was removed with anhydrous magnesium sulfate. The solvent was concentrated and then recrystallized with ethanol to obtain white needle-shaped target compound (E) -1,2-bis (5- (trimethylstannyl) thiophene 2-yl) ethene (3.88 g, yield 80%). 1 H NMR (300MHz, CDCl 3 ) [ppm] δ7.11 (d, 2H), 7.08 (s, 2H), 7.07 (d, 2H), 0.36 (s, 18H).

[제조예 3][Production Example 3]

(E)-1,2-비스(5-(트리메틸스탠닐)셀레노펜-2-일)에텐 ((E)-1,2-bis(5-(trimethylstannyl)selenophen-2-yl)ethene)의 합성(E) -1,2-bis (5- (trimethylstannyl) selenophen-2-yl) ethene) (E) synthesis

Figure 112012093380044-pat00038
Figure 112012093380044-pat00038

플라스크에 (E)-1,2-비스(셀레노펜-2-일)에텐 (1.00 g, 3.5 mmol)을 테트라하이드로퓨란 용매 (50 mL)에 녹인 후 2.5 몰의 n-부틸리튬이 있는 시클로헥산(3.1 ml, 7.7 mmol)을 -78℃에서 천천히 가하고 30분간 교반시킨다. 상온으로 올려 1시간동안 환류시킨 후 다시 반응물을 -78℃로 온도를 내린다. 동온도에서 상기 반응물에 1몰의 트리메틸틴 클로라이드가 용해되어 있는 테트라하이드로퓨란(1.6 g, 7.7mmol)천천히 적하시켜 10분 동안 교반한 뒤, 상온에서 교반시킨다. 용매를 농축한 후 메탄올로 재결정하여 하얀색의 바늘모양의 목적 화합물인 (E)-1,2-비스(5-(트리메틸스탠닐)셀레노펜-2-일)에텐을 얻었다(1.5 g, 수득률: 75%). 1H NMR(CD2Cl2,300MHz),δ(ppm):d 7.24-23 (d, 4H), 7.04 (d,2H), 0.39 (s, 18H).(E) -1,2-bis (selenophen-2-yl) ethene (1.00 g, 3.5 mmol) was dissolved in a tetrahydrofuran solvent (50 mL), and then 2.5 mol of n-butyl lithium in cyclohexane (3.1 ml, 7.7 mmol) was added slowly at -78 [deg.] C and stirred for 30 min. After returning to room temperature and refluxing for 1 hour, the temperature of the reaction mixture is lowered to -78 ° C. Tetrahydrofuran (1.6 g, 7.7 mmol) in which 1 mol of trimethyltin chloride had been dissolved was slowly added dropwise to the reaction solution at the same temperature, and the mixture was stirred for 10 minutes and then stirred at room temperature. The solvent was concentrated and recrystallized from methanol to obtain white needle-shaped target compound (E) -1,2-bis (5- (trimethylstannyl) selenophen-2-yl) ethene (1.5 g, yield: 75%). 1 H NMR (CD 2 Cl 2 , 300 MHz),? (Ppm): d 7.24-23 (d, 4H), 7.04 (d, 2H), 0.39 (s, 18H).

[[ 제조예Manufacturing example 4] 4]

(E)-1,2- (E) -1,2- 비스(4-(트리메틸스탠닐)페닐)에텐Bis (4- (trimethylstannyl) phenyl) ethene ((E)-1,2- ((E) -1,2- bisbis (4-((4-( trimethylstannyltrimethylstannyl )) phenylphenyl )ethene)의 합성) ethene) Synthesis of

Figure 112012093380044-pat00039
Figure 112012093380044-pat00039

플라스크에 (E)-1,2-비스(4-브로모페닐)에텐 (3 g, 8.7 mmol)을 테트라하이드로퓨란 (90 mL)에 녹인 후 2몰의 n-부틸리튬이 있는 시클로헥산(7.1 mL, 17.75 mmol)을 -78℃에서 천천히 가하고 30분간 교반시킨다. 동온도에서 상기 반응물에 트리메틸틴 클로라이드를 (3.53 g, 17.75 mmol)천천히 적하시키고, 2시간 동안 상온에서 교반시킨다. 에테르로 추출하고, 무수황산마그네슘으로 수분을 제거하고, 용매를 농축한 후 에틸알콜으로 재결정하여 하얀색 분말의 목적 화합물인 (E)-1,2-비스(4-(트리메틸스탠닐)페닐)에텐을 얻었다(3.2 g, 수득률: 80%). 1H NMR (300MHz, CDCl3)[ppm] δ7.50-7.48(m,4H), 6.968(s,2H), 0.36(s,18H). After dissolving (E) -1,2-bis (4-bromophenyl) ethene (3 g, 8.7 mmol) in tetrahydrofuran (90 mL), 2 mol of n-butyllithium cyclohexane mL, 17.75 mmol) was added slowly at -78 [deg.] C and stirred for 30 minutes. Trimethyltin chloride (3.53 g, 17.75 mmol) was slowly added dropwise to the reaction mixture at the same temperature and stirred at room temperature for 2 hours. The reaction mixture was extracted with ether and water was removed with anhydrous magnesium sulfate. The solvent was concentrated and then recrystallized with ethyl alcohol to obtain (E) -1,2-bis (4- (trimethylstannyl) phenyl) (3.2 g, yield: 80%). 1 H NMR (300MHz, CDCl 3 ) [ppm] δ7.50-7.48 (m, 4H), 6.968 (s, 2H), 0.36 (s, 18H).

[제조예 5][Production Example 5]

(E)-1,2- (E) -1,2- 비스(3-도데실싸이오펜-2-일)에텐Bis (3-dodecylthiophen-2-yl) ethene ((E)-1,2- ((E) -1,2- bisbis (3-(3- dodecylthiophendodecylthiophen -2--2- ylyl )ethene)의 합성) ethene) Synthesis of

Figure 112012093380044-pat00040
Figure 112012093380044-pat00040

3-도데실싸이오펜-2-카르발데하이드(14 g, 50 mmol), 테트라하이드로퓨란(THF) (250 mL), 티타늄(IV)클로라이드(6.5 mL), 아연분말(7.8 g)을 사용하여 제조예 1과 동일한 방법으로 목적 화합물인 (E)-1,2-비스(3-도데실싸이오펜-2-일)에텐을 얻었다(10 g, 수득률: 75%). 1H NMR(300MHz, CDCl3)[ppm] δ 7.18(d,2H), 7.05(d,2H), 6.99(s,2H), 2.67(m,4H), 1.54(m,4H), 1.23(m,36H), 0.88(m,6H) (14 g, 50 mmol), tetrahydrofuran (THF) (250 mL), titanium (IV) chloride (6.5 mL) and zinc powder (7.8 g) were added to a solution of 3-dodecylthiophene-2-carbaldehyde (E) -1,2-bis (3-dodecylthiophen-2-yl) ethene (10 g, yield: 75%) was obtained in the same manner as in Production Example 1. 1 H NMR (300MHz, CDCl 3 ) [ppm] δ 7.18 (d, 2H), 7.05 (d, 2H), 6.99 (s, 2H), 2.67 (m, 4H), 1.54 (m, 4H), 1.23 ( m, 36H), 0.88 (m, 6H)

[[ 제조예Manufacturing example 6] 6]

(E)-1,2-비스(3- (E) -1,2-bis (3- 도데실Dodecyl -5-(-5- ( 트리메틸스탠닐Trimethylstannyl )) 사이오펜Thiophene -2-일)에텐 ((E)-1,2-bis(3-dodecyl-5-(trimethylstannyl)thiophen-2-yl)ethene)의 합성Synthesis of (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene

Figure 112012093380044-pat00041
Figure 112012093380044-pat00041

(E)-1,2-비스(3-도데실싸이오펜-2-일)에텐 (5 g, 9.6 mmol)을 테트라하이드로퓨란/헥산의 혼합용매 (부피비 2/1, 100 mL), 2몰의 n-부틸리튬이 있는 시클로헥산(11 ml, 22 mmol), 트리메틸틴 클로라이드(4.38g, 22 mmol) 제조예 2과 동일한 방법으로 목적 화합물인 (E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐을 얻었다(5.2 g, 수득률: 63%). 1H NMR (300MHz, CDCl3)[ppm] δ7.05(d,2H), 6.99(s,2H), 2.67(m,4H), 1.54(m,4H), 1.23(m,36H), 0.88(m,6H), 0.36(s,18H).(E) -1,2-bis (3-dodecylthiophen-2-yl) ethene (5 g, 9.6 mmol) was dissolved in a mixed solvent of tetrahydrofuran / hexane (2/1, (E) -1,2-bis (3-dodecylbenzenesulfonyl) -2,3,4-tetrahydroisoquinoline was obtained in the same manner as in Preparation Example 2, using cyclohexane (11 ml, 22 mmol) (Trimethylstannyl) thiophen-2-yl) ethene (5.2 g, yield: 63%). 1 H NMR (300MHz, CDCl 3 ) [ppm] δ7.05 (d, 2H), 6.99 (s, 2H), 2.67 (m, 4H), 1.54 (m, 4H), 1.23 (m, 36H), 0.88 (m, 6 H), 0.36 (s, 18 H).

[제조예 7][Production Example 7]

(E)-1,2-비스(3-도데실싸이에노[3,2-b]싸이오펜-2-일)에텐 ((E)-1,2-bis(3-dodecylthieno[3,2-b]thiophen-2-yl)ethene)의 합성 (E) -1,2-bis (3-dodecylthieno [3,2-b] thiophen-2-yl) ethene -b] thiophen-2-yl) ethene)

Figure 112012093380044-pat00042
Figure 112012093380044-pat00042

3-도데실싸이에노[3,2-b]싸이오펜-2-카르발데하이드(17 g, 50 mmol), 테트라하이드로퓨란(THF) (250 mL), 티타늄(IV)클로라이드(6.5 mL), 아연분말(7.8 g)을 사용하여 제조예 1과 동일한 방법으로 목적 화합물인 (E)-1,2-비스(3-도데실싸이에노[3,2-b]싸이오펜-2-일)에텐을 얻었다(24 g, 수득률: 75%). 1H NMR(300MHz, CDCl3)[ppm] δ7.18(d,2H), 7.05(d,2H), 6.99(s,2H), 2.67(m,4H), 1.54(m,4H), 1.23(m,36H), 0.88(m,6H) 3-dodecyl Im furnace [3,2- b] thiophene-2-hydroxy balde (17 g, 50 mmol), tetrahydrofuran (THF) (250 mL), titanium (IV) chloride (6.5 mL) (E) -1,2-bis (3-dodecylthieno [3,2-b] thiophen-2-yl) zinphosphate (7.8 g) was obtained in the same manner as in Preparation Example 1, ) Ethene (24 g, yield: 75%). 1 H NMR (300MHz, CDCl 3 ) [ppm] δ7.18 (d, 2H), 7.05 (d, 2H), 6.99 (s, 2H), 2.67 (m, 4H), 1.54 (m, 4H), 1.23 (m, 36H), 0.88 (m, 6H)

[[ 제조예Manufacturing example 8] 8]

(E)-1,2-비스(3- (E) -1,2-bis (3- 도데실Dodecyl -5-(-5- ( 트리메틸스탠닐Trimethylstannyl )) 사이오펜Thiophene -2-일)에텐 ((E)-1,2-bis(3-dodecyl-5-(trimethylstannyl)thieno[3,2-b]thiophen-2-yl)ethene)의 합성Synthesis of (E) -1,2-bis (3-dodecyl-5- (trimethylstannyl) thieno [3,2- b] thiophen-2-yl) ethene

Figure 112012093380044-pat00043
Figure 112012093380044-pat00043

(E)-1,2-비스(3-도데실싸이에노[3,2-b]싸이오펜-2-일)에텐 (5 g, 9.6 mmol)을 테트라하이드로퓨란/헥산의 혼합용매 (부피비 2/1, 100 mL), 2몰의 n-부틸리튬이 있는 시클로헥산(11 ml, 22 mmol), 트리메틸틴 클로라이드(4.38g, 22 mmol) 제조예 2과 동일한 방법으로 목적 화합물인 (E)-1,2-비스(3-도데실-5-(트리메틸스탠닐)사이오펜-2-일)에텐을 얻었다(5.2 g, 수득률: 63%). 1H NMR (300MHz, CDCl3)[ppm] δ7.05(d,2H), 6.99(s,2H), 2.67(m,4H), 1.54(m,4H), 1.23(m,36H), 0.88(m,6H), 0.36(s,18H).
(5 g, 9.6 mmol) was added to a solution of (E) -1,2-bis (3-dodecylthieno [3,2- b] thiophen- (E) was obtained in the same manner as in PREPARATION 2, using 2-methyl-2-pyrrolidone as a starting material, 2/1, 100 mL), 2 mol of n-butyllithium cyclohexane (11 mL, 22 mmol), and trimethyltin chloride (4.38 g, -1,2-bis (3-dodecyl-5- (trimethylstannyl) thiophen-2-yl) ethene was obtained (5.2 g, yield 63%). 2H), 2.67 (m, 4H), 1.54 (m, 4H), 1.23 (m, 36H), 0.88 (m, , ≪ / RTI > 6H), 0.36 (s, 18H).

[실시예1] 폴리[(E)-2.7-비스(2-데실테트라데실)-4-메틸-9-(5-(2-(5-메틸티오펜-2-일)비닐)티오펜-2-일)벤조[lmn][3,8]페난트롤린-1,3,6,8(2H,7H)-테트라원]Example 1 Synthesis of poly [(E) -2,7-bis (2-decyltetradecyl) -4-methyl-9- (5- (2- (5-methylthiophen- Yl) benzo [l, m] [3,8] phenanthroline-l, 3,6,8 (2H, 7H)

(Poly[(E)-2,7-bis(2-decyltetradecyl)-4-methyl-9-(5-(2-(5-methylthiophen-2-yl)vinyl)thiophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone] ((Poly [(E) -2,7-bis (2-decyltetradecyl) -4-methyl-9- (5- (2- (5- methylthiophen- 2- yl) vinyl) thiophen- ] [3,8] phenanthroline-1,3,6,8 (2H, 7H) -tetraone] ( PNDIBTEPNDIBTE ))의 합성))

Figure 112012093380044-pat00044
Figure 112012093380044-pat00044

상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 4,9-dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (0.50 g, 0.46 mmol)과 (E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐 (제조예 2, 0.24 g, 0.46 mmol)을 클로로벤젠 (7.5 mL)에 녹이고 질소 치환을 실시한다. 그 후에 촉매로 Pd2(dba)3(8mg,2mol%)와 P(o-tol)3(11mg,8mol%)을 넣고 110℃에서 48시간 동안 환류시킨다. 그런 다음, 상기 반응용액을 메탄올 (300 mL)에 천천히 침전시키고 생성된 고체를 걸러낸다. 걸러낸 고체는 속실렛(soxhlet)을 통해 메탄올, 헥산, 톨루엔, 클로로포름 순으로 정제한다. 내려온 액체를 메탄올에 다시 침전시키고 필터를 통해 걸러낸 후 건조시켜 검녹색 고체의 표제 화합물인 PNDIBTE를 얻었다(수득률 91%). Mn = 70,000, 다분산도 1.98, 1H NMR (500MHz, CDCl3,ppm):δ8.48-8.45(broad,2H),7.93-7.20(broad,6H),4.09-4.08(broad,4H),1.98-1.94(m,2H),1.27-1.24(m,80H),0.87(m,12H).The polymer may be polymerized through a Stille coupling reaction. 4,9-dibromo-2,7-bis (2-decyltetradecyl) benzo [1,3] phenanthroline-1,3,6,8 (2H, 7H) -tetraone (0.50 g, E) -1,2-bis (5- (trimethylstannyl) thiophen-2-yl) ethene (Preparation Example 2, 0.24 g, 0.46 mmol) was dissolved in chlorobenzene (7.5 mL). Then, Pd2 (dba) 3 (8 mg, 2 mol%) and P (o-tol) 3 (11 mg, 8 mol%) were added as a catalyst and refluxed at 110 ° C for 48 hours. The reaction solution is then slowly precipitated in methanol (300 mL) and the resulting solid is filtered off. The filtered solid is purified through a soxhlet in the order of methanol, hexane, toluene and chloroform. The resulting liquid was precipitated again in methanol, filtered through a filter, and dried to obtain PNDIBTE (yield 91%) which was the title compound of a dark green solid. Mn = 70,000, polydispersity of 1.98, 1H NMR (500MHz, CDCl3, ppm):? 8.48-8.45 (broad, 2H), 7.93-7.20 (broad, 6H), 4.09-4.08 1.94 (m, 2H), 1.27-1.24 (m, 80H), 0.87 (m, 12H).

[[ 실시예Example 2] 폴리[(E)-2,7- 2] Poly [(E) -2,7- 비스Bis (2-(2- 도데실데실테트라데실Dodecyldecyltetradecyl )-4-(5-) -4- (5- 메틸티오펜Methylthiophene -2-일)-9-(5'-(2-(5-메틸티오펜-2-일)비닐)-[2,2'-Yl) -9- (5 '- (2- (5-methylthiophen-2-yl) vinyl) - [ 바이티오펜Batiotopen ]-5일)]-5 days) 벤조Benzo [[ lmnlmn ][3,8]페난트롤린-1,3,6,8(2H, 7H)-] [3,8] phenanthroline-1,3,6,8 (2H, 7H) - 테트라원Tetraone ]]

(Poly[(E)-2,7-bis(2-(Poly [(E) -2,7-bis (2- decyltetradecyldecyltetradecyl -4-(5--4- (5- methylthiophen메틸thiophen -2--2- ylyl )-9-(5'-(2-(5-) -9- (5 '-( 2- (5- methylthiophen메틸thiophen -2--2- ylyl )vinyl)-[2,2'-bithiophen]-5-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone] () vinyl] - [2,2'-bithiophen-5-yl) benzo [1,3] phenanthroline-1,3,6,8 (2H, 7H) -tetraone] PNDIBTBTEPNDIBTBTE ))의 합성))

Figure 112012093380044-pat00045
Figure 112012093380044-pat00045

상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 4,9-bis(5-bromothiophen-2-yl)-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (0.50 g, 0.40 mmol), (E)-1,2-비스(5-(트리메틸스탠닐)싸이오펜-2-일)에텐 (제조예 2, 0.21 g, 0.40 mmol), Pd2(dba)3(7mg)와 P(o-tol)3(10mg)을 사용하여 실시예 1과 동일한 방법으로 표제 화합물인 PNDIBTBTE를 수득하였다(수득률: 83%). 46,000, 다분산도 1.05, 1H NMR (500MHz, CDCl3,ppm):δ8.48-8.45(broad,2H),7.93-7.20(broad,10H),4.07-4.02(broad,4H),1.97-1.95(m,2H),1.35-1.17(m,80H),0.80(m,12H). The polymer may be polymerized through a Stille coupling reaction. 4,9-bis (5-bromothiophen-2-yl) -2,7-bis (2-decyltetradecyl) benzo [m] [3,8] phenanthroline- 1,3,6,8 (2H, 7H) -tetraone (E) -1,2-bis (5- (trimethylstannyl) thiophen-2-yl) ethene (Preparation 2, 0.21 g, 0.40 mmol), Pd2 (dba) 3 (Yield: 83%) was obtained in the same manner as in Example 1, using the title compound (7 mg) and P (o-tol) 3 (10 mg). (Broad, 4H), 1.97-1.95 (broad, 10H), 4.04-4.0 m, 2H), 1.35-1.17 (m, 80H), 0.80 (m, 12H).

[실시예 3] 폴리[(E)-2,7-비스(2-도데실테트라도데실)-4-메틸-9-(5-(2-(5-메틸세레노펜-2-일)비닐)세레노펜-2-일)벤조[lmn][3,8]페난트롤린-1,3,6,8(2H, 7H)-테트라원][Example 3] Synthesis of poly [(E) -2,7-bis (2-dodecyltetradodecyl) -4-methyl- Vinyl) cerenophen-2-yl) benzo [lmn] [3,8] phenanthroline-1,3,6,8 (2H, 7H)

(Poly[(E)-2,7-bis(2-decyltetradecyl)-4-methyl-9-(5-(2-(5-methylselenophen-2-yl)vinyl)selenophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone] ((Poly [(E) -2,7-bis (2-decyltetradecyl) -4-methyl-9- (5- (2- (5-methylselenophen- 2- yl) vinyl) selenophen-2-yl) benzo [ ] [3,8] phenanthroline-1,3,6,8 (2H, 7H) -tetraone] ( PNDIBSEPNDIBSE )의 합성) Synthesis of

Figure 112012093380044-pat00046
Figure 112012093380044-pat00046

상기 고분자는 스틸레(Stille) 커플링 반응을 통해 중합할 수 있다. 4,9-dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (0.50 g, 0.46 mmol), (E)-1,2-bis(5-(trimethylstannyl)selenophen-2-yl)ethene (제조예 3, 0.28 g, 0.40 mmol), Pd2(dba)3(8mg)와 P(o-tol)3(11mg)을 사용하여 실시예 1과 동일한 방법으로 표제 화합물인 PNDIBSE를 수득하였다(수득률: 97%). Mn=220,000, 다분산도 1.13. The polymer may be polymerized through a Stille coupling reaction. 4,9-dibromo-2,7-bis (2-decyltetradecyl) benzo [1,3] phenanthroline-1,3,6,8 (2H, 7H) -tetraone (0.50 g, 0.46 mmol) E) -1,2-bis (5- trimethylstannyl) selenophen-2-yl) ethene (Preparation 3, 0.28 g, 0.40 mmol), Pd2 (dba) 11 mg), the title compound was obtained in the same manner as in Example 1 (yield: 97%). Mn = 220,000, polydispersity of 1.13.

[[ 실시예Example 4] 유기전자소자제작 4] Production of organic electronic devices

OTFT 소자는 탑-컨택 방식으로 제작하였으며, 300 nm (PNDIBTE의 경우)의 n-doped silicon 을 게이트로 사용하였으며 SiO2를 절연체로 사용하였다. 표면처리는 piranha cleaning 46-26solution(H2SO4:2H2O2)을 사용하여 표면세척을 한 다음, ODTS(octadecyltrichlorosilane)을 이용해 표면을 SAM(Self Assemble Monolayer)처리 한 후 사용하였다. 유기반도체층은 0.2 wt% chloroform solution을 spin-coater를 사용하여 2000 rpm의 속도로 1분간 코팅하였다. 유기 반도체 물질로는 상기 실시예 1에서 합성된 PNDIBTE를 사용하였다. 유기반도체층의 두께는 surface profiler (Alpha Step 500, Tencor)를 사용하여 100 nm로 확인하였다. 소스와 드레인으로 사용된 gold는 1 A/s로 50 nm의 두께로 증착하였다. 채널의 길이는 160 μm 이며 폭은 1600 μm이다. OTFT의 특성의 측정은 Keithley 2400과 236 source/measure units 를 사용하였다. The OTFT device was fabricated by top-contact method, and 300 nm (for PNDIBTE) n-doped silicon gate was used and SiO 2 was used as the insulator. Surface treatment was performed by surface cleaning using piranha cleaning 46-26solution (H 2 SO 4 : 2H 2 O 2 ) and then treating the surface with SAM (Self Assemble Monolayer) using ODTS (octadecyltrichlorosilane). The organic semiconductor layer was coated with a 0.2 wt% chloroform solution at a speed of 2000 rpm for 1 minute using a spin-coater. As the organic semiconductor material, PNDIBTE synthesized in Example 1 was used. The thickness of the organic semiconductor layer was confirmed to be 100 nm using a surface profiler (Alpha Step 500, Tencor). The gold used as the source and drain was deposited to a thickness of 50 nm at 1 A / s. The channel length is 160 μm and the width is 1600 μm. The characteristics of OTFT were measured using Keithley 2400 and 236 source / measure units.

전하이동도는 하기 화학식 2(포화영역(saturation region) 전류식)으로부터 (ISD)1/2 과 VG를 변수로 한 그래프를 얻고 그 기울기로부터 구하였다. The charge mobility was obtained from the slope by obtaining a graph of (ISD) 1/2 and V G as variables from the following formula (2) (saturation region current equation).

[화학식 2] 포화영역(saturation region) 전류식[Formula 2] Saturation region [

Figure 112012093380044-pat00047
Figure 112012093380044-pat00047

상기 식에서, ISD는 소스-드레인 전류이고, μ 또는 μFET는 전하 이동도이 며, C0는 산화막 정전용량이고, W는 채널 폭이며, L은 채널 길이이고, VG는 게이트 전압이며, VT는 문턱전압이다. 또한 차단 누설전류(Ioff)는 오프 상태일 때 흐르는 전류로서, 전류비에서 오프 상태에서 최소전류로 구하였다.Wherein, I SD is the source-and-drain current, μ or μ FET is said mobile charge Doi, and C 0 is oxide capacitance, W is the channel width, and L is channel length, V G is the gate voltage, V T is the threshold voltage. In addition, the blocking leakage current (I off ) is a current flowing when the off state is obtained, and a minimum current is obtained from the off state at the current ratio.

도 2에서는 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)분해온도를 TGA를 이용하여 측정한 결과를 도시한 것이다. PNDIBTE의 5% 분해가 일어나는 온도는 453℃로 측정되어 PNDIBTE는 열적안정성이 우수하다고 할 수 있다. FIG. 2 shows the results of measurement of the decomposition temperature of the organic semiconductor compound (PNDIBTE) synthesized in Example 1 using TGA. The temperature at which 5% decomposition of PNDIBTE occurs is measured at 453 ° C, and PNDIBTE has excellent thermal stability.

도 3에서는 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)의 DSC에 대한 열적 안정성을 측정한 것으로, PNDIBTE에서는 용융온도값이 242℃로 측정되었으며 결정화 온도값은 210℃로 측정되어 정질의 특성을 가지는 것을 알 수 있다. In FIG. 3, the thermal stability of the organic semiconductor compound (PNDIBTE) synthesized in Example 1 was measured with respect to DSC. In PNDIBTE, the melting temperature was measured at 242 ° C. and the crystallization temperature was measured at 210 ° C. .

상기 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)의 광 흡수영역을 용액상태와 필름상태에서 측정하여 결과를 도 4에 도시하였다. The light absorbing region of the organic semiconductor compound (PNDIBTE) synthesized in Example 1 was measured in a solution state and a film state, and the result is shown in FIG.

실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)의 전기화학적 특성을 분석하기 위해서 Bu4NClO4(0.1 몰농도)의 용매 하에서 50 mV/s의 조건에서 싸이클로 볼타메트리(cyclic voltammetry)를 이용하여 측정한 결과를 도 5에 도시하였으며, 측정 시 카본 전극을 사용하여 코팅을 통해 전압을 인가하였다. In order to analyze the electrochemical characteristics of the organic semiconductor compound (PNDIBTE) synthesized in Example 1, cyclic voltammetry was performed under the condition of Bu 4 NClO 4 (0.1 molar concentration) in a solvent of 50 mV / s The measurement result is shown in FIG. 5, and a voltage was applied through a coating using a carbon electrode during the measurement.

하기 표 1에 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)의 광학적 및 전기화학적 성질을 기재하였다. 여기서 LUMO값은 도 5에서 측정한 결과값을 이용하여 계산한 값이다. 또한 밴드갭은 필름상태에서 UV 흡수파장에서 구하였다. The optical and electrochemical properties of the organic semiconductor compound (PNDIBTE) synthesized in Example 1 are shown in Table 1 below. Here, the LUMO value is a value calculated using the result measured in FIG. The bandgap was also obtained at the UV absorption wavelength in the film state.

도 6에서는 분자의 에너지 준위에 따른 전자의 분포상태를 DFT계산을 통해 도시하였다. 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)의 HOMO 에너지 준위에서는 전자가 전자 주게 쪽에 분포되어 있는 것을 볼 수 있다. LUMO 에너지 준위상태에서는 전자 주게의 전자가 전자 받게쪽으로 이동한 것을 알 수 있으며 이러한 결과를 통해 에너지의 전하 분리가 잘 이루어진다는 것을 알 수가 있다.In FIG. 6, the distribution of electrons according to the energy level of a molecule is shown through DFT calculation. It can be seen that electrons are distributed in the electron-donor side at the HOMO energy level of the organic semiconductor compound (PNDIBTE) synthesized in Example 1. In the LUMO energy level state, electrons in the electron donor move toward the electron acceptor.

도 7은 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)를 이용하여 실시예 4에서 제작된 소자의 transfer curve를 나타내는 도면이다. 도 7에 도시된 바와 같이 본 발명에서 합성된 유기 반도체 화합물은 열적안정성이 우수하며 풀림(annealing)을 하였을 때 전하이동도가 증가함을 알 수 있어 우수한 재료임을 알 수 있다. 7 is a diagram showing transfer curves of the device manufactured in Example 4 using the organic semiconductor compound (PNDIBTE) synthesized in Example 1. FIG. As shown in FIG. 7, it can be seen that the organic semiconductor compound synthesized in the present invention has excellent thermal stability and shows an increase in charge mobility when annealed, which is an excellent material.

하기 표 2에 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)를 이용하여 실시예 4에서 제작된 소자의 특성을 기재하였다. 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)을 이용하여 제작된 소자는 전하이동도가 1.5 cm2V-1s-1로 매우 우수한 n-형 유기반도체 특성을 나타내는 것을 확인하였고, 풀림(annealing)의 온도가 높아짐에 따라 전하이동도가 증가하고 점멸비가 높아지는 것을 확인하였다.The characteristics of the device fabricated in Example 4 were described in Table 2 below using the organic semiconductor compound (PNDIBTE) synthesized in Example 1. The device fabricated using the organic semiconductor compound (PNDIBTE) synthesized in Example 1 showed excellent n-type organic semiconductor characteristics with a charge mobility of 1.5 cm2V-1s-1, and the temperature of the annealing It was confirmed that the charge mobility increased and the blink ratio increased.

[실시예 5] 유기전자소자제작[Example 5] Production of organic electronic device

유기 반도체 물질을 상기 실시예 2에서 합성한 PNDIBTBTE을 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 유기 전자 소자를 제작하였다. An organic electronic device was fabricated in the same manner as in Example 4, except that PNDIBTBTE synthesized in Example 2 was used as an organic semiconductor material.

전하이동도는 하기 화학식 2(포화영역(saturation region) 전류식)으로부터 (ISD)1/2 과 VG를 변수로 한 그래프를 얻고 그 기울기로부터 구하였다. The charge mobility was obtained from the slope by obtaining a graph of (ISD) 1/2 and V G as variables from the following formula (2) (saturation region current equation).

[화학식 2] 포화영역(saturation region) 전류식[Formula 2] Saturation region [

Figure 112012093380044-pat00048
Figure 112012093380044-pat00048

상기 식에서, ISD는 소스-드레인 전류이고, μ 또는 μFET는 전하 이동도이 며, C0는 산화막 정전용량이고, W는 채널 폭이며, L은 채널 길이이고, VG는 게이트 전압이며, VT는 문턱전압이다. 또한 차단 누설전류(Ioff)는 오프 상태일 때 흐르는 전류로서, 전류비에서 오프 상태에서 최소전류로 구하였다.Wherein, I SD is the source-and-drain current, μ or μ FET is said mobile charge Doi, and C 0 is oxide capacitance, W is the channel width, and L is channel length, V G is the gate voltage, V T is the threshold voltage. In addition, the blocking leakage current (I off ) is a current flowing when the off state is obtained, and a minimum current is obtained from the off state at the current ratio.

도 8에서는 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)분해온도를 TGA를 이용하여 측정한 결과를 도시한 것이다. PNDIBTBTE의 5% 분해가 일어나는 온도는 453℃로 측정되어 PNDIBTBTE는 열적안정성이 우수하다고 할 수 있다. FIG. 8 shows the results of measurement of the decomposition temperature of the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2 using TGA. The temperature at which 5% decomposition of PNDIBTBTE occurs is measured at 453 ° C, so that PNDIBTBTE has excellent thermal stability.

도 9에서는 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)의 DSC에 대한 열적 안정성을 측정한 것으로, PNDIBTBTE에서는 유리전이온도값, 용융온도값, 결정화 온도값이 나타나지 않는 것으로 보아 비정질의 특성을 가지는 것을 알 수 있다. 9 shows the thermal stability of the organic semiconducting compound (PNDIBTBTE) synthesized in Example 2 against DSC. In the PNDIBTBTE, the glass transition temperature value, the melting temperature value and the crystallization temperature value are not shown, .

상기 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)의 광 흡수영역을 용액상태와 필름상태에서 측정하여 결과를 도 10에 도시하였다. The light absorbing region of the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2 was measured in a solution state and a film state, and the results are shown in FIG.

실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)의전기화학적 특성을 분석하기 위해서Bu4NClO4(0.1 몰농도)의 용매 하에서 50 mV/s의 조건에서 싸이클로 볼타메트리(cyclic voltammetry)를 이용하여 측정한 결과를 도 11에 도시하였으며, 측정 시 카본 전극을 사용하여 코팅을 통해 전압을 인가하였다. In order to analyze the electrochemical characteristics of the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2, cyclic voltammetry was performed under the condition of Bu 4 NClO 4 (0.1 molar concentration) in a solvent of 50 mV / s The measured results are shown in FIG. 11. In the measurement, a voltage was applied through a coating using a carbon electrode.

하기 표 1에 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)의 광학적 및 전기화학적 성질을 기재하였다. 여기서 LUMO값은 도 11에서 측정한 결과값을 이용하여 계산한 값이다. 또한 밴드갭은 필름상태에서 UV흡수파장에서 구하였다. The optical and electrochemical properties of the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2 are shown in Table 1 below. Here, the LUMO value is a value calculated using the result measured in FIG. The bandgap was also obtained at the UV absorption wavelength in the film state.

도 12에서는 분자의 에너지 준위에 따른 전자의 분포상태를 DFT계산을 통해 도시하였다. 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)의 HOMO 에너지 준위에서는 전자가 전자 주게쪽에 분포되어 있는 것을 볼 수 있다. LUMO 에너지 준위상태에서는 전자 주게의 전자가 전자 받게쪽으로 이동한 것을 알 수 있으며 이러한 결과를 통해 에너지의 전하 분리가 잘 이루어진다는 것을 알 수가 있다.In FIG. 12, the distribution of electrons according to the energy level of a molecule is shown through DFT calculation. It can be seen that electrons are distributed in the electron-donor side at the HOMO energy level of the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2. [ In the LUMO energy level state, electrons in the electron donor move toward the electron acceptor.

도 13은 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)를 이용 하여 실시예 4에서 제작된 소자의 transfer curve를 나타내는 도면이다. 도 7에 도시된 바와 같이 본 발명에서 합성된 유기 반도체 화합물은 열적안정성이 우수하며 풀림(annealing)을 하였을 때 전하이동도가 증가함을 알 수 있어 우수한 재료임을 알 수 있다. 하기 표 2에 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)를 이용하여 실시예 5에서 제작된 소자의 특성을 기재하였다. 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)을 이용하여 제작된 소자는 p-형 유기반도체 특성을 나타내며, 풀림(annealing)의 온도가 높아짐에 따라 전하이동도가 증가하고 점멸비가 높아지는 것을 확인하였다.13 is a diagram showing transfer curves of the device fabricated in Example 4 using the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2. FIG. As shown in FIG. 7, it can be seen that the organic semiconductor compound synthesized in the present invention has excellent thermal stability and shows an increase in charge mobility when annealed, which is an excellent material. The characteristics of the device fabricated in Example 5 were described in Table 2 below using the organic semiconductor compound (PNDIBTE) synthesized in Example 1. The device fabricated using the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2 exhibited p-type organic semiconductor characteristics and it was confirmed that the charge mobility increased and the blink ratio increased as the annealing temperature increased .

[[ 실시예Example 6] 유기전자소자제작 6] Production of organic electronic devices

유기 반도체 물질을 상기 실시예 3에서 합성한 PNDIBSE을 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 유기 전자 소자를 제작하였다. An organic electronic device was fabricated in the same manner as in Example 4 except that PNDIBSE synthesized in Example 3 was used as an organic semiconductor material.

전하이동도는 하기 화학식 2(포화영역(saturation region) 전류식)으로부터 (ISD)1/2 과 VG를 변수로 한 그래프를 얻고 그 기울기로부터 구하였다. The charge mobility was obtained from the slope by obtaining a graph of (ISD) 1/2 and V G as variables from the following formula (2) (saturation region current equation).

[화학식 2] 포화영역(saturation region) 전류식[Formula 2] Saturation region [

Figure 112012093380044-pat00049
Figure 112012093380044-pat00049

상기 식에서, ISD는 소스-드레인 전류이고, μ 또는 μFET는 전하 이동도이 며, C0는 산화막 정전용량이고, W는 채널 폭이며, L은 채널 길이이고, VG는 게이트 전압이며, VT는 문턱전압이다. 또한 차단 누설전류(Ioff)는 오프 상태일 때 흐르는 전류로서, 전류비에서 오프 상태에서 최소전류로 구하였다.Wherein, I SD is the source-and-drain current, μ or μ FET is said mobile charge Doi, and C 0 is oxide capacitance, W is the channel width, and L is channel length, V G is the gate voltage, V T is the threshold voltage. In addition, the blocking leakage current (I off ) is a current flowing when the off state is obtained, and a minimum current is obtained from the off state at the current ratio.

도 14에서는 실시예 3에서 합성된 유기 반도체 화합물(PNDIBSE)분해온도를 TGA를 이용하여 측정한 결과를 도시한 것이다. PNDIBSE의 5% 분해가 일어나는 온도는 387℃로 측정되어 PNDIBSE는 열적안정성이 우수하다고 할 수 있다. FIG. 14 shows the results of measurement of the decomposition temperature of the organic semiconductor compound (PNDIBSE) synthesized in Example 3 using TGA. The temperature at which 5% decomposition of PNDIBSE occurs is measured at 387 ° C, and PNDIBSE has excellent thermal stability.

도 15에서는 실시예 3에서 합성된 유기 반도체 화합물(PNDIBSE)의 DSC에 대한 열적 안정성을 측정한 것으로, PNDIBSE에서는 PNDIBTBTE에서는 유리전이온도값, 용융온도값, 결정화 온도값이 나타나지 않는 것으로 보아 비정질의 특성을 가지는 것을 알 수 있다.15, the thermal stability of the organic semiconductor compound (PNDIBSE) synthesized in Example 3 was measured with respect to DSC. In PNDIBSE, PNDIBTBTE shows no glass transition temperature value, melting temperature value and crystallization temperature value, . ≪ / RTI >

상기 실시예 16에서 합성된 유기 반도체 화합물(PNDIBSE)의 광 흡수영역을 용액상태와 필름상태에서 측정하여 결과를 도 10에 도시하였다. The light absorbing region of the organic semiconductor compound (PNDIBSE) synthesized in Example 16 was measured in a solution state and a film state, and the results are shown in FIG.

실시예 3에서 합성된 유기 반도체 화합물(PNDIBSE)의 전기화학적 특성을 분석하기 위해서Bu4NClO4(0.1 몰농도)의 용매 하에서 50 mV/s의 조건에서 싸이클로 볼타메트리(cyclic voltammetry)를 이용하여 측정한 결과를 도 17에 도시하였으며, 측정 시 카본 전극을 사용하여 코팅을 통해 전압을 인가하였다. In order to analyze the electrochemical characteristics of the organic semiconductor compound (PNDIBSE) synthesized in Example 3, cyclic voltammetry was performed under the condition of Bu 4 NClO 4 (0.1 molar concentration) in a solvent of 50 mV / s The measurement result is shown in FIG. 17, and a voltage was applied through a coating using a carbon electrode during the measurement.

하기 표 1에 실시예 3에서 합성된 유기 반도체 화합물(PNDIBSE)의 광학적 및 전기화학적 성질을 기재하였다. 여기서 LUMO값은 도 17에서 측정한 결과값을 이용하여 계산한 값이다. 또한 밴드갭은 필름상태에서 UV흡수파장에서 구하였다. The optical and electrochemical properties of the organic semiconductor compound (PNDIBSE) synthesized in Example 3 are shown in Table 1 below. Here, the LUMO value is a value calculated using the result measured in FIG. The bandgap was also obtained at the UV absorption wavelength in the film state.

도 18에서는 분자의 에너지 준위에 따른 전자의 분포상태를 DFT계산을 통해 도시하였다. 실시예 3에서 합성된 유기 반도체 화합물(PNDIBSE)의 HOMO 에너지 준위에서는 전자가 전자주게 쪽에 분포되어 있는 것을 볼 수 있다. LUMO 에너지 준위상태에서는 전자주게의 전자가 전자받게 쪽으로 이동한 것을 알 수 있으며 이러한 결과를 통해 에너지의 전하 분리가 잘 이루어진다는 것을 알 수가 있다.In FIG. 18, the distribution of electrons according to the energy level of a molecule is shown through DFT calculation. It can be seen that electrons are distributed in the electron-donor side at the HOMO energy level of the organic semiconductor compound (PNDIBSE) synthesized in Example 3. [ In the LUMO energy level state, electrons in the electron donor move toward the electron acceptor.

[표 1] [Table 1]

Figure 112012093380044-pat00050
Figure 112012093380044-pat00050

[표 2][Table 2]

Figure 112012093380044-pat00051
Figure 112012093380044-pat00051

상기 표 1를 살펴보면 실시예 1에서 합성된 화합물 (PNDIBTE)와 실시예 2에서 합성된 화합물(PNDIBTBTE), 실시예 3에서 합성된 화합물 (PNDIBSE)는 넓은 파장 영역의 빛을 흡수하며, 좁은 밴드갭을 가지고, 낮은 HOMO 값을 가지는 것으로 보아 산화안정성이 높은 화합물임을 알 수 있다.As shown in Table 1, the compound (PNDIBTE) synthesized in Example 1, the compound (PNDIBTBTE) synthesized in Example 2, and the compound (PNDIBSE) synthesized in Example 3 absorb light in a wide wavelength range, And it has a low HOMO value, which indicates that the compound has high oxidation stability.

상기 표 2를 살펴보면 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)과를 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)이용하여 실시예 4와 5 에서 제작된 소자의 특성을 기재하였다. 실시예 1에서 합성된 유기 반도체 화합물(PNDIBTE)을 이용하여 제작된 소자는 전하이동도가 1.5 cm2V-1s-1로 매우 우수한 n-형 유기반도체 특성을 나타내는 것을 확인하였고, 풀림(annealing)의 온도가 높아짐에 따라 전하이동도와 문턱전압이 증가하고, 높은 점멸비를 가지는 것을 확인하였다. 실시예 2에서 합성된 유기 반도체 화합물(PNDIBTBTE)을 이용하여 제작된 소자는 p-형 유기반도체 특성을 나타내며, 풀림(annealing)의 온도가 높아짐에 따라 전하이동도가 증가하고 점멸비가 높아지는 것을 확인하였다.The characteristics of the devices fabricated in Examples 4 and 5 were described using the organic semiconductor compound (PNDIBTE) synthesized in Example 1 and the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2 as shown in Table 2 above. The device fabricated using the organic semiconductor compound (PNDIBTE) synthesized in Example 1 showed excellent n-type organic semiconductor characteristics with a charge mobility of 1.5 cm 2 V -1 s -1 , and annealing ) Was increased, the charge mobility and threshold voltage were increased, and it was confirmed that it had a high blink ratio. The device fabricated using the organic semiconductor compound (PNDIBTBTE) synthesized in Example 2 exhibited p-type organic semiconductor characteristics and it was confirmed that the charge mobility increased and the blink ratio increased as the annealing temperature increased .

11 : 기판 12 : 절연층(insulator)
13 : 유기전자소자층(channel material) 14 : 소스(source)
15 : 드레인(drain) 16 : 게이트(gate)
11: substrate 12: insulating layer (insulator)
13: organic electronic device channel material 14: source material,
15: drain 16: gate (gate)

Claims (7)

하기 화학식 1로 표시되는 나프탈렌 다이이미드 중합체.
[화학식 1]
Figure 112014059514621-pat00052

[상기 화학식 1에서,
R1및 R2는 각각 독립적으로 C1-C50 알킬, C6-C50 아릴, C1-C50알콕시 또는
Figure 112014059514621-pat00053
이고;
Z1, Z2, L1, L2 L3는 각각 독립적으로 단일결합 또는 하기 구조에서 선택되고;
Figure 112014059514621-pat00054

Figure 112014059514621-pat00055

V1 및 V2
Figure 112014059514621-pat00056
또는
Figure 112014059514621-pat00057
이고;
X1내지 X7는 각각 독립적으로 S, Se, O, N, NH 또는 NR'이고;
A1및 A2는 각각 독립적으로 수소, 시아노 또는 -COOR''이고;
R' 및 R''는 각각 독립적으로 C1-C50 알킬 또는 C6-C50 아릴이고;
R3 내지 R31은 각각 독립적으로 수소, 히드록시기, 아미노, C1-C50 알킬, C6-C50아릴, C1-C50 알콕시, 모노 또는 다이 C1-C50 알킬아미노, C1-C50 알콕시카보닐 또는 C1-C50 알킬카보닐옥시이고;
Z는 1내지 20의 정수이고, m 또는 y는 0 내지 2의 정수이며, n은 1 내지 1,000의 정수이며;
단, m 및 y가 동시에 0일 경우는 제외된다.]
A naphthalene diimide polymer represented by the following formula (1).
[Chemical Formula 1]
Figure 112014059514621-pat00052

[In the above formula (1)
R 1 and R 2 are each independently C 1 -C 50 alkyl, C 6 -C 50 aryl, C 1 -C 50 alkoxy or
Figure 112014059514621-pat00053
ego;
Z 1, Z 2 , L 1, L 2 and L < 3 > are each independently selected from a single bond or the following structure;
Figure 112014059514621-pat00054

Figure 112014059514621-pat00055

V 1 and V 2 are
Figure 112014059514621-pat00056
or
Figure 112014059514621-pat00057
ego;
X 1 to X 7 are each independently S, Se, O, N, NH or NR ';
A 1 and A 2 are each independently hydrogen, cyano or -COOR ";
R 'and R " are each independently C 1 -C 50 alkyl or C 6 -C 50 aryl;
R 3 to R 31 are each independently hydrogen, hydroxy, amino, C 1 -C 50 alkyl, C 6 -C 50 aryl, C 1 -C 50 alkoxy, mono- or di-C 1 -C 50 alkylamino, C 1 - C 50 alkoxycarbonyl or C 1 -C 50 alkylcarbonyl and aryloxy;
Z is an integer of 1 to 20, m or y is an integer of 0 to 2, and n is an integer of 1 to 1,000;
Provided that m and y are 0 at the same time.
제 1항에 있어서,
상기 화학식 1에서
Figure 112014059514621-pat00100
는 하기 구조에서 선택되는 것을 특징으로 하는 나프탈렌 다이이미드 중합체.
Figure 112014059514621-pat00059

Figure 112014059514621-pat00060

[상기 X1 내지 X4, A1, A2, R3, R4, R5, R6, R7 및 R8은 상기 화학식 1에서의 정의와 동일하다.]
The method according to claim 1,
In Formula 1,
Figure 112014059514621-pat00100
≪ / RTI > is selected from the following structures.
Figure 112014059514621-pat00059

Figure 112014059514621-pat00060

[Wherein X 1 to X 4 , A 1 , A 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same as defined in the above formula 1]
제 2항에 있어서,
상기
Figure 112014059514621-pat00101
는 하기 구조에서 선택되는 것을 특징으로 하는 나프탈렌 다이이미드 중합체.
Figure 112014059514621-pat00102

Figure 112014059514621-pat00103

Figure 112014059514621-pat00104

Figure 112014059514621-pat00105

Figure 112014059514621-pat00106

Figure 112014059514621-pat00107

Figure 112014059514621-pat00108

Figure 112014059514621-pat00109

Figure 112014059514621-pat00110

Figure 112014059514621-pat00111
3. The method of claim 2,
remind
Figure 112014059514621-pat00101
≪ / RTI > is selected from the following structures.
Figure 112014059514621-pat00102

Figure 112014059514621-pat00103

Figure 112014059514621-pat00104

Figure 112014059514621-pat00105

Figure 112014059514621-pat00106

Figure 112014059514621-pat00107

Figure 112014059514621-pat00108

Figure 112014059514621-pat00109

Figure 112014059514621-pat00110

Figure 112014059514621-pat00111
제 1항에 있어서,
상기 R1및 R2는 직쇄 또는 분지쇄의 C1-C50알킬 또는
Figure 112012093380044-pat00065
인 것을 특징으로 하는 나프탈렌 다이이미드 중합체.
[상기 R31 및 Z는 상기 화학식 1에서의 정의와 동일하다.]
The method according to claim 1,
Wherein R < 1 > and R < 2 > are straight or branched C 1 -C 50 alkyl or
Figure 112012093380044-pat00065
≪ / RTI > naphthalene diimide polymer.
[Wherein R 31 and Z are the same as defined in Formula 1].
제 1항에 있어서,
하기 화합물에서 선택되는 것을 특징으로 하는 나프탈렌 다이이미드 중합체.
Figure 112014059514621-pat00112

Figure 112014059514621-pat00113

Figure 112014059514621-pat00114

Figure 112014059514621-pat00115

Figure 112014059514621-pat00116

Figure 112014059514621-pat00117

Figure 112014059514621-pat00118

Figure 112014059514621-pat00119

Figure 112014059514621-pat00120

Figure 112014059514621-pat00121

Figure 112014059514621-pat00122

Figure 112014059514621-pat00123

Figure 112014059514621-pat00124

Figure 112014059514621-pat00125

Figure 112014059514621-pat00126

Figure 112014059514621-pat00127

Figure 112014059514621-pat00128

Figure 112014059514621-pat00129

Figure 112014059514621-pat00130

Figure 112014059514621-pat00131

Figure 112014059514621-pat00132

Figure 112014059514621-pat00133

Figure 112014059514621-pat00134

Figure 112014059514621-pat00135

Figure 112014059514621-pat00136

Figure 112014059514621-pat00137

Figure 112014059514621-pat00138

[상기 n은 1 내지 1,000의 정수이다.]
The method according to claim 1,
Lt; RTI ID = 0.0 > of: < / RTI > naphthalene diimide polymer.
Figure 112014059514621-pat00112

Figure 112014059514621-pat00113

Figure 112014059514621-pat00114

Figure 112014059514621-pat00115

Figure 112014059514621-pat00116

Figure 112014059514621-pat00117

Figure 112014059514621-pat00118

Figure 112014059514621-pat00119

Figure 112014059514621-pat00120

Figure 112014059514621-pat00121

Figure 112014059514621-pat00122

Figure 112014059514621-pat00123

Figure 112014059514621-pat00124

Figure 112014059514621-pat00125

Figure 112014059514621-pat00126

Figure 112014059514621-pat00127

Figure 112014059514621-pat00128

Figure 112014059514621-pat00129

Figure 112014059514621-pat00130

Figure 112014059514621-pat00131

Figure 112014059514621-pat00132

Figure 112014059514621-pat00133

Figure 112014059514621-pat00134

Figure 112014059514621-pat00135

Figure 112014059514621-pat00136

Figure 112014059514621-pat00137

Figure 112014059514621-pat00138

[Wherein n is an integer of 1 to 1,000]
제 5항에 있어서,
하기 화합물에서 선택되는 것을 특징으로 하는 나프탈렌 다이이미드 중합체.
Figure 112014059514621-pat00139

[상기 n은 1 내지 1,000의 정수이다.]
6. The method of claim 5,
Lt; RTI ID = 0.0 > of: < / RTI > naphthalene diimide polymer.
Figure 112014059514621-pat00139

[Wherein n is an integer of 1 to 1,000]
제 1항 내지 제 6항에서 선택되는 어느 한 항에 따른 나프탈렌 다이이미드 중합체를 유기반도체층에 포함하는 유기 박막 트랜지스터.








An organic thin film transistor comprising a naphthalene diimide polymer according to any one of claims 1 to 6 in an organic semiconductor layer.








KR1020120128443A 2012-11-13 2012-11-13 Novel Naphthalene Diimide polymers and organic electronic device KR101468942B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120128443A KR101468942B1 (en) 2012-11-13 2012-11-13 Novel Naphthalene Diimide polymers and organic electronic device
PCT/KR2013/010307 WO2014077590A1 (en) 2012-11-13 2013-11-13 Polymer comprising novel naphthalene diimide and organic electronic device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120128443A KR101468942B1 (en) 2012-11-13 2012-11-13 Novel Naphthalene Diimide polymers and organic electronic device

Publications (2)

Publication Number Publication Date
KR20140062610A KR20140062610A (en) 2014-05-26
KR101468942B1 true KR101468942B1 (en) 2014-12-08

Family

ID=50731439

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120128443A KR101468942B1 (en) 2012-11-13 2012-11-13 Novel Naphthalene Diimide polymers and organic electronic device

Country Status (2)

Country Link
KR (1) KR101468942B1 (en)
WO (1) WO2014077590A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108360A1 (en) * 2014-01-17 2015-07-23 경상대학교산학협력단 Asymmetric heterocycle-vinylene-heterocyclic-based diketopyrrolopyrrole polymer, organic electronic device adopting same, and monomer for preparing same
KR101878657B1 (en) * 2016-06-02 2018-07-16 경상대학교산학협력단 New terpolymer and organic electronic device using the same
CN107141456A (en) * 2017-06-15 2017-09-08 中国科学院化学研究所 A kind of naphthalimide thiophene cyano vinyl polymer and preparation method and application
CN109749060B (en) * 2017-11-03 2024-02-20 东莞伏安光电科技有限公司 Naphthalimide n-type conjugated polymer with adjustable side chain branching point and application thereof
US10533079B2 (en) 2018-02-13 2020-01-14 King Fahd University Of Petroleum And Minerals Copolymers for iodide detection and methods thereof
CN110240588A (en) * 2018-03-09 2019-09-17 首都师范大学 Organic fluorescence materials and preparation method thereof and crystallite
CN115093412B (en) * 2022-06-30 2023-12-19 西安交通大学 Organic thermoelectric functional material based on end-group electron-withdrawing base benzene ring derivative

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012142466A1 (en) * 2011-04-15 2012-10-18 Georgia Tech Research Corporation Stannyl derivatives of naphthalene diimides and related compositions and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012142466A1 (en) * 2011-04-15 2012-10-18 Georgia Tech Research Corporation Stannyl derivatives of naphthalene diimides and related compositions and methods

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Macromolecules, 2010, 43, 6348-6352 *
Organic Letters, 2008, Vol. 10, No. 23, 5333-5336 *
Polymer Science and Technology, 2009, 20(4), 328-337 *
Polymer Science and Technology, 2009, 20(4), 328-337*

Also Published As

Publication number Publication date
WO2014077590A1 (en) 2014-05-22
KR20140062610A (en) 2014-05-26

Similar Documents

Publication Publication Date Title
KR101463397B1 (en) Novel Diketopyrrolopyrrole polymers and organic electronic device using the same
KR101468942B1 (en) Novel Naphthalene Diimide polymers and organic electronic device
KR101855051B1 (en) High performance solution processable seminconductor based on dithieno [2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene
Sonar et al. High-mobility organic thin film transistors based on benzothiadiazole-sandwiched dihexylquaterthiophenes
US20090314997A1 (en) Substituted benzodithiophenes and benzodiselenophenes
JP2014518551A (en) Naphthalene-diimide-heterocyclic-naphthalenediimide oligomer as organic semiconductor and transistor derived therefrom
KR20080107420A (en) Fluorine-containing compound and method for producing same, fluorine-containing polymer, organic thin film, and organic thin film device
KR20080101229A (en) Organic semiconductor polymer with liquid crystal property, method of preparing the same, and organic thin film transistor using the same
Mishra et al. Mixed selenium-sulfur fused ring systems as building blocks for novel polymers used in field effect transistors
KR101146423B1 (en) pi;-EXTENDED TETRATHIAFULVALENE DERIVATIVES, ORGANIC ELECTRONIC DEVICE USING THE SAME AND ELECTRONIC APPARATUS COMPRISING THE SAME
Kong et al. New semiconducting polymers containing 3, 6-dimethyl (thieno [3, 2-b] thiophene or selenopheno [3, 2-b] selenophene) for organic thin-film transistors
KR101485398B1 (en) Diketopyrrolopyrrole polymer and organic electronic device using the same
KR101630173B1 (en) Asymmetric heterocycle-vinylene-heterocycle based diketopyrrolopyrrole polymer, organic electronic device using the same and monomer for preparing the same
Lee et al. Dicyanomethylene-quinoid vs. dicyanovinyl-benzenoid organic semiconductors: Understanding structure-property correlations in mesomerism-like forms
KR101589048B1 (en) Novel organic semiconductor compound and organic electronic device using the same
KR101822888B1 (en) Organic semiconducting compounds, manufacturing method thereof, and organic electronics devices containing the same
KR101878657B1 (en) New terpolymer and organic electronic device using the same
KR101723793B1 (en) Novel compound and organic electronic device using the same
KR101960782B1 (en) Diketopyrrolopyrrole polymer and method manufacturing the same
KR102143429B1 (en) Diketopyrrolopyrrole polymer and organic electronic device using the same
KR101072477B1 (en) Organic semiconductor compounds substituted alkylthiophen group in side-chain of polymer and organic thin film transistor utilizing same
KR101600031B1 (en) Asymmetric diketopyrrolopyrrole polymer and organic electronic device using the same
KR101513883B1 (en) Novel polymer and organic electronic device using the same
KR101816515B1 (en) Novel naphthalene diimide-based organic semiconductor compound having perfluoroalkyl side chains and organic electronic device using the same
KR20160088257A (en) Asymmetric heterocycle-vinylene-heterocycle based diketopyrrolopyrrole polymer, organic electronic device using the same and monomer for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171020

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 6