KR101446400B1 - 릴레이용 다운링크 백홀 제어 채널 설계 - Google Patents
릴레이용 다운링크 백홀 제어 채널 설계 Download PDFInfo
- Publication number
- KR101446400B1 KR101446400B1 KR1020127006418A KR20127006418A KR101446400B1 KR 101446400 B1 KR101446400 B1 KR 101446400B1 KR 1020127006418 A KR1020127006418 A KR 1020127006418A KR 20127006418 A KR20127006418 A KR 20127006418A KR 101446400 B1 KR101446400 B1 KR 101446400B1
- Authority
- KR
- South Korea
- Prior art keywords
- pdcch
- subframe
- relay
- resource
- ofdm
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
- H04W68/02—Arrangements for increasing efficiency of notification or paging channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
백홀 제어 채널에 대한 호환성 맵핑, 릴레이 물리적 제어 포맷 표시자 채널(R-PDFICH)을 회피하기 위한 제어 채널 요소(CCE)의 주파수 우선 맵핑, 및 리소스 할당 맵 비트를 최소화하기 위한 트리 기반 릴레이 리소스 할당을 제공하는 방법 및 장치가 개시된다. Un 다운링크(DL) 제어 신호, Un DL 긍정응답(ACK)/부정응답(NACK), 및/또는 eNB의 릴레이 물리적 다운링크 제어 채널(R-PDCCH)(또는 유사한 것)을 RN(Un 인터페이스) DL 방향으로 맵핑하기 위한 방법 및 장치(예를 들면, 릴레이 노드(RN)가 위임한 노드-B(eNB))가 개시된다. 이것은 RN 셀 내의 멀티미디어 방송 멀티캐스트 서비스(MBSFN) 단일 주파수 네트워크(MBSFN)-예약 서브프레임의 리소스 블록(RB)에 전술한 제어 신호를 시간/주파수 맵핑하는 것 및 이를 위한 인코딩 절차를 포함한다. 또한, R-PCFICH를 회피하고 리소스 할당을 위해 필요한 비트를 최소화함으로써 시그널링 오버헤드를 최적화하는 방법 및 장치가 개시된다.
Description
관련 출원에 대한 교차 참조
이 출원은 2009년 10월 29일자로 출원한 미국 가특허 출원 제61/256,159호 및 2009년 8월 14일자로 출원한 미국 가특허 출원 제61/234,124호를 우선권 주장하며, 상기 가출원들의 내용은 인용에 의해 여기에 통합된 것으로 한다.
중계(relaying)는 커버리지(coverage) 및 용량을 향상시키기 위한 기술로서 사용되고(예를 들면, 롱텀 에볼루션 어드밴스드(LTE-A) 시스템 정보(SI)), 더 융통성있는 전개 옵션을 제공한다. 중계는 또한 다른 기술과 함께 사용될 수 있다. 예를 들면, 유형 I 릴레이는 LTE-A의 기술 성분 중의 하나로서 포함될 수 있다. 유형 I 릴레이는 도너(donor) e노드B(eNB)로부터 구분가능하고 분리된 새로운 셀을 생성한다. 임의의 레가시 릴리즈 8(R8) 무선 송신/수신 유닛(WTRU)에 대하여, 유형 I 릴레이는 eNB로서 나타날 수 있다(즉, 도너 eNB에 대한 그 통신 경로에 유형 I 릴레이가 존재하는 것은 WTRU에게 명백하다). 유형 I 릴레이 노드(RN)는 국제 이동통신(IMT) 스펙트럼 할당 내에서 LTE 또는 LTE-A 무선 인터페이스를 이용함으로써 도너 eNB에게 되돌아가는 무선 인밴드(in-band) 백홀 링크를 가진 eNB로서 설명될 수 있다.
백홀 제어 채널에 대한 호환성 맵핑, 제어 채널 요소(control channel element; CCE)의 주파수 우선 맵핑(frequency first mapping) 및 트리 기반 릴레이 리소스 할당을 제공하는 방법 및 장치가 개시된다. 기지국(예를 들면, eNB)과 릴레이 노드(예를 들면, 유형 I 릴레이 노드) 사이에서 Un 다운링크(downlink; DL) 제어 신호와 같은 제어 신호를 맵핑하는 방법 및 장치가 개시된다. 이것은 RN 셀에서 MBSFN-예약(reserved) 서브프레임의 RB에 제어 신호를 시간-주파수 맵핑하는 것 및 인코딩 절차를 포함한다.
백홀 제어 채널에 대한 호환성 맵핑, 릴레이 물리적 제어 포맷 표시자 채널(R-PDFICH)을 회피하기 위한 제어 채널 요소(CCE)의 주파수 우선 맵핑, 및 리소스 할당 맵 비트를 최소화하기 위한 트리 기반 릴레이 리소스 할당을 위한 방법 및 장치가 제공될 수 있다.
본 발명의 더 상세한 이해는 첨부도면과 함께 예로서 주어지는 이하의 설명으로부터 얻을 수 있다.
도 1a는 하나 이상의 개시된 실시예를 구현할 수 있는 예시적인 통신 시스템의 계통도이다.
도 1b는 도 1a에 도시된 통신 시스템내에서 사용될 수 있는 예시적인 무선 송신/수신 유닛(WTRU)의 계통도이다.
도 1c는 도 1a에 도시된 통신 시스템내에서 사용될 수 있는 예시적인 무선 액세스 네트워크 및 예시적인 코어 네트워크의 계통도이다.
도 2는 본 발명의 방법이 구현될 수 있는 릴레이의 듀플렉싱을 보인 도이다.
도 3은 백홀 제어 채널 맵핑의 예를 보인 도이다.
도 4는 R-PCFICH를 사용하지 않을 때 OFDM 심볼을 통한 R-PHICH 및 R-PDCCH의 비제한적인 예시적 맵핑을 보인 도이다.
도 5는 R-PCFICH를 사용할 때 OFDM 심볼을 통한 R-PHICH 및 R-PDCCH의 비제한적인 예시적 맵핑을 보인 도이다.
도 6a는 eNB에 의해 R-PDCCH의 맵핑을 구현하는 비제한적인 예시적 방법을 보인 도이다.
도 6b는 OFDM 심볼로의 R-PDCCH의 비제한적인 예시적 맵핑을 보인 도이다.
도 6c는 릴레이에 의해 R-PDCCH의 디코딩을 구현하는 비제한적인 예시적 방법을 보인 도이다.
도 7a는 eNB에 의해 R-PDCCH의 맵핑을 구현하는 비제한적인 예시적 방법을 보인 도이다.
도 7b는 OFDM 심볼로의 R-PDCCH의 비제한적인 예시적 맵핑을 보인 도이다.
도 7c는 릴레이에 의해 R-PDCCH의 디코딩을 구현하는 비제한적인 예시적 방법을 보인 도이다.
도 8은 리소스 할당을 위한 감소된 비트맵을 보인 도이다.
도 1a는 하나 이상의 개시된 실시예를 구현할 수 있는 예시적인 통신 시스템의 계통도이다.
도 1b는 도 1a에 도시된 통신 시스템내에서 사용될 수 있는 예시적인 무선 송신/수신 유닛(WTRU)의 계통도이다.
도 1c는 도 1a에 도시된 통신 시스템내에서 사용될 수 있는 예시적인 무선 액세스 네트워크 및 예시적인 코어 네트워크의 계통도이다.
도 2는 본 발명의 방법이 구현될 수 있는 릴레이의 듀플렉싱을 보인 도이다.
도 3은 백홀 제어 채널 맵핑의 예를 보인 도이다.
도 4는 R-PCFICH를 사용하지 않을 때 OFDM 심볼을 통한 R-PHICH 및 R-PDCCH의 비제한적인 예시적 맵핑을 보인 도이다.
도 5는 R-PCFICH를 사용할 때 OFDM 심볼을 통한 R-PHICH 및 R-PDCCH의 비제한적인 예시적 맵핑을 보인 도이다.
도 6a는 eNB에 의해 R-PDCCH의 맵핑을 구현하는 비제한적인 예시적 방법을 보인 도이다.
도 6b는 OFDM 심볼로의 R-PDCCH의 비제한적인 예시적 맵핑을 보인 도이다.
도 6c는 릴레이에 의해 R-PDCCH의 디코딩을 구현하는 비제한적인 예시적 방법을 보인 도이다.
도 7a는 eNB에 의해 R-PDCCH의 맵핑을 구현하는 비제한적인 예시적 방법을 보인 도이다.
도 7b는 OFDM 심볼로의 R-PDCCH의 비제한적인 예시적 맵핑을 보인 도이다.
도 7c는 릴레이에 의해 R-PDCCH의 디코딩을 구현하는 비제한적인 예시적 방법을 보인 도이다.
도 8은 리소스 할당을 위한 감소된 비트맵을 보인 도이다.
도 1a는 하나 이상의 개시된 실시예를 구현할 수 있는 예시적인 통신 시스템(100)을 보인 도이다. 통신 시스템(100)은 복수의 무선 사용자에게 음성, 데이터, 영상, 메시지, 방송 등과 같은 컨텐츠를 제공하는 다중 접속 시스템일 수 있다. 통신 시스템(100)은 복수의 무선 사용자가 무선 대역폭을 포함한 시스템 리소스의 공유를 통해 상기와 같은 컨텐츠에 액세스하게 할 수 있다. 예를 들면, 통신 시스템(100)은 코드 분할 다중 접속(CDMA), 시분할 다중 접속(TDMA), 주파수 분할 다중 접속(FDMA), 직교 FDMA(OFDMA), 단일 캐리어 FDMA(SC-FDMA) 등과 같은 하나 이상의 채널 접속 방법을 사용할 수 있다.
도 1a에 도시된 바와 같이, 통신 시스템(100)은 무선 송신/수신 유닛(WTRU)(102a, 102b, 102c, 102d), 무선 접속 네트워크(RAN)(104), 코어 네트워크(106), 공중 전화망(PSTN)(108), 인터넷(110) 및 기타의 네트워크(112)를 포함하고 있지만, 본 발명의 개시된 실시예는 임의 수의 WTRU, 기지국, 네트워크 및/또는 네트워크 요소를 포함할 수 있다. 각각의 WTRU(102a, 102b, 102c, 102d)는 무선 환경에서 동작 및/또는 통신하도록 구성된 임의 유형의 장치일 수 있다. 예로서, WTRU(102a, 102b, 102c, 102d)는 무선 신호를 전송 및/또는 수신하도록 구성되고, 사용자 장비(UE), 이동국, 고정식 또는 이동식 가입자 유닛, 페이저, 셀룰러 전화기, 개인용 정보 단말기(PDA), 스마트폰, 랩톱, 넷북, 퍼스널 컴퓨터, 무선 센서, 가전 제품 등을 포함할 수 있다.
통신 시스템(100)은 기지국(114a) 및 기지국(114b)을 또한 포함할 수 있다. 각 기지국(114a, 114b)은 코어 네트워크(106), 인터넷(110) 및/또는 네트워크(112)와 같은 하나 이상의 통신 네트워크와의 접속을 돕도록 WTRU(102a, 102b, 102c, 102d) 중의 적어도 하나와 무선으로 인터페이스 하게끔 구성된 임의 유형의 장치일 수 있다. 예로서, 기지국(114a, 114b)은 기지국 송수신기(base transceiver station; BTS), 노드-B, e노드 B, 홈 노드 B, 홈 e노드 B, 사이트 제어기, 액세스 포인트(AP), 무선 라우터 등일 수 있다. 비록 기지국(114a, 114b)이 각각 단일 요소로서 도시되어 있지만, 기지국(114a, 114b)은 임의 수의 상호접속된 기지국 및/또는 네트워크 요소를 포함할 수 있다.
기지국(114a)은 RAN(104)의 일부일 수 있고, RAN(104)은 기지국 제어기(BSC), 무선 네트워크 제어기(RNC), 릴레이 노드 등과 같은 다른 기지국 및/또는 네트워크 요소(도시 생략됨)를 또한 포함할 수 있다. 기지국(114a 및/또는 114b)은 셀(도시 생략됨)이라고 부르는 특정의 지리적 영역 내에서 무선 신호를 송신 및/또는 수신하도록 구성된다. 셀은 셀 섹터로 더욱 분할될 수 있다. 예를 들면, 기지국(114a)과 관련된 셀은 3개의 섹터로 분할될 수 있다. 따라서, 일 실시예에서, 기지국(114a)은 셀의 각 섹터마다 하나씩 3개의 송수신기를 구비할 수 있다. 다른 실시예에서, 기지국(114a)은 다중 입력 다중 출력(MIMO) 기술을 이용할 수 있고, 따라서 셀의 각 섹터용으로 복수의 송수신기를 이용할 수 있다.
기지국(114a, 114b)은 임의의 적당한 무선 통신 링크(예를 들면, 무선 주파수(RF), 마이크로파, 적외선(IR), 자외선(UV), 가시광선 등)일 수 있는 무선 인터페이스(116)를 통하여 하나 이상의 WTRU(102a, 102b, 102c, 102d)와 통신할 수 있다. 무선 인터페이스(116)는 임의의 적당한 무선 액세스 기술(RAT)을 이용하여 확립될 수 있다.
더 구체적으로, 위에서 언급한 바와 같이, 통신 시스템(100)은 다중 접속 시스템일 수 있고, CDMA, TDMA, FDMA, OFDMA, SC-FDMA 등과 같은 하나 이상의 채널 접속 방식을 이용할 수 있다. 예를 들면 RAN(104)의 기지국(114a) 및 WTRU(102a, 102b, 102c)는 광대역 CDMA(WCDMA)를 이용하여 무선 인터페이스(116)를 확립할 수 있는 범용 이동통신 시스템(UMTS) 지상 무선 액세스(UTRA)와 같은 무선 기술을 구현할 수 있다. WCDMA는 고속 패킷 접속(HSPA) 및/또는 진화형 HSPA(HSPA+)와 같은 통신 프로토콜을 포함할 수 있다. HSPA는 고속 다운링크 패킷 접속(HSDPA) 및/또는 고속 업링크 패킷 접속(HSUPA)을 포함할 수 있다.
다른 실시예에 있어서, 기지국(114a)과 WTRU(102a, 102b, 102c)는 롱텀 에볼루션(LTE) 및/또는 LTE 어드밴스드(LTE-Advanced; LTE-A)를 이용하여 무선 인터페이스(116)를 확립할 수 있는 진화형 UMTS 지상 무선 액세스(E-UTRA)와 같은 무선 기술을 구현할 수 있다.
다른 실시예에 있어서, 기지국(114a)과 WTRU(102a, 102b, 102c)는 IEEE 802.16(즉, WiMAX(Worldwide Interoperability for Microwave Access)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, 임시(Interim) 표준 2000(IS-2000), 임시 표준 95(IS-95), 임시 표준 856(IS-856), 글로벌 이동통신 시스템(GSM), EDGE(Enhanced Data rates for GSM Evolution), GSM EDGE(GERAN) 등과 같은 무선 기술을 구현할 수 있다.
도 1a의 기지국(114b)은 예를 들면 무선 라우터, 홈 노드 B, 홈 e노드B, 또는 액세스 포인트일 수 있고, 사업장, 홈, 자동차, 캠퍼스 등과 같은 국소 지역에서 무선 접속을 가능하게 하는 임의의 적당한 RAT를 이용할 수 있다. 일 실시예에 있어서, 기지국(114b)과 WTRU(102c, 102d)는 IEEE 802.11과 같은 무선 기술을 구현하여 무선 근거리 통신망(WLAN)을 확립할 수 있다. 다른 실시예에 있어서, 기지국(114b)과 WTRU(102c, 102d)는 IEEE 802.15와 같은 무선 기술을 구현하여 무선 개인 통신망(WPAN)을 확립할 수 있다. 또다른 실시예에 있어서, 기지국(114b)과 WTRU(102c, 102d)는 셀룰러 기반 RAT(예를 들면, WCDMA, CDMA2000, GSM, LTE, LTE-A 등)를 이용하여 피코셀 또는 펨토셀을 확립할 수 있다. 도 1a에 도시된 바와 같이, 기지국(114b)은 인터넷(110)에 직접 접속될 수 있다. 이 경우, 기지국(114b)은 코어 네트워크(106)를 통해 인터넷(110)에 액세스할 필요가 없다.
RAN(104)은 코어 네트워크(106)와 통신하고, 코어 네트워크(106)는 하나 이상의 WTRU(102a, 102b, 102c, 102d)에 음성, 데이터, 애플리케이션 및/또는 인터넷 프로토콜을 통한 음성(VoIP) 서비스를 제공하도록 구성된 임의 유형의 네트워크일 수 있다. 예를 들면, 코어 네트워크(106)는 호출 제어, 빌링(billing) 서비스, 모바일 위치 기반 서비스, 선불 통화, 인터넷 접속, 영상 분배 등을 제공할 수 있고, 및/또는 사용자 인증과 같은 고급 보안 기능을 수행할 수 있다. 비록 도 1a에 도시되지 않았지만, RAN(104) 및/또는 코어 네트워크(106)는 RAN(104)과 동일한 RAT 또는 다른 RAT를 이용하는 다른 RAN과 직접 또는 간접 통신을 할 수 있다. 예를 들면, E-UTRA 무선 기술을 이용하는 RAN(104)에 접속되는 것에 더하여, 코어 네트워크(106)는 GSM 무선 기술을 이용하는 다른 RAN(도시 생략됨)과도 또한 통신할 수 있다.
코어 네트워크(106)는 WTRU(102a, 102b, 102c, 102d)가 PSTN(108), 인터넷(110) 및/또는 기타 네트워크(112)에 액세스하게 하는 게이트웨이로서 또한 기능할 수 있다. PSTN(108)은 재래식 전화 서비스(plain old telephone service; POTS)를 제공하는 회선 교환식 전화망을 포함할 수 있다. 인터넷(110)은 전송 제어 프로토콜(TCP)/인터넷 프로토콜(IP) 인터넷 프로토콜 스위트(suite)에서 전송 제어 프로토콜(TCP), 사용자 데이터그램 프로토콜(UDP) 및 인터넷 프로토콜(IP)과 같은 공통의 통신 프로토콜을 이용하는 상호접속된 컴퓨터 네트워크 및 장치의 글로벌 시스템을 포함할 수 있다. 네트워크(112)는 다른 서비스 공급자에 의해 소유 및/또는 운용되는 유선 또는 무선 통신 네트워크를 포함할 수 있다. 예를 들면, 네트워크(112)는 RAN(104)과 동일한 RAT 또는 다른 RAT를 이용할 수 있는 하나 이상의 RAN에 접속된 다른 코어 네트워크를 포함할 수 있다.
통신 시스템(100)의 WTRU(102a, 102b, 102c, 102d)의 일부 또는 전부는 다중 모드 능력을 구비할 수 있는데, 즉, WTRU(102a, 102b, 102c, 102d)는 상이한 무선 링크를 통하여 상이한 무선 네트워크와 통신하기 위한 복수의 송수신기를 포함할 수 있다. 예를 들면, 도 1a에 도시된 WTRU(102c)는 셀룰러 기반 무선 기술을 이용할 수 있는 기지국(114a) 및 IEEE 802 무선 기술을 이용할 수 있는 기지국(114b)과 통신하도록 구성될 수 있다.
도 1b는 예시적인 WTRU(102)의 계통도이다. 도 1b에 도시된 바와 같이, WTRU(102)는 프로세서(118), 송수신기(120), 송신/수신 엘리멘트(122), 스피커/마이크로폰(124), 키패드(126), 디스플레이/터치패드(128), 비분리형 메모리(130), 분리형 메모리(132), 전원(134), 글로벌 위치추적 시스템(GPS) 칩셋(136) 및 기타 주변장치(138)를 포함할 수 있다. WTRU(102)는 실시예의 일관성을 유지하면서 전술한 요소들의 임의의 부조합(sub-combination)을 포함할 수 있다는 것을 이해할 것이다.
프로세서(118)는 범용 프로세서, 특수 용도 프로세서, 전통적 프로세서, 디지털 신호 프로세서(DSP), 복수의 마이크로프로세서, DPS 코어와 연합하는 하나 이상의 마이크로프로세서, 컨트롤러, 마이크로컨트롤러, 용도 지정 집적회로(ASIC), 현장 프로그램가능 게이트 어레이(FPGA) 회로, 임의의 다른 유형의 집적회로(IC), 상태 머신 등일 수 있다. 프로세서(118)는 신호 부호화, 데이터 처리, 전력 제어, 입력/출력 처리, 및/또는 WTRU(102)가 무선 환경에서 동작하게 하는 임의의 다른 기능을 수행할 수 있다. 프로세서(118)는 송수신기(120)에 결합되고, 송수신기(120)는 송신/수신 엘리멘트(122)에 결합될 수 있다. 비록 도 1b에서는 프로세서(118)와 송수신기(120)가 별도의 컴포넌트로서 도시되어 있지만, 프로세서(118)와 송수신기(120)는 전자 패키지 또는 칩으로 함께 통합될 수 있음을 이해할 것이다.
송신/수신 엘리멘트(122)는 무선 인터페이스(116)를 통하여 기지국(예를 들면 기지국(114a))에 신호를 전송하고 기지국으로부터 신호를 수신하도록 구성된다. 예를 들면, 일 실시예에 있어서, 송신/수신 엘리멘트(122)는 RF 신호를 송신 및/또는 수신하도록 구성된 안테나일 수 있다. 다른 실시예에 있어서, 송신/수신 엘리멘트(122)는 예를 들면, IR, UV 또는 가시광 신호를 송신 및/또는 수신하도록 구성된 에미터/검지기일 수 있다. 또다른 실시예에 있어서, 송신/수신 엘리멘트(122)는 RF 신호와 광신호 둘 다를 송신 및 수신하도록 구성될 수 있다. 송신/수신 엘리멘트(122)는 임의의 무선 신호 조합을 송신 및/또는 수신하도록 구성될 수 있다는 것을 이해할 것이다.
또한, 비록 송신/수신 엘리멘트(122)가 도 1b에서 단일 엘리멘트로서 도시되어 있지만, WTRU(102)는 임의 수의 송신/수신 엘리멘트(122)를 포함할 수 있다. 더 구체적으로, WTRU(102)는 MIMO 기술을 사용할 수 있다. 따라서, 일 실시예에 있어서, WTRU(102)는 무선 인터페이스(116)를 통해 무선 신호를 송신 및 수신하기 위해 2개 이상의 송신/수신 엘리멘트(122)(예를 들면, 다중 안테나)를 포함할 수 있다.
송수신기(120)는 송신/수신 엘리멘트(122)에 의해 송신할 신호들을 변조하고 송신/수신 엘리멘트(122)에 의해 수신된 신호를 복조하도록 구성된다. 전술한 바와 같이, WTRU(102)는 다중 모드 능력을 구비할 수 있다. 따라서, 송수신기(120)는 WTRU(102)가 예를 들면 UTRA 및 IEEE 802.11과 같은 복수의 RAT를 통하여 통신하게 하는 복수의 송수신기를 포함할 수 있다.
WTRU(102)의 프로세서(118)는 스피커/마이크로폰(124), 키패드(126), 및/또는 디스플레이/터치패드(128)(예를 들면, 액정 디스플레이(LCD) 표시 장치 또는 유기 발광 다이오드(OLED) 표시 장치)에 결합되어 이들로부터 사용자 입력 데이터를 수신할 수 있다. 프로세서(118)는 또한 스피커/마이크로폰(124), 키패드(126), 및/또는 디스플레이/터치패드(128)에 사용자 데이터를 출력할 수 있다. 또한, 프로세서(118)는 비분리형 메모리(130) 및/또는 분리형 메모리(132)와 같은 임의 유형의 적당한 메모리로부터 정보를 액세스하고 적당한 메모리에 데이터를 저장할 수 있다. 비분리형 메모리(130)는 랜덤 액세스 메모리(RAM), 읽기 전용 메모리(ROM), 하드 디스크 또는 임의의 다른 유형의 메모리 기억장치를 포함할 수 있다. 분리형 메모리(132)는 가입자 식별 모듈(SIM) 카드, 메모리 스틱, 보안 디지털(SD) 메모리 카드 등을 포함할 수 있다. 다른 실시예에 있어서, 프로세서(118)는 서버 또는 홈 컴퓨터(도시 생략됨)와 같은 WTRU(102)에 물리적으로 위치되지 않은 메모리로부터 정보를 액세스하고 그러한 메모리에 데이터를 저장할 수 있다.
프로세서(118)는 전원(134)으로부터 전력을 수신하고, WTRU(102)의 각종 컴포넌트에 대하여 전력을 분배 및/또는 제어하도록 구성될 수 있다. 전원(134)은 WTRU(102)에 전력을 공급하는 임의의 적당한 장치일 수 있다. 예를 들면, 전원(134)은 하나 이상의 건전지 배터리(예를 들면, 니켈-카드뮴(NiCd), 니켈-아연(NiZn), 니켈 금속 하이드라이드(NiMH), 리튬-이온(Li-ion) 등), 태양 전지, 연료 전지 등을 포함할 수 있다.
프로세서(118)는 WTRU(102)의 현재 위치에 관한 위치 정보(예를 들면, 경도 및 위도)를 제공하도록 구성된 GPS 칩셋(136)에 또한 결합될 수 있다. GPS 칩셋(136)로부터의 정보에 추가해서 또는 그 대신으로, WTRU(102)는 기지국(예를 들면 기지국(114a, 114b))으로부터 무선 인터페이스(116)를 통해 위치 정보를 수신하고, 및/또는 2개 이상의 인근 기지국으로부터 수신되는 신호의 타이밍에 기초하여 그 위치를 결정할 수 있다. WTRU(102)는 실시예의 일관성을 유지하면서 임의의 적당한 위치 결정 방법에 의해 위치 정보를 획득할 수 있는 것으로 이해된다.
프로세서(118)는 추가의 특징, 기능 및/또는 유선 또는 무선 접속을 제공하는 하나 이상의 소프트웨어 및/또는 하드웨어 모듈을 포함한 기타 주변 장치(138)에 또한 결합될 수 있다. 예를 들면, 주변 장치(138)는 가속도계, e-콤파스, 위성 송수신기, 디지털 카메라(사진용 또는 영상용), 범용 직렬 버스(USB) 포트, 진동 장치, 텔레비전 송수신기, 핸즈프리 헤드셋, 블루투스® 모듈, 주파수 변조(FM) 무선 유닛, 디지털 뮤직 플레이어, 미디어 플레이어, 비디오 게임 플레이어 모듈, 인터넷 브라우저 등을 포함할 수 있다.
도 1c는 실시예에 따른 RAN(104) 및 코어 네트워크(106)의 계통도이다. 전술한 바와 같이, RAN(104)은 E-UTRA 무선 기술을 이용하여 무선 인터페이스(116)를 통해 WTRU(102a, 102b, 102c)와 통신할 수 있다. RAN(104)은 코어 네트워크(106)와 또한 통신할 수 있다.
RAN(104)이 e노드-B(140a, 140b, 140c)를 포함하고 있지만, RAN(104)은 실시예의 일관성을 유지하면서 임의 수의 e노드-B를 포함할 수 있음을 이해할 것이다. e노드-B(140a, 140b, 140c)는 무선 인터페이스(116)를 통하여 WTRU(102a, 102b, 102c)와 통신하는 하나 이상의 송수신기를 각각 포함할 수 있다. 일 실시예에 있어서, e노드-B(140a, 140b, 140c)는 MIMO 기술을 구현할 수 있다. 따라서, 예를 들면 e노드-B(140a)는 복수의 안테나를 사용하여 WTRU(102a)에 무선 신호를 전송하고 WTRU(102a)로부터 무선 신호를 수신할 수 있다.
각각의 e노드-B(140a, 140b, 140c)는 특정 셀(도시 생략됨)과 관련될 수 있고, 업링크 및/또는 다운링크에서 사용자의 스케줄링, 무선 리소스 관리 결정, 핸드오버 결정 등을 취급하도록 구성될 수 있다. 도 1c에 도시된 바와 같이, e노드-B(140a, 140b, 140c)는 X2 인터페이스를 통해 서로 통신할 수 있다.
도 1c에 도시된 코어 네트워크(106)는 이동도 관리 게이트웨이(MME)(142), 서빙 게이트웨이(144) 및 패킷 데이터 네트워크(PDN) 게이트웨이(146)를 포함할 수 있다. 전술한 요소들이 각각 코어 네트워크(106)의 일부로서 도시되어 있지만, 이 요소들 중 임의의 요소는 코어 네트워크 운용자가 아닌 다른 엔티티에 의해 소유 및/또는 운용될 수 있는 것으로 이해된다.
MME(142)는 S1 인터페이스를 통해 RAN(104) 내의 각각의 e노드-B(140a, 140b, 140c)에 접속될 수 있고, 제어 노드로서 기능할 수 있다. 예를 들면, MME(142)는 WTRU(102a, 102b, 102c)의 사용자를 인증하고, 베어러를 활성화/비활성화하고, WTRU(102a, 102b, 102c)의 초기 접속중에 특정의 서빙 게이트웨이를 선택하는 등의 임무를 수행한다. MME(142)는 또한 GSM 또는 WCDMA와 같은 다른 무선 기술을 이용하는 다른 RAN(도시 생략됨)과 RAN(104) 간의 스위칭을 위한 제어 평면 기능(control plane function)을 또한 제공할 수 있다.
서빙 게이트웨이(144)는 RAN(104) 내의 각각의 e노드-B(140a, 140b, 140c)에 S1 인터페이스를 통해 접속될 수 있다. 서빙 게이트웨이(144)는 일반적으로 WTRU(102a, 102b, 102c)로/로부터 사용자 데이터 패킷을 라우트 및 발송할 수 있다. 서빙 게이트웨이(144)는 또한 e노드-B간 핸드오버 중에 사용자 평면(user plane)을 고정(anchoring)하는 것, 다운링크 데이터가 WTRU(102a, 102b, 102c)에 이용할 수 있을 때 페이징을 트리거(trigger)하는 것, WTRU(102a, 102b, 102c)의 콘텍스트를 관리 및 저장하는 것 등의 다른 기능을 수행할 수 있다.
서빙 게이트웨이(144)는 PDN 게이트웨이(146)에 또한 접속될 수 있고, PDN 게이트웨이(146)는 WTRU(102a, 102b, 102c)와 IP-인에이블 장치 간의 통신을 돕도록 인터넷(110)과 같은 패킷 교환식 네트워크에 대한 액세스를 WTRU(102a, 102b, 102c)에 제공할 수 있다.
코어 네트워크(106)는 다른 네트워크와의 통신을 가능하게 한다. 예를 들면, 코어 네트워크(106)는 WTRU(102a, 102b, 102c)와 전통적인 지상선(land-line) 통신 장치 간의 통신이 가능하도록, PSTN(108)과 같은 회선 교환식 네트워크에 대한 액세스를 WTRU(102a, 102b, 102c)에 제공할 수 있다. 예를 들면, 코어 네트워크(106)는 코어 네트워크(106)와 PSTN(108) 간의 인터페이스로서 기능하는 IP 게이트웨이(예를 들면, IP 멀티미디어 서브시스템(IMS) 서버)를 포함하거나 그러한 IP 게이트웨이와 통신할 수 있다. 또한, 코어 네트워크(106)는 다른 서비스 공급자에 의해 소유 및/또는 운용되는 다른 유선 또는 무선 네트워크를 포함하는 네트워크(112)에 대한 액세스를 WTRU(102a, 102b, 102c)에 제공할 수 있다.
다운링크(DL) 공유 액세스 및 백홀 주파수 채널에서 백홀 링크를 통해 도너 eNB로부터 수신하는 동안 유형 I RN이 액세스 링크를 통해 WTRU에게 동시에 전송할 수 없다는 것, 또는 업링크(UL) 공유 액세스 및 백홀 주파수 채널에서 도너 eNB에 전송하는 동안 액세스 링크를 통해 WTRU로부터 동시에 수신할 수 없다는 것은 주파수 분할 듀플렉스(FDD) 기반 인밴드 중계의 하나의 기본적인 설계 원리이다.
무선 액세스 네트워크(RAN) 1#56 중에, 멀티미디어 방송 멀티캐스트 서비스(MBMS) 단일 주파수 네트워크(MBSFN) 서브프레임이 중계의 백워드 호환성 구현을 가능하게 하고 레가시 R8 프레임 구조에 관한 DL 주파수 채널에서 도너 eNB가 RN 전송을 가능하게 하는 수단으로서 사용될 수 있다고 합의되었다.
MBSFN 서브프레임 할당은 프레임당 6개의 서브프레임으로 제한되고(LTE FDD 모드에 대해서), 프레임 구조 유형 1의 경우에 서브프레임 #0, #4, #5 및 #9에서 구성되는 MBSFN 서브프레임은 없다.
RAN1#57 중에, DL 액세스 링크 및 DL 백홀 링크 서브프레임 경계 정렬 및 DL 백홀 링크에 대한 시간 영역 리소스의 반정적 지정의 원리들이 승인되었다. 또한, 릴레이 물리적 다운링크 공유 채널(relay physical downlink shared channel; R-PDSCH), 릴레이 물리적 업링크 공유 채널(relay-physical uplink shared channel; R-PUSCH) 및 릴레이 물리적 다운링크 제어 채널(relay-physical downlink control channel; R-PDCCH)의 도입이 합의되었다.
RN 전개는 도 2에 도시되어 있다. 유형 1(인밴드) 릴레이에 있어서, RN(230)에서 eNB(225)로의 링크(210)는 UL 캐리어를 통해 동작해야 하고, eNB(225)에서 RN(230)으로의 링크(245)는 DL 캐리어를 이용하여 동작하여야 한다. eNB(225)에서 RN(230)으로의 링크(245) 및 RN(230)에서 UE2(235)로의 링크(250)는 동일한 DL 캐리어 주파수를 공유하고, 유사하게 RN(230)에서 eNB(225)로의 링크(210) 및 UE2(235)에서 RN(230)으로의 링크(215)는 동일한 UL 캐리어를 공유한다.
매크로 eNB(225) 관점에서 볼 때, RN(230)은 정규의 또는 특수한 WTRU로서 나타날 수 있고, 이와 동시에 RN(230)은 RN(230)에 의해 서빙되는 UE2에 대하여 정규 eNB로서 나타날 수 있다(즉, UE2는 정규 eNB로부터의 것과 동일한 방식으로 RN(230)에 캠핑하고 RN(230)으로부터 서비스를 받는다). 도 2에서의 설명 목적으로, UE1은 매크로 eNB(225)에 의해 서빙되는 WTRU이고, UE2는 RN(230)에 의해 서빙되는 WTRU이다.
RN(230)이 동일한 DL 주파수 대역(F1)에서 동시에 송신(Tx) 및 수신(Rx)을 할 수 없기 때문에, eNB(225)에서 RN(230)으로의 링크 및 RN(230)에서 UE2(235)로의 링크(즉, 링크 245 및 250)는 이들이 동일한 캐리어를 공유하기 때문에 시간 다중화된다. 유사하게, RN(230)에서 eNB(225)로의 링크 및 UE2(235)에서 RN(230)으로의 링크(즉, 링크 210 및 215)는 UL 주파수 대역(F2)에서 역시 시간 다중화된다.
다시 말해서, RN(230)은 UE2(235) 관점에서 볼 때 FDD-eNB로서 동작하지만, RN(230) 자체는 DL 및 UL 캐리어 둘 다에서 TDD 동작(Tx 및 Rx 스위칭)을 지원해야 한다. eNB(225)가 통상의 형식(F1에서 다운링크 송신, 및 F2에서 업링크 수신)으로 동작하기 때문에 eNB(225)에 대한 영향은 없다는 점에 주목한다.
eNB(225)에서 RN(230)으로의 링크 및 RN(230)에서 UE2(235)로의 링크(즉, 링크 245 및 250)의 시간 다중화는 LTE R8 규격에 의해 제공되는 융통성있는 MBSFN 시그널링을 통해 효과적으로 지원될 수 있다. RN은 RN 셀의 일부(최대 6개까지) 서브프레임을 MBSFN-예약 서브프레임으로서 구성한다. 그러므로, 릴레이 WTRU는 제어 영역을 이렇게 디코딩하는 것을 단지 예상하고 시도할 것이지만, 임의의 다운링크 지정 또는 PDSCH 전송은 예상하지 않을 것이다. 릴레이 셀에서의 MBSFN-예약 서브프레임은 도너 eNB 셀에 의해 서빙되는 WTRU에 MBSFN 서브프레임으로서 나타날 필요가 없다는 점에 주목한다. 더욱이, 릴레이 셀에서의 이러한 예약 서브프레임은 백홀 링크상의 릴레이에게 MBMS 서비스를 제공하는 의미에서 MBSFN 서브프레임으로서 나타나지 않을 것이다. MBSFN-예약 서브프레임에 있어서, RN은 제어 영역의 DL 액세스 링크에서 먼저 전송하고, 약간의 Tx/Rx 스위칭 시간(예를 들면, 1 심볼(symbol))이 경과한 후 DL 백홀 링크상에서 eNB로부터의 전송을 수신한다.
DL에 있어서, 도너 eNB는 원칙적으로 DL 지정(및 PDSCH), 물리적 하이브리드 자동 반복 요청(HARQ) 표시자 채널(PHICH)상의 DL 긍정응답(ACK)/부정응답(NACK), 및 임의의 DL 서브프레임에서 그 서빙되는 매크로 WTRU에 대한 UL 허가(PUSCH에 대해서)를 전송할 수 있지만, 릴레이 송신기와 수신기 간의 자기 간섭을 회피하기 위해, 도너 eNB는 MBSFN 서브프레임으로서 그 셀의 RN에 의해 브로드캐스트된 서브프레임에서 다운링크 전송을 행하여야 한다. 유사하게, RN은 임의의 다운링크 서브프레임에서 그 서빙되는 릴레이 WTRU에게 다운링크 ACK/NACK 및 업링크 허가를 전송할 수 있다. 그러나, 릴레이 송신기와 수신기 간의 자기 간섭을 회피하기 위해, RN은 MBSFN 서브프레임으로서 구성되지 않은 서브프레임에서만 PDSCH를 그 릴레이 WTRU에게 전송할 수 있다.
RN과 도너 eNB 동작에 대한 하기의 동작 원리가 합의되었다. RN에서, 액세스 링크 DL 서브프레임 경계는 백홀 링크 DL 서브프레임 경계와 정렬된다(RN Tx/Rx 스위칭을 위한 가능한 조정은 제외함). DL 백홀 전송이 발생하는 DL 백홀 서브프레임 집합은 DL 백홀 링크용으로 사용될 수 있는 시간 영역 리소스(서브프레임 집합)이고 반정적으로 지정된다. UL 백홀 링크용의 시간 영역 리소스가 역시 반정적으로 지정되어야 하는지는 결정되지 않았다. UL 백홀 전송이 발생하는 UL 백홀 서브프레임 집합은 반정적으로 지정될 수 있고, 또는 HARQ 타이밍 관계를 이용하여 DL 백홀 서브프레임으로부터 암시적으로 유도될 수 있다.
릴레이 물리적 다운링크 제어 채널(R-PDCCH)이라고도 부르는 새로운 물리적 제어 채널은 반정적으로 지정된 서브프레임 내에서 DL 백홀 데이터에 대한 리소스를 릴레이 물리적 다운링크 공유 채널(R-PDSCH)에 동적으로 또는 "반영속적"으로 지정하기 위해 사용될 수 있다. R-PDCCH는 또한 UL 백홀 데이터에 대한 리소스를 릴레이 물리적 업링크 공유 채널(R-PUSCH)에 동적으로 또는 "반영속적"으로 지정하기 위해 사용된다.
R-PDCCH는 DL 백홀 링크용으로 지정된 서브프레임의 물리적 리소스 블록(physical resource block; PRB)의 부분집합을 통해 전송될 수 있다. 미리 정해진 수의 리소스 블록(resource block; RB)이 백홀 제어 채널용으로 예약될 수 있다. 예약된 RB는 규격에 의해 고정되거나, 릴레이 노드에 반정적으로 시그널링되거나, 임의의 다른 채널, 예를 들면 릴레이 물리적 제어 포맷 표시자 채널(relay-physical control format indicator channel; R-PCFICH)을 통해 시그널링될 수 있다. R-PCFICH 또는 유사한 채널이 예약된 RB를 시그널링하기 위해 사용될 때, 오버헤드를 최소화하기 위해, 미리 정해진 패턴 집합으로부터 선택이 이루어질 수 있다. R-PCFICH 자체는 표준의 특정 RB(예를 들면, 대역폭의 중심)에 위치될 수 있다. R-PDCCH는 DL 백홀 링크용으로 지정된 서브프레임의 직교 주파수 분할 다중화(OFDM) 심볼의 부분집합을 통해 전송될 수 있다. 이 OFDM 심볼의 서브집합은 백홀 링크에 이용가능한 OFDM 심볼의 전체 집합을 포함할 수 있다. R-PDCCH는 RN이 수신할 수 있도록 충분히 늦은 서브프레임 내의 OFDM 심볼로부터 시작해서 전송될 수 있다. R-PDCCH는 동일한 서브프레임 및/또는 하나 이상의 더 늦은 서브프레임에서 DL 리소스를 지정하기 위해 사용될 수 있다. R-PDCCH는 하나 이상의 더 늦은 서브프레임에서 UL 리소스를 지정하기 위해 사용될 수 있다. R-PDSCH와 R-PDCCH는 동일한 PRB내에서 또는 별도의 PRB내에서 전송될 수 있다. 백홀 제어 채널 RB는 R-PDCCH, 릴레이 물리적 하이브리드 자동 반복 요청(automatic repeat request; HARQ) 표시자 채널(indicator channel)(R-PHICH) 및 만일 필요하다면 R-PCFICH를 운반할 수 있다.
주파수 분할 다중화(FDM), 시분할 다중화(TDM) 및 하이브리드 다중화 방식(TDM+FDM, 또는 등가적으로 FDM+TDM)은 릴레이 리소스(R-PDCCH와 R-PDSCH) 간에, 또는 릴레이 리소스(R-PDCCH, R-PDSCH)와 비릴레이 리소스(PDCCH, PDSCH) 간에 리소스 다중화를 위한 가능한 후보이다.
백홀 제어 채널 설계는 e노드B에서 주파수 영역 및 시간 영역의 제어 채널 맵핑의 세부, 및 R-PCFICH의 사용없이 제어 채널의 릴레이(또는 WTRU와 같은 R-PDCCH의 임의의 다른 수신기)에서의 디코딩을 필요로 할 수 있다. 여기에서의 방법, 시스템 및 장치는 ACK/NACK, R-PDSCH 디코딩 지연의 감소, 블라인드 검색 처리 시간 및 관련 전력 소모의 감소, 제어 채널에 대한 오버헤드 시그널링 양의 최소화, 및 제어 채널에 대한 대역폭 필요조건의 최소화를 지원한다.
릴레이 동작은 FDD 네트워크에서 인밴드의 경우와 관련하여 여기에서 설명된다(즉, RN과 eNB간 링크는 RN과 WTRU간 액세스 링크와 동일한 캐리어를 공유한다). 그러나, 여기에서 설명하는 방법 및 절차는 TDD 네트워크에도 동일하게 적용할 수 있다. 또한, RN과 eNB 간의 Un 인터페이스에서의 릴레이 설계가 설명된다. 특히, 몇 가지 방법 및 절차는 하나 이상의 제어 신호(들), 즉 eNB에서 RN으로의 다운링크 ACK/NACK 및 Un DL 지정 또는 Un UL 허가를 운반하기 위한 R-PDCCH가 어떻게 인코드되고 eNB로부터 RN으로 전송되는지에 대하여 설명된다. 비록 여기에서 제시되는 아이디어가 주로 릴레이 유형 1 용어를 이용하여 설명되지만, 이 아이디어는 다른 유형의 릴레이, 특히 다른 무엇보다도 비투명성 또는 비자기 백홀링 유형의 릴레이에도 또한 적용할 수 있다.
복수의 릴레이로부터의 R-PDCCH의 다중화 및 인터리빙과의 제어 채널 맵핑을 위한 방법이 설명된다. 만일 인터리빙이 적용되면, 인터리빙은 OFDM 심볼 마다 수행될 수 있다. R-PCFICH는 사용되지 않을 수 있다.
시간-주파수 격자(grid)에서 R-PDCCH의 맵핑 방법이 설명되고, 여기에서 R-PDCCH는 제어 채널의 OFDM 심볼(이것은 OFDM 제어 심볼이라고도 부른다)를 가로질러 주파수 영역을 따라서 먼저 맵핑되고, 그 다음에 시간 영역을 따라서 맵핑된다. 주파수 우선 맵핑(frequency first mapping)의 한가지 장점은 R-PCFICH 또는 유사한 채널을 사용할 필요가 없다는 것이다.
RB의 트리 기반 지정은 리소스 할당 오버헤드를 최소화하기 위해 사용될 수 있다. 릴레이 특정 구성 파라미터를 구성하는 방법이 설명된다. ACK/NACK의 지원에서 전용 R-PDCCH(및 다운링크 제어 정보(downlink control information; DCI) 포맷)가 설명되고, 그것에 의해 R-PHICH/PHICH 채널 성능 필요조건이 전형적인 R-PDCCH/PDCCH보다 전형적으로 더 엄격하다. R-PDCCH를 통한 ACK/NACK의 시그널링은 R-PHICH를 사용하지 않는 경우에 사용될 수 있다.
도 3은 백홀 제어 채널 맵핑의 예를 보인 것이다. 주파수 영역에서의 지정은 RB 또는 리소스 블록 그룹(resource block group; RBG)의 단위로 또는 그 임의의 다른 단위로 이루어질 수 있다. 여기에서 단위는 RB로 간주될 수 있고, 설계 규모는 이러한 단위에 따라 정해진다는 것을 이해바란다.
주파수 다이버시티를 최대화하기 위해, 릴레이 제어 채널은 전체 스펙트럼에 걸쳐서 균일하게 맵핑될 수 있다. 백홀 제어 채널에 대한 RB는 하기의 수학식에 따라서 선택될 수 있다.
[수학식 1]
여기에서, Rl(i)는 l번째 OFDM 제어 심볼의 RB 지수이고;
i=0,1,2,...Nl , MAX _ REL _ RB-1이며;
Nl , MAX _ REL _ RB는 l번째 OFDM 제어 심볼의 백홀 제어 채널용으로 예약된 RB의 수이고;
NDL l , RB는 l번째 OFDM 제어 심볼에서 RB의 최대수이고;
k는 릴리즈 8과 유사한 방법으로 도너 eNB 셀 ID로부터 유도된 정수이다.
가산은 모듈로(modulo) NDL l , RB이다.
예로서, 만일 NDL l , RB = 20이고, Nl , MAX _ REL _ RB = 5이면,
Rl(i)= ([0 4 8 12 16]+k)mod 20Rl(i) = ([0, 4, 8, 12, 16]+k)mod 20이다.
만일 k mod 20 = 0, 1, 2, 3이면, Rl(i)는 모든 i=0,...Nl , MAX _ REL _ RB-1에 대하여 0~19의 범위에 있고, OFDM 심볼 "l"에 대하여 랩어라운드(wrap around)는 발생하지 않는다. 만일 k mod 20 ≥ 4이면 랩어라운드가 발생한다. 예를 들어서, k mod 20 = 15이면,
Rl(i)= ([0 4 8 12 16] + 15)mod 20 = [15 19 3 7 11]
Rl(i)= ([0, 4, 8, 12, 16] + 15)mod 20 = [15, 19, 3, 7, 11]이다.
지수가 15 및 19인 RB는 OFDM 심볼 "l"에 대응하고, 한편 지수가 3, 7 및 11인 RB(이것은 랩어라운드가 발생하는 RB이다)는 본 발명에 따라서 OFDM 심볼 "l"에 또는 OFDM 심볼 "l+1"에 맵핑될 수 있다.
모듈로(modulo) 동작을 수용하기 위해 하기의 방법들 중 하나를 사용할 수 있다: 1) 백홀 제어용으로 할당된 다음의 OFDM 심볼을 사용하고 맵핑을 계속하는 것; 2) 동일한 OFDM 심볼에서 랩어라운드하고 모든 이용가능한 RB를 상주시키는(populate) 것. 모든 RB가 사용되었으면, a) 상기 수학식 1에 의해 주어진 다음의 RB 위치로부터, 또는 b) 수학식 1에서 i=0으로 설정함으로써 주어지는 RB 위치로부터 다음의 OFDM 심볼을 통한 맵핑을 계속한다. Nl , MAX _ REL _ RB는 각각의 대역폭 옵션에 대하여 표준화될 수 있고, 또는 RB의 총 수의 분수로서 대역폭으로부터 유도될 수 있다(예를 들면, Nl,MAX_REL_RB=α.NDL l , RB, 여기에서 α는 α={1, 1/2, 1/3, 1/4...}와 같은 값을 취할 수 있는 분수이다). 대안적으로, 백홀 제어 채널에 전용된 인접 RB 사이의 공간이 특정될 수 있고, 수학식 2와 같이 된다.
[수학식 2]
Nl , MAX _ REL _ RB = NDL l , RB/δRB
여기에서 δRB는 RB의 단위의 공간이고, δRB는 표준으로 또는 시스템 대역폭의 함수로 특정된 정수들의 미리 정해진 집합으로부터 얻을 수 있다.
융통성 및 최적화 리소스 할당을 제공하기 위해, 도너 eNB는 Nl , MAX _ REL _ RB RB를 이용하지 않을 수 있다. 사용되는 RB의 실제 수를 시그널링할 필요는 없다. 릴레이 노드는 필요한 수의 허가를 찾을 때까지 또는 Nl , MAX _ REL _ RB 에 도달할 때까지 변화하는 갯수의 RB에 대하여 블라인드 디코딩을 수행할 수 있다. 블라인드 디코딩의 복잡도를 줄이기 위해, 도너 eNB는 미리 정해진 수의 RB만을 이용하도록 제한될 수 있다(예를 들면, 집합 {1,2,4,8,Nl , MAX _ REL _ RB}로부터).
R8 WTRU를 스케줄링할 때 최대 융통성을 제공하기 위해, 백홀 제어 채널 RB 할당은 리소스 할당 유형 0, 1 또는 2와 일치되게 할 수 있다. 유형 2 할당이 분산된 가상 리소스 블록과 함께 사용될 때, 제어 채널은 PDSCH와 유사한 방법으로 2개의 시간 슬롯 사이에서 분할될 수 있다.
리소스는 전술한 바와 같이 각종 방법으로 릴레이에 전용될 수 있다. 더 큰 융통성 및 확장성(scalability)을 도입하기 위해, 맵핑 모드가 상위 계층에 의해 규정되고 시그널링될 수 있다. 상위 계층 시그널링은 (예를 들면 제어 채널 RB 구성 모드 또는 SIB2의 RB 할당 비트맵과 같은 추가의 정보 요소와 함께)시스템 정보 브로드캐스트, RRC(무선 리소스 제어) 시그널링 또는 NAS 시그널링을 통하여 달성될 수 있다. 예로서, 3 비트가 있을 때 8개의 모드가 아래의 [표 1]과 같이 규정될 수 있다.
모드 | 맵핑 |
000 | 대역의 중앙에서 Nl , MAX _ REL _ RB |
001 | 전체 대역폭에 걸쳐 균일하게 분산된 Nl , MAX _ REL _ RB |
010 | 미리 구성된 할당을 가진 리소스 할당 유형 0 |
011 | 미리 구성된 할당을 가진 리소스 할당 유형 1 |
100 | 미리 구성된 할당을 가진 리소스 할당 유형 2 |
101 | 다른 구성 |
110 | 다른 구성 |
111 | 다른 구성 |
미리 구성된 할당은 각각의 할당 유형에서 정확한 RB를 결정하는 파라미터가 표준화된 것을 의미할 수 있다. 할당 0과 1에 있어서, RBG 사이즈의 값(P)과 할당 비트맵은 공지될 수 있다. 유형 2 할당에 있어서, 시작 리소스 블록(RBstart), LCRBs,및 스텝 사이즈(NRB step)는 표준으로 지정된다. 대안적으로 모든 파라미터는 동작 모드와 함께 시그널링될 수 있다.
RN은 모든 백홀 제어 채널 맵핑 옵션 또는 대안적으로 가용 백홀 제어 채널 맵핑 옵션의 부분집합을 지원할필요가 있을 수 있다. 대안적으로, 디폴트 백홀 제어 채널 맵핑 옵션이 특정된다. 네트워크는 시스템 정보 방송 메시지(예를 들면 SIB2) 또는 RRC 시그널링 또는 이들의 조합으로 네트워크에 의해 지원되는 백홀 제어 채널 맵핑 옵션을 시그널링할 수 있다. 예를 들면, RN이 네트워크에 접속되지 않았을 때, RN은 시스템 정보 방송 메시지를 통하여 백홀 제어 채널 맵핑 정보를 획득할 수 있다. 반면에, RN이 이미 접속 모드에 있을 때, 백홀 제어 채널 맵핑 방법에 대한 업데이트가 RRC 시그널링을 통해 획득될 수 있다.
릴리즈 8 WTRU를 스케줄링할 때 완전한 융통성을 제공하기 위해, R-PDSCH는 PDSCH용으로 사용된 리소스 할당 유형 중의 하나를 이용하여 맵핑될 수 있다. RB에 맵핑될 수 있는 R-PDCCH는 R-PDSCH에 대한 리소스 할당을 포함한다.
만일 R-PDSCH에 지정된 RB가 백홀 제어 채널을 또한 운반하면, RB는 백홀 제어 채널로 시간 다중화될 수 있다.
만일 R-PDCCH가 복수의 시간 슬롯에 걸치면(예를 들면, 제어 채널 맵핑용으로 리소스 할당 유형 2를 사용할 때), R-PDSCH는 R-PDCCH를 수용하도록 펑처링(puncture)될 수 있다.
주파수 인터리빙을 최대화하기 위해, R-PCFICH(만일 사용되면) 및 R-PHICH는 모든 가용 백홀 제어 채널 RB에 걸쳐 균일하게 맵핑될 수 있다. 확산을 최대화하기 위해, R-PCFICH(만일 사용되면) 및 R-PHICH는 RB의 단지 일부(예를 들면, 1/3)에만 맵핑될 수 있다.
도 4는 R-PCFICH를 사용하지 않을 때 OFDM 심볼을 통해 R-PHICH 및 R-PDCCH를 맵핑하는 예를 보인 것이다. 도 5는 R-PCFICH를 사용할 때 OFDM 심볼을 통해 R-PHICH 및 R-PDCCH를 맵핑하는 예를 보인 것이다.
R-PCFICH(만일 사용되면)는 지수가 도너 eNB 셀 아이덴티티(ID)로부터 획득되는 RB로부터 시작해서 맵핑될 수 있다. R-PHICH는 R8 절차에 따라서 맵핑될 수 있다. 실시예에 있어서, 만일 R-PCFICH(525)가 RB의 일부에 맵핑되면, RB의 다른 부분은 R-PHICH(525) 및/또는 R-PDCCH(520)에 의해 사용될 수 있다. 나머지 RB는 R-PDCCH에 의해 점유될 수 있다.
R8 WTRU에 대한 인코딩된 PDCCH는 제어 채널 요소(CCE)들로 분할되고 시간-주파수 격자에 맵핑되기 전에 인터리브될 수 있다. 맵핑은 시간 우선(time-first)의 순서로 이루어진다. 그러므로, OFDM 제어 심볼의 수는 디코딩 처리를 시작할 수 있기 전에 알려져야 한다.
시간 우선 맵핑은 이동성이 제한되거나 없기 때문에 릴레이 환경에서 어떤 중요한 장점을 제공하지 않는다. R-PDCCH는 주파수 우선의 순서로 맵핑될 수 있고, 따라서 디코딩은 각각의 OFDM 심볼이 처리되고 제어 채널 처리 유닛에 이용할 수 있게 되자마자 시작할 수 있다. 이것은 OFDM 제어 심볼의 수를 시그널링할 필요가 없게 한다. 예시적인 방법은 뒤에서 설명한다.
일 실시예에 있어서, 도 6a에 도시된 바와 같이, 블록 605에서, 도너 eNB는 R8과 유사한 방법으로 모든 릴레이 노드의 R-PDCCH를 다중화한다. 블록 610에서, 도너 eNB는 다중화 R-PDCCH를 CCE 유닛들 등으로 단순히 분할함으로써 다중화 비트 스트림을 CCE에 맵핑할 수 있다. 블록 615에서, 도너 eNB는 CCE 공간을 n개의 벡터로 분할할 수 있으며, 여기에서 n은 백홀 OFDM 제어 심볼의 수이다. 블록 620에서, 도너 eNB는 데이터를 전송한다. 도 6a의 방법은 CCE가 2개의 연속적인 OFDM 심볼에 걸쳐 맵핑되게 한다. 또한, 복수의 RN에 대한 R-PDCCH가 함께 다중화되면, CCE가 RB에 맵핑되는 순서는 다중화 벡터에서 R-PDCCH의 순서와 동일하다. 도 6b는 맵핑이 2개의 OFDM 심볼을 통해 수행되고 CCE가 2개의 OFDM 심볼에 걸쳐 맵핑되는 실시예를 보인 것이다. 다시 말하면, 예를 들어서, 제1 OFDM 심볼은 하나 이상의 전체 제어 채널 요소(예를 들면, CCE #1, #2 및 #3) 및 하나의 부분 제어 채널 요소(예를 들면, OFDM 심볼 #1 및 #2 에 걸친 CCE #4)를 포함할 수 있다.
i번째 벡터의 크기, 여기에서 i=1,...n이고 "n"은 백홀 OFDM 제어 심볼의 수이다. 이하에서의 "i"는 수학식 1에서 주어진 "i"와 동일하지 않다는 것에 주목한다. R8 기술은 변조, 인터리빙 및 프리코딩을 위해 재사용된다. i번째 벡터는 RB의 증가(또는 감소) 순서를 따라 백홀 OFDM 제어 심볼용으로 예약된 i번째 OFDM 심볼에 대하여 맵핑된다. CCE는 주파수 영역 및 시간 영역에 맵핑될 수 있다. 맵핑은 맵핑이 시간 우선 순서로 수행되는 R8과는 달리 주파수 우선 순서로 수행될 수 있다. 도 6c는 각각의 OFDM 제어 심볼에 대하여 수신기에서 일어나는 것들을 보여준다. 일반적으로, 프로세서는 예를 들면 제1 R-PDCCH 및 제2 R-PDCCH를 포함하는 복수의 릴레이 물리적 다운링크 제어 채널(R-PDCCH)을 나타내는 연속적인 제1 및 제2 OFDM 심볼을 e노드B로부터 수신할 수 있다. 그 다음에, 프로세서는 제2 OFDM 심볼 전에 수신된 제1 OFDM 심볼로부터 제1 R-PDCCH를 디코드할 수 있다. 도 6c의 블록 682에서, RN은 복조를 수행하고, 블록 684에서 복조 비트의 n개의 벡터를 구성하며, 여기에서 i(i=1...n)번째 벡터의 길이는 i번째 OFDM 제어 심볼에서 비트의 수와 같다. 블록 686에서, RN은 CCE 경계에서 i번째 벡터를 한정(demarcate)하고, 이때 CCE의 정수(integer number)를 넘는 비트는 다음 OFDM 제어 심볼의 일부로서 간주된다. 블록 688에서, RN은 OFDM 제어 심볼마다 CCE에 대해 블라인드 디코딩을 수행한다. 이것은 인터리빙이 단일 OFDM 심볼의 범위(span)에 걸쳐 수행되기 때문에 가능하다.
만일 릴레이 노드로 어드레스된 R-PDCCH가 발견되지 않으면(즉, 블록 690에서 '아니오'), RN은 복조된 비트의 이후의 벡터를 계속하여 디코딩한다. RN이 고려해야 할 "CCE 랩어라운드"가 있다. 만일 OFDM 제어 심볼이 더 있으면(즉, 블록 694에서 '예'), 이전 OFDM 제어 심볼에서 블라인드 디코딩을 위해 사용되지 않은 비트들이 현재 OFDM 심볼로부터 비트들의 벡터에 첨부된다. RN은 블록 686에서 다시 시작하여 복조 비트의 재구성된 벡터를 처리할 수 있다.
만일 릴레이 노드로 어드레스된 R-PDCCH가 발견되면(즉, 블록 690에서 '예'), RN은 블록 691에서 모든 모니터링된 R-PDCCH(즉, 모든 모니터링된 RNTI)가 검출되었는지 체크한다. RN은 필요한 수의 R-PDCCH가 발견될 때까지(즉, 블록 691에서 '예') 또는 최대수의 OFDM 제어 심볼에 도달할 때까지(즉, 블록 694에서 '아니오') 디코딩을 계속할 수 있다. 최대수의 OFDM 제어 심볼은 표준화되거나, 또는 대역폭과 같은 다른 시스템 파라미터에 결합되거나, 또는 상위 계층에 의해 시그널링될 수 있다.
실시예에 있어서, 도 7a 내지 도 7c에 도시한 바와 같이, CCE 공간에 대하여 R-PDCCH를 맵핑하는 무작위화(randomization)가 허용될 수 있다.
블록 705에서, 도너 eNB는 R8과 유사한 방법으로 모든 릴레이 노드의 R-PDCCH를 다중화한다. 블록 710에서, 도너 eNB는 각각의 이용가능한 OFDM 심볼에 맵핑될 수 있는 CCE의 수를 계산하여 각각의 CCE가 단일 OFDM 심볼 내에서 맵핑되게 한다(즉, CCE는 2개의 OFDM 심볼에 걸치지 않는다). 블록 715에서, 도너 eNB는 어떤 OFDM 제어 심볼이 소정의 R-PDCCH를 배치하는지를 결정한다. 블록 720에서, 도너 eNB는, 각각의 심볼에 대하여, 각각의 후보 R-PDCCH의 시작 CCE 지수를 해시 함수를 이용하여 결정한다.
해시 함수는 스케줄링 또는 임의의 다른 파라미터를 최적화하는 eNB 특정 스케줄링 알고리즘일 수 있다. 예를 들어서, 만일 R-PDCCH가 다운링크 지정을 운반하면, 데이터 디코딩의 지연시간을 줄이기 위해, 도너 eNB의 해시 함수는 제1 OFDM 제어 심볼에 할당된 CCE에 다운링크 지정을 맵핑할 수 있다. 유사하게, 만일 R-PDCCH가 업링크 허가를 운반하면, 도너 eNB는 제2 또는 제3 OFDM 제어 심볼에 할당된 CCE에 업링크 허가를 맵핑할 수 있다(이것은 업링크 전송이 4 ms 뒤에 수행될 필요가 있기 때문이고, 따라서 제어 채널을 디코딩할 때의 지연시간은 주요 관심사가 아니다). 해시 함수는 서브프레임 번호, 집성 레벨, 시간 슬롯 지수, 또는 릴레이 무선 네트워크 임시 식별자(RNTI)와 같은 릴레이 특정 식별자의 집합으로부터 입력 파라미터가 선택되는 무작위화 함수일 수 있다. 예를 들면, 집성 레벨 2를 갖는 CCE는 짝수 서브프레임에서 제1 OFDM 제어 심볼에 맵핑되고, 홀수 서브프레임에서 제2 OFDM 제어 심볼에 맵핑될 수 있다. 해시 함수는 또한 후보 R-PDCCH의 다중화 및 그 다음에 CCE 유닛들 등으로의 단순한 분할을 포함할 수 있다. 또한, 쉬프트가 여기에서 규정하는 일부 또는 모든 파라미터에 기초하여 결정되는 경우에 모듈로 회전 쉬프트(modulo rotational shift)가 적용될 수 있다.
블록 725에서, i번째 OFDM 제어 심볼의 CCE가 함께 다중화되고, 변조 및 프리코딩 후에 i번째 벡터가 i번째 심볼에 완전히 맞추어지도록 널(NULL) 비트가 추가되며, 여기에서 i=1,...n이다. 블록 730에서, 변조되고 프리코딩된 심볼이 백홀용으로 할당된 RB에 대하여 주파수 우선 순서로 맵핑된다. 도 7b는 맵핑이 2개의 OFDM 심볼에 대하여 수행되고 CCE가 2개의 OFDM 심볼에 걸쳐 맵핑되지 않은 경우의 실시예를 보인 것이다. 다시 말하면, 예를 들어서, 제1 OFDM 심볼은 CCE의 삽입이 OFDM 심볼에서 이용가능한 비트의 수를 넘는 경우에 하나 이상의 전체 제어 채널 요소(예를 들면, CCE #1 및 #2) 및 패딩(예를 들면, 패딩일 수 있는 N)을 포함할 수 있다.
도 7c는 각각의 OFDM 제어 심볼에 대하여 수신기에서 어떤 일이 일어나는지를 보인 도이다. 블록 782에서, RN은 복조를 수행하고, 블록 784에서 복조 비트의 n개의 벡터를 구성하며, 여기에서 i(i=1...n)번째 벡터의 길이는 i번째 OFDM 제어 심볼에서 비트의 수와 같다. 블록 786에서, RN은 CCE 경계에서 i번째 벡터를 한정하고, CCE의 정수를 넘는 널(NULL) 비트는 버린다. 블록 788에서, RN은 OFDM 심볼마다 CCE에 대해 블라인드 디코딩을 수행한다. 이것은 인터리빙 및 CCE 무작위화가 단일 OFDM 제어 심볼의 범위에 걸쳐 수행되기 때문에 가능하다. eNB와 동일한 해시 함수를 이용하여, 각각의 집성 레벨에 대하여, 릴레이는 디코딩을 수행할 후보 CCE를 결정할 수 있다. 만일 릴레이 노드로 어드레스된 R-PDCCH가 발견되지 않고(즉, 블록 790에서 '아니오') OFDM 제어 심볼이 더 있으면(블록 794에서 '예'), RN은 복조된 비트의 이후의 벡터에 대하여 계속해서 디코딩한다. 만일 릴레이 노드로 어드레스된 R-PDCCH가 검출되면(즉, 블록 790에서 '예'), 블록 791에서 RN은 모든 모니터링된 R-PDCCH(즉, 모든 모니터링된 RNTI)가 검출되었는지 체크한다. RN은 필요한 수의 R-PDCCH가 발견될 때까지(즉, 블록 791에서 '예') 또는 최대수의 OFDM 제어 심볼에 도달할 때까지(즉, 블록 794에서 '아니오') 디코딩을 계속할 수 있다. 최대수의 OFDM 제어 심볼은 표준화되거나, 또는 대역폭과 같은 다른 시스템 파라미터에 결합되거나, 또는 상위 계층에 의해 시그널링될 수 있다.
전용 RB는 반정적 함수로 RN 중에서 분산될 수 있다. 만일 어떤 지역의 릴레이에 대해 할당된 K개의 RB가 있으면, b개의 비트가 있을 때 K/2b개의 RB가 2b개의 릴레이에 지정되거나 K/2b-1개의 RB가 2b-1개의 릴레이에 지정되거나, 이러한 방식으로 RB가 릴레이에 지정될 수 있다. K 및 b는 상위 계층 시그널링 또는 릴레이 시스템 정보에 의해 릴레이 노드에 알려질 수 있다. b에 따라서, DCI 포맷 길이가 변할 수 있고, 릴레이 노드는, 리소스 할당을 위한 감소된 비트맵을 보여주는 도 8에 도시된 것처럼, 그에 따라서 블라인드 디코딩을 수행할 수 있다.
하나의 비트가 있을 때(805), 리소스는 2개의 릴레이 노드에 시그널링될 수 있다. 도 8에 도시된 것처럼, RN1(806)은 총 K개의 RB 중에서 최초 절반이 지정되고 RN2(807)는 나머지 절반이 지정될 수 있다. 2개의 비트가 있을 때(810), 리소스는 4개의 릴레이 노드에 시그널링될 수 있다. 예를 들면, RN1(812)은 최초 K/4개의 RB가 지정될 수 있다. 유사하게, 3개의 비트가 있을 때 동일한 리소스가 8개의 릴레이에 시그널링될 수 있다. 도 8에 도시된 것처럼, RN1은 그 허가에서의 리소스 할당으로서 '000'을 전송함으로써 최초 K/8개의 RB가 지정될 수 있다. RN6(817)은 그 허가에서의 리소스 할당으로서 '101'을 전송함으로써 6번째의 K/8개의 RB 집합이 지정될 수 있다. 대안적으로, 3개의 비트를 가진 예에 있어서, 만일 8개 미만의 RN에 대한 다운링크 백홀 데이터가 서브프레임에서 전송되면, 릴레이 "X"는 적당한 3-비트 헤더를 전송함으로써 "Y" 부분집합이 지정될 수 있다. 더 구체적으로, 릴레이 3,4,5,6,7,8에만 DL 리소스가 지정되면, RN3는 헤더에서 '000'을 시그널링함으로써 부분집합 #0이 지정되고, RN4는 헤더에서 '001'을 시그널링함으로써 부분집합 #1이 지정되며, 이러한 방식으로 부분집합이 지정될 수 있다. 나머지 부분집합(#6 및 #7)은 매크로 WTRU에 대하여 DL 데이터를 스케줄하기 위해 도너 eNB에 의해 재사용될 수 있다. 이 방법은 릴레이에 대한 R-PDSCH(DL 백홀 데이터)에 전용되는 RB가 eNB에 접속된 모든 RN 사이에서 동일하게 분할될 때 적용할 수 있다. 비록 이 방법이 주파수 영역에서 더 작은 스케줄링 입도(granularity)를 갖지만, 리소스 할당 유형 0 또는 유형 1에서 사용되는 리소스 할당 비트맵의 전송을 요구하지 않기 때문에, 오버헤드가 낮은 장점이 있다. 대안적으로, 만일 각 부분집합의 시작이 또한 시그널링되면, RN에 대한 동일한 리소스 할당의 제한이 제거될 수 있다.
백홀이 있을 때 R-PDCCH와 R-PDSCH(DL 리소스)의 사이 및 R-PDCCH와 R-PUSCH(UL 허가) 사이에 지연이 포함될 수 있고, 여기에서 지연은 서브프레임의 단위에서 0과 같거나 0보다 클 수 있다. 이것은 R-PDCCH가 나중의 서브프레임에서 DL 지정 또는 UL 허가를 제공할 수 있게 한다(즉, R-PDCCH에서 R-PDSCH까지는 δD개 서브프레임이고(δD>1), R-PDCCH에서 R-PUSCH까지는 δD>4이다). 만일 R-PDCCH가 하나 이상의 나중의 서브프레임에서 백홀 링크에 대하여 업링크 리소스를 허가하면, RN은 UL 데이터 백홀에 대하여 사용되는 서브프레임을 먼저 알게 된다. 만일 R-PDCCH가 하나 이상의 나중의 서브프레임에서 백홀 링크에 대하여 다운링크 리소스를 지정하면, RN은 백홀에서 ACK/NACK 피드백의 UL 전송을 위해 어떤 서브프레임이 필요한지를 먼저 알게 된다. 그 다음에, RN은 UL 액세스 링크와 UL 백홀 사이의 충돌이 회피되도록(또는 최소화되도록) R-WTRU를 스케줄할 수 있다. R-WTRU는 RN에 의해 서빙되는 RN 셀의 UE임에 주목한다.
백홀 링크 또는 액세스 링크에서 UL/DL 스케줄링을 더 융통성있게 하기 위해, eNB는 각각의 RN(또는 RN의 그룹)에 대한 지연(δD 또는 δU)을 반정적으로 또는 동적으로 구성할 수 있다. 반정적 구성의 경우에, 지연의 값은 상위 계층을 통하여 RN(들)에 시그널링된다. 지연이 동적으로 구성되는 경우에, 지연의 값은 새로운 DCI 포맷을 도입함으로써 R-PDCCH에 포함될 수 있고, 이 경우 지연의 값은 몇 개의 비트(예를 들면, 2 또는 3 비트)로 표시될 수 있다. 대안적으로 δD 또는 δU의 값을 표시하기 위해 지연 표시자가 백홀 제어 영역에서 도입/사용될 수 있다. 예를 들면, DL 리소스(예를 들면, R-PDSCH)에 대하여 이진수 지연 표시자가 사용될 때 "0"는 제로 지연을 표시하고(예를 들면, R-PDCCH와 동일한 서브프레임 내의 R-PDSCH를 의미한다), "1"은 현재의 서브프레임과 관련된 하나(또는 그 이상)의 나중의 서브프레임(들)에서 DL 리소스(예를 들면, R-PDSCH)가 존재함을 의미한다.
지연 δD 또는 δU를 적용할 수 있고, 이것에 의해 1) δD 또는 δU는 허가가 수신된 서브프레임 후에 즉시 적용되는 지연에 대응하고, 또는 2) 비트의 수를 줄이고 더욱 융통성있게 하기 위해 지연이 미래의 공지된 베이스라인 서브프레임에 관련될 수 있다. 예를 들면, 베이스라인 서브프레임과 관련하여, 업링크의 경우에, 지연은 서브프레임 n+4에 관련될 수 있고, 여기에서 n은 허가를 수신한 서브프레임이다. 또한, δD 또는 δU는 베이스라인 서브프레임으로부터 전진을 의미하는 음의 값을 또한 취할 수 있다.
여기에서 설명한 방법에 있어서, 릴레이 노드를 구성하기 위한 파라미터는 반정적으로 시그널링되거나 미리 구성될 수 있다. 릴레이가 시작될 때, 릴레이는 정규 UE로서 행동한다. 임의의 릴레이 특정 구성 파라미터는 무선 리소스 제어(RRC) 메시지를 통해 교환될 수 있다. 릴레이는 이 구성 정보를 이용하여 그 UE 아이덴티티로부터 릴레이 아이덴티티로 천이할 수 있다.
R8에 있어서, UL 전송을 위한 A/N은 DL PHICH 채널을 통해 시그널링된다. 릴레이 동작을 위하여, 이것은 최적이 아닐 뿐만 아니라 가능하지도 않을 수 있다. 릴레이 UL 백홀에 대한 A/N은 R-PDCCH를 통해 전송될 수 있다. R-PDCCH에 의해 운반되는 DCI 포맷은 A/N 정보를 포함하는 릴레이 특정 DCI 포맷의 확장형일 수 있다. 대안적으로, 1개 또는 수 개의 릴레이 노드에 대하여 A/N을 운반하는 특정 DCI 포맷이 생성될 수 있다. 이 DCI 포맷은 DCI 포맷이 A/N용으로 의도됨을 표시하는 특수 RNTI와 함께 R-PDCCH를 이용하여 전송될 수 있다. 또한, A/N 특정 R-PDCCH에 대한 더 높은 품질 필요조건을 서빙하기 위해, R-PDCCH는 UL 및 DL 허가용으로 사용된 R-PDCCH보다 더 높은 집성 레벨을 이용하여 낮은 코딩 레이트로 인코딩될 수 있다. 또한, 블라인드 디코딩 복잡도를 줄이기 위해, 이러한 R-PDCCH의 집성 레벨이 표준으로 특정될 수 있다.
지금까지 특징 및 요소들을 특수한 조합으로 설명하였지만, 이 기술에 통상의 지식을 가진 사람이라면 각 특징 또는 요소는 단독으로 또는 다른 특징 및 요소와 함께 임의의 조합으로 사용될 수 있다는 것을 이해할 것이다. 또한, 여기에서 설명한 방법들은 컴퓨터 또는 프로세서에 의해 실행되는 컴퓨터 판독가능 매체에 통합된 컴퓨터 프로그램, 소프트웨어 또는 펌웨어로 구현될 수 있다. 컴퓨터 판독가능 매체의 예로는 전자 신호(유선 또는 무선 접속을 통해 전송된 것) 및 컴퓨터 판독가능 기억 매체가 있다. 컴퓨터 판독가능 기억 매체의 비제한적인 예로는 읽기 전용 메모리(ROM), 랜덤 액세스 메모리(RAM), 레지스터, 캐시 메모리, 반도체 메모리 장치, 내부 하드 디스크 및 착탈식 디스크와 같은 자기 매체, 자기 광학 매체, 및 CD-ROM 디스크 및 디지털 다기능 디스크(DVD)와 같은 광학 매체가 있다. 프로세서는 소프트웨어와 연합해서 WTRU, UE, 단말기, 기지국, RNC, 또는 임의의 호스트 컴퓨터에서 사용되는 무선 주파수 송수신기를 구현할 수 있다.
Claims (20)
- 릴레이 물리적 다운링크 제어 채널(relay physical downlink control channel; R-PDCCH)을 수신하기 위해 릴레이 노드(relay node; RN)에서 구현되는 방법에 있어서,
MBSFN(MBMS[multimedia broadcast multicast service] single frequency network; 멀티미디어 방송 멀티캐스트 서비스 단일 주파수 네트워크) 서브프레임으로서 RN에 의해 구성된 서브프레임에서 eNB(evolved Node B; 진화형 노드 B)로부터의 R-PDCCH 전송(transmission)을 수신하는 단계; 및
R-PDCCH 비트를 디코딩하는 단계를 포함하고,
상기 R-PDCCH 비트는 OFDM(orthogonal frequency division multiplexing; 직교 주파수 분할 다중화) 심볼의 주파수 영역을 따라 첫번째로 맵핑되고, 하나 이상의 OFDM 심볼들에 걸쳐 시간 영역에서 두번째로 맵핑되는 것인, 릴레이 노드(RN)에서 구현되는 방법. - 제1항에 있어서,
상기 R-PDCCH 비트는 미리 정해진 갯수의 리소스 블록(resource block; RB)들에 맵핑되고, 상기 미리 정해진 갯수의 RB들은 무선 리소스 제어(radio resource control; RRC) 메시지에서 표시되는 것인, 릴레이 노드(RN)에서 구현되는 방법. - 제1항에 있어서,
상기 R-PDCCH 전송은, 상기 R-PDCCH 전송을 포함하는 상기 서브프레임에 다운링크 리소스 지정(assignment)이 또한 포함되어 있다는 것을 표시하는 것인, 릴레이 노드(RN)에서 구현되는 방법. - 제1항에 있어서,
상기 MBSFN 서브프레임으로서 상기 RN에 의해 구성된 상기 서브프레임에서 상기 R-PDCCH 전송과 물리적 다운링크 제어 채널(physical downlink control channel; PDCCH) 전송이 다중화되는 것인, 릴레이 노드(RN)에서 구현되는 방법. - 제1항에 있어서,
상기 R-PDCCH 전송은 시작 OFDM 심볼에서 개시되고, 상기 R-PDCCH 전송을 포함하는 상기 서브프레임에 포함된 상기 OFDM 심볼들의 부분집합상에서(on a subset) 수신되는 것인, 릴레이 노드(RN)에서 구현되는 방법. - 제5항에 있어서,
상기 시작 OFDM 심볼은 상기 R-PDCCH 전송을 포함한 상기 서브프레임의 제1 OFDM 심볼이 아닌 것인, 릴레이 노드(RN)에서 구현되는 방법. - 제1항에 있어서,
상기 R-PDCCH의 리소스 블록(RB) 할당(allocation)은 리소스 할당 유형 0, 리소스 할당 유형 1, 또는 리소스 할당 유형 2 중의 적어도 하나인 것인, 릴레이 노드(RN)에서 구현되는 방법. - 제7항에 있어서,
상기 R-PDCCH의 RB 할당은 유형 2의 리소스 할당이고, 분산된 가상 리소스 블록(virtual resource block; VRB)들의 할당을 포함한 것인, 릴레이 노드(RN)에서 구현되는 방법. - 릴레이 물리적 다운링크 제어 채널(relay physical downlink control channel; R-PDCCH)을 수신하는 릴레이 노드(relay node; RN)에 있어서,
MBSFN(MBMS[multimedia broadcast multicast service] single frequency network; 멀티미디어 방송 멀티캐스트 서비스 단일 주파수 네트워크) 서브프레임으로서 RN에 의해 구성된 서브프레임에서 진화형 노드 B(evolved Node B; eNB)로부터 R-PDCCH 전송(transmission)을 수신하도록 구성된 수신기와;
R-PDCCH 비트를 디코딩하도록 구성된 프로세서를 포함하고,
상기 R-PDCCH 비트는 OFDM(orthogonal frequency division multiplexing; 직교 주파수 분할 다중화) 심볼의 주파수 영역을 따라 첫번째로 맵핑되고 하나 이상의 OFDM 심볼들에 걸쳐 시간 영역에서 두번째로 맵핑되는 것인, 릴레이 노드(RN). - 제9항에 있어서,
상기 R-PDCCH 비트는 미리 정해진 갯수의 리소스 블록(resource block; RB)들에 맵핑되고, 상기 수신기는 또한 상기 미리 정해진 갯수의 RB들을 표시하는 무선 리소스 제어(radio resource control; RRC) 메시지를 수신하도록 구성된 것인, 릴레이 노드(RN). - 제9항에 있어서,
상기 R-PDCCH 전송은, 상기 R-PDCCH 전송을 포함하는 상기 서브프레임에 다운링크 리소스 지정(assignment)이 또한 포함되어 있다는 것을 표시하는 것인, 릴레이 노드(RN). - 제9항에 있어서,
상기 MBSFN 서브프레임으로서 상기 RN에 의해 구성된 상기 서브프레임에서 상기 R-PDCCH 전송과 물리적 다운링크 제어 채널(physical downlink control channel; PDCCH) 전송이 다중화되는 것인, 릴레이 노드(RN). - 제9항에 있어서,
상기 R-PDCCH 전송은 시작 OFDM 심볼에서 개시되고, 상기 R-PDCCH 전송을 포함하는 서브프레임에 포함된 상기 OFDM 심볼들의 부분집합상에서(on a subset) 수신되는 것인, 릴레이 노드(RN). - 제13항에 있어서,
상기 시작 OFDM 심볼은 상기 R-PDCCH 전송신호를 포함한 서브프레임의 제1 OFDM 심볼이 아닌 것인, 릴레이 노드(RN). - 제9항에 있어서,
상기 R-PDCCH의 리소스 블록(RB) 할당(allocation)은 리소스 할당 유형 0, 리소스 할당 유형 1, 또는 리소스 할당 유형 2 중 적어도 하나인 것인, 릴레이 노드(RN). - 제15항에 있어서,
상기 R-PDCCH에 대한 RB 할당은 유형 2의 리소스 할당이고 분산된 가상 리소스 블록(virtual resource block; VRB)의 할당을 포함한 것인, 릴레이 노드(RN). - 릴레이 물리적 다운링크 제어 채널(relay physical downlink control channel; R-PDCCH)을 전송하기 위한 진화형 노드 B(evolved Node B; eNB)에 있어서,
직교 주파수 분할 다중화(orthogonal frequency division multiplexing; OFDM) 심볼의 주파수 영역을 따라 첫번째로 맵핑되고, 하나 이상의 OFDM 심볼들에 걸쳐 시간 영역에서 두번째로 맵핑되는 복수의 R-PDCCH 비트를 코딩하고, 상기 복수의 R-PDCCH 비트를 변조하여 변조된 R-PDCCH 비트를 형성하도록 구성된 프로세서; 및
MBSFN(MBMS[multimedia broadcast multicast service] single frequency network; 멀티미디어 방송 멀티캐스트 서비스 단일 주파수 네트워크) 서브프레임으로서 릴레이 노드(relay node; RN)에 의해 구성된 서브프레임에서 상기 RN으로 R-PDCCH 전송(transmission)을 전송하도록 구성된 송신기
를 포함한 진화형 노드 B(eNB). - 삭제
- 삭제
- 삭제
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23412409P | 2009-08-14 | 2009-08-14 | |
US61/234,124 | 2009-08-14 | ||
US25615909P | 2009-10-29 | 2009-10-29 | |
US61/256,159 | 2009-10-29 | ||
PCT/US2010/045325 WO2011019916A1 (en) | 2009-08-14 | 2010-08-12 | Dl backhaul control channel design for relays |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020127016729A Division KR101792294B1 (ko) | 2009-08-14 | 2010-08-12 | 릴레이용 다운링크 백홀 제어 채널 설계 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120059549A KR20120059549A (ko) | 2012-06-08 |
KR101446400B1 true KR101446400B1 (ko) | 2014-10-01 |
Family
ID=43125626
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020127006418A KR101446400B1 (ko) | 2009-08-14 | 2010-08-12 | 릴레이용 다운링크 백홀 제어 채널 설계 |
KR1020127016729A KR101792294B1 (ko) | 2009-08-14 | 2010-08-12 | 릴레이용 다운링크 백홀 제어 채널 설계 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020127016729A KR101792294B1 (ko) | 2009-08-14 | 2010-08-12 | 릴레이용 다운링크 백홀 제어 채널 설계 |
Country Status (10)
Country | Link |
---|---|
US (5) | US8976806B2 (ko) |
EP (2) | EP2996276B1 (ko) |
JP (2) | JP5560332B2 (ko) |
KR (2) | KR101446400B1 (ko) |
CN (2) | CN105187113B (ko) |
DK (1) | DK2465320T3 (ko) |
HK (1) | HK1219822A1 (ko) |
IL (1) | IL218050A0 (ko) |
TW (1) | TWI494015B (ko) |
WO (1) | WO2011019916A1 (ko) |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2076066B1 (en) * | 2007-12-05 | 2013-07-17 | Nokia Siemens Networks Oy | Method for transmitting system information, and programme element, computer readable medium, base station and user equipment |
US8755807B2 (en) * | 2009-01-12 | 2014-06-17 | Qualcomm Incorporated | Semi-static resource allocation to support coordinated multipoint (CoMP) transmission in a wireless communication network |
US9673952B2 (en) | 2009-04-10 | 2017-06-06 | Qualcomm Inc. | Method and apparatus for supporting user equipments on different system bandwidths |
EP2446552B1 (en) * | 2009-06-24 | 2016-08-10 | Nokia Solutions and Networks Oy | Relay node and method for changing the timeslot type according to the received information |
WO2011008047A2 (ko) * | 2009-07-16 | 2011-01-20 | 엘지전자 주식회사 | 무선 통신 시스템에서 릴레이 백홀 링크를 위한 제어 채널 송수신 방법 및 장치 |
US8837347B2 (en) * | 2009-07-17 | 2014-09-16 | Lg Electronics Inc. | Method and apparatus for transmitting reference signal in wireless communication system including relay station |
CN102036262A (zh) * | 2009-09-25 | 2011-04-27 | 中兴通讯股份有限公司 | 一种下行控制信息的检测方法和装置 |
CN102036398B (zh) * | 2009-09-29 | 2015-06-03 | 中兴通讯股份有限公司 | 一种中继节点及其传输数据的方法 |
WO2011053009A2 (ko) * | 2009-10-28 | 2011-05-05 | 엘지전자 주식회사 | 기지국으로부터 제어정보를 수신하는 중계기 장치 및 그 방법 |
US9014080B2 (en) * | 2009-10-30 | 2015-04-21 | Qualcomm Incorporated | Apparatus and method for providing relay backhaul communications in a wireless communication system |
US9276710B2 (en) * | 2009-12-21 | 2016-03-01 | Qualcomm Incorporated | Method and apparatus for resource allocation with carrier extension |
US8594010B2 (en) * | 2010-01-11 | 2013-11-26 | Qualcomm Incorporated | Apparatus and method for physical control format indicator channel (PCFICH) information sharing over relay backhaul link |
GB201000449D0 (en) | 2010-01-12 | 2010-02-24 | Nec Corp | Relay communication system |
WO2011093644A2 (en) | 2010-01-26 | 2011-08-04 | Lg Electronics Inc. | Method and apparatus for allocating resources in a wireless communication system |
US20110194511A1 (en) * | 2010-02-10 | 2011-08-11 | Qualcomm Incorporated | Multi-user control channel assignment |
US9065533B2 (en) * | 2010-03-11 | 2015-06-23 | Nokia Solutions And Networks Oy | Optimized signaling in relay-enhanced access networks |
US20130035033A1 (en) * | 2010-03-15 | 2013-02-07 | Henning Sanneck | Relay Nodes |
US9654265B2 (en) | 2010-04-08 | 2017-05-16 | Qualcomm Incorporated | Systems, apparatus and methods to facilitate transmission of acknowledgement signals in wireless communication systems |
WO2011127404A2 (en) * | 2010-04-09 | 2011-10-13 | Huawei Technologies Co., Ltd. | System and method for transmitting control information |
US9197363B2 (en) * | 2010-04-13 | 2015-11-24 | Lg Electronics Inc. | Method and device for receiving downlink signal |
AU2011241357B2 (en) * | 2010-04-14 | 2014-12-18 | Lg Electronics Inc. | Method for setting a search space for a relay node in a wireless communication system and apparatus for same |
US9210736B2 (en) * | 2010-04-22 | 2015-12-08 | Lg Electronics Inc. | Method for transceiving signals between a base station and a relay node in a wireless communication system, and apparatus for same |
AU2011251032B2 (en) * | 2010-05-14 | 2015-07-23 | Lg Electronics Inc. | Method for allocating resources in a wireless communication system and a device for the same |
CN102281636B (zh) * | 2010-06-12 | 2016-04-13 | 中兴通讯股份有限公司 | 中继链路的物理下行控制信道的资源分配方法及系统 |
US8787304B2 (en) * | 2010-06-22 | 2014-07-22 | Acer Incorporated | Method for reference signal pattern allocation and related communication device |
US8548514B2 (en) * | 2010-08-11 | 2013-10-01 | Lg-Ericsson Co., Ltd. | Method for resource element group downsizing of R-PDCCH and mobile telecommunication system for the same |
US9185711B2 (en) | 2010-09-14 | 2015-11-10 | Qualcomm Incorporated | Method and apparatus for mitigating relay interference |
CN102480347B (zh) * | 2010-11-23 | 2015-06-03 | 中兴通讯股份有限公司 | 中继链路子帧配置切换时确认信息的反馈方法及装置 |
EP2649852A4 (en) * | 2010-12-08 | 2016-11-09 | Nokia Technologies Oy | MACHINE-TO-MACHINE COMMUNICATION SCENARIO |
US8902833B2 (en) * | 2010-12-23 | 2014-12-02 | Qualcomm Incorporated | System and method for performing a radio link control (RLC) reset in a downlink multipoint system |
US9198094B2 (en) * | 2011-02-24 | 2015-11-24 | Lg Electronics Inc. | Method for setting search space for handover of relay node in wireless communication system, and device therefor |
GB2491335A (en) * | 2011-03-24 | 2012-12-05 | Wireless Tech Solutions Llc | A relay node receives broadcast data on a first channel and retransmits the broadcast data on a second channel |
CN102143597B (zh) * | 2011-03-31 | 2014-02-05 | 电信科学技术研究院 | 下行数据的传输方法和设备 |
WO2012150827A2 (ko) * | 2011-05-04 | 2012-11-08 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말이 ack/nack 응답을 송신하는 방법 및 이를 위한 장치 |
CN102843701B (zh) * | 2011-06-21 | 2018-02-13 | 爱立信(中国)通信有限公司 | 时分双工通信网络中的中继部署方法和设备 |
US8526961B2 (en) | 2011-06-29 | 2013-09-03 | Alcatel Lucent | Method and apparatus for mapping operating parameter in coverage area of wireless network |
CN102264136B (zh) * | 2011-08-08 | 2017-02-15 | 中兴通讯股份有限公司 | 一种控制信道资源配置方法及配置装置 |
US9474080B2 (en) | 2011-08-17 | 2016-10-18 | CBF Networks, Inc. | Full duplex backhaul radio with interference measurement during a blanking interval |
US8422540B1 (en) | 2012-06-21 | 2013-04-16 | CBF Networks, Inc. | Intelligent backhaul radio with zero division duplexing |
US10051643B2 (en) | 2011-08-17 | 2018-08-14 | Skyline Partners Technology Llc | Radio with interference measurement during a blanking interval |
US8761100B2 (en) * | 2011-10-11 | 2014-06-24 | CBF Networks, Inc. | Intelligent backhaul system |
US9049611B2 (en) | 2011-08-17 | 2015-06-02 | CBF Networks, Inc. | Backhaul radio with extreme interference protection |
US9713019B2 (en) | 2011-08-17 | 2017-07-18 | CBF Networks, Inc. | Self organizing backhaul radio |
US10716111B2 (en) | 2011-08-17 | 2020-07-14 | Skyline Partners Technology Llc | Backhaul radio with adaptive beamforming and sample alignment |
US8238318B1 (en) | 2011-08-17 | 2012-08-07 | CBF Networks, Inc. | Intelligent backhaul radio |
US8502733B1 (en) | 2012-02-10 | 2013-08-06 | CBF Networks, Inc. | Transmit co-channel spectrum sharing |
US10548132B2 (en) | 2011-08-17 | 2020-01-28 | Skyline Partners Technology Llc | Radio with antenna array and multiple RF bands |
US8385305B1 (en) | 2012-04-16 | 2013-02-26 | CBF Networks, Inc | Hybrid band intelligent backhaul radio |
US10764891B2 (en) | 2011-08-17 | 2020-09-01 | Skyline Partners Technology Llc | Backhaul radio with advanced error recovery |
US8982772B2 (en) | 2011-08-17 | 2015-03-17 | CBF Networks, Inc. | Radio transceiver with improved radar detection |
US8989762B1 (en) | 2013-12-05 | 2015-03-24 | CBF Networks, Inc. | Advanced backhaul services |
US10708918B2 (en) | 2011-08-17 | 2020-07-07 | Skyline Partners Technology Llc | Electronic alignment using signature emissions for backhaul radios |
US8467363B2 (en) | 2011-08-17 | 2013-06-18 | CBF Networks, Inc. | Intelligent backhaul radio and antenna system |
US8928542B2 (en) | 2011-08-17 | 2015-01-06 | CBF Networks, Inc. | Backhaul radio with an aperture-fed antenna assembly |
US9788327B2 (en) * | 2011-11-14 | 2017-10-10 | Qualcomm Incorporated | Methods and apparatus for reducing interference in a heterogeneous network |
US8606286B2 (en) * | 2012-01-16 | 2013-12-10 | Blackberry Limited | E-PDCCH design for reducing blind decoding |
CN103220102B (zh) * | 2012-01-21 | 2016-12-28 | 华为技术有限公司 | 控制信令的传输方法和设备 |
US9215058B2 (en) | 2012-03-06 | 2015-12-15 | Blackberry Limited | Enhanced PHICH transmission for LTE-advanced |
US9198181B2 (en) | 2012-03-19 | 2015-11-24 | Blackberry Limited | Enhanced common downlink control channels |
USD704174S1 (en) | 2012-08-14 | 2014-05-06 | CBF Networks, Inc. | Intelligent backhaul radio with symmetric wing radome |
EP3713144B1 (en) | 2012-09-27 | 2021-11-03 | Huawei Technologies Co., Ltd. | Method and apparatus for allocating control channel candidates |
US9077432B2 (en) * | 2012-10-12 | 2015-07-07 | Institute For Information Industry | Two-way relay, wireless apparatus and signal processing method thereof |
KR101668208B1 (ko) * | 2012-10-31 | 2016-10-20 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 무선 링크 설정 방법, 장치 및 시스템 |
US9407302B2 (en) * | 2012-12-03 | 2016-08-02 | Intel Corporation | Communication device, mobile terminal, method for requesting information and method for providing information |
TWI479828B (zh) * | 2013-05-24 | 2015-04-01 | Univ Nat Chiao Tung | 應用於多輸入多輸出通訊系統之雙向中繼傳輸之裝置及方法 |
EP3346789B1 (en) * | 2013-06-17 | 2019-11-20 | Alcatel Lucent | Base station and method of operating a base station |
CN106489254B (zh) * | 2015-06-24 | 2020-02-28 | 海能达通信股份有限公司 | 宽带集群系统中的业务接入控制方法、装置及集群终端 |
CN112994865B (zh) * | 2015-07-30 | 2024-05-31 | 苹果公司 | 用于通信的装置、方法和计算机可读介质 |
CN106506424B (zh) * | 2015-09-07 | 2019-07-23 | 普天信息技术有限公司 | 中继回传链路的控制信道传输方法 |
WO2017142901A1 (en) * | 2016-02-15 | 2017-08-24 | Spidercloud Wireless, Inc. | Methods for centralized channel selection across different cells in a radio access network |
CN108702238B (zh) * | 2016-02-16 | 2021-09-07 | 苹果公司 | 在物理上行链路共享信道上复用上行链路控制信息和数据 |
WO2017193397A1 (zh) * | 2016-05-13 | 2017-11-16 | 华为技术有限公司 | 一种传输资源映射方法及设备 |
FR3053192A1 (fr) * | 2016-06-23 | 2017-12-29 | Orange | Procede de transmission d'un signal numerique pour un systeme a au moins un relais half-duplex dynamique a logique selective, produit programme et dispositif relais correspondants |
CA3032245C (en) * | 2016-08-01 | 2023-04-25 | Nokia Technologies Oy | On the usage of control resources for data transmission |
WO2018090193A1 (zh) * | 2016-11-15 | 2018-05-24 | 华为技术有限公司 | 支持eMBMS的方法、MCE、基站和终端 |
CN106793116B (zh) * | 2016-12-20 | 2019-11-05 | 南京邮电大学 | 基于物理层网络编码的自回程异构蜂窝虚拟资源优化方法 |
CN108631992B (zh) | 2017-03-24 | 2021-12-17 | 华为技术有限公司 | 资源处理方法和装置 |
CN108811097B (zh) * | 2017-05-02 | 2021-02-23 | 华为技术有限公司 | 资源指示方法及通信设备 |
US10015717B1 (en) * | 2017-10-25 | 2018-07-03 | Sprint Spectrum Lp | Cell reselection priority based on properties of communication bands |
CN109831809B (zh) | 2017-11-23 | 2023-02-10 | 华为技术有限公司 | 一种调度的方法及设备 |
EP3718371A1 (en) * | 2017-11-30 | 2020-10-07 | Nokia Technologies Oy | Method and apparatus for backhaul in 5g networks |
US10432295B2 (en) | 2018-01-11 | 2019-10-01 | At&T Intellectual Property I, L.P. | Radio link control layer based relaying for integrated access and backhaul transmissions in wireless networks |
US11064392B2 (en) * | 2018-03-15 | 2021-07-13 | Qualcomm Incorporated | Resource partitioning between access and backhaul communication links |
CN110691416B (zh) * | 2018-07-05 | 2023-06-09 | 华为技术有限公司 | 一种资源调度的方法和装置 |
US11824620B2 (en) | 2019-09-05 | 2023-11-21 | Qualcomm Incorporated | Remote unit with a configurable mode of operation |
US11671168B2 (en) * | 2019-09-05 | 2023-06-06 | Qualcomm Incorporated | Relay with a configurable mode of operation |
CN118435643A (zh) * | 2021-12-27 | 2024-08-02 | 株式会社Ntt都科摩 | 无线中继装置、通信装置以及无线中继方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050033996A (ko) * | 2003-10-07 | 2005-04-14 | 삼성전자주식회사 | 이동 통신 시스템에서 채널 수신 장치 및 방법 |
CN1956354A (zh) * | 2005-10-26 | 2007-05-02 | 华为技术有限公司 | 一种无线中转通信系统及实现方法 |
JP4871957B2 (ja) * | 2005-11-02 | 2012-02-08 | ノキア コーポレイション | 中継ノード用におけるサブチャネル割り当て方法 |
BRPI0620674A2 (pt) | 2005-12-13 | 2011-11-22 | Lg Electronics Inc | método de comunicação usando estação retransmissora em um sistema de comunicação móvel |
WO2007125406A2 (en) * | 2006-05-01 | 2007-11-08 | Nokia Corporation | Apparatus, method and computer program product providing uplink synchronization through use of dedicated uplink resource assignment |
MX2009003608A (es) * | 2006-10-02 | 2009-04-22 | Lg Electronics Inc | Metodo para transmitir una señal de control de enlace descendente. |
KR101049138B1 (ko) * | 2007-03-19 | 2011-07-15 | 엘지전자 주식회사 | 이동 통신 시스템에서, 수신확인신호 수신 방법 |
US9344259B2 (en) * | 2007-06-20 | 2016-05-17 | Google Technology Holdings LLC | Control channel provisioning and signaling |
US7924755B2 (en) * | 2007-09-14 | 2011-04-12 | Sharp Laboratories Of America, Inc. | Systems and methods for restricting the location of control information in physical layer signaling |
KR101376233B1 (ko) | 2007-10-02 | 2014-03-21 | 삼성전자주식회사 | 주파수 분할 다중 접속 방식의 시스템에서 제어 채널의자원 할당 장치 및 방법 |
US8504091B2 (en) * | 2008-02-01 | 2013-08-06 | Qualcomm Incorporated | Interference mitigation for control channels in a wireless communication network |
CN102113238B (zh) * | 2008-07-30 | 2015-03-18 | Lg电子株式会社 | 无线通信系统中的中继站及其操作方法 |
WO2010013963A2 (en) * | 2008-07-30 | 2010-02-04 | Lg Electronics Inc. | Method and apparatus of transmitting control information in wireless communication system |
US8107547B2 (en) * | 2008-11-17 | 2012-01-31 | Texas Instruments Incorporated | Receivers for embedded ACK/NAK in CQI reference signals in wireless networks |
EP2372927A4 (en) | 2008-12-24 | 2016-06-01 | Lg Electronics Inc | RESOURCE ALLOCATION METHOD FOR RELAY |
EP2398160B1 (en) * | 2009-02-11 | 2018-11-21 | LG Electronics Inc. | Method for transmitting an uplink signal and feedback information, and relay apparatus using the method |
CA2755223C (en) * | 2009-03-13 | 2016-06-28 | Research In Motion Limited | Relay link control channel design |
US8537724B2 (en) * | 2009-03-17 | 2013-09-17 | Motorola Mobility Llc | Relay operation in a wireless communication system |
US9839001B2 (en) * | 2009-03-23 | 2017-12-05 | Apple Inc. | Methods and apparatus for optimizing paging mechanisms and publication of dynamic paging mechanisms |
GB2469689A (en) | 2009-04-24 | 2010-10-27 | Nec Corp | Relay communications system |
EP2448147A4 (en) * | 2009-06-26 | 2016-06-01 | Lg Electronics Inc | DEVICE FOR TRANSMITTING AND RECEIVING CONTROL DATA FOR A REPEATER, AND ASSOCIATED METHOD |
-
2010
- 2010-08-12 WO PCT/US2010/045325 patent/WO2011019916A1/en active Application Filing
- 2010-08-12 KR KR1020127006418A patent/KR101446400B1/ko active IP Right Grant
- 2010-08-12 KR KR1020127016729A patent/KR101792294B1/ko active IP Right Grant
- 2010-08-12 CN CN201510418989.2A patent/CN105187113B/zh active Active
- 2010-08-12 DK DK10762780.4T patent/DK2465320T3/en active
- 2010-08-12 EP EP15189998.6A patent/EP2996276B1/en active Active
- 2010-08-12 JP JP2012524871A patent/JP5560332B2/ja active Active
- 2010-08-12 CN CN201080036117.5A patent/CN102577568B/zh active Active
- 2010-08-12 US US12/855,331 patent/US8976806B2/en active Active
- 2010-08-12 EP EP10762780.4A patent/EP2465320B1/en active Active
- 2010-08-13 TW TW099127096A patent/TWI494015B/zh active
-
2012
- 2012-02-12 IL IL218050A patent/IL218050A0/en unknown
-
2014
- 2014-06-09 JP JP2014118843A patent/JP2014212529A/ja active Pending
-
2015
- 2015-02-13 US US14/621,724 patent/US9756550B2/en active Active
-
2016
- 2016-07-05 HK HK16107754.3A patent/HK1219822A1/zh unknown
-
2017
- 2017-06-29 US US15/636,823 patent/US10660011B2/en active Active
-
2020
- 2020-04-17 US US16/851,461 patent/US11419036B2/en active Active
-
2022
- 2022-08-11 US US17/885,629 patent/US12004070B2/en active Active
Non-Patent Citations (2)
Title |
---|
NEC Group, "Control Structure for Relay Type 1 nodes", 3GPP TSG-RAN WG1 #57b, R1-092965, 29 June 2009.. * |
ZTE, "Control Channel of Backhaul Link", 3GPP TSG-RAN WG1 #57b, R1-092468, 29 June 2009.. * |
Also Published As
Publication number | Publication date |
---|---|
US20150163722A1 (en) | 2015-06-11 |
JP5560332B2 (ja) | 2014-07-23 |
US20110103292A1 (en) | 2011-05-05 |
CN102577568A (zh) | 2012-07-11 |
EP2996276A1 (en) | 2016-03-16 |
IL218050A0 (en) | 2012-04-30 |
CN102577568B (zh) | 2015-08-12 |
US9756550B2 (en) | 2017-09-05 |
KR101792294B1 (ko) | 2017-10-31 |
EP2996276B1 (en) | 2018-12-05 |
EP2465320A1 (en) | 2012-06-20 |
US11419036B2 (en) | 2022-08-16 |
US8976806B2 (en) | 2015-03-10 |
TW201114312A (en) | 2011-04-16 |
JP2014212529A (ja) | 2014-11-13 |
US20220386218A1 (en) | 2022-12-01 |
EP2465320B1 (en) | 2015-10-21 |
US10660011B2 (en) | 2020-05-19 |
US20200245220A1 (en) | 2020-07-30 |
KR20120101475A (ko) | 2012-09-13 |
KR20120059549A (ko) | 2012-06-08 |
WO2011019916A1 (en) | 2011-02-17 |
CN105187113B (zh) | 2018-06-29 |
JP2013502166A (ja) | 2013-01-17 |
CN105187113A (zh) | 2015-12-23 |
TWI494015B (zh) | 2015-07-21 |
US20170303183A1 (en) | 2017-10-19 |
HK1219822A1 (zh) | 2017-04-13 |
DK2465320T3 (en) | 2016-01-04 |
US12004070B2 (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12004070B2 (en) | DL backhaul control channel design for relays | |
JP6260880B2 (ja) | 送信装置及び送信方法 | |
TWI755481B (zh) | 具有對時槽內躍頻的支援的單時槽短pucch | |
US9125188B2 (en) | Carrier aggregation of carriers with subframe restrictions | |
CN113615117A (zh) | 用于多源传输的码分复用(cdm)组 | |
WO2019195505A1 (en) | Control information signaling and procedure for new radio (nr) vehicle-to-everything (v2x) communications | |
CN109952728B (zh) | 用于新无线电的控制信道 | |
US20120236783A1 (en) | Repeater apparatus for simultaneously transceiving signals in a wireless communication system, and method for same | |
KR20140064858A (ko) | 백홀 중계기의 다중입력 다중출력(mimo) 증강 | |
WO2012149673A1 (en) | Methods, devices and computer program products for interference reduction in tdd systems allowing allocation of flexible subframes for uplink or downlink transmission | |
US9025515B2 (en) | Method for transmitting signals in a communication system including a relay station | |
WO2024145559A1 (en) | Method and apparatus for pusch or pdsch scheduling on a plurality of cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190918 Year of fee payment: 6 |