KR101434112B1 - Multi-purpose water-solube metalworking fluids for metal surface treatment before painting and method thereof - Google Patents

Multi-purpose water-solube metalworking fluids for metal surface treatment before painting and method thereof Download PDF

Info

Publication number
KR101434112B1
KR101434112B1 KR1020130107688A KR20130107688A KR101434112B1 KR 101434112 B1 KR101434112 B1 KR 101434112B1 KR 1020130107688 A KR1020130107688 A KR 1020130107688A KR 20130107688 A KR20130107688 A KR 20130107688A KR 101434112 B1 KR101434112 B1 KR 101434112B1
Authority
KR
South Korea
Prior art keywords
metal
treated
sample
except
changed
Prior art date
Application number
KR1020130107688A
Other languages
Korean (ko)
Inventor
박찬동
오승욱
Original Assignee
박찬동
오승욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박찬동, 오승욱 filed Critical 박찬동
Priority to KR1020130107688A priority Critical patent/KR101434112B1/en
Application granted granted Critical
Publication of KR101434112B1 publication Critical patent/KR101434112B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The present invention relates to a composition solution. Elements of the composition have a lubricant effect, a cooling effect, cutting chip generating and eliminating properties, and rust-resistant properties, which are properties unique to water-soluble cutting oil. The composition solution includes at least one metal ion of tungsten, molybdenum, silicon, magnesium, vanadium, zirconium, titanium, and hafnium which are eco-friendly and have excellent durability, corrosion resistance, and heat resistance. The composition is produced by mixing and reacting fluoride as an etching agent for a metal surface, a silane coupling hydrolyzate enhancing adhesiveness, and copper ions as metal catalysts. The composition prevents formation of heavy metal sludge, formed in an existing pretreatment process; phosphate, factors for eutrophication of river and water streams, is not used for the composition solution. Therefore, the composition solution is eco-friendly.

Description

도장하지용 금속표면처리 복합수용성절삭유 및 그 전처리방법{MULTI-PURPOSE WATER-SOLUBE METALWORKING FLUIDS FOR METAL SURFACE TREATMENT BEFORE PAINTING AND METHOD THEREOF}TECHNICAL FIELD [0001] The present invention relates to a metal-surface-treated composite water-soluble cutting oil and a pretreatment method thereof. [0002] MULTI-PURPOSE WATER-SOLUBE METALWORKING FLUIDS FOR METAL SURFACE TREATMENT [

공작기계에 사용되는 절삭유제는 금속의 절삭 및 연삭가공 등에 사용되며, 일반적으로 수용성(solulbe)/비수용성(inolulbe)과 준합성(semisynthetic)/합성(synthetic)으로 구분하고, 주성분은 기유(base oil : 합성유는 기유를 포함하지 않음)와 다양한 첨가제(additive)를 혼합된 조성물용액으로 구성성분의 용해와 농도희석제인 물, 안정제, 소포제, 방식제, 방부제, 계면활성제, 알카리제, 지방산, 무기염, 합성에스테르, 광물류 등으로 구성되어 있다.
절삭유제 중 수용성절삭유는 주성분이 광유와 계면활성제의 함유량에 따라 희석된 수용액 외관이 백탁인 에멀젼타입과 희석액이 투명, 반투명인 솔루블타입으로 분류되며, 공작기계의 가공조건, 공구 및 피삭재의 재질과 가공종류(내면 브로칭, 파이프태핑과 나사가공, 외면 브로칭과 연삭, 리밍, 드릴링, 보오링, 호빙, 밀링, 선삭, 쏘오밍 등)에 따라 절삭유제의 특성인 냉각작용, 마찰-윤활작용, 구성인선의 억제 및 제어, 방청-방식작용, 칩의 생성과 배제작용 등의 작용으로 가공의 능률화, 정밀도의 향상, 공구수명의 연장되어 제품에서 요구되는 균일한 치형, 치수를 유지로 품질향상과 생산성 향상에 기여할 수 있으며, 본 발명용액조성물은 에멀젼타입, 솔루블타입, 케미칼(신세틱)타입 중에서 에멀젼타입의 수용성절삭유제에 관한 것이다 .
공작기계인 CNC(Computerized Numerical Control)등으로 피삭된 금속소재는 가공작업이 종결된 후 최종제품 특성에 적합토록 열처리공정이나 방청 또는 사용자의 용도에 맞도록 열처리나 방청만으로 장기적인 내식성, 내후성, 상품성을 부여 할 수 없어 페인트처리가 필요하고, 도장을 위해서는 12∼14개의 전처리공정(인산아연염피막, 크로메이트등)와 페인트처리 등의 공정을 거쳐 제품화된다.
상기에서와 같이 피삭 완료된 금속소재의 도장을 위해서는 별도의 복잡한 전처리공정으로 피삭표면에 금속피막염을 형성시켜 도장하지용 금속표면을 제공하나 금속소재 피삭시 본발명 조성물용액을 사용하면 금속소재 피삭과 동시에 친환경적인 피막금속염이 형성되므로 전처리공정 중의 화성피막 공정없이 단지 탈지, 수세 공정만으로 도장하지용 금속표면을 제공할 수 있다. 이러한 공정단축과 편리성을 제공하기 위해서 수용성 절삭유 중의 에멀젼타입의 수용성 절삭유제의 기능과 특성을 가진 구성성분과 복합금속실란피막염결정(이하 금속피막염)을 형성시키기 위해 에칭제, 금속반응촉진제, 금속피막염, 금속피막염의 밀착증진제등의 성분을 추가하여 적절히 혼합, 반응시킨 본 발명조성물용액을 공작기계의 에멀젼타입의 수용성절삭유제로 사용하면 금속표면피삭 부위에 에멀젼타입의 수요성절삭유제 특성인 윤활작용과 냉각작용, 절삭칩의 생성과 배제, 방청성등의 특성외에 금속피막염을 형성시킴으로써, 종래의 소재금속 피삭 후 1214개의 공정인 도 3, 도 4를 도 5의 단축된 공정만으로 피삭된 금속표면을 도장하지용으로 사용할 수 있는 새로운 에멀젼타입의 수용성 복합절삭유에 대한 것이며, 종래의 도장을 위한 전처리공정중의 산에칭(Deoxidation)과 피막공정 중에 발생되는 인체 유해중금속과 그 금속염슬러지 등의 발생이 없어 작업자가 인체 유해중금속과 접촉이 없고, 환경유해금속을 배제한 청정한 작업장 확보와 처리 공정수가 단축되어 운용비용절감, 이산화탄소 발생량 감소, 전처리와 도장설비의 초기 투자비용 절감 등의 효과로 경쟁력을 갖는 효과가 있다.
Cutting oil used in machine tools is used for cutting and grinding of metals. It is generally divided into solulbe / inolulbe and semisynthetic / synthetic. The main ingredient is base oil, synthetic oil does not contain base oil) and a variety of additives. It is composed of water, stabilizer, antifoaming agent, antiseptic, antiseptic, surfactant, alkaline agent, fatty acid, inorganic Salts, synthetic esters, and minerals.
The water-soluble cutting oil in the cutting oil is classified into a transparent and translucent soluble type in which the emulsion type and the dilution solution in which the main component is diluted according to the content of the mineral oil and the surfactant are opaque and the appearance is opaque. The processing conditions of the machine tool, And cooling-action, friction-lubrication characteristics of cutting oil according to machining type (inner broaching, pipe tapping and threading, outer surface broaching and grinding, reaming, drilling, boring, hobbing, milling, turning, It is the quality of the product to maintain the uniform tooth shape and dimension required by the product by streamlining the processing, improving the precision and improving the tool life by the action of suppression and control of constituent wire, anti-corrosive action, And improvement of productivity. The solution composition of the present invention relates to a water-soluble cutting oil of the emulsion type among the emulsion type, the soluble type and the chemical (syngetic) type.
The metal material machined by machine tool CNC (Computerized Numerical Control), etc., is suitable for final product characteristics after finishing the work. It is suitable for the heat treatment process, rust prevention or user's use, It can not be applied and it needs to be painted. For painting, 12 to 14 pre-treatment steps (zinc phosphate salt coating, chromate etc.) and paint treatment are applied to the product.
In order to paint the machined metal material as described above, a metal coating salt is formed on the machined surface by a separate complicated pretreatment process, but when the metal composition is machined, when the composition solution of the present invention is used, At the same time, since an environmentally friendly coating metal salt is formed, a metal surface for coating can be provided only by a degreasing process and a water washing process without a chemical conversion coating process in a pretreatment process. In order to shorten the process and to provide convenience, an etching agent, a metal reaction accelerator (hereinafter, referred to as " metal salt ") is preferably added to form a composite metal silane film salt crystal , Metal film salt, adhesion promoter of metal film salt, and the like, and appropriately mixed and reacted with the solution of the present invention as a water-soluble cutting oil of an emulsion type of a machine tool, 3 and 4, which are 1214 processes after conventional metal work, can be obtained by cutting only the shortened process of Fig. 5 by forming a metal coating salt in addition to the characteristics of lubrication and cooling, lubrication and elimination of cutting chips, Is a new emulsion type water-soluble complex cutting oil which can be used for coating a metal surface, No deoxidation during processing and no harmful heavy metals and metal salt sludge generated during coating process. Workers do not contact with harmful heavy metals, ensuring clean workplace excluding environmentally harmful metals and shortening the number of processing steps. It has the effect of reducing operating costs, reducing the amount of carbon dioxide generated, and reducing the initial investment cost of pretreatment and painting equipment.

종래의 금속소재의 표면 가공후 도장하지용 금속 전처리방법은 철소재의 인산아연염피막공정과 알루미늄과 같은 비철금속에 적용되는 크로메이트처리 등이 도장제품의 내식성과 부착성, 내구성을 향상시키기 위한 대표적인 전처리방법이었으며, 그 처리공정수는 도 3, 도 4에서와 같이 12∼14개의 공정이 필요하였다.
인산아연염피막의 주성분은 인산과 질산, 불소화합물, 아연, 니켈, 망간 등이며, 대부분 중금속 슬러지를 발생시켜, 환경오염의 주 원인되는 물질을 사용하였고, 비철금속 표면처리에 사용되는 크로메이트처리(Chromate treatment)은 인산아연염피막(Zinc phosphating)에서 발생되는 중금속(니켈등)보다 독성이 강한 크롬(3가, 6가 크롬)과 그 금속염을 발생시켜 환경오염에 문제가 되어 오고 있다.
또한 상기의 대표적인 두 표면처리공정은 초기 설비 투자비용이 과다하고, 운용비용 지속과 작업자가 유해한 환경에서 중금속에 노출되며, 발생된 폐수는 하천 및 환경오염을 유발하는 물질을 함유하고 있어서, 종래의 방법보다 효율적이고 친환경적인 새로운 금속피막염 조성물 적용과 처리공정의 간소화와 보다 친환경적이고 저렴한 비용의 대체 방법이나 신규 약품조성물이 필요하였다.
이러한 문제를 해결하기 위해 본 발명용액 조성물은 상기에 언급된 에멀젼타입의 수용성절삭유제의 구성성분과 친환경적인 금속인 텅스텐, 몰리브덴, 규소, 마그네슘, 바나듐, 지르코늄, 티타늄, 하프늄등 내식성과 내구성, 내열성이 강한 친환경적인 금속염류을 혼합, 반응하여 적절한 조건으로 조정된 용액을 금속피삭공정에 에멀젼타입의 수용성절삭유제로 사용하면 금속소재 피삭중에 절삭유제의 기능을 유지하면서, 금속표면에서는 조성물용액내 불소에 의한 에칭으로 접촉계면의 국부적인 수소이온농도지수(pH)가 상승되면서 상기의 친환경적인 금속 중 하나 이상이 불소화합물이나 수산화물, 산화물 형태의 불용성 화합물의 피막 물질을 형성하여 금속표면에 석출되고, 이러한 석출물은 실란커플링 가수분해물에 의해 밀착력과 내식성이 향상된 것으로서, 발명 조성물용액이 강판 표면에서 석출되는 화학반응은 아래와 같을 것으로 추정된다.
▶ 종래의 금속 피막염 형성메카니즘 : 인산아연염피막, 크롬피막
▷ 인산아연피막 형성 메카니즘 - 재질 : CR(SPCC)
Fe + 2H3PO4 ------- Fe(H2PO4)2 + H2
(금속) (피막용액 중의 산) |
| ( O : 촉진제로부터 산소공급)
|----→ FePO4 + H3PO4 + 1/2H2O
슬러지(니켈,망간,아연 슬러지포함)
3Zn(H2PO4)2 ------- 3Zn3(H2PO4)2.H2O + 4H3PO4
(피막용액) 인산아연염피막(Hopeite)
Fe + 2Zn(H2PO4)2--- 3Zn2Fe(H2PO4)2.4H2O + 2H3PO4+ H2O
인산아연염피막(Phosphophyllite)
▷ 크로메이트 피막 형성 메카니즘 - 재질 : AL
2AL + Cr2O7 -2 + 14H+ → 2AL+3 + 2Cr+3 + 7H2O
Cr(OH)3 + CrO3 Cr(OH)3. Cr(OH). CrO4 + H2O
크롬피막
발명 조성물의 피막 형성 메카니즘(절삭유제의 알카리부위기에서)
H2SiF6 + 2NaOH Na2SiF6 + H2O
Na2SiF6 + 4NaOH 6NaF + SiO + 2H2O

H2ZrF6 + 2NaOH Na2ZrF6 + H2O
Na2ZrF6 + 4NaOH 6NaF + ZrO+ 2 H2O

에멀젼타입의 수용성 절삭유제내에서 금속과 실란가수분해물의 반응 메카니즘
실란의 가수분해, 축합반응(실란의 가수분해물)

Figure 112014059932782-pat00036


실란의 가수분해물과 금속이온의 반응 형성물
Figure 112014059932782-pat00037

금속표면에서 실란의 가수분해물과 금속이온의 복합 Complex 형성
Figure 112014059932782-pat00038

상기 R은 페인트와 결합됨
상기와 같은 금속염피막이 소재금속에 석출시 인산아연피막염의 입자크기는 1~15㎛, 크로메이트 0.15~0.25㎛이나, 발명조성물용액으로 처리된 피막입자크기는 70㎛ 이하의 박막의 나노 결정성입자로 소지 금속표면에 석출, 형성, 밀착되어 기존의 인산아연염피막이나 크로메이트 처리 제품 대비 내식성과 밀착성, 내구성, 내열성이 향상된 도장하지용 금속피막염을 제공한다.Conventional metal pretreatment methods for metal surfaces after surface treatment of metal materials include zinc phosphate salt coating of iron material and chromate treatment applied to non-ferrous metals such as aluminum are typical pretreatment for improving corrosion resistance, adhesion and durability of painted products And the number of the process steps required 12 to 14 processes as shown in FIG. 3 and FIG.
The major components of zinc phosphate coatings are phosphoric acid, nitric acid, fluorine compounds, zinc, nickel, manganese, etc. Most of them produce heavy metal sludge and used the main cause of environmental pollution. Chromate treatment used for surface treatment of nonferrous metal treatment has been causing environmental pollution by generating chromium (trivalent, hexavalent chromium) and its metal salts, which are more toxic than heavy metals (such as nickel) generated in zinc phosphating baths.
In addition, the above two typical surface treatment processes are exposed to heavy metals in the initial facility investment cost, maintenance cost and worker harmful environment, and the generated wastewater contains substances that cause river and environmental pollution, A more efficient and environmentally friendly new metal film salt composition and a simpler treatment process and a more environmentally friendly and inexpensive alternative method or novel chemical composition were required.
In order to solve such problems, the solution composition of the present invention is characterized in that the composition of the above-mentioned emulsion type water-soluble cutting oil and the environmentally friendly metals such as tungsten, molybdenum, silicon, magnesium, vanadium, zirconium, titanium, hafnium, The use of a solution prepared by mixing and reacting these strong environmentally friendly metal salts and adjusted to the appropriate conditions as an emulsion type water-soluble cutting oil in a metal machining process can maintain the function of a cutting oil during the machining of a metal material, As the local hydrogen ion concentration index (pH) of the contact interface is raised by etching, at least one of the environmentally friendly metals forms a film material of a fluorine compound, a hydroxide, and an insoluble compound in the form of an oxide to precipitate on the metal surface, Silane coupling hydrolyzate improves adhesion and corrosion resistance Such, the chemical reactions invention composition solution to be precipitated in the steel sheet surface is estimated to be:
▶ Conventional Metal Film Formation Mechanism: Zinc Phosphate Coating, Chromium Coating
▷ Zinc Phosphate Formation Mechanism - Material: CR (SPCC)
Fe + 2H 3 PO 4 ------- Fe (H 2 PO 4 ) 2 + H 2
(Metal) (acid in coating solution) |
| (O: oxygen supply from accelerator)
| ---- → FePO 4 + H 3 PO 4 + 1 / 2H 2 O
Sludge (including nickel, manganese and zinc sludge)
3Zn (H 2 PO 4 ) 2 ------- 3Zn 3 (H 2 PO 4 ) 2 .H 2 O + 4H 3 PO 4
(Coating solution) Zinc phosphate salt coating (Hopeite)
Fe + 2Zn (H 2 PO 4 ) 2 --- 3Zn 2 Fe (H 2 PO 4 ) 2 .4H 2 O + 2H 3 PO 4 + H 2 O
Phosphophyllite (Phosphophyllite)
▷ Mechanism of formation of passive film - Material: AL
2AL + Cr 2 O 7 -2 + 14H + → 2AL +3 + 2Cr +3 + 7H 2 O
Cr (OH) 3 + CrO 3 → Cr (OH) 3. Cr (OH). CrO 4 + H 2 O
Chromium coating
The film-forming mechanism of the inventive composition (in the alkaline part of the cutting oil)
H2SiF 6 + 2NaOH + H2O Na2SiF 6
Na2SiF 6 + 4NaOH 6NaF + SiO + 2H2O

H2ZrF 6 + 2NaOH + H2O Na2ZrF6
Na2ZrF 6 + 4NaOH 6NaF + ZrO + 2 H2O

Reaction Mechanism of Metal and Silane Hydrolyzate in Emulsion-Type Water-Soluble Coolant
Hydrolysis of silane, condensation reaction (hydrolyzate of silane)
Figure 112014059932782-pat00036


Reaction Formation of Hydrolyzate of Silane and Metal Ion
Figure 112014059932782-pat00037

Complex Complex Formation of Silicon Hydrolyzate and Metal Ion on Metal Surface
Figure 112014059932782-pat00038

The R is combined with the paint.
When the metal salt film is deposited on the base metal, the zinc phosphate film salt has a particle size of 1 to 15 탆 and a chromate of 0.15 to 0.25 탆, but the film particle size treated with the inventive composition solution is a nanocrystalline thin film having a size of 70 탆 or less The present invention provides a metallic coating salt for coating, which is improved in corrosion resistance, adhesion, durability, and heat resistance compared to conventional zinc phosphate coatings or chromate treated products by precipitation, formation, and adhesion to the surface of base metal.

도장이 요구된 금속소재는 치형, 치수를 위해 공작기계에 에멀젼타입의 수용성 절삭유제를 사용하여 금속피삭 후 화성피막을 위해 전처리 및 도장공정의 과정을 거치게 된다.
종래의 전처리공정의 화성피막제는 인체한 유해한 중금속(니켈, 크롬, 아연, 망간등)을 인산, 질산, 불산 등에 용해하여 제조된 화성피막제(인산아연피막제, 크롬피막제)로 전처리공정을 거쳐 금속표면에 피막을 형성시키며, 그 대표적인 공정은 "탕세-예비탈지-본탈지-수세-수세-표면처리-화성피막-수세-수세-순수세"으로 소재 특성에 따라 2∼4개의 공정이 추가되며, 각 공정은 주어진 처리조건에 따라 "탕세, 탈지 공정-적절온도, 알카리도, 유분함량"을 유지, "수세-오염도유지", "표면조정-pH, 알카리유지", 화성피막-유리산, 전산도, 촉진도, 주 성분의 금속함량과 온도유지", "순수세-오염도, 전도도 유지"등을 매 2∼4시간 주기로 점검(금속함량은 월1회 점검)하여야 하고, 또한 알루미늄휠 도장을 위한 전처리 공정 중에 도 9 와 같이 콘베이어 오일 등의 낙하로 금속표면이 오염되어 미 피막이 발생되어 실패비용이 증가되고, 기타 이를 운용하는 각 공정의 유틸리티의 운용조건을 수시로 점검, 조절하여야 하는 복잡한 과정을 거쳐 도장하지용 금속표면을 제공하게 되며, 크로메이트피막은 피삭소재 표면의 산화막제거(Deoxide)를 위해 산세(에칭)공정을 추가하여야 한다.
또한 인산아연피막에서 발생된 촉진제 분해가스(질산성 가스)는 피삭금속과 접촉시 녹(Rust)이 발생하여 도장후 내식성이 저하되고, 크롬공정에서 발생되는 크롬증기는 인체에 매우 유독하므로 각각 별도의 배기시설을 설치하여야 하다.
본 발명조성물용액은 종래의 금속표면피삭시 사용되는 에멀젼타입의 수용성 절삭유제의 한계를 극복하고, 후공정인 전처리공정을 단축하기 위해 개발된 것으로서, 피삭소재의 가공시 절삭유제의 기능과 함께 표면에 금속피막염을 동시에 형성함으로써 단축된 "탕세-예비탈지-본탈지-수세-순수세-건조-도장" 공정만을 거침으로서 종래의 공정 대비 약 5∼7개 공정을 단축 할 수 있고, 금속표면 형성된 금속피막염은 도장전 외부 대기 조건으로부터 작업 대기시간을 연장 시킬 수 있는 효과와 공정수를 단축함으로써 운용비용을 절감 할 수 있고, 기존 전처리공정에서 발생되는 인체에 유해한 중금속과 그 염의 슬러지와 유해가스 발생이 없음으로서 친환경적인 작업을 할 수 있는 에멀젼타입의 금속표면처리용 복합 수용성 절삭유조성물과 그 방법을 제공하는데 주 된 목적이 있다.
Metal materials requiring painting are subjected to a pretreatment and painting process for chemical coating after metal cutting using water-soluble cutting oil of emulsion type in machine tool for tooth shape and size.
Conventional pretreatment process is a pretreatment with a chemical conversion coating agent (zinc phosphate coating agent, chromium film coating agent) prepared by dissolving harmful heavy metals (nickel, chromium, zinc, manganese, etc.) in human body into phosphoric acid, nitric acid, The representative processes are "Tanse-preliminary degreasing-main degreasing-rinsing-rinsing-surface treatment-rusting coating-rinsing-rinsing-rinsing-pure rinsing", and two to four processes are added depending on the material characteristics. Each process can be classified into two types according to the given treatment conditions: "Blessing, degreasing process - maintaining appropriate temperature, alkalinity, oil content", "flushing - maintenance of contamination", "surface adjustment - pH, maintenance of alkali" (Metal content should be checked once a month) should be checked every 2 to 4 hours, and also for the coating of aluminum wheels During the pre-treatment process, as shown in Fig. 9, The metal surface is contaminated with the metal surface, and the failure cost is increased. In addition, the operation conditions of the utility of each process for operating the metal surface are checked and adjusted at various times to provide a metal surface for painting, Should add a pickling (etching) process to remove oxide on the surface of the workpiece.
In addition, the accelerator decomposition gas (nitrate gas) generated in the zinc phosphate film is rusted when contacted with the work metal, and corrosion resistance after painting is lowered. Since the chromium vapor generated in the chromium process is very toxic to the human body, Of the exhaust system.
The composition solution of the present invention was developed in order to overcome the limitation of an emulsion type water-soluble cutting oil used in conventional metal surface machining and to shorten the pre-processing step in a post-process. In addition, Pre-degreasing-main degreasing-rinse-pure three-dry-painting "process which is shortened by simultaneously forming a metal film salt on the metal surface The formed metal film salt can reduce the operation cost by shortening the process time and the effect of extending the work waiting time from the external atmospheric condition before coating, and it is possible to reduce the operation cost of the heavy metal and its salt harmful to the human body, The present invention relates to a composite water-soluble cutting oil composition for an emulsion type metal surface treatment capable of carrying out an environmentally friendly work without gas generation, There is a main objective for.

도장이 요구된 금속소재는 공작기계에 의한 피삭공정과 전처리공정에서 금속피막염 형성시키는 공정이 분리되어 운용하였으나 본 발명조성물용액은 금속소재 피삭중에 금속피막염이 동시에 형성되도록 종래의 에멀져타입 수용성절삭유제의 구성성분인 "광유, 저급지방산, 고급지방산, 알카리제와 방부제, 계면활성제, 소포제, 방식제, 첨가제"등을 적절히 혼합, 반응시킨 조성물로 세부적으로는 비이온계 계면활성제인 폴리옥시에틸렌알킬에테르(Polyoxyethylene alkyl ether) 15~40wt/v%, 트리에탄올아민(Triethanolamine)5~15,wt/v%,1,2-벤즈아이소티아졸린-3-원(1,2-Benzisothiazolin-3-One) 1~5wt/v%, 경질파라핀오일(Petroleum hydrotreated light paraffinic) 15~25wt/v%, 에탄올아민(Ethanolamine) 15wt/v%, 세바식산(Sebacic acid) 2~5wt/v%, 리시놀레익산(Ricinoleic acid) 5~15wt/v%, 트리에티올 프로판 트리올레이트(Trimethylolpropanetrioleate)3~5wt/v%, 폴리에틸렌글리콜모노부틸에테르(Polyethyleneglycolmonobutylether) 1~3wt/v%, 디카르복실릭액시드(Dicarboxylic acid) 1~3wt/v%, 폴리옥시프로필렌 글리콜 모노알킬에테르(Polyoxypropylene Glycol Monoalkyl Ether) 0,1~1.0wt/v%과 친환경적인 금속인 텅스텐, 몰리브덴, 규소, 마그네슘, 바나듐, 지르코늄, 티타늄, 하프늄 중 한 개 이상의 수용성금속이온 10∼600ppm을 함유하고 5~10wt/v% 실란 가수분해물, 불산염, 금속구리염등 을 함유토록 적절한 조건으로 혼합, 반응시킨 후 적량의 순수(Di-ion water)로 희석된 조성물용액이며, 작업전 BRIX 농도계로 에멀젼타입의 수용성절삭유 함량이 8%가 되도록 희석했을 때 수소이온지수(pH) 8.5∼9.5, 유리불소 10∼100ppm, 구리이온 10∼30ppm, 피막금속함량이온 100∼600ppm을 함유하고, 용액온도 5℃↑로 조정된 조성물용액을 피삭되는 금속표면에 공급하면, 에멀젼타입의 수용성 절삭유의 특성과 기능을 유지하면서 소재금속표면에 도장하지용에 필요한 적절한 친환경적인 복합 금속 실란 피막염결정이 형성된다. 또한 복합 금속 실란 피막염결정을 형성을 위해 각 구성 성분을 적절히 가감하여 혼합할 수 있으며, 또한 대체 물질을 사용할 수 있다.
종래의 에멀젼타입 수용성 절삭유의 주요 성분인 경질파라핀오일은 첨가되는 계면활성제(폴리옥시에틸렌알킬에테르)에 의해서 분산, 유화되어 피삭작업시 금속표면에서 안정된 고체막윤활이 형성되도록하는 윤활매체이고, 가공표면의 표면조도향상 및 점도 조절용으로 리시놀레익산, 트리에티올 프로판 트리올레이트과 같은 지방산을 병행 사용하며, 폴리옥시프로필렌 글리콜 모노알킬에테르는 소포제로서 작업중 에 발생되는 과도한 기포를 제어하는 난실리콘 타입(non-silicone type)사용하여야 도장 후 건조로에서 도장표면에 발생하는 클레터링을 제어 할 수 있으며 , 아민류는 지방산의 중화, 산화방지, 비누화반응과 실란가수분해물 및 조성물 용액의 수소이온지수(pH)을 안정화와 시키고, 조성물내에 금속염으로 용해되어 있는 규소, 지르코늄등이 금속표면에 석출, 결정화되고 이후 실란가수분해물과 금속결정간에 안정적인 반응이 이루어지도록 한다, 이때 조성물의 수소이온지수(pH)8.5~9.5를 유지하여야 하며 pH8.5가 되면 에멀젼타입의 윤활, 절삭효과 감소와 조성물의 노화가 빨라지고, 조성물내의 유리불소에 의해 피삭물표면이 과도한 에칭이 지속된다, pH9.5이면 금속이온이 침전되어 피삭시 금속표면에 피막형성이 되지 않으며 구리이온에 위해 금속피막중량의 증진 효과가 감소되어서 방청제로 디카르복실릭액시드와 세바식산이 조성물내에 함유되어도 도장 후 내식성이 떨어진다. 1,2-벤즈아이소티아졸린-3-원은 조성물의 부패방지를 위한 항균제로 사용되고, 금속피막중량 증진을 위한 구리이온과 에칭제로 사용되는 금속불소염도 조성물용액의 부패 등을 변질을 방지하는데 도움이 된다.
상기에서 본 발명용액 조성물제조시 약산성인 실란가수분해물에 친환경적인 금속염, 금속불소염 및 구리염 등을 용해하고 염소화파라핀에 혼합 이전에 알콜아민류등으로 용액조성물의 수소이온지수(pH)8.5~9.5을 조정, 유지하면서 각 에멀젼타입의 수용성 구성성분을 교반, 혼합하면 금속염의 침전과 조성물내의 구성성분인 지방산등과의 부반응을 제어할 수 있으며, 전체적인 발명조성물용액의 안정화되어 금속 피삭 중, 피삭 후에, 전처리공정-도장공정 대기시 금속표면에 형성된 복합 금속 실란 피막염결정으로 종래의 에멀젼타입의 수용성 절삭유 대비 대기에 노출된 금속표면이 외부 영향을 덜 받을 것이다.
알루미늄휠과 같은 주조물 가공시 휠의 접촉면인 바이트나 드릴작업(Hole) 부위에 연속 공급하여 흘러주면 발명용액내의 금속표면 에칭제인 불소화합물이 짧은 시간내에 반응성을 높여주고, 친환경적인 금속피막염이 수산화물, 산화물 형태의 박막의 불용성 금속화합물이 나노크기의 결정입자로 금속표면에 석출, 형성되며, 동시에 금속석출물은 실란커플링 가수분해물에 의해 밀착력이 증진되어 도장에서 요구되는 금속피막염을 형성하여, 피삭된 소재표면에 잔류하는 절삭유와 더불어 방청효과가 증대된다.
또한 피삭공구와 금속표면 접촉면에서 마찰에 의한 온도상승에 의해 화학반응이 빠르게 일어나며, 구성성분중의 에칭제인 불산염과 금속촉진제인 구리, 피막결정의 밀착을 증진하는 실란의 가수분해물을 함유하고 있어 화학반응 중에 에멀젼타입의 절삭유의 유기화합물성분에 의한 영향을 받지 않도록 배합되어 있으며, 피삭금속표면에서 바이트와 접촉 후 피삭금속표면의 잔류열에 의해서도 화학반응이 진행된다.
The metal material required to be painted was separated and operated in a machining process by a machine tool and a process of forming a metal film salt in a pretreatment process. However, the composition solution of the present invention is a conventional emulsion type water- It is a composition prepared by appropriately mixing and reacting "mineral oil, lower fatty acid, higher fatty acid, alkali agent and preservative, surfactant, antifoaming agent, antiseptic agent and additive" which is a constituent of the cutting oil, and more specifically, polyoxy 15 to 40 wt / v% of a polyoxyethylene alkyl ether, 5 to 15 wt / v% of a triethanolamine, 1,2-Benzisothiazolin-3- One to 15 wt / v% of petroleum hydrotreated light paraffinic, 15 to 25 wt / v% of ethanolamine, 2 to 5 wt / v% of sebacic acid, 5 to 15 wt / v% of ricinoleic acid, triethanolpropane triole 3 to 5 wt / v% of trimethylolpropanetrioleate, 1 to 3 wt / v% of polyethylene glycol monobutylether, 1 to 3 wt / v% of dicarboxylic acid, polyoxypropylene glycol monoalkyl ether Polyoxypropylene glycol monoalkyl ether) and 10 to 600 ppm of at least one water-soluble metal ion selected from tungsten, molybdenum, silicon, magnesium, vanadium, zirconium, titanium and hafnium which are eco- / v% It is a composition solution diluted with an appropriate amount of pure water (Di-ion water) after mixing and reacting under proper conditions to contain silane hydrolyzate, hydrofluoric acid salt, metal copper salt and so on. (PH) of 8.5 to 9.5 when diluted to a cutting oil content of 8%, 10 to 100 ppm of free fluorine, 10 to 30 ppm of copper ion, 100 to 600 ppm of film metal content, and adjusted to a solution temperature of 5 ↑ ≪ / RTI > When supplied to the metal surface, a suitable environmentally friendly complex metal salt crystal silane coating need not be formed for a while maintaining the characteristic features of the water-soluble cutting oil in the emulsion coating on a metal material surface. In addition, each component can be appropriately added and mixed to form a composite metal silane film salt crystal, and a substitute material can be used.
The hard paraffin oil, which is a main component of the conventional emulsion type water-soluble cutting oil, is a lubricant medium which is dispersed and emulsified by the added surfactant (polyoxyethylene alkyl ether) to form a stable solid film lubrication on the metal surface during the machining operation, Fatty acids such as ricinoleic acid and triethanolpropane trioleate are used in combination for improving the surface roughness and viscosity of the surface. The polyoxypropylene glycol monoalkyl ether is an anti-foaming agent, which is used in an incombustible type non-silicone type), it is possible to control the clearing occurring on the paint surface in the drying furnace after coating. Neutralizing, anti-oxidation, saponification reaction of the fatty acid and the hydrogen ion index (pH) of the silane hydrolyzate and composition solution And stabilizing, and silicon, zirconium or the like dissolved in a metal salt in the composition The pH of the composition should be maintained at 8.5 to 9.5. When the pH is 8.5, the emulsion type of lubrication and cutting effect should be maintained. If the pH is 9.5, the metal ions are precipitated and the film is not formed on the surface of the metal during the machining, and the metal film weight for copper ions , The corrosion resistance after coating is deteriorated even if a decarboxylic acid liquid and sebacic acid are contained in the composition as a rust preventive agent. The 1,2-benzisothiazoline-3-one is used as an antimicrobial agent for preventing the deterioration of the composition, and is useful for preventing deterioration of copper ion and metal fluoride salt composition solution used as an etchant .
In preparing the solution composition of the present invention, the environmentally friendly silane hydrolyzate is dissolved in an environmentally friendly metal salt, a metal fluoride salt, a copper salt, and the like, and then the pH of the solution composition is adjusted to 8.5 to 9.5 It is possible to control the precipitation of the metal salt and the side reaction with the fatty acid which is a constituent component in the composition and to stabilize the entire solution of the invention of the invention, Pretreatment process - The composite metal silane film salt crystals formed on the metal surface at the time of the coating process standby will have less external influence on the exposed metal surface compared to the conventional emulsion type water soluble cutting oil.
When a casting such as an aluminum wheel is continuously supplied to the bite or drill work (Hole), which is the contact surface of the wheel, the fluorine compound as a metal surface etching agent in the inventive solution increases the reactivity in a short time, and the environmentally- , An insoluble metal compound of an oxide type thin film is precipitated and formed on the metal surface as nano-sized crystal grains, and at the same time, the metal precipitate improves the adhesion force by the silane coupling hydrolyzate to form the metal coating salt required in the coating, In addition to the cutting oil remaining on the surface of the workpiece, the anti-rust effect is increased.
In addition, the chemical reaction occurs rapidly due to the increase in temperature due to friction at the interface between the workpiece and the metal surface. Copper, which is the etchant of the constituent components, and the metal promoter, and the hydrolyzate of the silane, During the chemical reaction, the emulsion-type cutting oil is blended so as not to be influenced by the organic compound component, and the chemical reaction proceeds also by residual heat on the surface of the workpiece after contact with the bite on the surface of the workpiece.

종래의 에멀젼타입의 수용성절삭유제는 공작기계의 작업시 냉각작용에 의한 절삭공구부와 공구수명의 향상, 윤활작용에 의한 마찰이나 공구의 마모절감, 가공부분의 치수 정밀도 향상, 구성인선(Build-up edge)의 억제작용 칩 배제, 가공면의 녹방지 효과 등을 그 기능과 특징으로 하고, 피삭가공된 금속소재는 내식성과 내후성 갖도록 별도의 설비에서 복잡한 전처리공정(인산아연염피막, 크로메이트등)을 거쳐 금속소재표면에 도장하지용에 적합한 금속피막을 형성시킨 후 페인트도료를 이용하여 도장하지만, 본 발명 조성물용액을 적용하면 소재금속 가공시 표면피삭과 동시에 도장하지용 금속피막염을 형성됨으로써, 종래의 에멀젼타입의 수용성절삭유제 사용 후에 전처리공정 투입전, 임시 저장중에 피삭소재 표면에서 진행되는 부식등을 사전 예방할 수 있고, 금속피삭 후 전처리공정 중의 인산아연피막과 크로메이트피막이 필요치 않으며, 보다 단축된 공정(12∼14개 공정을 7개 공정으로 단축)에서 작업이 가능한 장점과 종래의 전처리공정에서 발생되는 중금속슬러지(인산아연피막-아연, 니켈, 망간과 그 금속염 , 크로메이트피막-크롬과 그 금속염)등의 발생방지와 강과 하천의 부영향화의 근본 원인인 인산을 사용하지 않아 친환경적이고, 전처리공정 단축과 단순화로 전문적인 기술요원이 필요치 않음으로써 공정 설비운용 비용과 폐수 처리비용의 절감, 에너지절감, 환경오염 물질 배제, 작업장의 청정화, 이산화탄소 발생량을 줄 일 수 있으며, 초기 설비투자비용이 절감되는 효과와 냉연봉(SPCC), 알루미늄(AL) 이외에도 다양한 종류의 비철금속이나 주물제품류 등의 절삭, 연삭 작업공정에 적용가능하다.
▶종래의 인산아연염 피막공정(12개 공정)
탕세-예비탈지-본탈지-수세-수세-표면조정-인산아연염피막-
수세-수세-순수세-건조 - 액상페인트
-건조 - 분체(Powder coating)
-전착(Electro deposition)
▶종래의 크로메이트 피막공정(14개 공정)
탕세-예비탈지-본탈지-수세-수세-산세(에칭)-수세-수세-크로메이트
-수세 - 수세 - 순수세 - 건조 - 액상페인트
- 건조- 분체(Powder coating)
- 전착(Electro deposition)
▷발명 조성물 적용 공정도(7개 공정)
탕세-예비탈지-본탈지-수세-순수세-건조 - 액상페인트
-건조- 분체(Powder coating)
-전착(Electro deposition)
Conventional emulsion type water-soluble cutting oil improves the cutting tool part and tool life due to the cooling action during the operation of the machine tool, reduces friction and tool wear due to lubricating action, improves the dimensional accuracy of the machined part, (zinc phosphate salt coating, chromate etc.) in a separate facility so that the machined metal material has corrosion resistance and weatherability. In addition, A metal coating suitable for coating is formed on the surface of the metal material and then painted using paint paint. However, when the solution of the present invention is applied, Prevention of erosion from the surface of the workpiece during temporary storage before the pretreatment process is applied after using the conventional emulsion type water-soluble cutting oil It is possible to work in a shorter process (shortening of 12 to 14 processes to 7 processes) since it does not require a zinc phosphate film and a chromate film in the pretreatment process after metal cutting, and the advantage of working with heavy metal sludge (Phosphate coatings - zinc, nickel, manganese and metal salts, chromate coatings - chromium and metal salts), and the use of phosphoric acid, which is the root cause of river and river enrichment, is environmentally friendly. By eliminating the need for specialized technicians, it is possible to reduce the cost of process facility operation and wastewater treatment, reduce energy consumption, eliminate environmental pollutants, clean the workplace, reduce carbon dioxide emissions, (SPCC), aluminum (AL), as well as cutting and grinding work processes of various kinds of nonferrous metals and cast products Neunghada.
▶ Conventional zinc phosphate salt coating process (12 processes)
Tanse - Pre-degreasing - Bone degreasing - Washing - Washing - Surface adjustment - Zinc phosphate coating -
Washing - Washing - Pure Three - Drying - Liquid Paint
- Drying - Powder coating
- Electro deposition
▶ Conventional chromate coating process (14 processes)
Sanse - Preliminary degreasing - Main degreasing - Washing - Washing - Sansing (etching) - Washing - Washing - Passing
- Washing - Washing - Pure water - Drying - Liquid paint
- Drying - Powder coating
- Electro deposition
▷ Process of applying the invention composition (7 processes)
Tanse - Pre-degreasing - Bone degreasing - Washing - Pure three-drying - Liquid paint
- Drying - Powder coating
- Electro deposition

도 1은 알루미늄휠의 제조공정의 전체적인 개략도
도 2는 전처리 제조공정의 전체적인 개략도
도 3은 종래의 알루미늄휠 전처리공정(크로메이트처리)을 나타낸 개략도
도 4는 종래의 철소재의 인산아연 전처리공정을 나타낸 개략도.
도 5는 본 발명에 따른 전처리 공정단축을 나타낸 개략도
도 6은 발명용액 처리 후 알루미늄휠 소재 AFM 촬영 사진
도 7은 발명용액 처리 후 철소재 소재 AFM 촬영 사진
도 8은 종래의 철소재 인산아연피막 처리 후 SEM( × 1000배) 촬영 사진
도 9는 종래의 알루미늄휠 가공 후 표면오염 SEM( ×5O, ×200배) 촬영 사진
Figure 1 shows an overall schematic diagram of the manufacturing process of an aluminum wheel
Figure 2 is a schematic diagram of a pre-
3 is a schematic view showing a conventional aluminum wheel pre-treatment process (chromate treatment)
4 is a schematic view showing a conventional zinc iron phosphate pretreatment process.
FIG. 5 is a schematic view showing the shortening process of the pretreatment process according to the present invention
FIG. 6 is a photograph of AFM photograph of aluminum wheel material after treatment of the invention solution
FIG. 7 is a photograph of AFM photograph of iron material after the invention solution treatment
8 is a SEM (x1000 magnification) photograph of a conventional zinc iron phosphate coating
Fig. 9 is a photograph of a surface contamination SEM (x5O, x200)

이하에서 첨부된 도면을 참조로 본 발명의 구체적인 기술구성을 보다 상세히 설명한다.
본 발명조성물용액은 CNC로 금속표면 피삭시 에멀젼타입의 수용성절삭유의 냉각, 윤활, 방청등의 효과와 피삭시 금속표면에 복합 금속 실란 피막염결정 형성을 위한 세부적인 구성성분은, 비이온계 계면활성제인 폴리옥시에틸렌알킬에테르(Polyoxyethylene alkyl ether) 35.0wt/v%, 트리에탄올아민(Triethanolamine)5.0wt/v%,1,2-벤즈아이소티아졸린-3-원(1,2-Benzisothiazolin-3-One) 1.0wt/v%, 경질파라핀오일(Petroleum hydrotreated light paraffinic) 15.0wt/v%, 에탄올아민(Ethanolamine) 1.5wt/v,% 세바식산(Sebacic acid) 2.0%(wt/v), 리시놀레익산(Ricinoleic acid) 15.0wt/v%, 트리에티올 프로판 트리올레이트(Trimethylolpropanetrioleate) 3.0wt/v%, 폴리에틸렌글리콜모노부틸에테르(Polyethyleneglycol monobutyl ether) 1.0wt/v%, 디카르복실릭액시드(Dicarboxylic acid) 1.5wt/v%, 폴리옥시프로필렌 글리콜 모노알킬에테르(Polyoxypropylene Glycol Monoalkyl Ether) 0,5wt/v%, 적량의 순수한 친환경적인 금속인 텅스텐, 몰리브덴, 규소, 마그네슘, 바나듐, 지르코늄, 티타늄, 하프늄 중 한 개 이상의 수용성금속이온 10~600ppm을 함유하고, 피막금속염 부착력을 증진시키는 실란가수분해물 10wt/v% 과 금속표면을 미세하게 에칭시키는 유리불소 유리불소 10~100ppm과 반응의 촉진 및 금속피막염 중량을 증진시키는 구리이온 10~30ppm이 발명조성물용액 8%(BRIX 농도계)에 함유토록 혼합, 희석하고 조성물의 온도를 5이상, 수소이온지수(pH) 8.5~9.5로 조정된 조성물용액을 피삭되는 금속표면에 공급하면, 에멀젼타입의 수용성 절삭유의 특성과 기능을 유지하면서 소재금속표면에 도장하지용에 필요한 적절한 친환경적인 복합 금속 실란 피막염결정이 형성된다. 상기에서 각 구성성분은 에멀젼타입의 수용성절삭유의 기능유지와 금속피막염 형성을 위해 적절히 반응시키거나 가감하여야 하며 대체물질을 사용할 수 있다
금속이나 비철금속 또는 주조물류 등을 피삭가공시 절삭공구 부위에 본 발명조성물용액을 연속 공급하여 흘러주면 피삭에 의한 마찰열에 의해서 발명용액내의 에칭제가 짧은 시간내에 반응성을 높여주고, 금속염 촉진제에 의해 불소화합물이나 수산화물, 산화물 형태의 박막의 금속 불용성 화합물인 나노크기의 금속피막 물질이 가공 금속표면에 형성, 석출되며, 동시에 금속석출물은 실란 커플링가수분해물에 의해 밀착력이 증진되어 도장하지용에 적합한 금속피막염을 형성시킨다.
상기에서 발명조성물용액의 주 요 성분을 이루는 것으로서 ,알콜아민류는 지방산의 중화와 비누화 반응, 수소이온지수(pH) 조절을 위한 물질로 에탄올아민, 트리에탄올아민이있고,프로판올아민(Propanolamine),디메틸에탄올아민(Dimethylethanolamine), 노르말-메틸에탄올아민(N-Methylethanolamine)등을 유사하게 사용 할 수 있으며, 이에 대한 공급원은 특별히 한정되어 있지는 않다.
디카르복실릭액시드(Dicarboxylic acid)은 금속표면을 피삭 또는 피삭 후 부식방지를 위한 목적으로 사용하지만, 이 에 대한 공급원은 특별히 한정되어 있지 않는다.
폴리옥시에틸렌알킬페닐에테르는 계면활성제로 발명조성물용액과 금속표면에서 침투작용, 유화작용, 분산작용으로 조성물용액의 균일성유지와 오염물의 재부착방지을 위해 사용되나, 과도하게 사용시 작업중 다량의 거품이 발생 될 수 있으므로 가능한 소량을 사용하여야 하며, 이에 대한 공급원은 특별히 한정되어 있지 않는다.
조성물용액의 부패방지와 곰팡이, 균의 증식억제를 위한 첨가제로 1,2-벤즈아이소티아졸린-3-온(1,2-Benzisothiazolin-3-One)을 소량 투입할 수 있고. 조성물의 부패방지를 위한 약품으로 이 에 대한 공급원은 특별히 한정되지는 않는다.
극압첨가제로 경질파라핀오일(Petroleum hydrotreated light paraffinic)을 사용한지만 이 에 대한 공급원은 특별히 한정되어 있지 않는다.
절삭가공면의 윤활작용과 이형제의 구성성분으로 리시놀레익산(Ricinoleic acid)을 사용하지만, 이 에 대한 공급원은 특별히 한정되어 있지 않는다.
피삭소재의 보조방청제로 세바식산(Sebacic acid)을 사용하지만 이 에 대한 공급원은 특별히 한정되어 있지 않는다
트리에티올 프로판 트리올레이트(Trimethylolpropanetrioleate)은 피삭 금속표면의 조도 향상과 조성물의 점도 조절을 위해 사용하지만, 이에 대한 공급원은 특별히 한정되어 있지 않는다.
폴리에틸렌글리콜모노부틸에테르(Polyethyleneglycolmonobutylether)은 구성성분 중의 지방산류와의 혼합, 분산성을 증진을 목적으로 사용하지만, 이에 대한 공급원은 특별히 한정되어 있지 않는다.
피삭작업중 발생되는 과도한 거품 제거를 위해 사용되는 소포제는 작업시 과도한 기포가 발생되지 않도록 선택, 사용하며, 특히 피삭공정시 금속표면에 잔류하여 도장공정의 도료건조과정에서 수용성실리콘에 의해 클레터링이 발생하는 수용성의 Silicone Emulsion 종류를 사용해서는 않되고, Polyoxypropylene Glycol Monoalkyl Ether 같은 수용성의 비실리콘계(non-silicone)를 사용하여야 하며, 이에 대한 공급원은 특별히 한정되어 있지 않는다.
금속피막염 형성을 위해 친환경적인 피막금속인 텅스텐, 몰리브덴, 규소, 마그네슘, 바나듐, 지르코늄, 티타늄, 하프늄의 금속이온함량은 100~5,000ppm까지 사용이 가능하나 금속함량이 100ppm이하이면 피삭금속표면에 피막석출량이 적고, 금속함량이 5,000ppm 이상이면 금속염 석출시간은 단축되나 용액의 노화가 빨라지는 단점과 함께 피삭소재의 후 공정 이동시 고농의 금속이온 손실량이 증가되어 경제성이 떨어지므로 조성물 용액내 적정 금속함량은 100~600ppm이 바람직하며, 피막금속이온은 금속의 탄산염, 불소염, 암모늄염, 질산염등과 같은 무기염 또는 유기화합물 사용하거나 적절하게 반응하여 사용할 수 있으며, 이에 대한 공급원 특별히 한정되어 있지 않다.
실란가수분해물은 금속피막염의 밀착성 증대와 피삭시 윤활성 향상을 위해 3-Aminopropylmethyldiethoxysilane,Vinyl(2-Methoxyethoxy)silane, 3-Gycidoxypropyltrimethoxysilane등과 같은 아미노실란, 비닐실란, 에폭시실란등을 순수를 사용하여 5wt/v%로 희석하고 40~45에서 교반하면서 용액이 pH4(수소이온지수)가 유지되도록 초산과 같은 약산을 투입, 1시간 동안 유지하여 실란가수분해물을 제조하여 사용하며, 알칼리용액이나 산성용액에서 침전되거나 분해되지 않고 강판표면에 석출된 금속피막염이 페인트와 밀착성을 증대시키도록 선택, 반응, 제조되어야 하며, 이에 대한 공급원은 특별히 한정되어 있지 않다.
피삭금속표면의 에칭제로 사용되는 유리불소는 소삭 금속표면에서 짧은 시간내에 금속표면을 용해하여 금속피막염 조성물이 직접 접촉되도록 하며, 이때 소삭 금속표면 접촉면에서 국부적인 수소이온지수(pH) 상승으로 금속피막염은 실란가수분해물과 반응하여 금속표면에 불용성의 불소화합물, 수산화물, 산화물형태나 복합금속실란가수분해물로 석출, 형성되도록 한다. 유리불소 이온이 10ppm 미만이면 금속 또는 비철 금속의 표면에칭이 충분히 형성되지 않아 금속염피막이 소지금속표면에 석출, 형성되는 비율이 낮아 도장 내식성이 저하되고, 유리불소 이온이 100ppm을 초과하면 소지금속의 표면에칭이 과다하여 소지금속의 외관손상과 함께, 에칭된 금속이온함량이 높아져 작업용액의 급속한 노화로 경제적인 손실이 발생 하므로, 효과적인 에칭이 이루어지기 위해서는 유리불소 이온이 10~100ppm 인 것이 바람직하다. 유리불소의 공급원은 탄산염, 불소염, 암모늄염, 질산염등과 같은 무기염 또는 유기화합물 등을 사용할 수 있으나, 특별히 한정되어 있지는 않다.
금속피막염의 촉진제로 사용되는 구리는 피삭소재에 금속피막염의 촉진과 피막코팅(Coating) 두께를 증가시키는 작용을 하며, 구리이온함량이 10ppm 미만이면 금속 또는 비철 금속의 표면에 피막형성량이 충분치 않아서 도장 후 내식성에 영향을 미치고 30ppm 이상이면 금속표면에 구리가 부분적으로 석출되어 금속표면색상이 변색되므로 구리이온함량이 10~30ppm 인 것이 바람직하다. 구리이온의 공급원은 금속의 탄산염, 불소염, 암모늄염, 질산염등과 같은 무기염 또는 유기화합물 등을 사용할 수 있으나, 특별히 한정되어 있지는 않다.
수소이온지수(pH)은 작업용액의 저장 안정성과 피삭소재의 부식방지 등의 목적으로 아민알콜류 등의 유기화합물이나 혼합물과 탄산염, 불소염, 암모늄염, 질산염등과 같은 금속무기염을 적절하게 사용할 수 있으며, 수소이온농도지수(pH)8.5~9.5 범위 내에서 조절, 사용하는 것이 바람직하며 상세하게는 pH8.5 이면 용액조성물 내의 곰팡이, 세균 등에 의해서 용액이 변질 될 수 있고, pH 9.5 이면 작업자의 피부를 자극할 수 있고, 비철금속 표면부식이나 가공 후 저장 중에 금속표면이 부분부식이나 변색 될 수 있으므로 pH8.5~9.5 범위 내에서 사용하는 것이 바람직하다.
각 구성 물질은 도장품질에 영향을 미치므로 작업용액은 피삭소재 표면에 오염물질이 부착, 응집되거나, 금속석검류나 슬러지을 생성하지 않고, 분산성이 양호하도록 선택, 배합되어야 하며, 그 최적 처리조건은 에멀젼타입의 수용성절삭유제의 기능과 금속이온함량 100~600ppm을 함유하고, 수소이온지수(pH)8.5~9.5, 구리이온 10~30ppm, 유리불소함량 10~100ppm을 유지하여야 한다.
본 발명조성물의 구성물 중 실란가수분해물과 친환경금속염(지르코늄염등)을 제외한 제외한 각 구성물질을 혼합, 교반하면서 트리에탄올아민등의 알카리성 구성성분으로 용액의 수소이온지수를 pH 9로 조절하면서 투입하면 용액혼합중에 부반응이 없으며, 별도로 실란가수분해물과 친환경금속염(지르코늄등)을 교반, 용해 한 다음 교반하면서 두 용액을 혼합하며, 이 또한 용액의 수소이온지수가 pH 9 가 되도록 트리에탄올아민을 순수에 희석하여 소량씩 투입하여 제조 한다. 조성물용액은 각 구성물질에 의한 화학반응이나 침전물등이 없어야 하며, 금속이나 비철금속 접촉시에만 화학반응이 이루어져 금속표면에 복합 금속 실란 피막염결정이 형성된다
상기에서 상술한 발명용액 조성물을 이용한 표면처리 방법에 대해 보다 상세히 설명한다.
본 발명조성물을 이용하여 대표도의 도 1 알루미늄휠 제조공정 중의 금속피삭공정인 "CNC P.C.D Valve hole machining" 에서 용액온도를 5 이상 유지하여 작업하였고, 피삭 완료된 된 소재금속은 도 5 발명조성물용액 전처리공정도(7개 공정)으로 처리하였으며, 발명조성물내의 에멀젼타입의 수용성절삭유 함량은 BRIX 농도계로 측정, 농도를 보정하고, "ICP"을 이용하여 작업용액내의 금속함량을 분석, 농도를 보정의 피삭소재표면의 금속피막부착량은 FRX로 측정하였다.
본 발명조성물용액인 에멀젼타입의 금속표면가공용 복합 수용성 절삭유를 이용한 도장 하지용 금속피막염 표면처리 용액 조성물 및 그 표면처리 방법의 기술 효과를 알아보기 위해 다음과 같이 실험을 실시하였다.
비교 예
전처리제
본 발명 조성물용액의 비교 예의 시료로 일반 냉연봉강(SPCC), 알루미늄휠등 2종류를 종래의 에멀젼타입의 수용성절삭유(BRIX농도 8%)를 사용하여 CNC의 구동축 회전속도 2,000rpm로 가공하고, 아래의 표 1 국내 자동차 도장라인의 인산아연염피막(전착도장)과 표 2 의 크로메이트피막처리는 관련 사용설명서(TSDS)에 따라 처리 후 전착도장(비교 예1)과 분체, 액상소부도장(비교 예2-일반도장제품, 비교 예 3-D/C 도장제품)하여 발명용액조성물 처리제품의 비교 시료로 사용하였다.
각 도장 시료의 관련 규격과 시험항목, 평가방법은 "KS D ISO 3520, 도장용 융아연 도금강판 및 강대와 KS M ISO 2409 도료의 밀착성 시험방법"에 따라 실험되었고, 이외의 항목은 국내 자동차분야의 도장 규격과 표 3 , 표 4 을 적용하였으며 금속표면의 피막 부착량은 표 5 와 같았다.
적용 페인트
. 전착도료 : 비교 예1의 인산아연피막염 처리 후 적용 도료는 국내 자동차부품 도장라인에서 사용되는 전착도료(NV: 19 wt/v %)를 사용하였다.
. 액상페인트 , 분체도료 : 국내 자동차 알루미늄휠 도장라인에서 사용되는 동일한 제품을 사용하였다(알루미늄휠 공정에서 처리)

{ 표 1 } 인산아연피막 처리 및 전착도장 방법

Figure 112014059932782-pat00039

{ 표 2 } 크로메이트 처리 및 도장방법
Figure 112014059932782-pat00040

{ 표 3 } 인산아연염피막의 요구품질 및 시험방법
Figure 112014059932782-pat00041

[ 표 4 ] 크로메이트피막(알루미늄휠)의 요구품질 및 시험방법
Figure 112014059932782-pat00042

{ 표 5 } 전처리 피막 후 금속표면의 피막부착량 측정
Figure 112014059932782-pat00043

{ 실시 예 }
▶ 금속표면 가공용 복합 수용성 절삭유(에멀젼타입)
발명용액조성물을 농도를 8%가 되도록 희석하여 대표도 도 1 피삭공정인 "CNC & P.C.D Valve hole machining"에서 냉연봉강(SPCC)과 알루미늄휠등 2종류를 피삭가공하여, 대표도 도 5의 "발명조성물용액 처리 후 전처리 공정" 처리 후 전착도장(실시 예1, 예2, 예3)과 분체, 액상소부도장(실시 예4 ∼예113)하여 실시 예의 시료로 사용하였으며 금속표면의 피막부착량은 { 표 5 }와 같았다.
▶ 적용페인트와 각 도장 시료의 관련 규격과 시험항목, 평가 방법은 비교 예와 동일하다DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
The composition solution of the present invention has the effects of cooling, lubrication, and rust prevention of the water-soluble cutting oil of the machined surface of the metal surface with CNC and the detailed constituent components for forming the composite metal silane film salt crystal on the metal surface during machining, , 35.0 wt / v% of polyoxyethylene alkyl ether as an active agent, 5.0 wt / v% of triethanolamine, and 1,2-Benzisothiazolin-3- One, 1.0 wt / v%, 15.0 wt / v% petroleum hydrotreated light paraffinic, 1.5 wt / v ethanolamine, 2.0 wt% sebacic acid, , 15.0wt / v% of Ricinoleic acid, 3.0wt / v% of Trimethylolpropanetrioleate, 1.0wt / v% of Polyethyleneglycol monobutyl ether, Dicarboxylic acid solution of Dicarboxylic acid acid, 1.5 wt / v%, polyoxypropylene glycol monoalkyl ether lkyl Ether) containing 10 to 600 ppm of at least one water-soluble metal ion selected from tungsten, molybdenum, silicon, magnesium, vanadium, zirconium, titanium and hafnium in an appropriate amount of pure environmentally friendly metal, 10 to 100 ppm of fluorine free fluorine to finely etch the surface of the silane hydrolyzate and the metal surface to promote the reaction, and 10 to 30 ppm of copper ions to promote the reaction and increase the metal film salt weight. ) And a composition solution adjusted to have a temperature of the composition of 5 or more and a hydrogen ion index (pH) of 8.5 to 9.5 is added to the surface of the metal to be machined so as to maintain the characteristics and function of the emulsion type water- Suitable environmentally friendly composite metal silane film salt crystals are formed on the metal surface of the material necessary for coating. In the above description, each component should be appropriately reacted or added to maintain the function of emulsion type water-soluble cutting oil and metal film salt formation, and a substitute material may be used
When the solution of the present invention is continuously supplied to the cutting tool portion during the machining of metal, nonferrous metal or casting materials, etc., the etchant in the inventive solution increases the reactivity within a short time due to the friction heat caused by the workpiece, Or a metal-insoluble compound of a thin film of a hydroxide and an oxide form is formed and precipitated on the surface of the processed metal while the metal precipitate is enhanced in adhesion by the silane coupling hydrolyzate to form a metal film To form a salt.
Alcoholic amines are substances for neutralization and saponification reaction of fatty acids and for controlling the pH of the inventions, and include ethanolamine and triethanolamine. Propanolamine, dimethyl ethanol Dimethylethanolamine, N-methylethanolamine and the like can be similarly used, and the supply source thereof is not particularly limited.
Dicarboxylic acid is used for the purpose of preventing corrosion after machining or after machining, but the source for this is not particularly limited.
Polyoxyethylene alkylphenyl ether is a surfactant. It is used to maintain uniformity of composition solution and prevent re-adhesion of contaminants by penetration, emulsification and dispersing action of the invention composition solution and metal surface. However, in case of excessive use, It is necessary to use as small a quantity as possible, and the supply source for this is not particularly limited.
A small amount of 1,2-benzisothiazolin-3-one can be added as an additive for preventing the deterioration of the composition solution and preventing the growth of fungi and bacteria. It is a drug for preventing the deterioration of the composition, and the source of the drug is not particularly limited.
The use of hard petroleum hydrotreated light paraffinic oil as an extreme pressure additive is not specifically limited.
Ricinoleic acid is used as a lubricant for the machined surface and as a component of the release agent, but the source for the lubricant is not particularly limited.
Sebacic acid is used as an auxiliary rust inhibitor for the workpiece, but the source for this is not limited
Trimethylolpropanetrioleate is used for improving the roughness of the surface of the machined metal and for controlling the viscosity of the composition, but the supply source thereof is not particularly limited.
Polyethyleneglycol monobutyl ether is used for the purpose of improving the mixing and dispersing properties with fatty acids in the constituent components, but the supply source thereof is not particularly limited.
The antifoaming agent used for excessive bubble removal during work is selected so that excessive bubbles are not generated during the work. Especially, it is remained on the metal surface during the machining process and the water-soluble silicone causes clearing (Water-soluble non-silicone type such as polyoxypropylene glycol monoalkyl ether) should be used, and the supply source thereof is not particularly limited.
Metal ion content of tungsten, molybdenum, silicon, magnesium, vanadium, zirconium, titanium and hafnium, which are eco-friendly film metals, can be used up to 100 ~ 5,000ppm for metal film salt formation. When the metal content is less than 5,000 ppm, the precipitation time of the metal salt is shortened, but the aging of the solution is accelerated. In addition, since the loss of high-concentration metal ions is increased during the post-process shift of the workpiece, The content is preferably 100 to 600 ppm, and the metal ion can be used by using an inorganic salt or an organic compound such as a carbonate, a fluoride salt, an ammonium salt, a nitrate salt or the like of the metal or by appropriately reacting it.
Silane hydrolyzate was prepared by adding pure water to aminosilane, vinylsilane and epoxy silane such as 3-Aminopropylmethyldiethoxysilane, Vinyl (2-Methoxyethoxy) silane and 3-Glycidoxypropyltrimethoxysilane to increase the adhesion of metal film salt and improve lubricity when machining. % And the solution is kept at pH 4 (hydrogen ion index) while stirring at 40 to 45, and a weak acid such as acetic acid is added and kept for 1 hour to prepare a silane hydrolyzate. The silane hydrolyzate is precipitated in an alkali solution or an acidic solution The metal coating salt which is not decomposed and deposited on the surface of the steel sheet must be selected, reacted and made to increase the adhesion to the paint, and the supply source thereof is not particularly limited.
The free fluorine used as an etchant on the surface of the workpiece dissolves the metal surface within a short time on the surface of the workpiece so that the metal film salt composition is in direct contact with the surface of the workpiece, The coating salt reacts with the silane hydrolyzate to precipitate and form insoluble fluorine compounds, hydroxides, oxide forms or hydrolyzates of the composite metal silane on the metal surface. When the amount of free fluorine ions is less than 10 ppm, surface etching of the metal or non-ferrous metal is not sufficiently formed, so that the proportion of the metal salt film deposited on the surface of the base metal is low and the coating corrosion resistance is lowered. It is preferable that the free fluorine ion is 10 to 100 ppm in order for the effective etching to be performed because the etching is excessive and the appearance damage of the base metal is increased and the metal ion content of the etched metal is increased to cause economic loss due to rapid aging of the working solution. The source of free fluorine may be inorganic salts or organic compounds such as carbonates, fluorides, ammonium salts and nitrates, but is not particularly limited.
Copper used as an accelerator of metal film salt accelerates the metal coating salt and increases the coating thickness of the workpiece. If the copper ion content is less than 10 ppm, the coating amount on the surface of the metal or non-metal is insufficient, And if it is 30 ppm or more, copper partially precipitates on the surface of the metal to discolor the surface of the metal, so that the copper ion content is preferably 10 to 30 ppm. The source of copper ions may be inorganic salts or organic compounds such as carbonates, fluorides, ammonium salts and nitrates of metals, but is not particularly limited.
The pH of the hydrogen ion may be appropriately selected from organic compounds or mixtures such as amine alcohols and metal inorganic salts such as carbonates, fluorides, ammonium salts and nitrates for the purpose of storage stability of the working solution and corrosion of the workpiece The pH of the solution is preferably adjusted to 8.5 to 9.5, more specifically, the solution may be deteriorated by fungi and bacteria in the solution composition at pH 8.5. When the pH is 9.5, And may be partially corroded or discolored on the surface of the metal during the corrosion of the surface of the non-ferrous metal or storage after processing. Therefore, it is preferable to use it within the pH range of 8.5 to 9.5.
Since each constituent material affects the coating quality, the working solution should be selected and compounded so that the contaminants do not adhere to the surface of the workpiece, flocculate, do not generate metal stone gravel or sludge, Shall have a function of water-soluble cutting oil of emulsion type and a metal ion content of 100 to 600ppm, a pH of 8.5 to 9.5, a copper ion of 10 to 30ppm and a free fluorine content of 10 to 100ppm.
When the components of the composition of the present invention are mixed and stirred while excluding the silane hydrolyzate and the eco-friendly metal salt (such as zirconium salt), the pH of the solution is adjusted to 9 with an alkaline component such as triethanolamine, There is no side reaction during the mixing. Separately, the silanol hydrolyzate and the eco-friendly metal salt (zirconium etc.) are stirred and dissolved, and then the two solutions are mixed while stirring. The triethanolamine is diluted with pure water so that the hydrogen ion index of the solution becomes pH 9 And then the mixture is added in small amounts. The composition solution should be free of chemical reaction or precipitate by each constituent material, and chemical reaction occurs only when it is contacted with metal or nonferrous metal to form a composite metal silane film salt crystal on the metal surface
The surface treatment method using the inventive solution composition described above will be described in more detail.
In the "CNC PCD Valve hole machining", which is a metal working process in the aluminum wheel manufacturing process, the solution temperature was maintained at 5 or more by using the composition of the present invention. Fig. 5: The water-soluble cutting oil content of the emulsion type in the inventive composition was measured with a BRIX densitometer, the concentration was corrected, and the metal content in the working solution was analyzed using "ICP " The adhesion amount of the metal film on the surface of the material was measured by FRX.
The following experiment was carried out in order to examine the technical effects of the metal surface treatment solution composition for surface treatment using an aqueous emulsion-type composite water-soluble cutting oil for surface treatment of the present invention and its surface treatment method.
Comparative Example
Pretreatment agent
As a sample of the comparative example of the composition solution of the present invention, two types of ordinary cold-rolled steel (SPCC) and aluminum wheel were processed at a drive shaft rotation speed of 2,000 rpm using a conventional emulsion type water-soluble cutting oil (BRIX concentration 8% The zinc phosphate coating (electrodeposition coating) of the domestic automobile coating line and the chromate coating treatment of the table 2 were subjected to electrodeposition coating (Comparative Example 1), powder coating, liquid baking coating (Comparative Example 2-general painted product, and Comparative Example 3-D / C painted product).
The relevant standards, test items and evaluation methods of each coating sample were tested in accordance with "KS D ISO 3520, Test method for Cohesion of Coatings for KS M ISO 2409 Coatings" And Table 3 and Table 4 were applied. The coating amount of the metal surface was as shown in Table 5.
Apply paint
. Electrodeposition coating: The electrodeposition coating (NV: 19 wt / v%) used in the domestic automotive parts coating line was used as the applied coating after zinc phosphate coating salt treatment of Comparative Example 1.
. Liquid paint, Powder coating: The same product used in domestic automotive aluminum wheel coating line (treated in aluminum wheel process)

{Table 1} Zinc phosphate coating and electrodeposition coating method
Figure 112014059932782-pat00039

{Table 2} Chromate treatment and coating method
Figure 112014059932782-pat00040

{Table 3} Required quality and test method of zinc phosphate salt coating
Figure 112014059932782-pat00041

[Table 4] Required quality and test method of the chromate film (aluminum wheel)
Figure 112014059932782-pat00042

{Table 5} Measurement of film adhesion on metal surface after pretreatment film
Figure 112014059932782-pat00043

{Example}
▶ Complex water-soluble cutting oil for metal surface treatment (emulsion type)
Representative Fig. 1 shows that the inventive solution composition was diluted so as to have a concentration of 8%. In the CNC & PCD Valve hole machining, which is a machining process, two types of machining were carried out: cold rolling steel (SPCC) (Example 1, Example 2, Example 3) and powder and liquid phase baking (Examples 4 to 113) after the pretreatment process of the inventive composition solution was used as a sample of the example, {Table 5}.
▶ The relevant specifications, test items and evaluation methods of applied paint and each paint sample are the same as the comparative example

냉연봉강을 아래의 { 표 6-1 }의 " CNC의 발명조성물 처리조건" 중 발명조성물용액의 적용조건을 수소이온지수(pH) 8.5, 금속이온함량 100ppm, 유리불소 10ppm, 구리이온 10ppm 함유한 용액을 CNC의 구동축 회전속도를 1,500rpm로 맞추어 소재피삭공정에 적용 한 후 { 표 6-2 } 공정의 전처리 와 도장하여 상기 비교 예와 동일하게 도장시료의 관련규격, 시험항목과 방법을 동일하게 적용하였다.
{ 표 6 } 발명조성물용액 처리조건 및 전처리, 도장공정
▶ { 표 6-1 } 발명조성물용액 조건 - 에멀젼타입

Figure 112014059932782-pat00044

{ 표 6-2 } 피삭금속의 전처리 및 액상 소부도장공정(총 7개 공정)
Figure 112014059932782-pat00045
The cold-rolled steel bar was subjected to the conditions of application of the inventive composition solution in the following conditions of "CNC inventive composition processing conditions" of {Table 6-1} below: hydrogen ion index (pH) of 8.5, metal ion content of 100 ppm, free fluorine of 10 ppm and copper ion of 10 ppm The solution was applied to the workpiece machining process by adjusting the rotation speed of the CNC drive shaft to 1,500 rpm and then subjected to the pretreatment and the coating of the {Table 6-2} process, and the same specifications, test items and methods as those of the above- Respectively.
{Table 6} Conditions for treating solution of the invention composition, pretreatment and coating process
{Table 6-1} Solution conditions of the invention composition - Emulsion type
Figure 112014059932782-pat00044

{Table 6-2} Pre-treatment of machined metal and liquid-phase baking process (total 7 processes)
Figure 112014059932782-pat00045

발명조성물용액의 수소이온지수(pH) 9.0 금속함량 200ppm, 유리불소 20ppm, 구리이온 10ppm 함유한 용액을 CNC의 구동축 회전속도를 2,000rpm로 변경 한 것 이외에는 실시 예1과 동일하게 시료를 처리하였다.Hydrogen ion index (pH) of the inventive composition solution 9.0 A sample was treated in the same manner as in Example 1, except that a solution containing 200 ppm of a metal content, 20 ppm of free fluorine, and 10 ppm of copper ion was changed to a rotation speed of the CNC drive shaft at 2,000 rpm.

발명조성물용액의 수소이온지수(pH) 9.5 금속함량 300ppm, 유리불소 40ppm 함유한 용액을 CNC의 구동축 회전속도를 2,500rpm로 변경 한 것 이외에는 실시 예1과 동일하게 시료를 처리하였다.Hydrogen ion index (pH) of the inventive composition solution 9.5 A sample was treated in the same manner as in Example 1 except that the solution containing a metal content of 300 ppm and a free fluorine content of 40 ppm was changed to a rotation speed of the CNC drive shaft at 2,500 rpm.

알루미늄휠을 아래의 { 표 6-1 }의 "발명조성물 처리조건" 중 발명용액의 적용조건을 수소이온지수(pH) 8.5, 금속함량 100ppm, 유리불소 10ppm, 구리이온 10ppm 함유한 용액을 CNC의 구동축의 회전속도를 1,500rpm로 맞추어 소재피삭공정에 적용 한 후 알루미늄휠은 { 표 6-2 } 전처리, 건조 후 분체, 액체도료로 소부도장(전착도장제외)하였고, 도장시료의 관련규격, 시험항목과 방법은 상기 비교 예와 동일하게 적용하였다.An aluminum wheel was immersed in a solution of the inventive solution in a solution condition of pH 8.5, metal content of 100 ppm, free fluorine of 10 ppm and copper ion of 10 ppm in CNC After the rotation speed of the drive shaft was adjusted to 1,500 rpm, it was applied to the material machining process. The aluminum wheel was pretreated, powdered after drying, and baked with liquid paint (except electrodeposition coating) The items and methods were applied in the same manner as in the comparative example.

발명용액의 수소이온지수(pH)을 9.0로 변경 한 것 이외에는 상기 실시 예4과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the hydrogen ion index (pH) of the inventive solution was changed to 9.0.

발명용액의 수소이온지수(pH)를 9.5로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the pH of the inventive solution was changed to 9.5.

발명용액의 금속함량을 200ppm로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the metal content of the inventive solution was changed to 200 ppm.

발명용액의 금속함량을 300ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the metal content of the inventive solution was changed to 300 ppm.

발명용액의 금속함량을 400ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the metal content of the inventive solution was changed to 400 ppm.

발명용액의 금속함량을 500ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the metal content of the inventive solution was changed to 500 ppm.

발명용액의 금속함량을 600ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the metal content of the inventive solution was changed to 600 ppm.

발명용액의 금속함량을 200ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 5 except that the metal content of the inventive solution was changed to 200 ppm.

발명용액의 금속함량을 300ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 5 except that the metal content of the inventive solution was changed to 300 ppm.

발명용액의 금속함량을 400ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 5 except that the metal content of the inventive solution was changed to 400 ppm.

발명용액의 금속함량을 500ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 5 except that the metal content of the inventive solution was changed to 500 ppm.

발명용액의 금속함량을 600ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시편을 처리하였다.The specimen was treated in the same manner as in Example 5 except that the metal content of the inventive solution was changed to 600 ppm.

발명용액의 금속함량을 200ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 6 except that the metal content of the inventive solution was changed to 200 ppm.

발명용액의 금속함량을 300ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 6 except that the metal content of the inventive solution was changed to 300 ppm.

발명용액의 금속함량을 400ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 6 except that the metal content of the inventive solution was changed to 400 ppm.

발명용액의 금속함량을 500ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 6 except that the metal content of the inventive solution was changed to 500 ppm.

발명용액의 금속함량을 600ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시편을 처리하였다.The specimen was treated in the same manner as in Example 6 except that the metal content of the inventive solution was changed to 600 ppm.

발명용액의 유리불소를 20ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the amount of free fluorine in the inventive solution was changed to 20 ppm.

발명용액의 유리불소를 40ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 4 except that the free fluorine content of the inventive solution was changed to 40 ppm.

발명용액의 유리불소를 60ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 4 except that the amount of free fluorine in the inventive solution was changed to 60 ppm.

발명용액의 유리불소를 80ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 4 except that the amount of free fluorine in the inventive solution was changed to 80 ppm.

발명용액의 유리불소를 100ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the free fluorine content of the inventive solution was changed to 100 ppm.

발명용액의 유리불소를 150ppm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the amount of free fluorine in the inventive solution was changed to 150 ppm.

발명용액의 유리불소를 20ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 5 except that the amount of free fluorine in the inventive solution was changed to 20 ppm.

발명용액의 유리불소를 40ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.Samples were treated in the same manner as in Example 5 except that free fluorine in the inventive solution was changed to 40 ppm.

발명용액의 유리불소를 60ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 5 except that the free fluorine content of the inventive solution was changed to 60 ppm.

발명용액의 유리불소를 80ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 5 except that the free fluorine content of the inventive solution was changed to 80 ppm.

발명용액의 유리불소를 100ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.Samples were treated in the same manner as in Example 5 except that free fluorine in the inventive solution was changed to 100 ppm.

발명용액의 유리불소를 150ppm으로 변경 한 것 이외에는 상기 실시 예5와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 5 except that the amount of free fluorine in the inventive solution was changed to 150 ppm.

발명용액의 유리불소를 20ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 6 except that the amount of free fluorine in the inventive solution was changed to 20 ppm.

발명용액의 유리불소를 40ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.Samples were treated in the same manner as in Example 6 except that the free fluorine content of the inventive solution was changed to 40 ppm.

발명용액의 유리불소를 60ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.Samples were treated in the same manner as in Example 6 except that the free fluorine content of the inventive solution was changed to 60 ppm.

발명용액의 유리불소를 80ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 6 except that the amount of free fluorine in the inventive solution was changed to 80 ppm.

발명용액의 유리불소를 100ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 6 except that the amount of free fluorine in the inventive solution was changed to 100 ppm.

발명용액의 유리불소를 150ppm으로 변경 한 것 이외에는 상기 실시 예6과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 6 except that the amount of free fluorine in the inventive solution was changed to 150 ppm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 4 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예7과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 7 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예8과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 8 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예9와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 9 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예10과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 10 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예11과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 11 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예12와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 12 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예13과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 13 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예14와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 14 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예15와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 15 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예16과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 16 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예17과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 17 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예18과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 18 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예19와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 19 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예20과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 20 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예21과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 21 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예22와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 22 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예23과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 23 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예24와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 24 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예25와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 25 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예26과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 26 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예27과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 27 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예28과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 28 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예29와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 29 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예30과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 30 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예31과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 31 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예32와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 32 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예33과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 33 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예34와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 34 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예35와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 35 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예36과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 36 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예37과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 37 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예38과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 38 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,000rpm으로 변경 한 것 이외에는 상기 실시 예39와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 39 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예4와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 4 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예7과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 7 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예8과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 8 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예9와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 9 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예10과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 10 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예11과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 11 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예12와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 12 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예13과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 13 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예14와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 14 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예15와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 15 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예16과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 16 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예17과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 17 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예18과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 18 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예19와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 19 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예20과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 20 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예21과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 21 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예22와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 22 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예23과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 23 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예24와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 24 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예25와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 25 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예26과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 26 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예27과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 27 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예28과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 28 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예29와 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 29 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예30과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 30 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예31과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 31 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예32와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 32 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예33과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 33 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예34와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 34 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예35와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 35 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예36과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 36 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예37과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 37 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예38과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 38 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,500rpm으로 변경 한 것 이외에는 상기 실시 예39와 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 39 except that the rotation speed of the CNC drive shaft was changed to 2,500 rpm.

CNC 구동축의 회전속도를 2,000rpm과 구리이온 20ppm으로 변경 한 것 이외에는 상기 실시 예1과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 1 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm and 20 ppm of copper ion.

CNC 구동축의 회전속도를 2,000rpm과 구리이온 30ppm으로 변경 한 것 이외에는 상기 실시 예1과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 1 except that the rotational speed of the CNC drive shaft was changed to 2,000 rpm and 30 ppm of copper ions.

CNC 구동축의 회전속도를 2,000rpm과 구리이온 40ppm으로 변경 한 것 이외에는 상기 실시 예1과 동일하게 시료를 처리하였다.The sample was treated in the same manner as in Example 1 except that the rotation speed of the CNC drive shaft was changed to 2,000 rpm and 40 ppm of copper ion.

종래의 에멀젼타입수용성절삭유를 사용하여 CNC 구동축의 회전속도 2,000rpm으로 알루미늄휠 표면을 피삭 한 후 { 표 6-1 } 발명조성물 처리조건의 수소이온지수(pH)8.5, 금속이온함량 200ppm, 유리불소 10ppm, 구리이온 10ppm의 발명조성물용액을 온도 40℃에서 50rpm으로 교반하면서 3분간 침적 처리된 시료를 { 표 6-2 } 피삭금속의 전치리 및 분제, 액상 소부도장공정(총 7개 공정)에 따라 처리하여 시험시료로 사용하였다.The surface of the aluminum wheel was polished at a rotational speed of 2,000 rpm using a conventional emulsion type water-soluble cutting oil. The surface of the aluminum wheel was polished (Table 6-1). The pH of the inventive composition was 8.5, the metal ion content was 200 ppm, 10 ppm of copper ions and 10 ppm of copper ions were stirred at 50 rpm at a temperature of 40 ° C for 3 minutes to prepare a sample for pretreatment of the working metal (Table 6-2), a liquid baking step (7 steps in total) And used as a test sample.

금속이온함량을 300ppm으로 변경 한 것 이외에는 상기 실시 예 111과 동일하게 시료를 처리하였다.A sample was treated in the same manner as in Example 111 except that the metal ion content was changed to 300 ppm.

금속이온함량을 400ppm으로 변경 한 것 이외에는 상기 실시 예 111과 동일하게 시료를 처리하였다.
[ 표 6 ] 전처리, 도장 후 물성시험 결과

Figure 112014059932782-pat00046

Figure 112014059932782-pat00047

Figure 112014059932782-pat00048

Figure 112014059932782-pat00049

Figure 112014059932782-pat00050

Figure 112014059932782-pat00051

Figure 112014059932782-pat00052

Figure 112014059932782-pat00053

Figure 112014059932782-pat00054

Figure 112014059932782-pat00055

Figure 112014059932782-pat00056

Figure 112014059932782-pat00057

Figure 112014059932782-pat00058

Figure 112014059932782-pat00059

Figure 112014059932782-pat00060

Figure 112014059932782-pat00061

Figure 112014059932782-pat00062

Figure 112014059932782-pat00063

Figure 112014059932782-pat00064

종래의 인산아연피막염과 크로메이트피막 처리된 비교 예1~예3은 이미 상용화된 방법으로 국내 도장 관련업계에서 요구하는 대부분의 시험 항목을 만족한다. 그러나 철 소재(CR)에서 염수분무성 시험시간을 종래의 일반적인 기준인 500~720시간을 800시간으로, 알루미늄소재(AL)의 CASS 시험시간을 120~168시간에서 200시간으로 연장하여 시험시 비교 예1, 예2, 예3에서 각각 시험전 도장표면의 Cut 부위로부터 4mm이상의 부식이 발생하였으나 실시 예 13의 철소재(CR)과 실시 예4~110의 알루미늄소재는 비교 예 대비 모두 보다 좋은 결과를 얻을수 있었고, 내염온수 2차부착성(240시간)과 염수분무성 시험에서도 비교 예1예3 대비 실시 예1~예3과 예4~예110은 시험 후 편측 박리 정도가 양호하였고, 유리불소함량을 10~100ppm으로 처리된 시료는 외관변색이 없으나 150ppm으로 상승시킨 실시 예27, 예33, 예39, 예61, 예67, 예73, 예95, 예101, 예107의 시료는 부분적으로 과도한 표면에칭이 발생하여 피삭표면에서 약한 연갈색엷은검은색의 변색되었다.
구리이온함량조건을 변경시킨 실시예108, 예109은 양호하나 실시 예110은 표면색상이 구리색갈색으로 변색되어 외관 불량이 발생되었다.
Filliform 시험은 종래의 일반적인 시험시간인 680~1000시간을 1000시간 까지 시험 후 관찰시 비교예2, 예3과 실시 예4실시 예110 모두 양호하였고, 내염 온수 2차부착성(240시간)에서는 편측 박리정도가 비교 예 보다 양호한 결과를 얻을 수 있었으며, CNC 구동축 회전속도에 따른 도장물성 차이는 없었다.
또한 실시 예112, 예113에서 종래의 에멀젼타입의 수용성절삭유로 피삭된 알루미늄 소재를 발명조성물용액에서 침적, 교반하여 전처리, 도장처리한 제품은 염수분무성에서 480시간, CASS 120시간, Filliform 480시간까지는 양호하였으나 이 후 부식이 급속히 진행되었고, 본 발명조성물용액을 피막 대체로 시험된 예111~예113에서 금속이온함량이 높은 실시 예113~예112은 실시 예111보다 시험 후 편측 부식진행 정도가 다소 나았으며, 금속이온함량이 높을수록 CASS, Filliform, 염수분무성이 향상되는 것으로 추정되며, 본 발명용액을 사용하면 산업현장에서 본 발명용액을 종래의 에멀젼타입의 수용성절삭유를 대체하여 사용되면 친환경적작업장 운용과 신설되는 표면처리공정-도장공정설비의 비용절감과 이산화탄소발생 억제로 기존의 공정보다 향상된 경쟁력을 가질 것으로 판단된다. A sample was treated in the same manner as in Example 111 except that the metal ion content was changed to 400 ppm.
[Table 6] Test results after pre-treatment and painting
Figure 112014059932782-pat00046

Figure 112014059932782-pat00047

Figure 112014059932782-pat00048

Figure 112014059932782-pat00049

Figure 112014059932782-pat00050

Figure 112014059932782-pat00051

Figure 112014059932782-pat00052

Figure 112014059932782-pat00053

Figure 112014059932782-pat00054

Figure 112014059932782-pat00055

Figure 112014059932782-pat00056

Figure 112014059932782-pat00057

Figure 112014059932782-pat00058

Figure 112014059932782-pat00059

Figure 112014059932782-pat00060

Figure 112014059932782-pat00061

Figure 112014059932782-pat00062

Figure 112014059932782-pat00063

Figure 112014059932782-pat00064

Comparative Examples 1 to 3, in which conventional zinc phosphate film salt and chromate film were treated, satisfy most of the test items required in the domestic painting industry by the already commercialized method. However, in the case of iron CR, the test time of salt water ash was extended from 500 ~ 720 hours to 800 hours and the CASS test time of aluminum material (AL) from 120 ~ 168 hours to 200 hours. Corrosion of more than 4 mm from the cut portion of the surface of the coating before test in Examples 1, 2 and 3, respectively, was observed, but the iron material (CR) of Example 13 and the aluminum material of Examples 4 to 110 had better results (240 hours) of salt water warming water and in the salt water silting test, the degree of unilateral peeling after the test was good in Examples 1 to 3 and 4 to 110 compared to Comparative Example 1, The samples treated with 10 to 100 ppm of the sample were partially washed with the sample of Example 27, Example 33, Example 39, Example 61, Example 67, Example 73, Example 95, Example 101, Excessive surface etching occurs, resulting in a weak light brown to light black discoloration on the work surface It was.
Examples 108 and 109 in which the copper ion content condition was changed were good, but in Example 110, surface color changed to brownish brown and appearance defect occurred.
In the Filliform test, the conventional test time of 680 to 1000 hours was observed up to 1000 hours, and the test results of Comparative Example 2, Example 3 and Example 4 were all good, and in the salt water warm water secondary adhesion test (240 hours) The degree of peeling was better than that of the comparative example, and there was no difference in paint properties according to the rotation speed of the CNC drive shaft.
In Examples 112 and 113, the aluminum material peened with the water-soluble cutting oil of the conventional emulsion type was immersed and stirred in the inventive composition solution and pretreated and painted, the product was washed with 480 hours of salt water, 120 hours of CASS, 480 hours of Filliform But the corrosion progressed rapidly after that. In Examples 111 to 113 in which the solution of the composition of the present invention was tested as a coating film, in Examples 113 to 112 in which the metal ion content was high, the degree of unilateral corrosion progressed somewhat And it is estimated that the higher the metal ion content, the better the CASS, Filliform, and salt water silence. If the solution of the present invention is used instead of the conventional emulsion type water-soluble cutting oil in the industrial field, Operation and new surface treatment process - Cost reduction of coating process equipment and suppression of carbon dioxide generation It is expected.

▶대표도 2
▷종래의 대표적인 인산아연피막공정
1 : 탕세 2 : 탈지 3 : 탈지
4 : 수세 5 : 수세 6 : 표면조정
7 : 인산아연피막 8, 9 : 수세 10 : 순수세
▷발명조성물용액 적용 후 공정
1 : 탕세 2 : 발명용액 3 : 발명용액
4 : 순수세 5 : 순수세
▶ Representative figure 2
▷ Conventional zinc phosphate coating process
1: Tanse 2: Degreasing 3: Degreasing
4: Washing 5: Washing 6: Surface adjustment
7: zinc phosphate coating 8, 9: waterproof 10: pure water
▷ Process after Application of Invention Composition Solution
1: Tanse 2: Invention solution 3: Invention solution
4: pure three 5: pure three

Claims (7)

금속 또는 비철금속표면 피삭 가공시 사용되는 에멀젼타입의 수용성절삭유 제내에 텅스텐, 몰리브덴, 규소, 마그네슘, 바나듐, 지르코늄, 은, 티타늄, 하프늄 중 한 개 이상의 금속이온과 실란가수분해물 및 유리불소, 구리이온을 함유하는 것을 특징으로 하는 에멀젼타입의 수용성 절삭유제 조성물.In an aqueous emulsion type cutting oil used in the machining of metal or nonferrous metal surfaces, one or more of metal ions and silane hydrolyzate and free fluorine and copper ions of tungsten, molybdenum, silicon, magnesium, vanadium, zirconium, silver, By weight based on the total weight of the emulsion-type water-soluble cutting oil composition. 제1항에 있어서,
텅스텐, 몰리브덴, 규소, 마그네슘, 바나듐, 지르코늄, 은, 티타늄, 하프늄 중 선택된 하나 또는 둘 이상의 금속이온 금속이온함량이 10~5,000ppm인 것으로 특징으로 하는 에멀젼타입의 수용성절삭유제 조성물.
The method according to claim 1,
Wherein the content of one or more metal ion metal ions selected from tungsten, molybdenum, silicon, magnesium, vanadium, zirconium, silver, titanium and hafnium is 10 to 5,000 ppm.
제1항에 있어서,
유리불소함량을 5~500ppm을 첨가하는 것을 특징으로 하는 에멀젼타입의 수용성절삭유제 조성물.
The method according to claim 1,
A water-soluble cutting oil composition of emulsion type, wherein a free fluorine content is added in an amount of 5 to 500 ppm.
제1항에 있어서,
구리이온을 5~50ppm을 첨가하는 것을 특징으로 하는 에멀젼타입의 수용성절삭유제 조성물.
The method according to claim 1,
A water-soluble cutting oil composition of emulsion type, wherein 5 to 50 ppm of copper ions are added.
제1항의 에멀젼타입의 수용성절삭유조성물을 이용한 금속표면 전처리방법에 있어서,
탕세, 탈지, 및 피막, 수세, 순수세 공정으로 이루어지는 것을 특징으로 하는 도장하지용 금속 표면의 전처리 방법.


A method for pretreating a metal surface using the emulsion type water-soluble cutting oil composition of claim 1,
Degreasing, degreasing, blanketing, degreasing, coating, washing, and pure water.


삭제delete 삭제delete
KR1020130107688A 2013-09-09 2013-09-09 Multi-purpose water-solube metalworking fluids for metal surface treatment before painting and method thereof KR101434112B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130107688A KR101434112B1 (en) 2013-09-09 2013-09-09 Multi-purpose water-solube metalworking fluids for metal surface treatment before painting and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130107688A KR101434112B1 (en) 2013-09-09 2013-09-09 Multi-purpose water-solube metalworking fluids for metal surface treatment before painting and method thereof

Publications (1)

Publication Number Publication Date
KR101434112B1 true KR101434112B1 (en) 2014-08-26

Family

ID=51751296

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130107688A KR101434112B1 (en) 2013-09-09 2013-09-09 Multi-purpose water-solube metalworking fluids for metal surface treatment before painting and method thereof

Country Status (1)

Country Link
KR (1) KR101434112B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240083707A (en) 2022-12-05 2024-06-12 부산대학교 산학협력단 Device for treatment of cutting oil using titanium turning scraps and treatment method using thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040058037A (en) * 2002-12-24 2004-07-03 니폰 페인트 가부시키가이샤 Chemical conversion coating agent and surface-treated metal
KR20040058039A (en) * 2002-12-24 2004-07-03 니폰 페인트 가부시키가이샤 Pretreatment method for coating
KR20040058040A (en) * 2002-12-24 2004-07-03 니폰 페인트 가부시키가이샤 Chemical conversion coating agent and surface-treated metal
KR101067993B1 (en) 2006-03-15 2011-09-26 니혼 파커라이징 가부시키가이샤 Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member
KR101129212B1 (en) 2006-11-21 2012-03-26 니혼 파커라이징 가부시키가이샤 Aqueous surface treatment for environment-friendly precoated metal materials, surface-treated metal materials, and environment-friendly precoated metal materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040058037A (en) * 2002-12-24 2004-07-03 니폰 페인트 가부시키가이샤 Chemical conversion coating agent and surface-treated metal
KR20040058039A (en) * 2002-12-24 2004-07-03 니폰 페인트 가부시키가이샤 Pretreatment method for coating
KR20040058040A (en) * 2002-12-24 2004-07-03 니폰 페인트 가부시키가이샤 Chemical conversion coating agent and surface-treated metal
KR101067993B1 (en) 2006-03-15 2011-09-26 니혼 파커라이징 가부시키가이샤 Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member
KR101129212B1 (en) 2006-11-21 2012-03-26 니혼 파커라이징 가부시키가이샤 Aqueous surface treatment for environment-friendly precoated metal materials, surface-treated metal materials, and environment-friendly precoated metal materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240083707A (en) 2022-12-05 2024-06-12 부산대학교 산학협력단 Device for treatment of cutting oil using titanium turning scraps and treatment method using thereof

Similar Documents

Publication Publication Date Title
CA2810747A1 (en) Method for coating metallic surfaces with a coating agent containing a polymer, the coating agent, and use thereof
EP2971236B1 (en) Improved trivalent chromium-containing composition for aluminum and aluminum alloys
EA012533B1 (en) Method for preparing metallic workpieces for cold forming
RU2696628C2 (en) Method of preparing metal molded articles for cold forming
JP4187162B2 (en) Chemical conversion treatment agent and surface treatment metal
US4614607A (en) Non-chromated deoxidizer
CN104004579B (en) Machining center rust coolant liquid
KR100525973B1 (en) Metal working fluid
KR101434112B1 (en) Multi-purpose water-solube metalworking fluids for metal surface treatment before painting and method thereof
JPH05112885A (en) Titanium coating film remover for high-speed tool steel
CN104294266B (en) Environment-friendly highly efficient brass passivation process
KR101559285B1 (en) Conversion Coating Composition of Magnesium and Magnesium Alloy and Surface Treating Method Using The Same
KR101469610B1 (en) Conversion Coating Composition of Magnesium and Magnesium Alloy and Surface Treating Method Using The Same
US20110256318A1 (en) Process for preparing and treating a substrate
RU2684803C2 (en) Method of processing metallic material with layer of non-phosphate coating for cold-heading plastic treatment
JP6216208B2 (en) Non-phosphating agent for plastic working, treatment liquid, chemical film and metal material having chemical film
US6126997A (en) Method for treating magnesium die castings
KR101709303B1 (en) Solution to accelerate the detergency of acid
CN104342278A (en) Synthetic grinding fluid and preparation method thereof
KR102076905B1 (en) Composition of post treatment agent for metal surface treatment
CN112805358B (en) Water soluble metalworking concentrates
KR101408272B1 (en) Colourless surface lubricant for warm and hot forging, a manufacturing method thereof and a manufacturing method of forging product using the same
JP2000160394A (en) Short time phosphate treatment of ferrous metallic material
JP4508602B2 (en) Chemical polishing agent for iron-based alloy and surface treatment method for iron-based alloy using the same
JP2994428B2 (en) Composition for treating phosphate film and treatment method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170726

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180621

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190615

Year of fee payment: 6