KR101459074B1 - Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same - Google Patents

Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same Download PDF

Info

Publication number
KR101459074B1
KR101459074B1 KR1020140002766A KR20140002766A KR101459074B1 KR 101459074 B1 KR101459074 B1 KR 101459074B1 KR 1020140002766 A KR1020140002766 A KR 1020140002766A KR 20140002766 A KR20140002766 A KR 20140002766A KR 101459074 B1 KR101459074 B1 KR 101459074B1
Authority
KR
South Korea
Prior art keywords
hpv
seq
dna
tsp
artificial sequence
Prior art date
Application number
KR1020140002766A
Other languages
Korean (ko)
Other versions
KR20140029500A (en
Inventor
임성식
김연수
이은정
Original Assignee
(주)다이오진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)다이오진 filed Critical (주)다이오진
Priority to KR1020140002766A priority Critical patent/KR101459074B1/en
Publication of KR20140029500A publication Critical patent/KR20140029500A/en
Application granted granted Critical
Publication of KR101459074B1 publication Critical patent/KR101459074B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/705Specific hybridization probes for herpetoviridae, e.g. herpes simplex, varicella zoster
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/143Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Abstract

본 발명은 인유두종바이러스의 유전자형을 분석하기 위한 DNA 칩, 상기 DNA 칩을 포함하는 진단 키트 및 이를 이용하여 인유두종바이러스의 유전자형을 분석하는 방법에 관한 것이다. 본 발명에서 합성된 올리고뉴클레오티드는 종양원성 HPV 유형의 HPV 핵산과 상보적으로 결합하여 상기 HPV 유형의 핵산을 특이적으로 증폭할 수 있는 신규한 유형 특이적 프라이머로 사용될 수 있다. 특히, 본 발명에 따른 DNA 칩의 제조에 사용되는 올리고뉴클레오티드는 샘플 내에 HPV 핵산의 존재 여부 및 유형을 검출/진단하는데 활용될 수 있으므로 HPV에 의하여 야기되는 자궁경부암 등의 조기 검진에 활용될 수 있다. 본 발명에 따른 유전체(genome)를 이용한 유전자 접근 방법을 통하여 조기에 HPV 감염 여부를 진단할 수 있기 때문에 추후 지속적이고 장기적으로 정확한 검진을 실시할 수 있어 자궁경부암의 예방효과가 기대된다. 또한, 비교적 저렴한 비용으로 HPV 진단을 수행할 수 있을 뿐 아니라 검진 대상자에게 첨단결과를 조기에 알려줄 수 있으므로 신뢰도 및 만족감을 줄 수 있고, 국가적 차원에서 큰 문제가 되고 있는 자궁경부암과 같은 국민 건강에 일익을 담당할 수 있을 것으로 생각된다. The present invention relates to a DNA chip for analyzing a genotype of HPV, a diagnostic kit comprising the DNA chip, and a method for analyzing genotypes of HPV using the same. The oligonucleotide synthesized in the present invention can be used as a novel type-specific primer that can complementarily bind HPV type HPV type of tumorigenic HPV type and specifically amplify the HPV type nucleic acid. In particular, the oligonucleotide used in the production of the DNA chip according to the present invention can be utilized for the detection / diagnosis of the presence and type of HPV nucleic acid in the sample, and thus can be used for early screening of cervical cancer caused by HPV . Since the HPV infection can be diagnosed prematurely through the gene approach using the genome according to the present invention, accurate and long-term accurate screening can be carried out, which is expected to prevent the cervical cancer. In addition, HPV diagnosis can be performed at a relatively low cost, and it is possible to provide advanced results to the examinee at an early stage, thereby giving credibility and satisfaction. Also, I think you can take charge of.

Figure R1020140002766
Figure R1020140002766

Description

인유두종바이러스 유전자형 분석용 DNA 칩, 이를 포함하는 키트 및 이를 이용한 인유두종바이러스 유전자형 분석방법{DNA CHIP FOR DETERMINING GENOMIC TYPES OF HUMAN PAPILLOMAVIRUS, KIT COMPRISING THE SAME AND DETERMINING METHOD OF GENOMIC TYPES OF HUMAN PAPILLOMAVIRUS USING THE SAME}DNA chip for human papillomavirus genotyping analysis, kit containing the same, and human papillomavirus genotyping method using the same

본 발명은 인유두종바이러스의 유전자형을 분석하기 위한 DNA 칩, 상기 DNA 칩을 포함하는 진단 키트 및 이를 이용하여 인유두종바이러스의 유전자형을 분석하는 방법에 관한 것이다.
The present invention relates to a DNA chip for analyzing the genotype of human papillomavirus, a diagnostic kit including the DNA chip, and a method of analyzing the genotype of human papillomavirus using the same.

자궁경부암(Cervical Cancer)은 여성의 자궁경부에서 발생하는 악성 종양으로서 전체 자궁암 발생 빈도의 95% 이상을 차지하고 있으며, 전세계 여성암 가운데 유방암 다음으로 발생빈도가 높아 매년 약 44만 건 정도의 신규환자가 보고되고 있다.Cervical cancer is a malignant tumor that occurs in the cervix of women and accounts for more than 95% of the incidence of uterine cancer. It is the second most common female cancer in the world, after breast cancer, and approximately 440,000 new patients annually. It is being reported.

국내의 경우 2000년도 보건복지부 암 등록 조사통계를 참고하면, 1년에 약 5,000명 가량의 새로운 환자들이 발생하는 것으로 확인되고 있다. 이는 전체 여성암에 있어서 약 10.6%를 차지하는 것으로 발생 빈도상 위암(15.7%)과 유방암(15.1%)에 이어 3위를 차지하고 있는 것이다. 특히, 최근에는 20~30대의 젊은 여성의 감염률이 크게 증가하여 전체 자궁경부암 환자의 약 32%를 차지하는 등 국민보건상 심각한 문제로 대두되고 있다. 이 때문에 성인 여성에서 주기적인 HPV검사는 필수적이며, 성병 검사시 HPV 검사는 기본적으로 포함된다(U.S.DEPARTMENT OF HEALTH AND HUMAN SERVICES, Centers for Disease Control and Prevention National Center for HIV/AIDS, Viral Hepatitis, STD, and TB. Prevention Division of STD Prevention. Sexually Transmitted Disease Surveillance 2008. Division of STD Prevention. 2009: November; Tchernev G. Sexually transmitted papillomavirus infections: epidemiology pathogenesis, clinic, morphology, important differential diagnostic aspects, current diagnostic and treatment options. An Bras Dermatol. 2009; 84(4): 377-89).In Korea, according to the cancer registration survey statistics of the Ministry of Health and Welfare in 2000, it is confirmed that about 5,000 new patients occur per year. This accounts for about 10.6% of all female cancers, and ranks third after gastric cancer (15.7%) and breast cancer (15.1%) in terms of incidence. In particular, in recent years, the infection rate of young women in their 20s to 30s has increased significantly, accounting for about 32% of all cervical cancer patients, which is a serious problem in public health. For this reason, periodic HPV testing is essential in adult women, and HPV testing is basically included when testing for sexually transmitted diseases (USDEPARTMENT OF HEALTH AND HUMAN SERVICES, Centers for Disease Control and Prevention National Center for HIV/AIDS, Viral Hepatitis, STD, and TB. Prevention Division of STD Prevention.Sexually Transmitted Disease Surveillance 2008. Division of STD Prevention. 2009: November; Tchernev G. Sexually transmitted papillomavirus infections: epidemiology pathogenesis, clinic, morphology, important differential diagnostic aspects, current diagnostic and treatment options. An Bras Dermatol. 2009; 84(4): 377-89).

HPV는 인체 감염 부위에 종양을 일으킬 수 있으며, 암을 유발함이 명백하게 입증된 바이러스이다. HPV는 인간의 접촉부위 상피세포에 감염이 된 후 과잉증식(hyperproliferation)을 일으킨다. 이때의 과잉증식은 단순한 피부의 사마귀(wart)나 외성기, 항문 주위의 곤지름 혹은 첨규콘딜롬(condyloma accuminata)과 같은 양성종양인 경우가 대부분이다. 그러나, HPV는 발암의 원인이 될 수도 있으며, 실제 거의 모든 자궁경부암(uterine cervix cancer or cervical cancer)과 구강암이나 인두암, 후두암의 상당수, 그리고 다수의 항문암(anal cancer)이 HPV에 의해 발병함이 확인되고 있다. HPV는 암을 유발하여 생명을 앗아갈 수 있다는 점에서 그 중요성이 더할 나위 없이 크며, 한편으로는 HPV를 검사하면 자궁경부 및 항문 등의 암과 전암병변을 조기 진단할 수 있다. 실제 HPV 검사는 자궁경부암 조기검진의 표준검사인 Papa nicolaou 세포검사(Pap smear) 보다 자궁경부암의 예측 민감도가 더 우수함이 밝혀지고 있고, 이에 따라 미국 FDA 등 여러 나라에서 자궁경부암 선별검사로 인정되고 있다(Howley PM. Virology. Vol 2, 1996, 2045-2109; Murinoz N et al., N Engl J Med, 2003, 348:518-27; Parkin M, F. Bray F, J. Ferlay J and P. Pisani P. Global cancer statistics, 2002. C.A. Cancer J. Clin. 2005; National Network of STD/HIV Prevention Training Center. Genital human papillomavirus infection). 이러한 이유들로 인해 HPV 관련 분야의 시장은 매우 크며, HPV 검사의 경제적 가치도 매우 큰 것으로 보고되고 있다. HPV is a virus that has been clearly proven to cause cancer and can cause tumors in human infections. HPV causes hyperproliferation after infecting human epithelial cells at the contact site. The overgrowth at this time is mostly a benign tumor such as a simple skin wart, an external genital organ, a stiffness around the anus, or a condyloma accuminata. However, HPV can be a cause of carcinogenesis, and in reality almost all cervical cancer (uterine cervix cancer or cervical cancer), oral or pharyngeal cancer, a significant number of laryngeal cancer, and many anal cancers are caused by HPV. Is being confirmed. HPV is of great importance in that it can cause cancer and kill life. On the other hand, HPV can be used to diagnose cancer and precancerous lesions such as the cervix and anus early. Actually, HPV test has been found to have better predictive sensitivity of cervical cancer than Papa nicolaou cytology (Pap smear), which is a standard test for early cervical cancer screening, and accordingly, it is recognized as a screening test for cervical cancer in various countries including the US FDA. (Howley PM. Virology. Vol 2, 1996, 2045-2109; Murinoz N et al., N Engl J Med, 2003, 348:518-27; Parkin M, F. Bray F, J. Ferlay J and P. Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005; National Network of STD/HIV Prevention Training Center. Genital human papillomavirus infection). For these reasons, the market for HPV-related fields is very large, and the economic value of HPV testing is reported to be very large.

자궁경부암은 인유두종바이러스(Human Papillomavirus, HPV)와 밀접한 관련이 있는 것으로 보고되고 있다. 즉, HPV가 자궁경부 상피기저 세포에 감염한 후 저급 상피 이형성증(Low-grade SIL), 고급 상피 이형성증(High grade SIL), 상피내암(squamous intraepithelial lesion, SIL) 등의 오랜 전구 단계를 거쳐 최종 침윤암으로 발전하게 되는데, 이처럼 암으로 발전하기 전 단계인 전암 단계 병변이 존재하기 때문에, 이들 병변을 조기에 효과적으로 치료함으로써 자궁경부암을 예방할 수 있다. Cervical cancer has been reported to be closely related to human papillomavirus (HPV). In other words, after HPV infects the cervical epithelial basal cells, the final invasion through long progenitor stages such as low-grade SIL, high grade SIL, and squamous intraepithelial lesion (SIL). It develops into cancer, and since precancerous lesions, which are the stage before the development of cancer, exist, it is possible to prevent cervical cancer by treating these lesions early and effectively.

인유두종바이러스(Human Papillomavirus, HPV)는 8kb의 환상의 이중나선 DNA 바이러스로서, 모든 유형의 HPV 바이러스는 유사한 성질의 단백질을 합성하는 DNA 부분인 열린해독틀(open reading frames, ORFs)을 가지며, 크게 초기 유전자(early gene)와 후기 유전자(late gene)로 구분된다. 약 4.5kb의 초기 유전자는 바이러스 DNA 복제(E1), 숙주 세포의 악성화 변형(malignant transformation)을 야기하는 단백질을 형성하는 DNA의 작용을 유발하거나 억제(E2), 숙주세포와 바이러스 성장과 관련된 단백질의 합성(E4), EGF(epidermal growth factor)와 CSF(colony stimulator factor) 수용체의 작동유발(E5), 세포의 영구생존 및 암 유전자의 활성과 암 억제인자의 비활성화 기전에 의한 악성화 변형(E7) 등으로 나눌 수 있다. 특히, HPV가 숙주의 상피세포를 감염시킨 후에 발현되는 종양원성(oncogenic) 단백질인 E6와 E7은 각각 숙주세포의 종양 억제 단백질인 p53과 pRB와 결합하여 이들 종양억제 단백질의 기능을 억제함으로써, 결과적으로 감염 세포의 형질전환에 따른 종양 형성으로 발전하는 것으로 규명되고 있다. 한편, 2.5kb의 후기 유전자는 바이러스 주외피 단백질(L1)과 부외피 단백질(L2)의 합성을 담당하는 DNA와 이들의 전사와 번역 기능을 조절하는 비발현 부분(non-coding region)인 1kb 크기의 LCR(long control region)로 이루어져 있다. Human Papillomavirus (HPV) is an 8kb circular double-stranded DNA virus.All types of HPV viruses have open reading frames (ORFs), which are DNA parts that synthesize proteins of similar properties, and are largely early It is divided into early gene and late gene. The initial gene of about 4.5 kb triggers or inhibits the action of DNA to form proteins that cause viral DNA replication (E1), malignant transformation of host cells (E2), and proteins involved in host cell and viral growth. Synthesis (E4), activation of EGF (epidermal growth factor) and CSF (colony stimulator factor) receptors (E5), permanent survival of cells, activation of cancer genes, and malignant modification by inactivation mechanisms of cancer suppressors (E7), etc. Can be divided into. In particular, the oncogenic proteins E6 and E7, which are expressed after HPV infects the host epithelial cells, binds to p53 and pRB, respectively, the tumor suppressor proteins of the host cell, thereby inhibiting the function of these tumor suppressor proteins. It has been found to develop into tumor formation following transformation of infected cells. On the other hand, the 2.5 kb late gene is 1 kb in size, which is the DNA responsible for the synthesis of the virus main coat protein (L1) and the sub coat protein (L2), and a non-coding region that controls their transcription and translation functions. It consists of a long control region (LCR).

현재까지 HPV는 120가지 이상의 각각 다른 유형(type)들이 발견되었고, 이 가운데 약 36종의 HPV 유형(HPV-2, -3, -6, -10, -11, -13, -16, -18, -26, -30, -31, -32, -33, -34, -35, -39, -40, -42, -43, -44, -45, -51, -52, -53, -54, -55, -56, -57, -58, -59, -61, -66, -67, -68, -69, -70, -73)은 자궁경부암을 야기하는 이른바 종양원성 HPV 유형으로 밝혀졌다.To date, more than 120 different types of HPV have been discovered, of which about 36 HPV types (HPV-2, -3, -6, -10, -11, -13, -16, -18 , -26, -30, -31, -32, -33, -34, -35, -39, -40, -42, -43, -44, -45, -51, -52, -53,- 54, -55, -56, -57, -58, -59, -61, -66, -67, -68, -69, -70, -73) is a so-called tumorigenic HPV type that causes cervical cancer. It turned out.

그 중에서 HPV-16, -18, -26, -30, -31, -33, -35, -39, -45, -51, -52, -53, -56, -58, -59, -66, -67, -68, -69, -70, 및 -73과 같은 유형의 HPV는 자궁경부암으로의 진행률이 상대적으로 높은 것으로 밝혀져 있어 고위험군(high-risk) HPV로 분류되며, HPV -2, -3, -6, -7, -10, -11, -13, -32, -34, -40, -42, -43, -44, -54 및 -61과 같은 유형의 HPV는 자궁경부암으로의 진행률이 낮아 저위험군(low-risk) HPV로 분류되고 있다(Garrenstroom et al., J. Gynecol. Cancer 4:73-78, 1994).Among them, HPV-16, -18, -26, -30, -31, -33, -35, -39, -45, -51, -52, -53, -56, -58, -59, -66 , -67, -68, -69, -70, and -73 types of HPV are classified as high-risk HPV because it has been found to have a relatively high progression to cervical cancer, and HPV -2,- Types of HPV such as 3, -6, -7, -10, -11, -13, -32, -34, -40, -42, -43, -44, -54, and -61 can lead to cervical cancer. Due to its low progression rate, it is classified as a low-risk HPV (Garrenstroom et al., J. Gynecol. Cancer 4:73-78, 1994).

HPV와 관련하여 또 하나 중요한 사실은 최근 백신이 개발됨에 따라 바이러스의 예방과 함께 바이러스로 인한 암의 예방이 가능해지고 있다는 것이다. 현재 시판되는 HPV 예방 백신에는 2종류가 있다. 하나는 Gardasil(Merck & Co. Inc., Whitehouse Station, NJ, USA)로, 이는 HPV 16, 18, 6, 11형의 4종의 HPV를 예방하기 위해 만들어진 4가 백신이다. 또 다른 하나는 Cervarix(GlaxoSmithKline Biologicals, Rixensart, Belgium)로 types 16과 18의 2종의 HPV를 예방하기 위해 만들어진 2가 백신이다. 이들 백신은 성관계를 갖기 전의 청소년 여성에 가장 효과적이며, 이전에 HPV 16형이나 HPV 18형에 감염된 적이 있는 여성의 경우 효과가 떨어진다. 이 때문에 성인 여성에 대한 적응 여부에 논란이 있으나, HPV에 감염된 적이 있더라도 그 형이 type 16이나 18이 아닌 경우 HPV 백신이 적응 가능할 수도 있다. 따라서, HPV의 감염 유무뿐만 아니라 그 형(type)도 정확히 아는 것이 더욱 더 중요해지고 있다(Selva L, Gonzalez-Bosquet E, Rodriguez-Plataa MT, Esteva C, Sunol M and Munoz-Almagro C. Detection of human papillomavirus infection in women attending a colposcopy clinic. Diagnostic Microbiology and Infectious Disease. 2009; 64: 416-421; Reynales-Shigematsu LM, Rodrigues ER, Lazcano-Ponce E. Costeffectiveness analysis of a quadrivalent human papilloma virus vaccine in Mexico. Arch Med Res. 2009 Aug;40(6):503-13).Another important fact related to HPV is that with the recent development of vaccines, it is possible to prevent cancers caused by viruses as well as to prevent viruses. There are currently two types of vaccines for preventing HPV on the market. One is Gardasil (Merck & Co. Inc., Whitehouse Station, NJ, USA), which is a tetravalent vaccine designed to prevent 4 types of HPV, HPV types 16, 18, 6 and 11. Another is Cervarix (GlaxoSmithKline Biologicals, Rixensart, Belgium), a bivalent vaccine designed to prevent two types of HPV, types 16 and 18. These vaccines are most effective in adolescent women before sexual intercourse, and are less effective in women who have previously been infected with HPV type 16 or HPV 18. For this reason, there is a controversy over whether or not to adapt to adult women, but even if you have been infected with HPV, if the type is not type 16 or 18, HPV vaccine may be adaptable. Therefore, it is becoming more and more important to know exactly the type of HPV, as well as the presence or absence of infection (Selva L, Gonzalez-Bosquet E, Rodriguez-Plataa MT, Esteva C, Sunol M and Munoz-Almagro C. Detection of humans). papillomavirus infection in women attending a colposcopy clinic.Diagnostic Microbiology and Infectious Disease. 2009; 64: 416-421; Reynales-Shigematsu LM, Rodrigues ER, Lazcano-Ponce E. Costeffectiveness analysis of a quadrivalent human papilloma virus vaccine in Mexico. Arch Med Res. 2009 Aug;40(6):503-13).

현재 자궁경부암과 그 전구 병변의 일차 진단과 관련하여 기본적으로 세포진 검사(Papanicolaou(Pap) Smear)가 1940년대 이후 표준 검사법으로 시행되고 있다. 세포진 검사는 자궁 경부 세포진의 세포학적 형태를 기초로 하여 자궁경부암을 진단하는 것으로 이를 통하여 자궁경부암으로 인한 사망률을 크게 감소시키는데 공헌하였다. 그러나, 검사자의 숙련도에 의존하여 검사의 정확도가 떨어지는 단점이 있다(Menezes et al., Acta Cytol. 45:919-926, 2001). 또한, 질확대경을 시행하면 HPV의 감염을 70%까지 진단할 수 있으나, 수련된 전문가와 고가의 장비가 필요하며 인유두종바이러스의 유전자형을 분류할 수 없는 단점이 있다(Reidet al., Clin Obstet Gynecol. 32:157-179, 1989).At present, with regard to the primary diagnosis of cervical cancer and its progenitor lesions, the Pap smear (Papanicolaou(Pap) Smear) has been basically performed as a standard test method since the 1940s. The Pap test diagnoses cervical cancer based on the cytological morphology of the Pap smear, which has contributed to greatly reducing the mortality rate from cervical cancer. However, there is a disadvantage that the accuracy of the test is poor depending on the skill level of the tester (Menezes et al., Acta Cytol. 45:919-926, 2001). In addition, a colposcopy can diagnose up to 70% of HPV infections, but it requires a trained specialist and expensive equipment, and has the disadvantage of being unable to classify the genotype of human papillomavirus (Reidet al., Clin Obstet Gynecol. 32:157-179, 1989).

한편, 자궁경부 세포진의 HPV DNA와 RNA 탐침(probe) 간의 액상 상보 결합을 항체 효소 발색에 의하여 검출하는 "HPV hybrid capture" 방법이 1994년 개발된 이후, 자궁경부암과 그 전구 병변의 보조적 선별 또는 추적 검진의 한 방법으로 활용되고 있으며, 최근 미국 FDA로부터 자궁경부암의 일차 선별을 위한 사용 승인까지 받은 상태이다. On the other hand, since the "HPV hybrid capture" method, which detects liquid complementary binding between HPV DNA and RNA probes in cervical cytology by coloration of antibody enzymes, was developed in 1994, secondary screening or tracking of cervical cancer and its progenitor lesions It is used as a method of screening, and has recently been approved for use by the US FDA for primary screening for cervical cancer.

이와 같이, hybrid capture를 포함하여 자궁경부암을 진단하기 위한 다양한 분석방법들이 존재하지만 전 세계적으로 자궁경부암으로 인하여 매년 5~50만 명의 사망자가 발생하는 것에서 알 수 있듯이 자궁경부암 및 그 전구 병변의 포괄적 조기 검출 또는 진단을 위한 범용적 방법의 개발이 시급한 것이 현실이다. As such, various analysis methods exist for diagnosing cervical cancer including hybrid capture, but as can be seen from the worldwide death of 50,000 to 500,000 people every year due to cervical cancer, it is a comprehensive early detection of cervical cancer and its progenitor lesions. The reality is that the development of a universal method for detection or diagnosis is urgent.

최근, 다양한 HPV 유형의 감염 여부를 검출/진단함에 있어서 특정 염기서열의 DNA 단편을 신속하고 간단하게 증폭할 수 있는 중합효소연쇄반응(PCR) 기법이 보편화되면서 이를 이용하여 지금까지 밝혀진 모든 유형의 HPV를 포괄적으로 검출하고자 하는 노력이 활발하게 시도되고 있다. Recently, as the polymerase chain reaction (PCR) technique, which can quickly and simply amplify a DNA fragment of a specific base sequence, has become common in detecting/diagnosing the presence of infection of various HPV types, all types of HPV discovered so far using it have become common. Efforts to comprehensively detect are being actively attempted.

또, L1 부위를 PCR(polymerase chain reaction)로 증폭한 후에 제한효소를 사용하는 PCR-RFLP(Restriction Fragment Length Polymorphism)는 간단하고 쉽게 결과를 얻을 수 있는 장점이 있으나 사용하는 제한효소가 변이부분을 인식하지 못하면 분석하지 못하는 단점이 있다(Lungu et al., JAMA 267:2493-2496, 1992). In addition, PCR-RFLP (Restriction Fragment Length Polymorphism) using restriction enzymes after amplifying the L1 site by PCR (polymerase chain reaction) has the advantage of being simple and easy to obtain results, but the restriction enzyme used recognizes the mutation part. Failure to do so has the disadvantage of not being able to analyze (Lungu et al., JAMA 267:2493-2496, 1992).

PCR 기법은 목적 병원체의 핵산 염기 서열에 특이적으로 결합하는 상보적 핵산 단편 서열(프라이머)을 가하여 온도에 따른 변성(denaturation), 재결합(annealing) 및 중합(polymerization) 과정을 반복하여 미량의 병원체 핵산을 증폭시켜 그 존부를 검출할 수 있는 기술로서(미합중국 특허 제4,683,195호 및 제683,202호), 다양한 유형의 HPV 감염 여부를 진단하는데 사용되는 대표적인 기술 중 하나이다. PCR technique involves adding a sequence of complementary nucleic acid fragments (primers) that specifically bind to the nucleic acid sequence of the target pathogen, and repeating the processes of denaturation, recombination, and polymerization according to temperature. As a technology capable of amplifying and detecting the presence or absence (U.S. Patent Nos. 4,683,195 and 683,202), it is one of the representative technologies used to diagnose the presence or absence of various types of HPV infection.

이러한 PCR 기법은 임상 진단의 실용적 측면에서 세포진 검사(Pap smear)의 세포학적 검사와 달리 객관적인 대규모 검사가 가능하며, 측정원리상 세포검사나 액상 hybrid capture에 비해 검사비용, 실험 절차, 검출 감도(sensitivity) 및 특이도(specificity) 등에서 상대적 우위를 가지고 있는 것으로 확인되어 있다. 그러나, 현재까지 HPV 감염 여부를 조기에 광범위하게 1차적으로 검출/진단하기에 적합한 공통 프라이머(general primer)가 부족하여 PCR을 이용하여 HPV의 감염 여부를 임상적으로 적용하기에는 많은 어려움을 겪고 있다. In practical aspects of clinical diagnosis, this PCR technique enables objective large-scale tests, unlike cytological tests of Pap smear, and because of the measurement principle, test costs, experimental procedures, and detection sensitivity are compared to cytology or liquid hybrid capture. ) And specificity. However, until now, there is a lack of a common primer suitable for early and broadly primary detection/diagnosis of HPV infection, and thus, it has been difficult to clinically apply whether or not HPV is infected using PCR.

현재, 전 세계적으로 임상에서 HPV 감염 여부를 검출/진단하기 위하여 널리 사용되는 대표적인 공통 프라이머로는 크게 북아메리카, 남아메리카 및 아시아에서 주로 사용되는 MY09/MY11 프라이머 세트와, 유럽 지역에서 주로 사용되는 GP5+/GP6+ 프라이머 세트 및 SPF1/SPF2 프라이머 세트로 구분될 수 있다. 이 밖에 최근 새롭게 개발되어 사용되고 있는 FAP59/FAP64 프라이머 세트와 PGMY09/PGMY11 프라이머 세트가 있으며, 일부 연구 목적으로 사용되는 많은 HPV 검출/진단을 위한 공통 프라이머 세트가 있으나, 현재까지 밝혀진 바 있는 다양한 HPV 유형과 비교할 때, 극히 제한된 유형의 HPV 검출/진단에만 국한되어 있을 뿐 아니라 HPV 유형에 따라 검출의 민감도가 크게 떨어지는 등 많은 문제점을 가지고 있는 것으로 판명되었다. 또한, HPV 유전자형에 따라서 PCR 증폭의 효율이 달라 검사의 정확도가 문제될 수 있다. 아울러, 현재 KFDA에 승인된 모든 DNA칩의 경우 분석시 스크리닝 프라이머와 인터널 콘트롤 프라이머를 개별 증폭하여 혼합한 후 교잡반응을 시켜야 하므로 경제적인 비용이 많이 들어갈 수밖에 없다(Qu et al., J. Clin. Microbiol. 35:1304-1310, 1997; Karksen et al., J. Clin. Microbiol. 34:2095-2100, 1996; Gravitt et al., J. Clin. Microbiol. 38:357-361).Currently, representative common primers widely used to detect/diagnose HPV infection in clinical practice worldwide include the MY09/MY11 primer set mainly used in North America, South America, and Asia, and GP5 + / mainly used in Europe. It can be divided into a GP6 + primer set and an SPF1/SPF2 primer set. In addition, there are recently developed and used FAP59/FAP64 primer sets and PGMY09/PGMY11 primer sets, and there are many common primer sets for detection/diagnosis of HPV used for some research purposes. In comparison, it was found that there are many problems, such as being limited to the detection/diagnosis of extremely limited types of HPV, and the sensitivity of detection is significantly lowered depending on the HPV type. In addition, the efficiency of PCR amplification is different depending on the HPV genotype, so the accuracy of the test may be problematic. In addition, in the case of all the DNA chips currently approved by KFDA, the screening primer and the internal control primer must be individually amplified and mixed before performing a hybridization reaction during analysis, so economical costs are inevitable (Qu et al., J. Clin). Microbiol. 35:1304-1310, 1997; Karksen et al., J. Clin. Microbiol. 34:2095-2100, 1996; Gravitt et al., J. Clin. Microbiol. 38:357-361).

이에 따라, 인유두종바이러스의 검출에 따른 자궁경부암을 예방하기 위한 현재의 검출 시스템은 그 가치와 필요성이 있음에도 불구하고 실제 임상 목적에서의 활용에 큰 제약이 있다. 특히, 새롭게 동정, 분류된 HPV 유형이 자궁경부암과 밀접한 관련이 있는 종양원성의 HPV 유형인지 또한 고위험군인지에 대해서는 단서를 찾을 수 없기 때문에 HPV 검출/진단과 관련하여 많은 혼란을 야기하고 있다.
Accordingly, the current detection system for preventing cervical cancer caused by the detection of human papillomavirus has a great limitation in its practical use in clinical purposes despite its value and necessity. In particular, since no clue can be found as to whether the newly identified and classified HPV type is a tumorigenic HPV type closely related to cervical cancer or a high-risk group, a lot of confusion is caused with regard to HPV detection/diagnosis.

KRKR 10-078663710-0786637 BB KRKR 10-2011-012607610-2011-0126076 AA

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명에서 해결하고자 하는 과제는 종양원성 HPV DNA의 검출/진단을 위한 인유두종바이러스 유전자형 분석용 DNA 칩을 제공하고자 하는 것이다.The present invention was conceived to solve the problems of the prior art as described above, and an object to be solved in the present invention is to provide a DNA chip for human papillomavirus genotyping for detection/diagnosis of tumorigenic HPV DNA.

본 발명의 다른 과제는 인유두종바이러스의 유형 특이적 E6/E7 유전자를 증폭하기 위한 프라이머 세트를 제공하고자 한다.Another object of the present invention is to provide a primer set for amplifying the human papillomavirus type-specific E6/E7 gene.

본 발명의 또 다른 과제는 인유두종바이러스 유전자형 분석용 DNA 칩 및 인유두종바이러스 유형 특이적 E6/E7 유전자를 증폭하기 위한 프라이머를 포함하는 진단 키트를 제공하고자 하는 것이다.Another object of the present invention is to provide a diagnostic kit including a DNA chip for human papillomavirus genotyping analysis and a primer for amplifying a human papillomavirus type-specific E6/E7 gene.

본 발명의 또 다른 과제는 본 발명의 인유두종바이러스 유전자형 분석용 DNA 칩 및 프라이머를 이용한 인유두종바이러스 유전자형의 분석방법을 제공하고자 하는 것이다.
Another object of the present invention is to provide a method for analyzing human papillomavirus genotypes using the DNA chip and primers for human papillomavirus genotyping of the present invention.

상기와 같은 과제를 해결하기 위하여, 본 발명은 서열번호 1 내지 29의 염기서열 또는 이들의 상보적인 염기서열로 이루어지는 군으로부터 1종 이상 선택되는 올리고뉴클레오티드를 포함하는 것을 특징으로 하는 검체의 인유두종바이러스(HPV) 유전자형 분석용 DNA 칩을 제공한다.In order to solve the above problems, the present invention is a human papillomavirus of a specimen, characterized in that it comprises one or more oligonucleotides selected from the group consisting of the nucleotide sequences of SEQ ID NOs: 1 to 29 or their complementary nucleotide sequences ( HPV) provides a DNA chip for genotyping.

상기 DNA 칩은 고위험군 HPV로서 HPV-16, HPV-18, HPV-26, HPV-30, HPV-31, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-53, HPV-56, HPV-58, HPV-59, HPV-66, HPV-67, HPV-68, HPV-70, 및 HPV-73과 저위험군 HPV로서 HPV-6, HPV-11, HPV-34, HPV-40, HPV-43, HPV-44, HPV-54, HPV-55 및 HPV-61을 포함하는 HPV 유전자형의 분석용이다.The DNA chip is a high-risk HPV, HPV-16, HPV-18, HPV-26, HPV-30, HPV-31, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52 , HPV-53, HPV-56, HPV-58, HPV-59, HPV-66, HPV-67, HPV-68, HPV-70, and HPV-73 and HPV-6, HPV-11 as low-risk HPV, For analysis of HPV genotypes including HPV-34, HPV-40, HPV-43, HPV-44, HPV-54, HPV-55 and HPV-61.

상기 올리고뉴클레오티드는 HPV의 유형 특이적인 E6/E7 유전자 부위와 상보적으로 결합한다.The oligonucleotide binds complementarily to the type-specific E6/E7 gene region of HPV.

상기 DNA 칩은 양성 대조군으로서 인체 GAPDH 유전자와 상보적으로 결합하는 서열번호 30의 염기서열 또는 이의 상보적인 염기서열을 갖는 올리고뉴클레오티드를 포함할 수 있다.As a positive control, the DNA chip may include an oligonucleotide having a nucleotide sequence of SEQ ID NO: 30 complementarily binding to a human GAPDH gene or a nucleotide sequence complementary thereto.

상기 DNA 칩은 올리고뉴클레오티드를 집적할 수 있는 웰(well)이 8개로 구획되어 있는 것이 바람직하다.It is preferable that the DNA chip has eight wells in which oligonucleotides can be accumulated.

상기 올리고뉴클레오티드의 농도는 50pmol 이상인 것이 바람직하다.It is preferable that the concentration of the oligonucleotide is 50 pmol or more.

상기 올리고뉴클레오티드는 링커로서 C6의 아민 변형된 디데옥시티미딘을 결합시켜 수퍼알데히드(superaldehyde)기로 코팅된 지지체 위에 집적시킨 것이 바람직하다.The oligonucleotide is preferably integrated on a support coated with a superaldehyde group by binding to a C6 amine-modified dideoxythymidine as a linker.

상기 지지체는 유리슬라이드, 페이퍼, 니트로셀룰로오스막, 마이크로플레이트 웰, 플라스틱,실리콘, DVD 및 비드로 이루어진 군에서 선택되는 것이 바람직하다.The support is preferably selected from the group consisting of glass slides, paper, nitrocellulose membranes, microplate wells, plastics, silicon, DVDs and beads.

상기 검체는 자궁경부 또는 질의 스왑; 자궁경부의 조직; 남성 성기의 조직; 소변; 항문, 직장, 인두, 구강 또는 두경부의 스왑으로 이루어진 군에서 선택되는 것이 바람직하다.The specimen is a cervix or vaginal swab; Tissue of the cervix; Tissue of the male genital organs; Pee; It is preferable to be selected from the group consisting of an anus, rectum, pharynx, oral or head and neck swap.

상기 검체는 남성 성기의 암, 남성 요로의 암, 항문암, 두경부암 및 이들의 전암 세포로 이루어진 군에서 선택되는 것이 바람직하다.The specimen is preferably selected from the group consisting of male genital cancer, male urinary tract cancer, anal cancer, head and neck cancer, and precancerous cells thereof.

또한, 본 발명은 서열번호 31 내지 88의 염기서열로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 HPV E6/E7 유전자 증폭용 프라이머를 제공한다.In addition, the present invention provides a primer for amplifying HPV E6/E7 genes, characterized in that it is selected from the group consisting of nucleotide sequences of SEQ ID NOs: 31 to 88.

또한, 본 발명은 본 발명의 상기 DNA 칩, 본 발명의 프라이머 및 증폭된 DNA를 검출하기 위한 표지수단을 포함하는 인유두종바이러스(HPV)의 유전자형 분석용 키트를 제공한다.In addition, the present invention provides a kit for genotyping human papillomavirus (HPV) comprising the DNA chip of the present invention, the primer of the present invention, and a labeling means for detecting amplified DNA.

상기 프라이머는 서열번호 89 및 90의 염기서열을 갖는 인체 GAPDH 유전자 증폭용 프라이머를 더 포함할 수 있다.The primer may further include a primer for amplifying human GAPDH gene having nucleotide sequences of SEQ ID NOs: 89 and 90.

상기 표지수단은 Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, 로다민(Rhodamine), TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670, 비오틴, Au, Ag 및 폴리스티렌으로 이루어지는 군으로부터 선택되는 것이 바람직하다.The labeling means is Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, Rhodamine, TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670, Biotin, Au, Ag and polystyrene It is preferably selected from the group consisting of.

또한, 본 발명은 (a) 서열번호 31 내지 88로 이루어지는 군으로부터 선택되는 프라이머를 이용하여 검체의 타겟 유전자를 다중(multiplex) PCR 방법에 의해 증폭하는 단계; (b) 제 1항 또는 제 2항에 따른 DNA 칩에 상기 증폭된 PCR 산물을 혼성화하는 단계; 및 (c) 상기 혼성화에 의해 얻어진 혼성화물을 검출하는 단계를 포함하는 인유두종바이러스(HPV)의 유전자형 분석방법을 제공한다.In addition, the present invention comprises the steps of: (a) amplifying a target gene of a specimen by a multiplex PCR method using a primer selected from the group consisting of SEQ ID NOs: 31 to 88; (b) hybridizing the amplified PCR product to the DNA chip according to claim 1 or 2; And (c) detecting a hybrid product obtained by the hybridization.

상기 DNA 칩은 올리고뉴클레오티드에 Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, 로다민(Rhodamine), TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670 및 비오틴으로 이루어진 군으로부터 선택되는 물질로 표지하는 것이 바람직하다.The DNA chip is an oligonucleotide Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, Rhodamine, TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670 and biotin It is preferable to label with a material selected from.

상기 분석방법은 HPV 유형의 E6/E7 유전자를 삽입한 플라스미드 벡터들을 양성 대조군 클론으로 이용하여 분석하는 단계를 더 포함할 수 있다.The analysis method may further include analyzing plasmid vectors into which HPV-type E6/E7 genes are inserted as positive control clones.

상기 검체는 상기 검체는 자궁경부 또는 질의 스왑; 자궁경부의 조직; 남성 성기의 조직; 소변; 항문, 직장, 인두, 구강 또는 두경부의 스왑으로 이루어진 군에서 선택되는 것이 바람직하다.
The specimen is a cervix or vaginal swab; Tissue of the cervix; Tissue of the male genital organs; Pee; It is preferable to be selected from the group consisting of an anus, rectum, pharynx, oral or head and neck swap.

본 발명에서 합성된 올리고뉴클레오티드는 종양원성 HPV 유형의 HPV 핵산과 상보적으로 결합하여 상기 HPV 유형의 핵산을 특이적으로 증폭할 수 있는 신규한 유형 특이적 프라이머로 사용될 수 있다. The oligonucleotide synthesized in the present invention can be used as a novel type-specific primer capable of specifically amplifying the HPV-type nucleic acid by complementarily binding to the oncogenic HPV-type HPV nucleic acid.

특히, 본 발명에 따른 DNA 칩의 제조에 사용되는 올리고뉴클레오티드는 샘플 내에 HPV 핵산의 존재 여부 및 유형을 검출/진단하는데 활용될 수 있으므로 HPV에 의하여 야기되는 자궁경부암 등의 조기 검진에 활용될 수 있다.In particular, since the oligonucleotide used in the manufacture of the DNA chip according to the present invention can be used to detect/diagnose the presence or type of HPV nucleic acid in a sample, it can be used for early screening such as cervical cancer caused by HPV. .

본 발명에 따른 유전체(genome)를 이용한 유전자 접근 방법을 통하여 조기에 HPV 감염 여부를 진단할 수 있기 때문에 추후 지속적이고 장기적으로 정확한 검진을 실시할 수 있어 자궁경부암의 예방효과가 기대된다. Since it is possible to diagnose HPV infection early through the genetic approach method using the genome according to the present invention, it is possible to continuously and long-term accurate screening in the future, and thus the preventive effect of cervical cancer is expected.

또한, 비교적 저렴한 비용으로 HPV 진단을 수행할 수 있을 뿐 아니라 검진 대상자에게 첨단결과를 조기에 알려줄 수 있으므로 신뢰도 및 만족감을 줄 수 있고, 국가적 차원에서 큰 문제가 되고 있는 자궁경부암과 같은 국민 건강에 일익을 담당할 수 있을 것으로 생각된다.
In addition, HPV diagnosis can be performed at a relatively inexpensive cost, as well as early notification of cutting-edge results to subjects for examination, providing a sense of reliability and satisfaction, and contributing to national health such as cervical cancer, which is a major problem at the national level. I think I can be in charge of it.

도 1은 HPV 전체 유전자 서열에서 종래 DNA 칩 유전자 서열 위치와 본 발명의 DNA 칩에서 사용된 유전자 서열 위치를 나타낸다.
도 2a 내지 도 2c는 본 발명에 따라 합성된 프라이머 세트를 사용하여 HPV-16 감염 세포주인 Caski(ATCC CRL-1550), HPV-18 감염 세포주인 HeLa(ATCC CCL-2) 및 HPV 비감염 세포주인 K562(KCLB-10243, Korean Cell Line Bank)를 표적 DNA로 하여 PCR을 실시한 후 DNA 칩 분석을 수행한 사진이다.
도 3a 내지 도 3o는 각각 본 발명에 따라 합성된 프라이머 세트를 사용하여 10개의 자궁경부암 관련 검체와 5개의 정상 검체를 대상으로 PCR을 실시한 후 DNA 칩 분석을 통해 그 유형을 확인한 사진이다.
1 shows the location of the conventional DNA chip gene sequence and the location of the gene sequence used in the DNA chip of the present invention in the entire HPV gene sequence.
2A to 2C are HPV-16 infected cell lines Caski (ATCC CRL-1550), HPV-18 infected cell lines HeLa (ATCC CCL-2) and HPV non-infected cell lines K562 using a primer set synthesized according to the present invention. This is a picture of DNA chip analysis after PCR was performed using (KCLB-10243, Korean Cell Line Bank) as a target DNA.
3A to 3O are photographs showing PCR for 10 cervical cancer-related samples and 5 normal samples using a primer set synthesized according to the present invention, respectively, and then confirming the type through DNA chip analysis.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 서열번호 1 내지 29의 염기서열 또는 이들의 상보적인 염기서열로 이루어지는 군으로부터 1종 이상 선택되는 올리고뉴클레오티드를 포함하는 것을 특징으로 하는 검체의 인유두종바이러스(HPV) 유전자형 분석용 DNA 칩을 제공한다.The present invention provides a DNA chip for analysis of human papillomavirus (HPV) genotyping of a specimen, characterized in that it comprises one or more oligonucleotides selected from the group consisting of the nucleotide sequences of SEQ ID NOs: 1 to 29 or their complementary nucleotide sequences. do.

상기 DNA 칩은 상기 염기서열을 갖는 올리고뉴클레오티드를 1종 이상 포함하며, 분석하고자 하는 유전자형에 따라 적절한 수로 올리고뉴클레오티드를 제한할 수 있다.The DNA chip includes one or more oligonucleotides having the nucleotide sequence, and the oligonucleotide may be limited to an appropriate number according to the genotype to be analyzed.

바람직하게는, 상기 DNA 칩은 고위험군 HPV로서 HPV-16, HPV-18, HPV-26, HPV-30, HPV-31, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-53, HPV-56, HPV-58, HPV-59, HPV-66, HPV-67, HPV-68, HPV-70, 및 HPV-73과 저위험군 HPV로서 HPV-6, HPV-11, HPV-34, HPV-40, HPV-43, HPV-44, HPV-54, HPV-55 및 HPV-61을 포함하는 HPV 유전자형의 분석용이다.Preferably, the DNA chip is a high risk group HPV, HPV-16, HPV-18, HPV-26, HPV-30, HPV-31, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51 , HPV-52, HPV-53, HPV-56, HPV-58, HPV-59, HPV-66, HPV-67, HPV-68, HPV-70, and HPV-73 and HPV-6 as a low-risk HPV, For analysis of HPV genotypes including HPV-11, HPV-34, HPV-40, HPV-43, HPV-44, HPV-54, HPV-55 and HPV-61.

상기 올리고뉴클레오티드는 HPV의 유형 특이적인 E6/E7 유전자 부위와 상보적으로 결합한다.The oligonucleotide binds complementarily to the type-specific E6/E7 gene region of HPV.

종래 PCR 기법을 활용하여 샘플 내에 존재하는 여러 유형의 HPV DNA와 혼성화(hybridization) 또는 상보적 결합(complementary binding)할 수 있는 공통적인 올리고뉴클레오티드 프라이머는 현재까지 발견된 HPV 유형의 수와 비교할 때, 검출/진단할 수 있는 유형의 수가 크게 제한될 뿐 아니라, HPV 유형에 따라 민감도가 크게 떨어진다. 이와 같이, 현존하는 HPV 검출/진단을 위한 PCR 공통 프라이머는 HPV 게놈 중 L1 영역과 상보적으로 결합할 수 있는 올리고뉴클레오티드를 대상으로 한 것이었기 때문이었다. Common oligonucleotide primers capable of hybridization or complementary binding with various types of HPV DNA present in the sample using conventional PCR techniques are detected when compared to the number of HPV types found to date. /Not only is the number of types that can be diagnosed greatly limited, but the sensitivity is greatly reduced depending on the type of HPV. As described above, the existing PCR common primers for HPV detection/diagnosis were targeting oligonucleotides capable of complementarily binding to the L1 region of the HPV genome.

상기한 것과 같이, HPV 게놈을 구성하는 E6 유전자 및 E7 유전자는 각각 숙주 세포의 종양 억제 단백질 중의 하나인 p53 또는 pRb와의 결합부위를 암호화(encoding)하는 특정 핵산 서열을 가지고 있는데, 자궁경부암의 진행과 밀접한 관련이 있는 종양원성 HPV 유형, 예컨대 고위험군의 HPV 유형에서는 p53 또는 pRb와의 결합부위를 암호화하는 핵산 서열이 잘 보전되어 있다. 또한, HPV 게놈의 E1 유전자는 HPV 게놈의 복제를 개시하는 단백질을 암호화하고 있으므로, HPV가 숙주 세포에서 생장하기 위한 필수적인 서열이다. As described above, the E6 gene and E7 gene constituting the HPV genome each have a specific nucleic acid sequence encoding a binding site to p53 or pRb, which is one of the tumor suppressor proteins of the host cell. In closely related tumorigenic HPV types, such as high-risk HPV types, the nucleic acid sequence encoding the binding site to p53 or pRb is well preserved. In addition, since the E1 gene of the HPV genome encodes a protein that initiates replication of the HPV genome, HPV is an essential sequence for growth in a host cell.

본 발명자들은 이와 같은 발견을 토대로 종양원성 HPV 유형의 핵산 서열과 상보적으로 결합할 수 있고, 이에 따라 해당 HPV 유형의 핵산 서열을 증폭시킬 수 있는 유형 특이적 프라이머를 설계하였다. 본 발명에 따라 합성된 유형 특이적 프라이머는 특히 HPV 게놈 중의 E6/E7 영역과 상보적으로 결합할 수 있기 때문에, 샘플 내의 이들 유전자의 증폭 여부를 통하여 샘플 내에 HPV DNA의 존부를 확인할 수 있다. The present inventors designed a type-specific primer capable of complementarily binding to a nucleic acid sequence of an oncogenic HPV type based on this discovery, and thus amplifying a nucleic acid sequence of a corresponding HPV type. Since the type-specific primer synthesized according to the present invention can complementarily bind to the E6/E7 region in the HPV genome, in particular, the presence or absence of HPV DNA in the sample can be confirmed through the amplification of these genes in the sample.

따라서, 본 발명에 따라 합성된 유형 특이 프라이머를 사용하면 1회의 PCR 과정을 통하여 종양원성 HPV 유형의 존재 여부를 분석/검출할 수 있음은 물론 이들 유형을 정확하게 동정할 수 있다.Therefore, if the type-specific primer synthesized according to the present invention is used, the presence or absence of a tumorigenic HPV type can be analyzed/detected through a single PCR process, and these types can be accurately identified.

상기 DNA 칩은 양성 대조군으로서 인체 GAPDH 유전자와 상보적으로 결합하는 서열번호 30의 염기서열 또는 이의 상보적인 염기서열을 갖는 올리고뉴클레오티드를 포함할 수 있다.As a positive control, the DNA chip may include an oligonucleotide having a nucleotide sequence of SEQ ID NO: 30 complementarily binding to a human GAPDH gene or a nucleotide sequence complementary thereto.

상기 DNA 칩은 올리고뉴클레오티드를 집적할 수 있는 웰(well)이 8개로 구획되어 있는 것이 바람직하다.It is preferable that the DNA chip has eight wells in which oligonucleotides can be accumulated.

상기 집적되는 각 올리고뉴클레오티드의 농도는 50pmol 이상인 것이 바람직하다.It is preferable that the concentration of each oligonucleotide to be accumulated is 50 pmol or more.

상기 올리고뉴클레오티드는 링커로서 C6의 아민 변형된 디데옥시티미딘을 결합시켜 수퍼알데히드(superaldehyde)기로 코팅된 지지체 위에 집적시킨 것이 바람직하다.The oligonucleotide is preferably integrated on a support coated with a superaldehyde group by binding to a C6 amine-modified dideoxythymidine as a linker.

상기 지지체는 유리슬라이드, 페이퍼, 니트로셀룰로오스막, 마이크로플레이트 웰, 플라스틱,실리콘, DVD 및 비드로 이루어진 군에서 선택되는 것이 바람직하다.The support is preferably selected from the group consisting of glass slides, paper, nitrocellulose membranes, microplate wells, plastics, silicon, DVDs and beads.

상기 검체는 자궁경부 또는 질의 스왑; 자궁경부의 조직; 남성 성기의 조직; 소변; 항문, 직장, 인두, 구강 또는 두경부의 스왑으로 이루어진 군에서 선택되는 것이 바람직하다.The specimen is a cervix or vaginal swab; Tissue of the cervix; Tissue of the male genital organs; Pee; It is preferable to be selected from the group consisting of an anus, rectum, pharynx, oral or head and neck swap.

상기 검체는 남성 성기의 암, 남성 요로의 암, 항문암, 두경부암 및 이들의 전암 세포로 이루어진 군에서 선택되는 것이 바람직하다.The specimen is preferably selected from the group consisting of male genital cancer, male urinary tract cancer, anal cancer, head and neck cancer, and precancerous cells thereof.

또한, 본 발명은 서열번호 31 내지 88의 염기서열로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 HPV E6/E7 유전자 증폭용 프라이머를 제공한다.In addition, the present invention provides a primer for amplifying HPV E6/E7 genes, characterized in that it is selected from the group consisting of nucleotide sequences of SEQ ID NOs: 31 to 88.

또한, 본 발명은 본 발명의 상기 DNA 칩, 본 발명의 프라이머 및 증폭된 DNA를 검출하기 위한 표지수단을 포함하는 인유두종바이러스(HPV)의 유전자형 분석용 키트를 제공한다.In addition, the present invention provides a kit for genotyping human papillomavirus (HPV) comprising the DNA chip of the present invention, the primer of the present invention, and a labeling means for detecting amplified DNA.

상기 프라이머는 서열번호 89 및 90의 염기서열을 갖는 인체 GAPDH 유전자 증폭용 프라이머를 더 포함할 수 있다.The primer may further include a primer for amplifying human GAPDH gene having nucleotide sequences of SEQ ID NOs: 89 and 90.

상기 표지수단은 Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, 로다민(Rhodamine), TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670, 비오틴, Au, Ag 및 폴리스티렌으로 이루어지는 군으로부터 선택되는 것이 바람직하다.The labeling means is Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, Rhodamine, TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670, Biotin, Au, Ag and polystyrene It is preferably selected from the group consisting of.

또한, 본 발명은 (a) 서열번호 31 내지 88로 이루어지는 군으로부터 선택되는 프라이머를 이용하여 검체의 타겟 유전자를 다중(multiplex) PCR 방법에 의해 증폭하는 단계; (b) 제 1항 또는 제 2항에 따른 DNA 칩에 상기 증폭된 PCR 산물을 혼성화하는 단계; 및 (c) 상기 혼성화에 의해 얻어진 혼성화물을 검출하는 단계를 포함하는 인유두종바이러스(HPV)의 유전자형 분석방법을 제공한다.In addition, the present invention comprises the steps of: (a) amplifying a target gene of a specimen by a multiplex PCR method using a primer selected from the group consisting of SEQ ID NOs: 31 to 88; (b) hybridizing the amplified PCR product to the DNA chip according to claim 1 or 2; And (c) detecting a hybrid product obtained by the hybridization.

상기 DNA 칩은 올리고뉴클레오티드에 Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, 로다민(Rhodamine), TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670 및 비오틴으로 이루어진 군으로부터 선택되는 물질로 표지하는 것이 바람직하다.The DNA chip is an oligonucleotide Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, Rhodamine, TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670 and biotin It is preferable to label with a material selected from.

상기 분석방법은 HPV 유형의 E6/E7 유전자를 삽입한 플라스미드 벡터들을 양성 대조군 클론으로 이용하여 분석하는 단계를 더 포함할 수 있다.The analysis method may further include analyzing plasmid vectors into which HPV-type E6/E7 genes are inserted as positive control clones.

상기 검체는 상기 검체는 자궁경부 또는 질의 스왑; 자궁경부의 조직; 남성 성기의 조직; 소변; 항문, 직장, 인두, 구강 또는 두경부의 스왑으로 이루어진 군에서 선택되는 것이 바람직하다.The specimen is a cervix or vaginal swab; Tissue of the cervix; Tissue of the male genital organs; Pee; It is preferable to be selected from the group consisting of an anus, rectum, pharynx, oral or head and neck swap.

이하에서는 구체적인 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 다만, 하기 실시예는 본 발명을 상세하게 설명하기 위한 것일 뿐, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. However, the following examples are only for describing the present invention in detail, and the present invention is not limited by the following examples.

[[ 실시예Example ]]

1. 인유두종바이러스 유형 분석 칩(1. Human papillomavirus type analysis chip ( chipchip ) 제작) Production

인유두종바이러스 유형 진단을 위한 DNA 칩(chip)은 29종의 인유두종바이러스 유형을 고-특이도로 판별할 수 있는 총 29종의 프로브(probe)가 집적되어 있다(표 1). 내부 대조군(internal control)으로 인간 갭디에이치(GAPDH) 유전자에 대한 프로브가 고정화되어 있다. 하나의 칩 기판 위에 총 29종의 유전자 고-처리량 분석이 가능한 그리드(grid)가 8개씩 포함되도록 칩 레이아웃을 고안하였으며, 8 웰 혼성화 반응 챔버(8 well hybridization reaction chamber)를 통해 8개의 개별 검체에 대한 분석을 동시에 진행할 수 있도록 고안하였다. -70℃로 보관중인 프로브 스탁(stock)을 실온에서 해동한 후, 탈이온 멸균 3차 증류수에 최종농도 100 M이 되도록 희석하여 워킹 스탁(working stock)으로 사용하였다. 워킹 스탁을 50배 희석한 각각의 프로브들을 3X SSC 스포팅 용액(500 mM NaCl, 3 mM sodium citrate, 1.5 M N,N,N-trimethylglycine, pH 6.8)과 1 : 5 - 10 비율(v/v)로 혼합하여 최종 96 웰 플레이트(well plate)에 분주되는 프로브의 농도범위가 20 - 30 pmole/uL가 되도록 하였다. 상기 플레이트를 Microssys 5100 microarrayer(Cartesian Technologies, Ann Arbor, MI, USA)에 장착하고 이로부터 알데하이드(aldehyde)-, 티오이소시아네이트(thioisocyanate)-활성화된 글라스 슬라이드(CEL associates Inc.,Houston, TX, USA), 에폭시(epoxy)-활성화된 플라스틱 칩, 또는 골드 필름 표면에 프로브들을 순서에 따라 2개씩 duplicate으로 스포팅하였다. 스팟(spot)의 평균 크기(diameter)는 80-140 마이크로미터(micrometer)이며, 스팟간 크로스-토크(cross-talk)효과를 최소화하기 위해 스팟 간의 거리는 350 - 500 마이크로미터를 유지하였다. 칩 제작은 75% 습도(humidity)를 유지하는 클래스 10,000 룸에서 실시하였다. 프로브가 스팟팅된 칩은 120℃에서 1시간 동안 베이킹(baking)한 후, 0.25% SDS(Sodium dodecyl sulfate)용액에서 3분간 세척하고 멸균 3차 증류수로 다시 세척하였다. 이후, 칩을 0.2% 소디움 보로하이드라이드(NaBH4)를 포함하는 용액에 반응시켜 프로브를 블럭킹(blocking)하였다. 이후, 3차 증류수로 2회 세척하고 물기를 제거한 후 사용시점까지 데시케이터(dessicator)에 보관하였다.The DNA chip for diagnosis of HPV type has a total of 29 probes that can distinguish 29 types of HPV types with high specificity (Table 1). As an internal control, a probe for the human Gap DH (GAPDH) gene is immobilized. A chip layout was devised so that 8 grids capable of high-throughput analysis of a total of 29 genes were included on one chip substrate, and 8 individual samples were processed through an 8 well hybridization reaction chamber. It was designed to be able to proceed with the analysis simultaneously. After thawing the probe stock stored at -70°C at room temperature, it was diluted to a final concentration of 100 M in deionized sterilized tertiary distilled water and used as a working stock. Each of the probes diluted 50 times in the working stock in a 3X SSC spotting solution (500 mM NaCl, 3 mM sodium citrate, 1.5 MN,N,N-trimethylglycine, pH 6.8) and 1: 5-10 ratio (v/v) The mixture was mixed so that the concentration range of the probe dispensed into the final 96 well plate was 20-30 pmole/uL. The plate was mounted on a Microssys 5100 microarrayer (Cartesian Technologies, Ann Arbor, MI, USA) from which an aldehyde-, thioisocyanate-activated glass slide (CEL associates Inc., Houston, TX, USA). , Epoxy-activated plastic chips, or probes were spotted in duplicate on the surface of the gold film, two at a time. The average diameter of the spots was 80-140 micrometers, and the distance between the spots was kept 350-500 micrometers in order to minimize the cross-talk effect between spots. Chip fabrication was carried out in a class 10,000 room with 75% humidity. The chip on which the probe was spotted was baked at 120° C. for 1 hour, washed for 3 minutes in 0.25% sodium dodecyl sulfate (SDS) solution, and washed again with sterilized tertiary distilled water. Thereafter, the chip was reacted with a solution containing 0.2% sodium borohydride (NaBH 4) to block the probe. Thereafter, the mixture was washed twice with 3rd distilled water, dried, and stored in a desiccator until the point of use.

서열번호Sequence number 명칭designation 서열(5'→3')Sequence (5'→3') 위치(bp)Position (bp) 1One HPV-16HPV-16 ATCATGCATGGAGATACACCTACATTGCATGATCATGCATGGAGATACACCTACATTGCATG 559-589559-589 2 2 HPV-18HPV-18 CAACATTGCAAGACATTGTATTGCATTTAGAGCAACATTGCAAGACATTGTATTGCATTTAGAG 606-637606-637 33 HPV-26HPV-26 CAGTGGAAAGGGTTGTGTACAAATTGTTGGCAGTGGAAAGGGTTGTGTACAAATTGTTGG 565-596565-596 44 HPV-30HPV-30 CGTCCACTGAGACAGCAGTATAATCATGCCGTCCACTGAGACAGCAGTATAATCATGC 624-655624-655 5 5 HPV-31HPV-31 CTGACCTCCACTGTTATGAGCAATTACCCCTGACCTCCACTGTTATGAGCAATTACCC 618-646618-646 6 6 HPV-33HPV-33 ACGTAGAGAAACTGCACTGTGACGTGTAAAACGTAGAGAAACTGCACTGTGACGTGTAAA 537-566537-566 77 HPV-35HPV-35 TGTATTACATGTCAAAAACCGCTGTGTCCAGTTTGTATTACATGTCAAAAACCGCTGTGTCCAGTT 416-448416-448 88 HPV-39HPV-39 AAGAGAAACCCAAGTATAACATCAGATATGCGAAGAGAAACCCAAGTATAACATCAGATATGCG 565-596565-596 99 HPV-45HPV-45 TGCATTTGGAACCTCAGAATGAATTAGATCCTTGCATTTGGAACCTCAGAATGAATTAGATCCT 624-655624-655 1010 HPV-51HPV-51 ATGTACCACAATTAAAAGATGTAGTATTGCATATGTACCACAATTAAAAGATGTAGTATTGCAT 570-601570-601 1111 HPV-52HPV-52 ACCCCGACCTGTGACCCAAGTGTAACACCCCGACCTGTGACCCAAGTGTAAC 524-549524-549 1212 HPV-53HPV-53 CACTTCCACAATATATTATAGAACTTATACCACACTTCCACAATATATTATAGAACTTATACCA 588-619588-619 1313 HPV-56HPV-56 CTGCAAGACGTTGTATTAGAACTAACACCTCTGCAAGACGTTGTATTAGAACTAACACCT 593-622593-622 1414 HPV-58HPV-58 CCATGAGAGGAAACAACCCAACGCTAAGCCATGAGAGGAAACAACCCAACGCTAAG 572-599572-599 1515 HPV-59HPV-59 AACAATGCATGGACCAAAAGCAACACTTTGAACAATGCATGGACCAAAAGCAACACTTTG 538-567538-567 1616 HPV-66HPV-66 TACCAACGTTGCAAGAGGTTATATTAGAACTTGTACCAACGTTGCAAGAGGTTATATTAGAACTTG 588-618588-618 1717 HPV-67HPV-67 AGTGTGTTGGAGACCTCAACGAACGAGTGTGTTGGAGACCTCAACGAACG 512-538512-538 1818 HPV-68HPV-68 TGCAATGAAATAGAGCCGGTCGACCTTGTGCAATGAAATAGAGCCGGTCGACCTTG 4428-44554428-4455 1919 HPV-70HPV-70 CGGTCGACCTTGTATGTCACGAGCAATTAGACGGTCGACCTTGTATGTCACGAGCAATTAGA 659-689659-689 2020 HPV-73HPV-73 AGGCGATATAGACAATCAGTATATGGCACTAGGCGATATAGACAATCAGTATATGGCACT 333-362333-362 2121 HPV-6HPV-6 AGGTAAAACATATACTAACCAAGGCGCGGAGGTAAAACATATACTAACCAAGGCGCGG 448-476448-476 2222 HPV-11HPV-11 TTACCTGTGTCACAAGCCGTTGTGTGAAATTACCTGTGTCACAAGCCGTTGTGTGAAA 413-441413-441 2323 HPV-34HPV-34 TAGAAGATATAACCAATCAGTGTATGGACGGTAGAAGATATAACCAATCAGTGTATGGACGG 332-362332-362 24 24 HPV-40HPV-40 CTGCACCCTGAACCTGTATGTCTAAACTCTGCACCCTGAACCTGTATGTCTAAACT 569-596569-596 2525 HPV-43HPV-43 CATGGAAAAAAGCCGACGATCAGAGACTATGCATGGAAAAAAGCCGACGATCAGAGACTATG 591-616591-616 2626 HPV-44HPV-44 GAAACAAATAAGTCAATTCTGGACGTGCTGGAAACAAATAAGTCAATTCTGGACGTGCTG 378-407378-407 2727 HPV-54HPV-54 ACACAGGCATAAGGGTACTGCAGGAACTGACACAGGCATAAGGGTACTGCAGGAACTG 558-589558-589 2828 HPV-55HPV-55 CGTTCGGCTGGTTGTGCAGTGCACAGGAACCGTTCGGCTGGTTGTGCAGTGCACAGGAAC 595-612595-612 2929 HPV-61HPV-61 AACCATAAAGGACATAGTCCTTGAAGAGCGAACCATAAAGGACATAGTCCTTGAAGAGCG 535-564535-564 3030 Internal ControlInternal Control CTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACT

2. 2. HPVHPV E6E6 // E7E7 특이 유전자 증폭용 For amplifying specific genes 프라이머의Of the primer 합성 synthesis

본 발명에서 프라이머(primer)는 유형별, 즉, 인유두종바이러스 타입 특이적인 증폭이 가능하도록 타겟 부위(target region)를 선별하였다. 또한, 필요한 경우 유형별 타겟 부위 염기서열을 ClustalW method를 이용하여 다중정렬(multiple alignment)을 실시하고, 이에 따라 각 유형 특이적인(specific) 프라이머 타겟 부위를 선별하였다. 이후, 선별된 프라이머 타겟 부위로부터 프라이머 프리미어(Primer premier version 5, Premier Biosoft International, Palo Alto, CA, USA), 디엔에이시스 맥스(DNASIS MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA) 프로그램을 응용하여 유형-특이적 또는 유전자-특이적 프라이도(Tm)는 74-80℃가 되게 하였으며, 3' 말단의 GC 함량이 높지 않아야 하며, 프라이머 서열내 염기 4개 이상 연속해서 상보적이지 않도록 해서 hairpin 이차구조 형성을 방지하였으며, 3'말단에 동일한 염기가 3개 이상 연속해서 위치하지 않도록 해서 프라이머 이합체(dimer)의 형성을 방지하였다. 그리고, 타겟 부위내에 단일염기 다형성(single nucletide polymorphism, SNP)이 포함되지 않도록 하여 높은 특이도를 확보하였다. 또한, 해당 프라이머 염기서열이 본 발명이 목적하는 칩을 구성하는 타 유전자 또는 병원체 염기서열들과 cross-reactive한 특성을 나타내지 않음을 미국 NCBI 염기서열 데이터베이스 등 다양한 염기서열 검색 툴(tool)을 활용하여 검증하였다. 본 발명에 사용하는 프라이머(primer)는 미국 IDT(Integrated DNA Technologies, Inc., San Jose, CA, USA)를 통해 합성하였다(표 2).In the present invention, a target region was selected for each type of primer, that is, a human papillomavirus type-specific amplification. In addition, if necessary, multiple alignment was performed using the ClustalW method for the nucleotide sequence of each type of target site, and accordingly, each type-specific primer target site was selected. Thereafter, primer premier version 5, Premier Biosoft International, Palo Alto, CA, USA), DNA MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA program from the selected primer target site. By application, the type-specific or gene-specific pride (Tm) was made to be 74-80°C, and the GC content at the 3'end should not be high, and 4 or more bases in the primer sequence should not be consecutively complementary. The formation of the secondary structure of the hairpin was prevented, and the formation of a primer dimer was prevented by preventing three or more of the same bases from being consecutively located at the 3'end. In addition, high specificity was secured by not including single nucletide polymorphism (SNP) in the target site. In addition, the primer sequence does not show cross-reactive properties with other gene or pathogen sequences constituting the chip of the present invention, using various sequence search tools such as the NCBI sequence database. Verified. The primers used in the present invention were synthesized through US IDT (Integrated DNA Technologies, Inc., San Jose, CA, USA) (Table 2).

타입type 서열번호Sequence number forward primer(5'-3')forward primer(5'-3') 서열번호Sequence number reverse primer(5'-3')reverse primer(5'-3') TSP-16TSP-16 3131 GAGCGACCCAGAAAGTTACCACAGTTATGCACAGAGGAGCGACCCAGAAAGTTACCACAGTTATGCACAGAG 3232 GCACACAATTCCTAGTGTGCCCATTAACAGGTCGCACACAATTCCTAGTGTGCCCATTAACAGGTC TSP-18TSP-18 3333 GAGGATCCAACACGGCGACCCTACAAGCTACGAGGATCCAACACGGCGACCCTACAAGCTAC 3434 TGCTGAGCTTTCTACTACTAGCTCAATTCTGGCTGCTGAGCTTTCTACTACTAGCTCAATTCTGGC TSP-26TSP-26 3535 GAGCTATGTGAAAGCTTGAATACTACTTTGCGAGCTATGTGAAAGCTTGAATACTACTTTGC 3636 GTGCAGCACACTGATGGCACACCGTGCAGCACACTGATGGCACACC TSP-30TSP-30 3737 CACCATCTTTGTGAGGTACAAGAAACATCGTTGCCACCATCTTTGTGAGGTACAAGAAACATCGTTGC 3838 GCACACAGGGGACACACTAGCTCCAGGCACACAGGGGACACACTAGCTCCAG TSP-31TSP-31 3939 CCTGCAGAAAGACCTCGGAAATTGCATGAACCCTGCAGAAAGACCTCGGAAATTGCATGAAC 4040 GGCACACGATTCCAAATGAGCCCAGGCACACGATTCCAAATGAGCCCA TSP-33TSP-33 4141 GCAGTAAGGTACTGCACGACTATGTTTCAAGACACTGGCAGTAAGGTACTGCACGACTATGTTTCAAGACACTG 4242 TAGGTCACTTGCTGTACTGTTGACACATAAACGAACTGTAGGTCACTTGCTGTACTGTTGACACATAAACGAACTG TSP-35TSP-35 4343 TTACAAACTGCATGATTTGTGCAACGAGGTAGAAGTTACAAACTGCATGATTTGTGCAACGAGGTAGAAG 4444 GAACAGCCGGGGCACACTATTCCAAATGGAACAGCCGGGGCACACTATTCCAAATG TSP-39TSP-39 4545 TAGCCTGTGTCTATTGCAGACGACCACTAGCCTGTGTCTATTGCAGACGACCAC 4646 GTTGCACACCACGGACACACAAATCCTAGTGGTTGCACACCACGGACACACAAATCCTAGTG TSP-45TSP-45 4747 TACAAGACGTATCTATTGCCTGTGTATATTGCAAAGCTACAAGACGTATCTATTGCCTGTGTATATTGCAAAGC 4848 ACGGACACACAAAGGACAAGGTGCTCACGGACACACAAAGGACAAGGTGCTC TSP-51TSP-51 4949 CAAGAGGGAAAGACCACGAACGCTGCATGCAAGAGGGAAAGACCACGAACGCTGCATG 5050 TAACATCTGCTGTACAACGCGAAGGGTGTCTAACATCTGCTGTACAACGCGAAGGGTGTC TSP-52TSP-52 5151 CGGCCATGTTTGAGGATCCAGCAACACCGGCCATGTTTGAGGATCCAGCAACAC 5252 CAACAGCATTTGCTGTAGAGTACGAAGGTCCGTCCAACAGCATTTGCTGTAGAGTACGAAGGTCCGTC TSP-53TSP-53 5353 GCACTGTGTACAACACCCAGGACATCCGCACTGTGTACAACACCCAGGACATCC 5454 CTGCACCAACGACTCACACCTACAACACTGCTGCACCAACGACTCACACCTACAACACTG TSP-56TSP-56 5555 CCACAATTCAACAATCCACAGGAACGTCCACGCCACAATTCAACAATCCACAGGAACGTCCACG 5656 CAGGTCCTCTTTGGTACTCTGAATGTCCAACTGCAGGTCCTCTTTGGTACTCTGAATGTCCAACTG TSP-58TSP-58 5757 GATTTGTGTCAGGCGTTGGAGACATCTGTGCATGGATTTGTGTCAGGCGTTGGAGACATCTGTGCATG 5858 GTGCACAGCTAGGGCACACAATGGTACATGGTGCACAGCTAGGGCACACAATGGTACATG TSP-59TSP-59 5959 ATTTGAGCACAACATTGAATATTCCTCTGCATGATATTCGCATTTGAGCACAACATTGAATATTCCTCTGCATGATATTCGC 6060 CAGCTGCTGTAAGGCTCGCAATCCGTCCAGCTGCTGTAAGGCTCGCAATCCGTC TSP-66TSP-66 6161 CCATATTCAGCAATACACAGGAACGTCCACGAAGCCCATATTCAGCAATACACAGGAACGTCCACGAAGC 6262 CGTAGCTCCTCTTTGGTACTCTGAATGTCCAACTGCCGTAGCTCCTCTTTGGTACTCTGAATGTCCAACTGC TSP-67TSP-67 6363 CAGACGAAAAACCACGCAACCTGCACGAATTGTGCAGACGAAAAACCACGCAACCTGCACGAATTGTG 6464 CTATTCCTAGTGTGTTCATAAGCATCTGCTGGATTGTTCGGCTATTCCTAGTGTGTTCATAAGCATCTGCTGGATTGTTCGG TSP-68TSP-68 6565 CATTGGACACCACATTGCATGACGTTACAATAGACTGCATTGGACACCACATTGCATGACGTTACAATAGACTG 6666 GTCCATAAACAGCAGTTCTACGTTCCGCAGGGTCCATAAACAGCAGTTCTACGTTCCGCAGG TSP-70TSP-70 6767 TAGACTGTGTCTATTGTAAAACACAGCTACAGCAAACTAGACTGTGTCTATTGTAAAACACAGCTACAGCAAAC 6868 GATGCACACCAGGGACACACAAATGACAGTGGATGCACACCAGGGACACACAAATGACAGTG TSP-73TSP-73 6969 GTTTCCCAATTCAGAAGAACGACCATACAAGCTACGTTTCCCAATTCAGAAGAACGACCATACAAGCTAC 7070 GGCACACAATACCTAGTGTACCCATAAGCAACTCGGCACACAATACCTAGTGTACCCATAAGCAACTC TSP-6TSP-6 7171 GGCATTATGGAAAGTGCAAATGCCTCCACGTCTGCAACGGCATTATGGAAAGTGCAAATGCCTCCACGTCTGCAAC 7272 GGTCTTCGGTGCGCAGATGGGACACACTATGTTTAGGGTCTTCGGTGCGCAGATGGGACACACTATGTTTAG TSP-11TSP-11 7373 GCAGACGAGGCATTATGGAAAGTAAAGATGCCTCCACGGCAGACGAGGCATTATGGAAAGTAAAGATGCCTCCACG 7474 GTGTGCCCAGCAAAAGGTCTTGTAGTTGTCTGATGTCTCGTGTGCCCAGCAAAAGGTCTTGTAGTTGTCTGATGTCTC TSP-34TSP-34 7575 CAATCCTGAGGAACGGCCATACAAGCTACCAGCCAATCCTGAGGAACGGCCATACAAGCTACCAGC 7676 CACCCATAAGCAGGTCTTCTAACACTAATAGGTCAGCGCACCCATAAGCAGGTCTTCTAACACTAATAGGTCAGCG TSP-40TSP-40 7777 CCAGGACCCTGTATGAACTGTGTGACCAGTGCCCAGGACCCTGTATGAACTGTGTGACCAGTGC 7878 CACTCTGTAGCTGCACAGTTGGGGCACACTATATGTAATGTGCACTCTGTAGCTGCACAGTTGGGGCACACTATATGTAATGTG TSP-43TSP-43 7979 GACTGCACGTAGCTGCTCCCAAAACGGACTGCACGTAGCTGCTCCCAAAACG 8080 CCCAACAGCAGGTCTTCTAGCTTCTTGATGCCCAACAGCAGGTCTTCTAGCTTCTTGATG TSP-44TSP-44 8181 GCAAGCGGGGCATAATGGAAAGTGCAAATGCGCAAGCGGGGCATAATGGAAAGTGCAAATGC 8282 CACACAGGACACAATATATCCAGTGAACCCAGCAGCACACAGGACACAATATATCCAGTGAACCCAGCAG TSP-54TSP-54 8383 CCGAAACCGGTACATATAAAAGCGGTTGTAGAAAACAGCCGAAACCGGTACATATAAAAGCGGTTGTAGAAAACAG 8484 GTCGTGAAGCACAGGTGGGACACACTATTTGCAGTGCGTCGTGAAGCACAGGTGGGACACACTATTTGCAGTGC TSP-55TSP-55 8585 GCAAGCGGGGCATAATGGAAAGTGCAAATGCGCAAGCGGGGCATAATGGAAAGTGCAAATGC 8686 CAGGACACAGTATTTCCAGTGAACCCAGCAGAAGCGTATGCAGGACACAGTATTTCCAGTGAACCCAGCAGAAGCGTATG TSP-61TSP-61 8787 CGTAGGGTCAGCAAAGCACACTCATCTATGGGACCGCGTAGGGTCAGCAAAGCACACTCATCTATGGGACCG 8888 CAGCCAGGACACACTATGGACAAGTCGCCCAGCAGCAGCCAGGACACACTATGGACAAGTCGCCCAGCAG internal controlinternal control 8989 CCCACAAGTATCACTAAGCTCGCTTTCTTGCTGTCCCCCACAAGTATCACTAAGCTCGCTTTCTTGCTGTCC 9090 GCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCC

인유두종바이러스 유형 진단을 위한 프라이머는 DNA 염기서열의 5'말단 또는 3'말단에 형광색소가 표지된 프라이머를 사용하거나, 또는 형광색소가 표지되지 않은 일반적인 프라이머를 사용하고 멀티플렉스 PCR 반응 중에 형광색소가 표지된 디옥시리보뉴클레오티드 트리포스페이트가 증폭산물에 삽입되게끔 유도하여 증폭산물을 표지하는 두가지 방법을 모두 확인하였다. 또한, 인유두종바이러스 유형 진단을 위해서는 일차 스크리닝 후 2차 PCR 단계에서 형광색소가 표지된 프라이머를 사용하거나 또는 증폭반응 중에 형광색소를 표지하게 된다.Primer for diagnosis of HPV type is a primer labeled with a fluorescent dye at the 5'or 3'end of the DNA sequence, or a general primer that is not labeled with a fluorescent dye is used, and the fluorescent dye is released during the multiplex PCR reaction. Both methods of labeling the amplified product by inducing the labeled deoxyribonucleotide triphosphate to be inserted into the amplification product were confirmed. In addition, for the diagnosis of human papillomavirus type, a fluorescent dye-labeled primer is used in the second PCR step after the first screening, or the fluorescent dye is labeled during the amplification reaction.

본 발명에 사용하는 형광색소는 6-FAM(6-carboxyfluorescein), Cy5, Cy3, Cy5.5, JOE(6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein), Rhodamine Green, TAMRA NHS(N-hydroxysuccinimide) Ester, Texas Red 이다. 프라이머의 농도는 ND-1000 분광광도계(NanoDrop Technologies, Rockland, Maine, USA)를 통해 확인하고 최종 50 - 200 pmole/uL 범위의 농도가 되도록 3차 탈이온 멸균 증류수로 재현탁(resuspension)하고 aliquots으로 -70℃에서 냉동보관하였다.Fluorescent pigments used in the present invention are 6-FAM (6-carboxyfluorescein), Cy5, Cy3, Cy5.5, JOE (6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein), Rhodamine Green , TAMRA NHS (N-hydroxysuccinimide) Ester, Texas Red. The concentration of the primer was checked through an ND-1000 spectrophotometer (NanoDrop Technologies, Rockland, Maine, USA) and resuspended in tertiary deionized sterilized distilled water to a final concentration in the range of 50-200 pmole/uL, and aliquots were used. It was stored frozen at -70 ℃.

3. 임상검체 채취 및 이로부터 3. Collection of clinical specimens and from them DNADNA 분리 Separation

비침습적(non-invasive) 진단을 위해서 자궁경부세포진, 소변 등의 검체로부터 효율적인 DNA 분리가 주요 선행조건 중의 하나였다. 검체는 채취 후 바이러스 수송배지(viral transport media)에 넣어서 검사실로 운송하였다. 인유두종바이러스 유형 진단을 위해 검체로부터 세균 게노믹 DNA(genomic DNA)를 분리하였으며, 상용화된 DNA 추출 키트(LaboPass Tissue kit, 코스모진텍, 서울, 한국)를 사용하였다. 자궁경부세포진을 비롯한 여타 검체가 점도가 낮아서 바로 pipetting이 가능하면 2N 수산화나트륨(NaOH)을 사용하지 않고 검체 0.3mL을 1.5 mL 에펜도르프 튜브로 옮겼다. 점도가 높은 검체의 경우, 2N NaOH를 검체와 동량으로 첨가하여 검체를 액화시켰다. NaOH를 넣어 줄 때 tip으로 저어주면서 검체를 풀어야 하며, pipette으로 0.5 mL을 정확히 취할 수 있을 정도로 풀어 주었다. 시료를 포함하는 에펜도르프 튜브를 한일 1524M 고속 원심분리기(high-speed centrifuge, Hanil Scientific., Korea)를 이용해서 12,000 rpm(revolutions per minute, 분당회전수), 1분 원심분리하였다. 상층액을 제거하고 침전물을 300 μL의 PBS 용액에 풀어준 뒤 다시 동일 조건에서 원심분리하여 세척과정을 거쳤다. 상기 침전물에 시료를 분해하는 TG 완충용액(buffer) 200 μL를 첨가하여 풀어주고 단백분해효소 K(Proteinase K, 100mg/mL) 20 μL를 첨가하고 약하게 교반(vortex)한 후 70℃, 10분간 반응시켰다. 이후, 반응물에 TB 완충용액 400μL를 첨가하고 교반하여 반응물을 혼합하였다. 이어서, 반응물을 스핀 칼럼(spin column)의 상층부에 로딩(loading)하고 12,000 rpm, 2분 원심분리하였다. 컬렉션 튜브(collection tube)를 새로 교체하고 멤브레인으로부터 불순물을 제거하는 WB 완충용액 500 μL를 첨가하고 12,000 rpm, 2분 원심분리하였다. 이후, 스핀 칼럼 상층부를 새로운 에펜도르프 튜브로 옮긴 뒤 DNA를 용출시키기 위해 탈이온(de-ionized) 멸균 3차 증류수 70 μL를 로딩하고 실온에서 2분 처리하고 12,000 rpm, 2분 원심분리하여 순수한 DNA를 분리하였다.For non-invasive diagnosis, efficient DNA isolation from specimens such as cervical papillary and urine was one of the major prerequisites. The samples were collected, placed in a virus transport media, and transported to the laboratory. To diagnose human papillomavirus type, bacterial genomic DNA was isolated from the specimen, and a commercially available DNA extraction kit (LaboPass Tissue kit, Cosmo Genetech, Seoul, Korea) was used. If pipetting was possible immediately because of the low viscosity of cervical papillae and other samples, 0.3 mL of the sample was transferred to a 1.5 mL Eppendorf tube without using 2N sodium hydroxide (NaOH). In the case of a sample with high viscosity, 2N NaOH was added in the same amount as the sample to liquefy the sample. When adding NaOH, the sample should be loosened while stirring with a tip, and the sample was released with a pipette to the extent that 0.5 mL could be accurately taken. The Eppendorf tube containing the sample was centrifuged for 1 minute at 12,000 rpm (revolutions per minute) using a Hanil 1524M high-speed centrifuge (Hanil Scientific., Korea). The supernatant was removed, the precipitate was dissolved in 300 μL of PBS solution, and then centrifuged again under the same conditions, followed by washing. Add 200 μL of TG buffer solution to decompose the sample to the precipitate to release it, add 20 μL of proteolytic enzyme K (Proteinase K, 100 mg/mL), vortex gently, and react at 70° C. for 10 minutes. Made it. Then, 400 μL of TB buffer solution was added to the reaction product and stirred to mix the reaction product. Subsequently, the reaction product was loaded onto the upper layer of a spin column and centrifuged at 12,000 rpm for 2 minutes. The collection tube was replaced with a new one, 500 μL of a WB buffer solution to remove impurities from the membrane was added, followed by centrifugation at 12,000 rpm for 2 minutes. Thereafter, the upper layer of the spin column was transferred to a new Eppendorf tube, and 70 μL of deionized sterilized tertiary distilled water was loaded to elute the DNA, treated at room temperature for 2 minutes, and centrifuged at 12,000 rpm for 2 minutes to obtain pure DNA. Was separated.

4. 멀티플렉스 4. Multiplex PCRPCR 을 통한 인유두종바이러스 Human papillomavirus through 타겟target 유전자 증폭 Gene amplification

올리고 DNA 칩(chip) 분석에 앞서, 임상 검체로부터 분리한 바이러스 DNA를 주형으로 멀티플렉스 PCR 반응을 통해 칩 반응의 타겟 유전자들을 증폭하였다. 이후, 증폭된 앰플리콘들은 칩(chip)표면의 DNA 프로브들과 듀플렉스(duplex)를 형성함으로써 인유두종바이러스 원인균별 유형 판정결과가 확인된다. 본 발명의 바람직한 일 양태에 따른 멀티플렉스 PCR은 내부 대조군(internal control)으로 인간 GAPDH 유전자를 포함한다. Prior to oligo DNA chip analysis, target genes of the chip reaction were amplified through a multiplex PCR reaction using viral DNA isolated from a clinical sample as a template. Thereafter, the amplified amplicons form a duplex with DNA probes on the chip surface, thereby confirming the result of determining the type of human papillomavirus causative bacteria. Multiplex PCR according to a preferred embodiment of the present invention includes a human GAPDH gene as an internal control.

본 실시예에 바람직하게 기술하는 인유두종바이러스 29종 멀티플렉스 PCR 반응액 혼합물에 포함되는 PCR 완충용액의 최종농도는 50 mM KCl, 3.5 mM MgCl2, 10mM Tris-HCl, pH 8.2이며, 2.5 unit의 Taq 중합효소, 300 μM dNTPs(Boehringer Mannheim, Mannheim, Germany), 10 mg/mL 소혈청알부민(Bovine serum albumin)을 포함한다. 인유두종바이러스 유형 진단을 위한 멀티플렉스 PCR에 포함되는 개별 유전자들의 정방향(sense) 프라이머는 5'- 또는 3'-말단에 Cy3 또는 Cy5 형광색소를 표지시켜 합성하거나, 또는 양 말단의 변형(modification)없이 nascent 올리고뉴클레오티드로 합성하였다(Integrated DNA Technologies, Inc., Coralville, IA, USA).The final concentration of the PCR buffer solution contained in the mixture of 29 human papillomavirus multiplex PCR reaction solutions preferably described in this example is 50 mM KCl, 3.5 mM MgCl 2 , 10 mM Tris-HCl, pH 8.2, and 2.5 units of Taq Polymerase, 300 μM dNTPs (Boehringer Mannheim, Mannheim, Germany), and 10 mg/mL Bovine serum albumin. Forward (sense) primers of individual genes included in multiplex PCR for diagnosis of human papillomavirus type are synthesized by labeling Cy3 or Cy5 fluorescent dye at the 5'- or 3'-end, or without modification at both ends. It was synthesized with nascent oligonucleotide (Integrated DNA Technologies, Inc., Coralville, IA, USA).

본 발명의 또한 바람직한 일 양태에 따른 말단에 형광색소 변형이 없는 프라이머를 포함하는 멀티플렉스 PCR 키트는 PCR 과정중에 Cy3 형광색소가 표지된 디옥시사이토신 트리포스페이트(Cy3-dCTP)가 증폭산물을 구성하는 뉴클레오티드로 첨가되도록 하여 반응의 민감도와 특이도를 향상시킬 수 있었다. Cy3-dCTP를 사용하는 29종 멀티플렉스 PCR 반응에 사용하는 PCR 완충용액은 최종농도 50 mM KCl, 3.5 mM MgCl2, 10mM Tris-HCl, pH 8.2 이였으며, 2.5 unit의 Taq 중합효소, 300 μM dATP, 300 μM dGTP, 300 μM dTTP, 25 μM dCTP, 275 μM Cy3-dCTP(FluoroLink Cy3-dCTP, Amersham Pharmacia Biotech AB, Piscataway, NJ, USA), 10 mg/mL 소혈청알부민(Bovine serum albumin)을 첨가하여 타겟 유전자들을 특이적으로 증폭하였다.In a multiplex PCR kit comprising a primer without a fluorescent dye modification at the end according to a further preferred embodiment of the present invention, a Cy3 fluorescent dye-labeled deoxycytosine triphosphate (Cy3-dCTP) constitutes an amplification product during the PCR process. It was possible to improve the sensitivity and specificity of the reaction by allowing it to be added as a nucleotide. The PCR buffer used for 29 multiplex PCR reactions using Cy3-dCTP was 50 mM KCl, 3.5 mM MgCl 2 , 10 mM Tris-HCl, pH 8.2, and 2.5 units of Taq polymerase, 300 μM dATP. , 300 μM dGTP, 300 μM dTTP, 25 μM dCTP, 275 μM Cy3-dCTP (FluoroLink Cy3-dCTP, Amersham Pharmacia Biotech AB, Piscataway, NJ, USA), 10 mg/mL Bovine serum albumin was added Thus, the target genes were specifically amplified.

5. 인유두종바이러스 유형 분석 칩 교잡반응 및 결과 분석5. Human papillomavirus type analysis chip hybridization reaction and result analysis

본 발명의 바람직한 일실시예에 따른 29종 인유두종바이러스 멀티플렉스 PCR 증폭산물을 각각 10 - 20 μL씩 총 30 - 60 μL를 이와 동일한 volume의 탈이온 3차 멸균 증류수가 미리 첨가된 1.5 mL 에펜도르프 튜브에 첨가하였다. 이 mixture를 softly vortex하고, 95℃, 5분간 열변성시킨 후 얼음 위에 5분간 보존하고 원심분리기로 스핀다운(spin down)하였다. 칩(chip) 표면에는 8 웰 혼성화 반응 챔버(8 well hybridization chamber)를 위치시키고 웰 커버(cover)로 웰 상층부를 덮어두었다. 이후, 반응시키고자 하는 웰(well)에 상기 반응 혼합용액에 혼성화 반응 온도인 56℃로 미리 가열해둔 60 - 80μL의 혼성화 반응 용액(3X SSC, 0.1% SDS, 0.2 mg/mL 소혈청알부민, pH 7)을 첨가하여 혼합한 후 웰 커버의 구멍(hole)을 통해 반응액 혼합물을 주입하고 버블(bubble)이 발생하지 않도록 주의하였다. 챔버 리드(lid)를 고정시킨 후 56℃, 30분간 혼성화 반응을 통해 칩 표면의 프로브와 멀티플렉스 PCR 반응산물 간 특이적인 뉴클레오티드 상보적(complementary) 결합을 유도하였다. 혼성화 반응이 종료된 칩 표면의 웰 커버를 제거하고 칩을 세척버퍼 1(0.1X SSC, 0.05% SDS)용액에 담그고 2분간 2,000 rpm에서 교반하면서 세척(washing)하고 이를 반복하였다. 이후, 세척용액 2(2X SSC, 0.1% SDS) 용액에 2분간 2,000 rpm에서 교반하면서 세척(washing)하고 이를 반복하였다. 이후, 탈이온 3차 멸균 증류수에 담가 2회 세척하고 1,000 rpm에서 원심분리하여 칩을 건조하였다. 상기 칩을 스캔어래이 라이트(ScanArray Lite, Packard Instrument Co., Meriden, CT, USA) 스캐너를 이용하여 판독하였고, 분석 소프트웨어(QuantArray 2.0)를 이용하여 양성 대조군 스팟들의 평균 형광강도(fluorescence intensity) 및 표준오차를 스팟 주변의 값들과 비교하여 signal-to-noise(S/R) 비율을 구한 뒤 그 값이 4 이상일 경우 양성 값으로 스코어링(scoring) 처리하였다.A 1.5 mL Eppendorf tube containing 30 to 60 μL of each of the 29 human papillomavirus multiplex PCR amplification products according to a preferred embodiment of the present invention, each 10 to 20 μL each, to which the same volume of deionized tertiary sterilized distilled water was added in advance. Was added to. The mixture was vortexed softly, heat denatured at 95° C. for 5 minutes, stored on ice for 5 minutes, and spin down with a centrifuge. An 8 well hybridization chamber was placed on the surface of the chip, and the upper part of the well was covered with a well cover. Thereafter, a hybridization reaction solution of 60-80 μL (3X SSC, 0.1% SDS, 0.2 mg/mL bovine serum albumin, pH) previously heated at 56° C. After 7) was added and mixed, the reaction mixture was injected through the hole of the well cover, and care was taken not to generate bubbles. After fixing the chamber lid, specific nucleotide complementary binding was induced between the probe on the chip surface and the multiplex PCR reaction product through a hybridization reaction at 56° C. for 30 minutes. The well cover on the surface of the chip on which the hybridization reaction was completed was removed, and the chip was immersed in a solution of washing buffer 1 (0.1X SSC, 0.05% SDS) and washed with stirring at 2,000 rpm for 2 minutes, and this was repeated. Thereafter, washing solution 2 (2X SSC, 0.1% SDS) with stirring at 2,000 rpm for 2 minutes was repeated. Thereafter, the chips were dried by immersing in deionized tertiary sterilized distilled water, washing twice, and centrifuging at 1,000 rpm. The chip was read using a ScanArray Lite (Packard Instrument Co., Meriden, CT, USA) scanner, and the average fluorescence intensity and standard of the positive control spots using analysis software (QuantArray 2.0). The error was compared with the values around the spot to obtain a signal-to-noise (S/R) ratio, and if the value was 4 or more, it was scored as a positive value.

6. 6. 프로브Probe 테스트 Test

표 3은 29종의 HPV에 대한 프로브(서열번호 1 내지 29)의 최소 검출 한계를 확인하기 위한 DNA칩을 나타낸다. 형광신호를 분석을 위해 Genepix 4100A(Epson, USA)를 이용하여 프로브 간의 형광신호의 강도를 측정하여 분석하였다.Table 3 shows a DNA chip for confirming the minimum detection limit of the probes (SEQ ID NOs: 1 to 29) for 29 types of HPV. The fluorescence signal was analyzed by measuring the intensity of the fluorescence signal between probes using Genepix 4100A (Epson, USA).

Figure 112014002291924-pat00001
Figure 112014002291924-pat00001

표 3에서 보는 바와 같이, Genepix 4100A(Epson, USA) 소프트웨어를 이용하여 프로브간의 형광신호의 강도를 분석한 결과 S/N 값이 11.25~13.32의 감도가 최소 검출 한계치로 나타나고 있다.
As shown in Table 3, as a result of analyzing the intensity of the fluorescence signal between the probes using the Genepix 4100A (Epson, USA) software, the S/N value is 11.25~13.32 as the minimum detection limit.

7. 7. HPVHPV -16, -18 감염 세포주 및 -16, -18 infected cell lines and 비감염Non-infectious 세포주 실험 Cell line experiment

도 2a 내지 도 2c는 본 실시예에 따라 합성된 프라이머를 사용하여 HPV-16 감염 세포주인 Caski, HPV-18 감염 세포주인 HeLa 및 HPV 비감염 세포주인 K562를 대상으로 PCR 실시 후 칩 분석을 수행한 사진이다. HPV-16 감염 세포주인 Caski와 HPV-18 감염 세포주인 HeLa에 대해서만 칩 교잡반응에서 해당 프로브가 반응을 보였고 HPV 비감염세포주은 K562 세포에 대해서는 칩 교잡반응에서 프로브에 대해 반응을 나타내지 않았다.2A to 2C are photographs of chip analysis after PCR on the HPV-16-infected cell line Caski, the HPV-18-infected cell line HeLa, and the HPV-non-infected cell line K562 using the primers synthesized according to the present embodiment. to be. The probe responded only to the HPV-16 infected cell line Caski and the HPV-18 infected cell line HeLa in the chip hybridization reaction, and the non-HPV-infected cell line did not respond to the probe in the chip hybridization reaction to K562 cells.

8. 임상 검체 실험8. Clinical specimen experiment

본 실시예에서는 임상시료를 대상으로 종래의 세포 검사법에 따른 HPV 감염 여부 및 자궁경부암 관련 여부를 검진하였다. 이를 위하여 이원의료재단으로 의뢰된 검체 15건을 대상으로 담당 임상의의 책임 하에 질확대경진(colposcopy) 검사, 자궁경부촬영진(cervicography) 검사, 조직생검(biopsy) 및 세포진도말(pap-smear) 검사 등의 전문적 검진을 수행하였다. 본 실시예에 따른 세포 검사법에 따른 검진 결과는 하기 표 4에 표시하였다.In this example, the clinical samples were examined for HPV infection and cervical cancer according to the conventional cytology. For this purpose, a colposcopy examination, cervicography examination, tissue biopsy, and pap-smear examination were conducted under the responsibility of the clinician in charge of 15 specimens requested by the Leewon Medical Foundation. Professional examinations such as inspection were performed. The examination results according to the cell test method according to this Example are shown in Table 4 below.

피검자 No.Subject No. 병리성적Pathologic 1One LSIL* LSIL * 22 LSILLSIL 33 LSILLSIL 44 HSIL** HSIL ** 55 LSILLSIL 66 HSILHSIL 77 HSILHSIL 88 SCC*** SCC *** 99 SCCSCC 1010 HSILHSIL 1111 Squamous**** Squamous **** 1212 SquamousSquamous 1313 SquamousSquamous 1414 SquamousSquamous 1515 SquamousSquamous

*: 저급 상피 이형성증 (Low-grade SIL); * : Low-grade SIL;

**: 고급 상피 이형성증 (High-grade SIL); ** : High-grade SIL;

***: 상피내암(Squamous intraepithelial lesion) *** : Squamous intraepithelial lesion

****: 편평 세포 **** : squamous cell

검진 결과, 표 5에 도시된 것과 같이, 피검자 1, 2, 3 및 5는 저급 상피 이형성증(Low-grade SIL), 피검자 4, 6, 7 및 10은 고급 상피 이형성증(High-grade SIL), 피검자 8 및 9는 상피내암(squamous intraepithelial lesion, SIL) 환자로 진단되었다. 나머지 피검자(피검자 11 내지 피검자 15)는 본 실시예에 따른 자궁경부암 세포진 도말 검사에서 정상 세포를 가지는 자궁경부암 비관련 환자로 진단되었다. As a result of the examination, as shown in Table 5, subjects 1, 2, 3, and 5 were low-grade epithelial dysplasia (Low-grade SIL), subjects 4, 6, 7 and 10 were high-grade epithelial dysplasia (High-grade SIL), subjects 8 and 9 were diagnosed as patients with squamous intraepithelial lesion (SIL). The remaining subjects (subjects 11 to 15) were diagnosed as unrelated cervical cancer patients with normal cells in the cervical cancer cytology smear according to the present embodiment.

본 실시예에서는 상기 임상시료를 대상으로 HPV DNA의 존재 여부를 선별(screening)하였다. 이를 위해서 HPV DNA와 상보적으로 결합하는 본 발명의 DNA 칩을 사용하였으며 그 결과는 하기 표 5와 도 3a 내지 도 3o에 표시하였다. In this example, the presence or absence of HPV DNA was screened for the clinical sample. For this, a DNA chip of the present invention that complementarily binds to HPV DNA was used, and the results are shown in Table 5 below and FIGS. 3A to 3O.

피검자 No.Subject No. DNA 검사DNA test 1One 양성positivity 22 양성positivity 33 양성positivity 44 양성positivity 55 양성positivity 66 양성positivity 77 양성positivity 88 양성positivity 99 양성positivity 1010 양성positivity 1111 음성voice 1212 음성voice 1313 음성voice 1414 음성voice 1515 음성voice

본 실시예에 따른 HPV DNA 검사에서 상기 실시예에서의 검진 결과 자궁경부암과 관련 있는 피검자(피검자 1 내지 피검자 10)로부터 얻은 시료에서는 모두 HPV DNA가 선별되었으며, 자궁경부암과 관련이 없는 피검자(피검자 11 내지 피검자 15)로부터 얻은 시료에서는 모두 HPV DNA가 선별되지 않았다.In the HPV DNA test according to the present embodiment, HPV DNA was selected in all samples obtained from subjects (subjects 1 to 10) related to cervical cancer as a result of the examination in the above example, and subjects not related to cervical cancer (subject 11). In the samples obtained from to subject 15), HPV DNA was not selected.

상기에서 본 발명의 바람직한 실시예를 기술하였으나, 이는 어디까지나 예시일 뿐 본 발명이 이에 한정되는 것은 아니며, 본 발명이 속하는 분야의 당업자라면 본 발명의 정신을 벗어나지 않는 범위 내에서 다양한 변형과 변경이 가능하다는 점은 자명하다. 그러나, 그와 같은 변형과 변경은 모두 본 발명의 권리범위에 속한다는 사실은 첨부하는 청구의 범위를 통하여 보다 분명해질 것이다.
Although the preferred embodiments of the present invention have been described above, this is only illustrative, and the present invention is not limited thereto, and various modifications and changes are made within the scope of the spirit of the present invention for those skilled in the art to which the present invention belongs. It is obvious that it is possible. However, the fact that all such modifications and changes belong to the scope of the present invention will become more apparent through the scope of the appended claims.

<110> daiogene <120> DNA chip for determining genomic types of human papillomavirus, kit comprising the same and determinig method of genomic types of human papillomavirus using the same <160> 90 <170> KopatentIn 2.0 <210> 1 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> HPV-16 probe <400> 1 atcatgcatg gagatacacc tacattgcat g 31 <210> 2 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-18 probe <400> 2 caacattgca agacattgta ttgcatttag ag 32 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-26 probe <400> 3 cagtggaaag ggttgtgtac aaattgttgg 30 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-30 probe <400> 4 cgtccactga gacagcagta taatcatgc 29 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-31 probe <400> 5 ctgacctcca ctgttatgag caattaccc 29 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-33 probe <400> 6 acgtagagaa actgcactgt gacgtgtaaa 30 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> HPV-35 probe <400> 7 tgtattacat gtcaaaaacc gctgtgtcca gtt 33 <210> 8 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-39 probe <400> 8 aagagaaacc caagtataac atcagatatg cg 32 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-45 probe <400> 9 tgcatttgga acctcagaat gaattagatc ct 32 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-51 probe <400> 10 atgtaccaca attaaaagat gtagtattgc at 32 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> HPV-52 probe <400> 11 accccgacct gtgacccaag tgtaac 26 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-53 probe <400> 12 cacttccaca atatattata gaacttatac ca 32 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-56 probe <400> 13 ctgcaagacg ttgtattaga actaacacct 30 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> HPV-58 probe <400> 14 ccatgagagg aaacaaccca acgctaag 28 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-59 probe <400> 15 aacaatgcat ggaccaaaag caacactttg 30 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> HPV-66 probe <400> 16 taccaacgtt gcaagaggtt atattagaac ttg 33 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> HPV-67 probe <400> 17 agtgtgttgg agacctcaac gaacg 25 <210> 18 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> HPV-68 probe <400> 18 tgcaatgaaa tagagccggt cgaccttg 28 <210> 19 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> HPV-70 probe <400> 19 cggtcgacct tgtatgtcac gagcaattag a 31 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-73 probe <400> 20 aggcgatata gacaatcagt atatggcact 30 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-6 probe <400> 21 aggtaaaaca tatactaacc aaggcgcgg 29 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-11 probe <400> 22 ttacctgtgt cacaagccgt tgtgtgaaa 29 <210> 23 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> HPV-34 probe <400> 23 tagaagatat aaccaatcag tgtatggacg g 31 <210> 24 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> HPV-40 probe <400> 24 ctgcaccctg aacctgtatg tctaaact 28 <210> 25 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> HPV-43 probe <400> 25 catggaaaaa agccgacgat cagagactat g 31 <210> 26 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-44 probe <400> 26 gaaacaaata agtcaattct ggacgtgctg 30 <210> 27 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-54 probe <400> 27 acacaggcat aagggtactg caggaactg 29 <210> 28 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-55 probe <400> 28 cgttcggctg gttgtgcagt gcacaggaac 30 <210> 29 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-61 probe <400> 29 aaccataaag gacatagtcc ttgaagagcg 30 <210> 30 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> GAPDH probe <400> 30 ctattaaagg ttcctttgtt ccctaagtcc aact 34 <210> 31 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> TSP-16 forward primer <400> 31 gagcgaccca gaaagttacc acagttatgc acagag 36 <210> 32 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TSP-16 reverse primer <400> 32 gcacacaatt cctagtgtgc ccattaacag gtc 33 <210> 33 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-18 forward primer <400> 33 gaggatccaa cacggcgacc ctacaagcta c 31 <210> 34 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TSP-18 reverse primer <400> 34 tgctgagctt tctactacta gctcaattct ggc 33 <210> 35 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-26 forward primer <400> 35 gagctatgtg aaagcttgaa tactactttg c 31 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> TSP-26 reverse primer <400> 36 gtgcagcaca ctgatggcac acc 23 <210> 37 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-30 forward primer <400> 37 caccatcttt gtgaggtaca agaaacatcg ttgc 34 <210> 38 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TSP-30 reverse primer <400> 38 gcacacaggg gacacactag ctccag 26 <210> 39 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-31 forward primer <400> 39 cctgcagaaa gacctcggaa attgcatgaa c 31 <210> 40 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> TSP-31 reverse primer <400> 40 ggcacacgat tccaaatgag ccca 24 <210> 41 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-33 forward primer <400> 41 gcagtaaggt actgcacgac tatgtttcaa gacactg 37 <210> 42 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-33 reverse primer <400> 42 taggtcactt gctgtactgt tgacacataa acgaactg 38 <210> 43 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-35 forward primer <400> 43 ttacaaactg catgatttgt gcaacgaggt agaag 35 <210> 44 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TSP-35 reverse primer <400> 44 gaacagccgg ggcacactat tccaaatg 28 <210> 45 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TSP-39 forward primer <400> 45 tagcctgtgt ctattgcaga cgaccac 27 <210> 46 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-39 reverse primer <400> 46 gttgcacacc acggacacac aaatcctagt g 31 <210> 47 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-45 forward primer <400> 47 tacaagacgt atctattgcc tgtgtatatt gcaaagc 37 <210> 48 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TSP-45 reverse primer <400> 48 acggacacac aaaggacaag gtgctc 26 <210> 49 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> TSP-51 forward primer <400> 49 caagagggaa agaccacgaa cgctgcatg 29 <210> 50 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TSP-51 reverse primer <400> 50 taacatctgc tgtacaacgc gaagggtgtc 30 <210> 51 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TSP-52 forward primer <400> 51 cggccatgtt tgaggatcca gcaacac 27 <210> 52 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-52 reverse primer <400> 52 caacagcatt tgctgtagag tacgaaggtc cgtc 34 <210> 53 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TSP-53 forward primer <400> 53 gcactgtgta caacacccag gacatcc 27 <210> 54 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TSP-53 reverse primer <400> 54 ctgcaccaac gactcacacc tacaacactg 30 <210> 55 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> TSP-56 forward primer <400> 55 ccacaattca acaatccaca ggaacgtcca cg 32 <210> 56 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TSP-56 reverse primer <400> 56 caggtcctct ttggtactct gaatgtccaa ctg 33 <210> 57 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-58 forward primer <400> 57 gatttgtgtc aggcgttgga gacatctgtg catg 34 <210> 58 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TSP-58 reverse primer <400> 58 gtgcacagct agggcacaca atggtacatg 30 <210> 59 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> TSP-59 forward primer <400> 59 atttgagcac aacattgaat attcctctgc atgatattcg c 41 <210> 60 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TSP-59 reverse primer <400> 60 cagctgctgt aaggctcgca atccgtc 27 <210> 61 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-66 forward primer <400> 61 ccatattcag caatacacag gaacgtccac gaagc 35 <210> 62 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> TSP-66 reverse primer <400> 62 cgtagctcct ctttggtact ctgaatgtcc aactgc 36 <210> 63 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-67 forward primer <400> 63 cagacgaaaa accacgcaac ctgcacgaat tgtg 34 <210> 64 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> TSP-67 reverse primer <400> 64 ctattcctag tgtgttcata agcatctgct ggattgttcg g 41 <210> 65 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-68 forward primer <400> 65 cattggacac cacattgcat gacgttacaa tagactg 37 <210> 66 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-68 reverse primer <400> 66 gtccataaac agcagttcta cgttccgcag g 31 <210> 67 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-70 forward primer <400> 67 tagactgtgt ctattgtaaa acacagctac agcaaac 37 <210> 68 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-70 reverse primer <400> 68 gatgcacacc agggacacac aaatgacagt g 31 <210> 69 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-73 forward primer <400> 69 gtttcccaat tcagaagaac gaccatacaa gctac 35 <210> 70 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-73 reverse primer <400> 70 ggcacacaat acctagtgta cccataagca actc 34 <210> 71 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-6 forward primer <400> 71 ggcattatgg aaagtgcaaa tgcctccacg tctgcaac 38 <210> 72 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> TSP-6 reverse primer <400> 72 ggtcttcggt gcgcagatgg gacacactat gtttag 36 <210> 73 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-11 forward primer <400> 73 gcagacgagg cattatggaa agtaaagatg cctccacg 38 <210> 74 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> TSP-11 reverse primer <400> 74 gtgtgcccag caaaaggtct tgtagttgtc tgatgtctc 39 <210> 75 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TSP-34 forward primer <400> 75 caatcctgag gaacggccat acaagctacc agc 33 <210> 76 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-34 reverse primer <400> 76 cacccataag caggtcttct aacactaata ggtcagcg 38 <210> 77 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> TSP-40 forward primer <400> 77 ccaggaccct gtatgaactg tgtgaccagt gc 32 <210> 78 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> TSP-40 reverse primer <400> 78 cactctgtag ctgcacagtt ggggcacact atatgtaatg tg 42 <210> 79 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TSP-43 forward primer <400> 79 gactgcacgt agctgctccc aaaacg 26 <210> 80 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TSP-43 reverse primer <400> 80 cccaacagca ggtcttctag cttcttgatg 30 <210> 81 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-44 forward primer <400> 81 gcaagcgggg cataatggaa agtgcaaatg c 31 <210> 82 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-44 reverse primer <400> 82 cacacaggac acaatatatc cagtgaaccc agcag 35 <210> 83 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-54 forward primer <400> 83 ccgaaaccgg tacatataaa agcggttgta gaaaacag 38 <210> 84 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-54 reverse primer <400> 84 gtcgtgaagc acaggtggga cacactattt gcagtgc 37 <210> 85 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-55 forward primer <400> 85 gcaagcgggg cataatggaa agtgcaaatg c 31 <210> 86 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> TSP-55 reverse primer <400> 86 caggacacag tatttccagt gaacccagca gaagcgtatg 40 <210> 87 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> TSP-61 forward primer <400> 87 cgtagggtca gcaaagcaca ctcatctatg ggaccg 36 <210> 88 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-61 reverse primer <400> 88 cagccaggac acactatgga caagtcgccc agcag 35 <210> 89 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 89 cccacaagta tcactaagct cgctttcttg ctgtcc 36 <210> 90 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 90 gtccataaac agcagttcta cgttccgcag g 31 <110> daiogene <120> DNA chip for determining genomic types of human papillomavirus, kit comprising the same and determinig method of genomic types of human papillomavirus using the same <160> 90 <170> KopatentIn 2.0 <210> 1 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> HPV-16 probe <400> 1 atcatgcatg gagatacacc tacattgcat g 31 <210> 2 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-18 probe <400> 2 caacattgca agacattgta ttgcatttag ag 32 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-26 probe <400> 3 cagtggaaag ggttgtgtac aaattgttgg 30 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-30 probe <400> 4 cgtccactga gacagcagta taatcatgc 29 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-31 probe <400> 5 ctgacctcca ctgttatgag caattaccc 29 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-33 probe <400> 6 acgtagagaa actgcactgt gacgtgtaaa 30 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> HPV-35 probe <400> 7 tgtattacat gtcaaaaacc gctgtgtcca gtt 33 <210> 8 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-39 probe <400> 8 aagagaaacc caagtataac atcagatatg cg 32 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-45 probe <400> 9 tgcatttgga acctcagaat gaattagatc ct 32 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-51 probe <400> 10 atgtaccaca attaaaagat gtagtattgc at 32 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> HPV-52 probe <400> 11 accccgacct gtgacccaag tgtaac 26 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> HPV-53 probe <400> 12 cacttccaca atatattata gaacttatac ca 32 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-56 probe <400> 13 ctgcaagacg ttgtattaga actaacacct 30 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> HPV-58 probe <400> 14 ccatgagagg aaacaaccca acgctaag 28 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-59 probe <400> 15 aacaatgcat ggaccaaaag caacactttg 30 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> HPV-66 probe <400> 16 taccaacgtt gcaagaggtt atattagaac ttg 33 <210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> HPV-67 probe <400> 17 agtgtgttgg agacctcaac gaacg 25 <210> 18 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> HPV-68 probe <400> 18 tgcaatgaaa tagagccggt cgaccttg 28 <210> 19 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> HPV-70 probe <400> 19 cggtcgacct tgtatgtcac gagcaattag a 31 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-73 probe <400> 20 aggcgatata gacaatcagt atatggcact 30 <210> 21 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-6 probe <400> 21 aggtaaaaca tatactaacc aaggcgcgg 29 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-11 probe <400> 22 ttacctgtgt cacaagccgt tgtgtgaaa 29 <210> 23 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> HPV-34 probe <400> 23 tagaagatat aaccaatcag tgtatggacg g 31 <210> 24 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> HPV-40 probe <400> 24 ctgcaccctg aacctgtatg tctaaact 28 <210> 25 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> HPV-43 probe <400> 25 catggaaaaa agccgacgat cagagactat g 31 <210> 26 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-44 probe <400> 26 gaaacaaata agtcaattct ggacgtgctg 30 <210> 27 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> HPV-54 probe <400> 27 acacaggcat aagggtactg caggaactg 29 <210> 28 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-55 probe <400> 28 cgttcggctg gttgtgcagt gcacaggaac 30 <210> 29 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> HPV-61 probe <400> 29 aaccataaag gacatagtcc ttgaagagcg 30 <210> 30 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> GAPDH probe <400> 30 ctattaaagg ttcctttgtt ccctaagtcc aact 34 <210> 31 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> TSP-16 forward primer <400> 31 gagcgaccca gaaagttacc acagttatgc acagag 36 <210> 32 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TSP-16 reverse primer <400> 32 gcacacaatt cctagtgtgc ccattaacag gtc 33 <210> 33 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-18 forward primer <400> 33 gaggatccaa cacggcgacc ctacaagcta c 31 <210> 34 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TSP-18 reverse primer <400> 34 tgctgagctt tctactacta gctcaattct ggc 33 <210> 35 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-26 forward primer <400> 35 gagctatgtg aaagcttgaa tactactttg c 31 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> TSP-26 reverse primer <400> 36 gtgcagcaca ctgatggcac acc 23 <210> 37 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-30 forward primer <400> 37 caccatcttt gtgaggtaca agaaacatcg ttgc 34 <210> 38 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TSP-30 reverse primer <400> 38 gcacacaggg gacacactag ctccag 26 <210> 39 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-31 forward primer <400> 39 cctgcagaaa gacctcggaa attgcatgaa c 31 <210> 40 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> TSP-31 reverse primer <400> 40 ggcacacgat tccaaatgag ccca 24 <210> 41 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-33 forward primer <400> 41 gcagtaaggt actgcacgac tatgtttcaa gacactg 37 <210> 42 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-33 reverse primer <400> 42 taggtcactt gctgtactgt tgacacataa acgaactg 38 <210> 43 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-35 forward primer <400> 43 ttacaaactg catgatttgt gcaacgaggt agaag 35 <210> 44 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> TSP-35 reverse primer <400> 44 gaacagccgg ggcacactat tccaaatg 28 <210> 45 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TSP-39 forward primer <400> 45 tagcctgtgt ctattgcaga cgaccac 27 <210> 46 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-39 reverse primer <400> 46 gttgcacacc acggacacac aaatcctagt g 31 <210> 47 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-45 forward primer <400> 47 tacaagacgt atctattgcc tgtgtatatt gcaaagc 37 <210> 48 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TSP-45 reverse primer <400> 48 acggacacac aaaggacaag gtgctc 26 <210> 49 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> TSP-51 forward primer <400> 49 caagagggaa agaccacgaa cgctgcatg 29 <210> 50 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TSP-51 reverse primer <400> 50 taacatctgc tgtacaacgc gaagggtgtc 30 <210> 51 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TSP-52 forward primer <400> 51 cggccatgtt tgaggatcca gcaacac 27 <210> 52 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-52 reverse primer <400> 52 caacagcatt tgctgtagag tacgaaggtc cgtc 34 <210> 53 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TSP-53 forward primer <400> 53 gcactgtgta caacacccag gacatcc 27 <210> 54 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TSP-53 reverse primer <400> 54 ctgcaccaac gactcacacc tacaacactg 30 <210> 55 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> TSP-56 forward primer <400> 55 ccacaattca acaatccaca ggaacgtcca cg 32 <210> 56 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TSP-56 reverse primer <400> 56 caggtcctct ttggtactct gaatgtccaa ctg 33 <210> 57 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-58 forward primer <400> 57 gatttgtgtc aggcgttgga gacatctgtg catg 34 <210> 58 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TSP-58 reverse primer <400> 58 gtgcacagct agggcacaca atggtacatg 30 <210> 59 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> TSP-59 forward primer <400> 59 atttgagcac aacattgaat attcctctgc atgatattcg c 41 <210> 60 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> TSP-59 reverse primer <400> 60 cagctgctgt aaggctcgca atccgtc 27 <210> 61 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-66 forward primer <400> 61 ccatattcag caatacacag gaacgtccac gaagc 35 <210> 62 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> TSP-66 reverse primer <400> 62 cgtagctcct ctttggtact ctgaatgtcc aactgc 36 <210> 63 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-67 forward primer <400> 63 cagacgaaaa accacgcaac ctgcacgaat tgtg 34 <210> 64 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> TSP-67 reverse primer <400> 64 ctattcctag tgtgttcata agcatctgct ggattgttcg g 41 <210> 65 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-68 forward primer <400> 65 cattggacac cacattgcat gacgttacaa tagactg 37 <210> 66 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-68 reverse primer <400> 66 gtccataaac agcagttcta cgttccgcag g 31 <210> 67 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-70 forward primer <400> 67 tagactgtgt ctattgtaaa acacagctac agcaaac 37 <210> 68 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-70 reverse primer <400> 68 gatgcacacc agggacacac aaatgacagt g 31 <210> 69 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-73 forward primer <400> 69 gtttcccaat tcagaagaac gaccatacaa gctac 35 <210> 70 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> TSP-73 reverse primer <400> 70 ggcacacaat acctagtgta cccataagca actc 34 <210> 71 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-6 forward primer <400> 71 ggcattatgg aaagtgcaaa tgcctccacg tctgcaac 38 <210> 72 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> TSP-6 reverse primer <400> 72 ggtcttcggt gcgcagatgg gacacactat gtttag 36 <210> 73 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-11 forward primer <400> 73 gcagacgagg cattatggaa agtaaagatg cctccacg 38 <210> 74 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> TSP-11 reverse primer <400> 74 gtgtgcccag caaaaggtct tgtagttgtc tgatgtctc 39 <210> 75 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> TSP-34 forward primer <400> 75 caatcctgag gaacggccat acaagctacc agc 33 <210> 76 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-34 reverse primer <400> 76 cacccataag caggtcttct aacactaata ggtcagcg 38 <210> 77 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> TSP-40 forward primer <400> 77 ccaggaccct gtatgaactg tgtgaccagt gc 32 <210> 78 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> TSP-40 reverse primer <400> 78 cactctgtag ctgcacagtt ggggcacact atatgtaatg tg 42 <210> 79 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TSP-43 forward primer <400> 79 gactgcacgt agctgctccc aaaacg 26 <210> 80 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> TSP-43 reverse primer <400> 80 cccaacagca ggtcttctag cttcttgatg 30 <210> 81 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-44 forward primer <400> 81 gcaagcgggg cataatggaa agtgcaaatg c 31 <210> 82 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-44 reverse primer <400> 82 cacacaggac acaatatatc cagtgaaccc agcag 35 <210> 83 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> TSP-54 forward primer <400> 83 ccgaaaccgg tacatataaa agcggttgta gaaaacag 38 <210> 84 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> TSP-54 reverse primer <400> 84 gtcgtgaagc acaggtggga cacactattt gcagtgc 37 <210> 85 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> TSP-55 forward primer <400> 85 gcaagcgggg cataatggaa agtgcaaatg c 31 <210> 86 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> TSP-55 reverse primer <400> 86 caggacacag tatttccagt gaacccagca gaagcgtatg 40 <210> 87 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> TSP-61 forward primer <400> 87 cgtagggtca gcaaagcaca ctcatctatg ggaccg 36 <210> 88 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TSP-61 reverse primer <400> 88 cagccaggac acactatgga caagtcgccc agcag 35 <210> 89 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 89 cccacaagta tcactaagct cgctttcttg ctgtcc 36 <210> 90 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 90 gtccataaac agcagttcta cgttccgcag g 31

Claims (6)

서열번호 31 내지 서열번호 88의 염기서열로 이루어지고, 상기 염기서열 중에서 서열번호 31 및 서열번호 32는 HPV(human papilloma virus)-16, 서열번호 33 및 서열번호 34는 HPV-18, 서열번호 35 및 서열번호 36은 HPV-26, 서열번호 37 및 서열번호 38은 HPV-30, 서열번호 39 및 서열번호 40은 HPV-31, 서열번호 41 및 서열번호 42는 HPV-33, 서열번호 43 및 서열번호 44는 HPV-35, 서열번호 45 및 서열번호 46은 HPV-39, 서열번호 47 및 서열번호 48은 HPV-45, 서열번호 49 및 서열번호 50은 HPV-51, 서열번호 51 및 서열번호 52는 HPV-52, 서열번호 53 및 서열번호 54는 HPV-53, 서열번호 55 및 서열번호 56은 HPV-56, 서열번호 57 및 서열번호 58은 HPV-58, 서열번호 59 및 서열번호 60은 HPV-59, 서열번호 61 및 서열번호 62는 HPV-66, 서열번호 63 및 서열번호 64는 HPV-67, 서열번호 65 및 서열번호 66은 HPV-68, 서열번호 67 및 서열번호 68은 HPV-70, 서열번호 69 및 서열번호 70은 HPV-73, 서열번호 71 및 서열번호 72는 HPV-6, 서열번호 73 및 서열번호 74는 HPV-11, 서열번호 75 및 서열번호 76은 HPV-34, 서열번호 77 및 서열번호 78은 HPV-40, 서열번호 79 및 서열번호 80은 HPV-43, 서열번호 81 및 서열번호 82는 HPV-44, 서열번호 83 및 서열번호 84는 HPV-54, 서열번호 85 및 서열번호 86은 HPV-55 및 서열번호 87 및 서열번호 88은 HPV-61의 E6 및 E7 유전자를 특이적으로 증폭하는 것을 특징으로 하는 HPV의 E6 및 E7 유전자 증폭용 프라이머 세트를 이용하여 검체의 타겟 유전자를 다중(multiflex) PCR 방법에 의해 증폭하는 것을 특징으로 하는 HPV 유형별 E6 및 E7 유전자의 증폭 방법..
SEQ ID NO: 31 to SEQ ID NO: 88, SEQ ID NO: 31 and SEQ ID NO: 32 are HPV-16, SEQ ID NO: 33 and SEQ ID NO: 34 are HPV-18, SEQ ID NO: 39 and SEQ ID NO: 40 are HPV-31, SEQ ID NO: 41 and SEQ ID NO: 42 are HPV-33, SEQ ID NO: 43, SEQ ID NO: 36 and SEQ ID NO: SEQ ID NO: 49 and SEQ ID NO: 50 are HPV-51, SEQ ID NO: 51 and SEQ ID NO: 51, SEQ ID NO: 56, SEQ ID NO: 57 and SEQ ID NO: 58 are HPV-58, SEQ ID NO: 59 and SEQ ID NO: 60 are HPV-52, SEQ ID NO: 53 and SEQ ID NO: 54 are HPV-53, SEQ ID NO: 55 and SEQ ID NO: 56 are HPV- 59, SEQ ID NO: 61 and SEQ ID NO: 62 are HPV-66, SEQ ID NO: 63 and SEQ ID NO: 64 are HPV-67, SEQ ID NO: 65 and SEQ ID NO: 66 are HPV-68, SEQ ID NO: 72, SEQ ID NO: 73 and SEQ ID NO: 74 correspond to HPV-11, SEQ ID NO: 75 and SEQ ID NO: 75, SEQ ID NO: SEQ ID NO: 77 and SEQ ID NO: 78 are HPV-40, SEQ ID NO: 79 and SEQ ID NO: 80 are HPV-43, SEQ ID NO: 81 and SEQ ID NO: 82 are HPV-44, SEQ ID NO: 54, SEQ ID NO: 85 and SEQ ID NO: 86 specifically amplify the E6 and E7 genes of HPV-61 and HPV-55 and SEQ ID NO: 87 and SEQ ID NO: 88, respectively. Amplification of E6 and E7 genes by HPV type, characterized in that the target gene of the test sample is amplified by a multiflex PCR method.
삭제delete 삭제delete 제 1항에 있어서,
상기 HPV 유형별 E6 및 E7 유전자를 삽입한 플라스미드 벡터들을 양성 대조군 클론으로 이용하여 증폭하는 방법을 더 포함하는 것을 특징으로 하는 HPV 유형별 E6 및 E7 유전자의 증폭 방법.
The method according to claim 1,
And amplifying the E6 and E7 genes by HPV type using the plasmid vectors inserted with the HPV type E6 and E7 genes as a positive control clone.
삭제delete 제 1항에 있어서,
상기 검체는 자궁경부 또는 질의 스왑; 자궁경부의 조직; 남성 성기의 조직; 소변; 항문, 직장, 인두, 구강 또는 두경부의 스왑으로 이루어진 군에서 선택되는 것을 특징으로 하는 HPV 유형별 E6 및 E7 유전자의 증폭 방법.
The method according to claim 1,
The sample may be a cervix or vaginal swab; Tissue of the cervix; Tissue of male penis; Pee; Aneurysm, rectum, rectum, pharynx, oral or head and neck swabs.
KR1020140002766A 2014-01-09 2014-01-09 Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same KR101459074B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140002766A KR101459074B1 (en) 2014-01-09 2014-01-09 Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140002766A KR101459074B1 (en) 2014-01-09 2014-01-09 Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120093685A Division KR101462643B1 (en) 2012-08-27 2012-08-27 Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same

Publications (2)

Publication Number Publication Date
KR20140029500A KR20140029500A (en) 2014-03-10
KR101459074B1 true KR101459074B1 (en) 2014-11-12

Family

ID=50642415

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140002766A KR101459074B1 (en) 2014-01-09 2014-01-09 Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same

Country Status (1)

Country Link
KR (1) KR101459074B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030027178A (en) * 2001-09-14 2003-04-07 주식회사 바이오메드랩 Genotyping kit for diagnosis of human papilloma virus infection
KR20060029836A (en) * 2004-10-04 2006-04-07 굿젠 주식회사 Probe of human papillomavirus, oligonucleotide microarray and genotyping kit comprising the same, and genotyping method for human papillomavirus using the same
KR20090005698A (en) * 2007-07-10 2009-01-14 의료법인제일의료재단 Method and kit for detecting human papillomavirus quantitatively and qualitatively using real-time pcr and hpv dna chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030027178A (en) * 2001-09-14 2003-04-07 주식회사 바이오메드랩 Genotyping kit for diagnosis of human papilloma virus infection
KR20060029836A (en) * 2004-10-04 2006-04-07 굿젠 주식회사 Probe of human papillomavirus, oligonucleotide microarray and genotyping kit comprising the same, and genotyping method for human papillomavirus using the same
KR20090005698A (en) * 2007-07-10 2009-01-14 의료법인제일의료재단 Method and kit for detecting human papillomavirus quantitatively and qualitatively using real-time pcr and hpv dna chip

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Human papillomavirus type 16 strain ZG01-258, complete genome, GenBank Accession No. JN565303.1, 2012.07.28. *
Human papillomavirus type 16 strain ZG01-258, complete genome, GenBank Accession No. JN565303.1, 2012.07.28.*

Also Published As

Publication number Publication date
KR20140029500A (en) 2014-03-10

Similar Documents

Publication Publication Date Title
JP4977612B2 (en) Human papillomavirus probe and DNA chip using the same
US7393633B1 (en) Genotyping kit for diagnosis of human papillomavirus infection
KR101239387B1 (en) Dna chip for genotyping of human papilloma virus, kit comprising the same, and method for genotyping hpv
JP5204132B2 (en) Method for detecting human papillomavirus mRNA
US7670774B2 (en) Probe of human papillomavirus and DNA chip comprising the same
CN105087827B (en) Detection primer, probe and the kit of 16 kinds of type HPV viruses
JPH06502298A (en) Diagnostic method for human papillomavirus type 16 using polymerase chain reaction
JP2005503177A (en) Genotyping kit for diagnosing human papillomavirus infection
KR101886278B1 (en) Composition for determinating genomic types of human papillomavirus
KR101402204B1 (en) A method for detecting oncogenic types of human papilloma virus using liquid beads array and multiplex pcr
KR100914911B1 (en) Method and kit for detecting human papillomavirus quantitatively and qualitatively using real-time pcr and hpv dna chip
CN106048081A (en) HPV (human papilloma virus) typing detection primers as well as detection method and application thereof
KR101462643B1 (en) Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same
KR101761701B1 (en) HPV Specific Probe and DNA Chip for Detecting Genetic Type of HPV Containing Thereof
Lee et al. Comparison of human papillomavirus detection and typing by hybrid capture 2, linear array, DNA chip, and cycle sequencing in cervical swab samples
PT1694870E (en) Primers and probes for detecting genital hpv genotypes
KR101459074B1 (en) Dna chip for determining genomic types of human papillomavirus, kit comprising the same and determining method of genomic types of human papillomavirus using the same
KR101413702B1 (en) Method for genotyping oncogenic types of human papillomavirus by nmrt-pcr
KR100645253B1 (en) .Type-Specific Oligonucleotide Primers and Methods for Determining of Human Papillomavirus Genotypes by PCR
Josefsson et al. Human papillomavirus detection by PCR and typing by dot-blot
KR100988755B1 (en) Method of detection for HPV L1 gene using nested PCR assay
Kardani et al. Diagnosis of HPV Infections, HPV Testing in Patients
KR100564215B1 (en) Novel PCR General Primers and Method for Detecting Diverse Types of Human Papillomavirus by PCR in Genital
KR100584700B1 (en) Novel Type-Specific Primers and Method for Detecting and Typing of Human Papillomavirus Genotypes by Multiplex-PCR
CN109182606A (en) A kind of human papilloma virus nucleic acid parting detecting reagent and preparation method thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20171025

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181031

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191104

Year of fee payment: 6