KR101429381B1 - Process for preparing a carbon fiber precursor - Google Patents

Process for preparing a carbon fiber precursor Download PDF

Info

Publication number
KR101429381B1
KR101429381B1 KR1020130008907A KR20130008907A KR101429381B1 KR 101429381 B1 KR101429381 B1 KR 101429381B1 KR 1020130008907 A KR1020130008907 A KR 1020130008907A KR 20130008907 A KR20130008907 A KR 20130008907A KR 101429381 B1 KR101429381 B1 KR 101429381B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
fiber precursor
emulsion
cold water
precursor
Prior art date
Application number
KR1020130008907A
Other languages
Korean (ko)
Other versions
KR20140096456A (en
Inventor
최미영
김우성
김성룡
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020130008907A priority Critical patent/KR101429381B1/en
Publication of KR20140096456A publication Critical patent/KR20140096456A/en
Application granted granted Critical
Publication of KR101429381B1 publication Critical patent/KR101429381B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Fibers (AREA)

Abstract

본 발명은 건조 치밀화공정 및 2차 연신공정에서의 단사간 접착(접사)이 억제되고, 급격한 냉각으로 인한 마이크로/마크로 보이드가 적어져 전구체 섬유의 품질이 우수해지고, 시간 경과에 따른 전구체 섬유의 물성 변화가 작아지게 할 수 있는 탄소섬유 전구체의 제조방법을 제공하기 위한 것이다.
본 발명은 온수연신사에 냉수를 분사하여 사를 냉각시키되 냉수욕은 2단이상의 다단이 되도록 하여 급격한 냉각이 이뤄지지 않게 하고, 냉수욕의 마지막 단에는 유제를 소량 첨가하여 미리 유제를 부여하는 공정이 되게 만들어 유제가 보다 잘 부착되게 하고 균일하게 부착할 수 있도록 하는 탄소섬유 전구체의 제조방법인 것이다.
In the present invention, the adhesion between the single fibers in the dry densification step and the secondary drawing step is suppressed, the micro / macro void due to abrupt cooling is reduced, the quality of the precursor fibers becomes excellent, and the properties of the precursor fibers And to provide a method of manufacturing a carbon fiber precursor which can make the change smaller.
In the present invention, chilled water is sprayed to hot shoe ladle, so that the cold water bath is made into two or more stages to prevent rapid cooling, and a small amount of emulsion is added to the last stage of the cold water bath Which makes the emulsion more adhered and uniformly adhered to the carbon fiber precursor.

Description

탄소섬유 전구체의 제조방법{Process for preparing a carbon fiber precursor}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a carbon fiber precursor,

본 발명은 탄소섬유 전구체의 제조방법에 관한 것이다. 더욱 상세하게, 본 발명은 온수연신사에 냉수를 분사하여 사를 냉각시키되 냉수욕은 2단이상의 다단이 되도록 하여 급격한 냉각이 이뤄지지 않게 하고, 냉수욕의 마지막 단에는 유제를 소량 첨가하여 미리 유제를 부여하는 공정이 되게 만들어 유제가 보다 잘 부착되게 하고 균일하게 부착할 수 있도록 하는 탄소섬유 전구체의 제조방법에 관한 것이다.The present invention relates to a method for producing a carbon fiber precursor. More particularly, the present invention relates to a method for cooling a yarn by spraying cold water onto a hot-rolled gentle, cooling the yarn so that the cold water bath is made into two or more stages so that rapid cooling is not performed, To a process for producing a carbon fiber precursor that allows the emulsion to be better adhered and uniformly adhered.

섬도를 높이고 사폭을 줄이면 방사공정에서 사 내부의 용액 침투성이 나빠져 수세가 잘 안되고 승온할 때 사 내부에 열이 균일하게 전달되기가 어려워진다. 이로 인해 단사간 접착이 발생하고 연신성이 저하되고 유제가 균일하게 부착하기 어려워 공정 중, 모우가 발생되어 공정성이 불량해지며 결국에는 생산성 및 품질도 떨어지게 된다. When the fineness is increased and the warpage is reduced, the permeability of the solution in the yarn is deteriorated in the spinning process and the water is not easily washed, and it becomes difficult to uniformly transfer the heat to the inside of the yarn when the temperature is raised. As a result, there is a short-term adhesion, a deterioration in stretchability, and a difficulty in uniformly adhering the emulsion, resulting in mowing in the process, resulting in poor processability and inferior productivity and quality.

이를 개선하고자, (1) 온수(70℃가 넘는 온도의 물을 말함)공정에서의 다단 연신법, (2) 수세공정, 온수연신공정, 유제부여공정에서 방향전환가이드와 함께 액을 불기 시작하는 방법, (3) 온수연신공정에서 나온 사를 냉수욕에 침지 또는 사에 냉수를 분사하여 사를 냉각시켜 닙롤러를 거친 후, 유제욕을 들어가는 방법들이 제안되어 왔다.In order to improve this, it is necessary to use a multi-stage stretching method in the hot water (more than 70 ° C) process, (2) a washing process, a hot water drawing process and an emulsion application process, And (3) methods in which the yarn from the hot water drawing process is immersed in a cold water bath or chilled water is sprayed on the yarn to cool the yarn, pass through the nip roller, and then enter the oil bath.

[특허문헌 0001] 대한민국 공개특허 특1996-0004575호(탄소섬유 제조용 전구체 섬유 제조방법, 1996.02.23)[Patent Document 0001] Korean Patent Publication No. 1996-0004575 (Method of Manufacturing Precursor Fiber for Carbon Fiber Production, Feb. 23, 1996)

이에 본 발명은 건조 치밀화공정 및 2차 연신공정에서의 단사간 접착(접사)이 억제되고, 급격한 냉각으로 인한 마이크로/마크로 보이드가 적어져 전구체 섬유의 품질이 우수해지고, 시간 경과에 따른 전구체 섬유의 물성 변화가 작아지게 할 수 있는 탄소섬유 전구체의 제조방법을 제공하기 위한 것이다.Accordingly, it is an object of the present invention to provide a method for producing a precursor fiber, which is capable of suppressing the adhesion between the monolayer fibers in the densification step and the second step, And to provide a method for producing a carbon fiber precursor capable of reducing changes in physical properties.

본 발명의 탄소섬유 전구체의 제조방법은, 주성분인 아크릴로니트릴과 보조성분인 이타콘산, 용매인 디메틸설폭시드를 중합반응조에 주입하고, 개시제로서 아조비스이소부티로니트릴과 중합도 조절제로서 티오 글리콜을 주입한 후 교반에 의해 균일한 용액을 만들고, 중합을 계속해서 아크릴로니트릴계 중합체 도프 원액을 제조한 후 디메틸설폭시드와 물로 구성된 응고욕에 건습식 방사하고 방사된 탄소 섬유의 응고사를 온수에서 연신하고, 유제로 처리한 후 가압 스팀에 의해 연신하여 탄소섬유 전구체를 제조하는 방법에 있어서,In the method for producing a carbon fiber precursor of the present invention, acrylonitrile as a main component, itaconic acid as an auxiliary component, and dimethyl sulfoxide as a solvent are introduced into a polymerization reactor, and azobisisobutyronitrile as an initiator and thioglycol After the injection, a homogeneous solution was prepared by stirring, and the polymerization was continued to prepare an acrylonitrile-based polymer doped stock solution. The resultant was dry-wet-spinned in a coagulation bath composed of dimethylsulfoxide and water, A method for producing a carbon fiber precursor by stretching, followed by treatment with an emulsion, and stretching by pressurized steam,

상기 온수연신공정에서 나온 온수연신사를 냉수욕에 침지 또는 온수연신사에 냉수를 분사하여 사를 냉각시키되 냉수욕은 2단이상의 다단으로 하고, 냉수욕의 마지막 단에는 유제를 소량 첨가하여 미리 유제를 부여하는 공정을 실시하는 것을 특징으로 한다.The hot water extruded from the hot water drawing step is immersed in a cold water bath or chilled water is sprayed to the hot water extruder to cool the yarn, the cold water bath is made into two or more stages, and a small amount of an emulsion is added to the last stage of the cold water bath, Is performed.

본 발명의 탄소섬유 전구체의 제조방법은 건조 치밀화공정 및 2차 연신공정에서의 단사간 접착(접사)이 억제되고, 급격한 냉각으로 인한 마이크로/마크로 보이드가 적어져 전구체 섬유의 품질이 우수해지고, 시간 경과에 따른 전구체 섬유의 물성 변화가 작아지는 효과가 있다. The method of producing a carbon fiber precursor according to the present invention suppresses adhesion (affixation) between monolayer in the densification step in the densification step and the second step of stretching, decreases the micro / macrovoids due to abrupt cooling and improves the quality of the precursor fiber, The change in physical properties of the precursor fibers with the passage of time is reduced.

또한, 유제가 보다 균일하게 부착되어 내염화공정에서 단섬유간 접착을 방지하여 탄소섬유의 접사 및 표면 결함을 막아서 고강도/고탄성의 탄소섬유를 얻을 수 있는 효과가 있다.Further, the emulsions are more uniformly adhered to each other to prevent adhesion between short fibers in the chlorination step, thereby preventing the affixation and surface defects of carbon fibers to obtain high strength / high-elasticity carbon fibers.

또한, 사폭을 줄여서 전구체 섬유를 제조하기 때문에 단위 설비당 생산량이 증대되고 원가가 낮아지는 장점이 있다.In addition, since precursor fibers are produced by reducing the width of yarn, there is an advantage in that the production amount per unit facility is increased and the cost is lowered.

이와 같은 본 발명을 다음에서 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in detail.

본 발명에 따라 제조되는 탄소섬유 전구체는 아크릴로니트릴계 중합체로부터 얻어지며, 이의 주성분은 아크릴로니트릴 단위이다. 아크릴로니트릴 단위의 함량은 전체 아크릴로니트릴계 중합체에 대해 90중량% 이상, 특히 95 내지 99중량%, 여기서 아크릴로니트릴 단위의 함량이 너무 적으면 소성 공정으로 얻어지는 탄소섬유의 강도가 저하되는 등, 탄소섬유의 기계적 특성이 저하될 우려가 있다. The carbon fiber precursor produced according to the present invention is obtained from an acrylonitrile-based polymer, and its main component is an acrylonitrile unit. The content of the acrylonitrile unit is 90% by weight or more, particularly 95 to 99% by weight based on the total acrylonitrile-based polymer. When the content of the acrylonitrile unit is too small, the strength of the carbon fiber obtained by the sintering process is lowered , The mechanical properties of the carbon fiber may be deteriorated.

상기 아크릴로니트릴계 중합체는 필요에 따라 하나 이상의 공중합 성분(보조성분)을 포함할 수 있다. 그 함량은 전체 아크릴로니트릴계 중합체에 대해 바람직하게 10중량% 미만, 예를 들면 1 내지 5중량%이다. 보조성분으로서 적합한 예로는 아크릴산, 메타크릴산, 이타콘산, 크로톤산, 시트라콘산, 말레인산 등이 있으며, 특히 이타콘산을 사용하는 것이 바람직하다. The acrylonitrile-based polymer may contain one or more copolymerizable components (auxiliary components), if necessary. The content thereof is preferably less than 10% by weight, for example, 1 to 5% by weight, based on the total acrylonitrile-based polymer. Suitable examples of the auxiliary component include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, maleic acid and the like, and itaconic acid is particularly preferably used.

본 발명에 의하면, 이와 같은 보조성분과 주성분을 15 내지 25중량%로 유기용매에 주입하고, 개시제, 예를 들면 아조비스이소부티로니트릴로는 단량체(주성분과 보조성분)의 중량 대비 약 0.1 내지 1중량%로 주입을 하며, 중합도 조절제, 예를 들면 티오 글리콜(Thio Glycol)를 전 단량체 대비 0.1 내지 1중량%가 되도록 주입을 한다.According to the present invention, the auxiliary component and the main component are injected into the organic solvent in an amount of 15 to 25% by weight, and the initiator, for example, azobisisobutyronitrile is used in an amount of about 0.1 to 20% by weight based on the weight of the monomer (main component and auxiliary component) 1% by weight, and a polymerization initiator such as Thio Glycol is added in an amount of 0.1 to 1% by weight based on the weight of the total monomer.

본 발명에서 유기 용매로는 디메틸설폭시드, 디메틸포름아미드, 디메틸아세트아미드 등의 아크릴로니트릴 중합체를 용해시킬 수 있는 통상의 유기 용매를 사용할 수 있으나, 아미드 결합을 갖지 않은 유기 용매인 디메틸설폭시드를 사용하는 것이 가장 바람직하다. As the organic solvent in the present invention, a conventional organic solvent capable of dissolving an acrylonitrile polymer such as dimethylsulfoxide, dimethylformamide or dimethylacetamide can be used, but dimethylsulfoxide, which is an organic solvent having no amide bond, It is most preferable to use it.

모든 단량체, 용매, 첨가제(개시제나 중합도 조절제)의 주입을 완료한 후에 교반하여 균일한 용액을 만들고, 추가로 중합을 행하면 고유점도 2.0의 공중합체 20중량%를 포함하는 아크릴로니트릴계 중합체 도프 원액이 제조된다. After the injection of all of the monomers, the solvent and the additive (initiator or degree of polymerization regulator) is completed, the solution is stirred to form a homogeneous solution. When the polymerization is further carried out, an acrylonitrile-based polymer doped stock solution containing 20% by weight of a copolymer having an intrinsic viscosity of 2.0 .

본 발명에 의하면, 도프 원액은 필요에 따라 탈포조로 이동되어 탈포 과정을 거친 후 건습식으로 노즐을 이용하여 디메틸설폭시드와 물로 구성된 응고욕에 방사가 된다. 방사된 탄소섬유 전구체, 즉 아크릴로니트릴계 섬유는 60℃ 이상의 온수에서 연신된 후 3단의 냉각조를 거치게 된다. According to the present invention, the dope stock solution is transported to a decoction tank as required, defoaming is carried out, and then the product is spinned into a coagulating bath consisting of dimethyl sulfoxide and water using a nozzle in a dry and wet manner. The spun carbon fiber precursor, that is, the acrylonitrile-based fiber, is drawn in hot water at 60 ° C or higher and then subjected to a three-stage cooling bath.

즉, 본 발명에 의하면, 탄소섬유 전구체의 섬도를 높이고 사폭을 줄이고, 방사공정에서 단사간의 접착을 방지하며, 유제를 균일하게 부착하기 위하여 온수연신공정에서 나온 온수연신사를 냉수욕에 침지 또는 온수연신사에 냉수를 분사하여 사를 냉각시키되 냉수욕은 2단이상의 다단이 되도록 하여 급격한 냉각이 이뤄지지 않게 하고, 냉수욕의 마지막 단에는 유제를 소량 첨가하여 미리 유제를 부여하는 공정(Pre-Oiling)이 되게 만들어 유제가 보다 잘 부착되게 하고 균일하게 부착할 수 있도록 한다. That is, according to the present invention, in order to increase the fineness of the carbon fiber precursor and reduce the warpage, to prevent adhesion between the single yarns in the spinning process, and to adhere the emulsions uniformly, the Onsukuni shine from the hot water drawing process is immersed in a cold bath, The cold water is sprayed to the shrine to cool the yarn. The cold bath is made into two or more stages to prevent rapid cooling, and a small amount of the emulsion is added to the last stage of the cold bath to make the process pre-Oiling Allowing the emulsion to be better adhered and evenly adhered.

여기서, 냉수욕의 1단 온도는 약 60 내지 80℃, 2단 온도는 약 50 내지 70℃, 3단 온도 는 약40 내지 60℃, 3단에는 농도가 1% 이하로 되게 유제를 첨가하는 것이 바람직하다. Here, it is preferable to add an emulsion so that the temperature of the first step of the cold water bath is about 60 to 80 ° C, the temperature of the second step is about 50 to 70 ° C, the temperature of the third step is about 40 to 60 ° C, Do.

이후, 실리콘계 유제, 변성 에폭시 유제, 암모늄 화합물을 포함하는 유제를 0.1 내지 5.0중량%로 부여하여 이를 가열롤러를 이용하여 건조 치밀화하고 고온의 가압 스팀하에서 연신하면 본 발명에 따른 탄소섬유용 전구체 섬유를 얻을 수 있다. Thereafter, an emulsion containing a silicone type emulsion, a modified epoxy emulsion and an ammonium compound is added in an amount of 0.1 to 5.0% by weight and dried and densified by using a heating roller and stretched under a high-temperature pressurized steam to obtain a carbon fiber precursor fiber according to the present invention Can be obtained.

제조된 전구체 섬유의 전체 연신 배율은 통상 7 내지 25배이고, 단섬유 섬도는 0.5 내지 2.0dtex이다. 방사된 탄소섬유 전구체를, 통상의 방법에 따라, 산소분위기 및 200 내지 400℃에서 내염화 처리하고, 불활성분위기에서 800 내지 2000℃에서 탄화처리함으로써, 균일한 물성을 가지며, 보이드에 의한 결함이 적은 탄소섬유를 제조할 수 있다. 본 발명의 전구체를 사용하여 제조한 탄소섬유는 CNG 탱크, 풍력 발전용 블레이드, 터빈 블레이드 등의 에너지 관련 기재의 형성 재료 및 도로, 교량 등의 구조물 보강재료 등으로 유용하게 사용될 수 있다.The total draw ratio of the prepared precursor fibers is generally 7 to 25 times, and the single fiber fineness is 0.5 to 2.0 dtex. The spun carbon fiber precursor is subjected to a chlorination treatment in an oxygen atmosphere and at a temperature of 200 to 400 占 폚 in an ordinary atmosphere and then carbonized at 800 to 2000 占 폚 in an inert atmosphere to obtain a carbon fiber precursor having uniform physical properties, Carbon fiber can be produced. The carbon fiber produced using the precursor of the present invention can be usefully used as a material for forming an energy-related substrate such as a CNG tank, a blade for a wind power generator, a turbine blade, and a structural reinforcement material for roads and bridges.

이하 본 발명을 실시예에 의거하여 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail based on examples.

실시예Example 1내지1 to 2( 2( 비교예Comparative Example 1내지1 to 2) 2)

주성분인 아크릴로니트릴과 보조성분인 이타콘산, 용매인 디메틸설폭시드를 중합반응조에 우선적으로 주입하였다. 이 때의 중합조성은 아크릴로니트릴 98중량%, 이타콘산 2중량%로 하고 전체 주입량에 대해 단량체(주성분과 보조성분)의 농도는 22.0중량%가 되도록 용매를 투입하고 개시제인 아조비스이소부티로니트릴을 전 단량체 대비 0.1중량%가 되도록 주입하고 중합도 조절제인 티오 글리콜(Thio Glycol)을 전 단량체 대비 0.2중량%가 되도록 주입하였다.Acrylonitrile as a main component, itaconic acid as an auxiliary component, and dimethyl sulfoxide as a solvent were injected into the polymerization reactor preferentially. At this time, the polymerization composition was 98% by weight of acrylonitrile and 2% by weight of itaconic acid, and the solvent was added so that the concentration of the monomer (main component and auxiliary component) was 22.0% by weight based on the total injection amount. Nitrile was added so as to be 0.1 wt% of the total monomer, and Thio Glycol, which is a polymerization degree regulator, was injected so as to be 0.2 wt% of the total monomer.

모든 단량체, 용매, 첨가제(개시제나 중합도 조절제)의 주입을 2시간 안에 완료한 후에 교반하여 균일한 용액을 만들었다. 65℃에서 14시간 중합을 행하여 고유점도 2.0의 공중합체 20중량%를 포함하는 아크릴로니트릴계 중합체 도프 원액을 제조하였다. After injection of all monomers, solvents, additives (initiator and degree of polymerization regulator) was completed within 2 hours, the solution was stirred to prepare a homogeneous solution. Polymerization was carried out at 65 캜 for 14 hours to prepare an acrylonitrile-based polymer dopant stock solution containing 20% by weight of a copolymer having an intrinsic viscosity of 2.0.

도프 원액을 50℃로 보관하고 이를 직경 0.12mm, 구멍수 4000개의 노즐을 이용하여 디메틸설폭시드와 물로 구성된 응고욕에 5mm의 갭을 두고 건습식 방사에 의하여 섬유를 응고시켰다. 얻어진 응고사를 수세한 뒤, 60℃ 이상의 온수로 연장하고 3단의 냉수욕을 거쳤다(1단 온도 70℃, 2단 온도 60℃, 3단 온도 50℃이며 비교예 2에서는 냉수욕을 거치지 않음). 다음 표 1과 같이 3단에서의 유제 농도는 실시예 1에서는 0.8%, 실시예 2에서는 3.0%이며 비교예 1 내지 2에서는 유제를 첨가하지 않았다.The dope stock solution was stored at 50 ° C and the fibers were solidified by dry-wet spinning with a gap of 5 mm in a coagulating bath consisting of dimethyl sulfoxide and water using a nozzle having a diameter of 0.12 mm and a number of holes of 4000. The resultant coagulum was washed with water, extended to hot water of 60 ° C or more, and subjected to a 3-step cold water bath (70 ° C for 1 stage, 60 ° C for 2 stages, 50 ° C for 3 stages, and no cold bath in Comparative Example 2). As shown in the following Table 1, the emulsion concentration in the third stage was 0.8% in Example 1 and 3.0% in Example 2, and the emulsions were not added in Comparative Examples 1 and 2.

이후, 실리콘계 유제, 변성 에폭시 유제, 암모늄 화합물을 포함하는 유제를 부여하여 이를 150℃의 가열롤러를 이용하여 건조 치밀화하고 고온의 가압 스팀하에서 연신하여 탄소섬유용 전구체 섬유를 얻었다. 열수사의 사폭을 다음 표 1과 같이 측정하고 탄소섬유용 전구체 섬유의 접사를 평가하였다. 또한, 탄소섬유 전구체 섬유를 제조한 즉시와 60일 경과 후의 인장강도 CV% 차이를 평가하여 다음 표 1에 나타내었다. Thereafter, an emulsion containing a silicone type emulsion, a modified epoxy emulsion, and an ammonium compound was applied, dried and densified using a heating roller at 150 DEG C, and stretched under a high-temperature pressurized steam to obtain a precursor fiber for carbon fibers. The haze of thermal investigation was measured as shown in the following Table 1 and the affix of the precursor fiber for carbon fiber was evaluated. The difference in tensile strength CV% immediately after the production of the carbon fiber precursor fibers and after 60 days was evaluated and is shown in Table 1 below.

탄소섬유용 전구체를 이용하여 240 내지250℃의 온도로 10% 수축시키면서 섬유비중이 1.35의 내염화사를 만들고 300 내지 500℃의 질소 분위기하에서 3% 연장하여 1350℃의 질소 분위기하에서 5% 수축하여 탄소섬유를 얻었다. 내염화사의 접사를 평가하고 탄소섬유 스트랜드 강도를 측정하였다.The carbon fiber precursor was used to shrink 10% at a temperature of 240 to 250 占 폚 while making a salt-resistant phosphor having a fiber specific gravity of 1.35, extended 3% under a nitrogen atmosphere at 300 to 500 占 폚 and shrunk 5% under a nitrogen atmosphere at 1350 占 폚, Fiber was obtained. The adherence of the chlorinated lacquer was evaluated and the strength of the carbon fiber strand was measured.

Figure 112013007631487-pat00001
Figure 112013007631487-pat00001

이상, 본 발명의 바람직한 예에 대해 어느 정도 특정적으로 설명했지만, 이것들에 대해 여러 가지의 변경을 할 수 있는 것은 당연하다. 따라서, 본 발명의 범위 및 정신으로부터 이탈하는 일 없이, 본 명세서 중에서 특정적으로 기재된 모양과는 다른 모양으로 본 발명을 실시할 수 있다는 것은 당연한 것으로 이해될 수 있다.Although the preferred embodiments of the present invention have been described in detail to some extent, it is natural that various modifications can be made to them. It is therefore to be understood that the invention may be practiced otherwise than as specifically described herein without departing from the scope and spirit of the invention.

Claims (2)

주성분인 아크릴로니트릴과 보조성분인 이타콘산, 용매인 디메틸설폭시드를 중합반응조에 주입하고, 개시제로서 아조비스이소부티로니트릴과 중합도 조절제로서 티오 글리콜을 주입한 후 교반에 의해 균일한 용액을 만들고, 중합을 계속해서 아크릴로니트릴계 중합체 도프 원액을 제조한 후 디메틸설폭시드와 물로 구성된 응고욕에 건습식 방사하고 방사된 탄소 섬유의 응고사를 온수에서 연신하고, 유제로 처리한 후 가압 스팀에 의해 연신하여 탄소섬유 전구체를 제조하는 방법에 있어서,
상기 온수연신공정에서 나온 온수연신사를 냉수욕에 침지 또는 온수연신사에 냉수를 분사하여 사를 냉각시키되 냉수욕은 2단이상의 다단으로 하고, 냉수욕의 마지막 단에는 유제를 소량 첨가하여 미리 유제를 부여하는 공정을 실시하는 것을 특징으로 하는 탄소 섬유 전구체의 제조방법.
Acrylonitrile as a main component, itaconic acid as an auxiliary component and dimethylsulfoxide as a solvent are injected into a polymerization reactor, and azobisisobutyronitrile as an initiator and thioglycol as a polymerization degree regulator are injected, and then a homogeneous solution is prepared by stirring , Polymerization was continued to prepare an acrylonitrile-based polymer doped raw solution, and then dried and wet-spinned in a coagulating bath composed of dimethylsulfoxide and water, and the coagulated carbon fibers spun out were heated in hot water, treated with an emulsion, A method of producing a carbon fiber precursor by stretching the carbon fiber precursor,
The hot water extruded from the hot water drawing step is immersed in a cold water bath or chilled water is sprayed to the hot water extruder to cool the yarn, the cold water bath is made into two or more stages, and a small amount of an emulsion is added to the last stage of the cold water bath, Wherein the carbon fiber precursor is a carbon fiber precursor.
제1항에 있어서, 상기 냉수욕에서 1단 온도는 60 내지 80℃, 2단 온도는 50 내지 70℃, 3단 온도는 40 내지 60℃으로 하고, 3단에서는 농도가 1% 이하로 되게 유제를 첨가하는 것을 특징으로 하는 탄소 섬유 전구체의 제조방법.

The method according to claim 1, wherein the cold water bath has a first stage temperature of 60 to 80 占 폚, a second stage temperature of 50 to 70 占 폚, a third stage temperature of 40 to 60 占 폚, and an emulsion having a concentration of 1% By weight based on the total weight of the carbon fiber precursor.

KR1020130008907A 2013-01-25 2013-01-25 Process for preparing a carbon fiber precursor KR101429381B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130008907A KR101429381B1 (en) 2013-01-25 2013-01-25 Process for preparing a carbon fiber precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130008907A KR101429381B1 (en) 2013-01-25 2013-01-25 Process for preparing a carbon fiber precursor

Publications (2)

Publication Number Publication Date
KR20140096456A KR20140096456A (en) 2014-08-06
KR101429381B1 true KR101429381B1 (en) 2014-08-12

Family

ID=51744293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130008907A KR101429381B1 (en) 2013-01-25 2013-01-25 Process for preparing a carbon fiber precursor

Country Status (1)

Country Link
KR (1) KR101429381B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555826B2 (en) 1991-12-25 1996-11-20 東レ株式会社 Acrylic yarn manufacturing method for carbon fiber precursor
KR19980028329A (en) * 1996-10-22 1998-07-15 구광시 Synthetic Fiber Yarn Manufacturing Equipment
KR20120077628A (en) * 2010-12-30 2012-07-10 주식회사 효성 Carbon fiber precursor and manufacturing method
KR101168537B1 (en) 2010-12-31 2012-07-31 주식회사 효성 Carbon fiber manufacturing method and Precipitating bath

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555826B2 (en) 1991-12-25 1996-11-20 東レ株式会社 Acrylic yarn manufacturing method for carbon fiber precursor
KR19980028329A (en) * 1996-10-22 1998-07-15 구광시 Synthetic Fiber Yarn Manufacturing Equipment
KR20120077628A (en) * 2010-12-30 2012-07-10 주식회사 효성 Carbon fiber precursor and manufacturing method
KR101168537B1 (en) 2010-12-31 2012-07-31 주식회사 효성 Carbon fiber manufacturing method and Precipitating bath

Also Published As

Publication number Publication date
KR20140096456A (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5722991B2 (en) Carbon fiber manufacturing method and carbon fiber precursor fiber
JP2018145541A (en) Carbon fiber bundle and method for production of the same
JP2018145540A (en) Method for production of carbon fiber bundle
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2011046942A (en) Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber
CN110359114B (en) Polyacrylonitrile fiber, polyacrylonitrile-based carbon fiber and preparation method thereof
US20140106167A1 (en) Method for hybrid dry-jet gel spinning and fiber produced by that method
CN109161973A (en) The production technology of acid fiber by polylactic
KR101407127B1 (en) rocess of the congelation of precursor fiber for preparing a carbon fiber having high tensile and modulus
KR102102984B1 (en) Method for preparing carbon fiber
KR101429381B1 (en) Process for preparing a carbon fiber precursor
KR20140074136A (en) Precursor manufacturing device of carbon fiber
KR101450429B1 (en) Carbon fiber precursor fiber for large tow
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
KR20160039712A (en) Precursor for large tow, and carbon fiber manufactured by using the same
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP2021139062A (en) Production method of carbon fiber bundle
KR101957061B1 (en) Process for preparing carbon fiber having high strength
KR20110078306A (en) Process for producing precursor fiber for acrylonitrile-based carbon fiber and carbon fiber obtained from the precursor fiber
KR101364788B1 (en) Process for treating oil on the precursor fiber for preparing a carbon fiber
JP6217342B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
KR101470250B1 (en) Method of manufacturing precursor for carbon fiber
KR20120007183A (en) Manufacturing method of carbon fiber
KR20110079369A (en) A method of preparing doped solution of polyacrylonitrile-based precursor for carbon fiber

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170712

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190711

Year of fee payment: 6