KR101421110B1 - Inductive Proximity Sensor - Google Patents

Inductive Proximity Sensor Download PDF

Info

Publication number
KR101421110B1
KR101421110B1 KR1020130018417A KR20130018417A KR101421110B1 KR 101421110 B1 KR101421110 B1 KR 101421110B1 KR 1020130018417 A KR1020130018417 A KR 1020130018417A KR 20130018417 A KR20130018417 A KR 20130018417A KR 101421110 B1 KR101421110 B1 KR 101421110B1
Authority
KR
South Korea
Prior art keywords
sensor
sensor coil
coil
signal
change
Prior art date
Application number
KR1020130018417A
Other languages
Korean (ko)
Inventor
남용현
이초수
김성태
김지현
Original Assignee
주식회사 트루윈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 트루윈 filed Critical 주식회사 트루윈
Priority to KR1020130018417A priority Critical patent/KR101421110B1/en
Priority to PCT/KR2013/004705 priority patent/WO2014129703A1/en
Application granted granted Critical
Publication of KR101421110B1 publication Critical patent/KR101421110B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/9502Measures for increasing reliability
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/9505Constructional details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • H03K2017/9527Details of coils in the emitter or receiver; Magnetic detector comprising emitting and receiving coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

Provided is an inductive proximity sensor capable of always accurately detecting whether an object to be detected approaches by performing compensations for variations in outer environments, such as temperature, including: a bobbin configured to have a first winding unit formed on the side to which an object to be detected approaches and a second winding unit formed with a blocking plate for blocking a magnetic field interposed between the first winding unit and the second winding unit; a pair of first and second sensor coils wound on the first and the second winding units of the bobbin, respectively, and configured to have respective one ends grounded together; and a signal processor connected to a line which couples the other ends of the first and the second sensor coils to a ground portion where the one ends are grounded together and configured to analyze a change of a received first signal based on a received second signal by processing a change of received signals to determine whether the object to be detected approaches or not based on a result of the determination.

Description

인덕턴스방식 근접센서 {Inductive Proximity Sensor}[0001] Inductive proximity sensor [0002]

본 발명은 인덕턴스방식 근접센서에 관한 것으로서, 보다 상세하게는 온도나 주위 환경에 관계없이 금속물체의 접근 여부를 정밀하게 감지하는 것이 가능한 인덕턴스방식 근접센서에 관한 것이다.The present invention relates to an inductance-type proximity sensor, and more particularly, to an inductance-type proximity sensor capable of precisely detecting whether or not a metal object is approachable regardless of a temperature or an ambient environment.

일반적으로 근접센서는 피검출체가 검출범위 내로 접근하는 지의 여부를 감지하기 위하여 사용하는 것으로서, 특히 금속물체의 접근 여부를 감지하기 위하여 제조 설비의 자동화 등에 매우 유용하게 사용된다.In general, the proximity sensor is used to detect whether or not the object to be detected is approaching within the detection range, and is particularly useful for automating manufacturing facilities to detect whether or not a metal object is approaching.

예를 들면, 자동차의 브레이크등의 스위치는 브레이크 페달과 서로 연동하도록 설치되며, 운전자가 발로 브레이크 페달을 밟았는지의 여부를 근접센서를 이용하여 비접촉방식으로 감지할 때에 사용하기도 한다.For example, a switch such as a brake of an automobile is installed so as to be interlocked with a brake pedal, and is also used when the driver senses whether or not the brake pedal is stepped on the foot by a proximity sensor in a noncontact manner.

대한민국 등록특허 제10-0689196호에는 근접센서의 원리를 이용한 차량용 스위치와 관련된 기술이 공개되어 있다.Korean Patent No. 10-0689196 discloses a technique related to a vehicle switch using the principle of a proximity sensor.

상기와 같은 근접센서에 있어서는, 피검출체(예를 들면, 브레이크 페달)이 검출범위 내에 접근했는지의 여부를 코일의 인덕턴스를 측정하여 수행하며, 코일의 인덕턴스값에 주위 환경에 의한 영향이 최소화되어야 보다 정확한 측정이 이루어지게 된다.In such a proximity sensor, whether or not a subject (for example, a brake pedal) approaches the detection range is measured by performing inductance measurement of the coil, and the influence of the surrounding environment on the inductance value of the coil must be minimized More accurate measurements can be made.

일반적으로 코일의 경우에는 온도 등의 변화에 따라 인덕턴스값이 변화되는 특성을 가지고 있으므로, 이 변화값을 보상해야 피검출체의 접근여부를 보다 정확하게 감지할 수 있다.Generally, in the case of the coil, since the inductance value changes according to the change of the temperature or the like, it is necessary to compensate the change value to more accurately detect the approach of the subject.

본 발명은 상기와 같은 점을 조감하여 이루어진 것으로서, 온도 등의 외부환경의 변화에 대한 보상을 자체적으로 행하므로, 항상 정확하게 피검출체의 접근여부를 감지하는 것이 가능한 인덕턴스방식 근접센서를 제공하는데, 그 목적이 있다.The present invention provides an inductance-type proximity sensor capable of accurately detecting whether or not an object to be detected is always correctly performed because it compensates for a change in an external environment such as a temperature by itself, It has its purpose.

본 발명의 실시예에 따른 인덕턴스방식 근접센서는 피검물체가 접근하는 쪽에 제1권취부가 형성되고 상기 제1권취부와 자기장을 차단하는 차단판을 사이에 두고 제2권취부가 형성되는 보빈과, 상기 보빈의 제1권취부 및 제2권취부에 각각 권취되고 한쪽 끝단이 서로 접지되는 한쌍의 제1센서코일 및 제2센서코일과, 상기 제1센서코일 및 제2센서코일의 다른 한쪽 끝단과 접지부에 연결된 선이 연결되어 입력되는 신호의 변화를 처리하여 하나를 기준으로 다른 하나의 변화를 분석하여 피검물체의 접근여부를 판단하는 신호처리기를 포함하여 이루어진다.The inductance type proximity sensor according to the embodiment of the present invention includes a bobbin in which a first winded portion is formed on a side where an object to be examined approaches and a second winded portion is formed with a shield plate interposed between the first winded portion and a magnetic field, A pair of first sensor coils and second sensor coils wound on the first winding portion and the second winding portion of the bobbin respectively and grounded at one ends thereof and a pair of first sensor coils and second sensor coils which are connected to the other ends of the first sensor coil and the second sensor coil, And a signal processor for processing a change in a signal input to the line connected to the line and analyzing another change based on one line to determine whether the object is to be accessed.

상기 차단판의 두께가 3mm 이상을 유지하도록 형성하는 것이 접근하는 피검출체에 의한 자기장의 변화를 최소화하는 것이 가능하므로 바람직하다.It is preferable to form the shielding plate so that the thickness of the shielding plate is maintained at 3 mm or more because it is possible to minimize the change of the magnetic field due to the subject to be detected.

상기 제1센서코일 및 제2센서코일의 권취되는 길이는 동일한 길이를 유지하도록 권취한다.The lengths of the first sensor coil and the second sensor coil wound are wound so as to have the same length.

본 발명의 실시예에 따른 인덕턴스방식 근접센서에 의하면, 피검물체의 접근여부에 의하여 자기장이 변화하지 않는 제2센서코일의 신호값을 기준으로 피검물체의 접근여부에 의하여 자기장이 변화하는 제1센서코일의 신호값을 분석하여 피검물체의 접근여부를 감지하므로, 온도 등의 주변환경에 의한 영향을 최소화하는 것이 가능하고, 항상 정확한 감지가 가능하다.According to the inductance-type proximity sensor according to the embodiment of the present invention, the first sensor, whose magnetic field varies depending on whether the object is approaching or not, based on the signal value of the second sensor coil, By analyzing the signal value of the coil, it is possible to minimize the influence of the surrounding environment such as the temperature and to always detect the object accurately.

예를 들면, 온도 등의 주변환경에 따른 제1센서코일 및 제2센서코일의 신호값의 변화는 양쪽에 동일하게 작용하게 되므로, 피검물체의 접근여부에 영향을 받지 않는 제2센서코일의 신호값을 기준으로 제1센서코일의 신호값을 분석하게 되면, 항상 정확하게 피검물체의 접근여부를 감지하는 것이 가능하다.For example, changes in the signal values of the first sensor coil and the second sensor coil in accordance with the ambient environment such as temperature act in the same manner on both sides. Therefore, the signal of the second sensor coil Analyzing the signal value of the first sensor coil based on the value of the sensor coil, it is possible to always accurately detect whether or not the object to be inspected is approaching.

도 1은 본 발명의 일실시예에 따른 인덕턴스방식 근접센서를 나타내는 측면도이다.
도 2는 본 발명의 일실시예에 따른 인덕턴스방식 근접센서에 있어서, 차단판의 두께를 3mm 이상으로 형성하여 피검물체의 접근에 따른 인덕턴스값의 변화량을 측정하여 나타내는 그래프이다.
도 3는 본 발명의 일실시예에 따른 인덕턴스방식 근접센서에 있어서, 차단판의 두께를 3mm 미만으로 형성하여 피검물체의 접근에 따른 인덕턴스값의 변화량을 측정하여 나타내는 그래프이다.
1 is a side view illustrating an inductance type proximity sensor according to an embodiment of the present invention.
FIG. 2 is a graph showing the inductance type proximity sensor according to an embodiment of the present invention, in which the thickness of the shielding plate is 3 mm or more, and the change amount of the inductance value according to approach of the object is measured.
3 is a graph showing inductance type proximity sensor according to an embodiment of the present invention, in which the thickness of the shielding plate is less than 3 mm, and the amount of change of the inductance value according to approach of the object is measured.

다음으로 본 발명에 따른 인덕턴스방식 근접센서의 바람직한 실시예를 도면을 참조하여 상세하게 설명한다.Next, a preferred embodiment of the inductance-type proximity sensor according to the present invention will be described in detail with reference to the drawings.

본 발명은 여러가지 다양한 형태로 구현하는 것이 가능하며, 이하에서 설명하는 실시예들에 한정되지 않는다.The present invention can be embodied in various forms and is not limited to the embodiments described below.

이하에서는 본 발명을 명확하게 설명하기 위해서 본 발명과 밀접한 관계가 없는 부분은 상세한 설명을 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이고, 반복적인 설명을 생략한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, wherein like numerals refer to like elements throughout.

먼저, 본 발명의 일실시예에 따른 인덕턴스방식 근접센서는, 도 1에 나타낸 바와 같이, 보빈(10)과, 한쌍의 제1센서코일(20) 및 제2센서코일(30)과, 신호처리기(50)를 포함하여 이루어진다.1, the inductance type proximity sensor according to an embodiment of the present invention includes a bobbin 10, a pair of first sensor coils 20 and a second sensor coil 30, (50).

상기 보빈(10)에는 코일이 권취되는 제1권취부(12) 및 제2권취부(14)가 형성된다.The bobbin (10) is provided with a first winding section (12) and a second winding section (14) around which a coil is wound.

예를 들면, 피검물체가 접근하는 쪽에 제1권취부(12)가 형성되고, 상기 제1권취부(12)와 자기장을 차단하는 차단판(16)을 사이에 두고 제2권취부(14)가 형성된다.For example, a first winding section 12 is formed on the side closer to the object to be inspected, and a second winding section 14 is formed with a shield plate 16 blocking the magnetic field from the first winding section 12, .

상기 보빈(10)은 합성수지 등을 이용하여 형성한다.The bobbin 10 is formed using synthetic resin or the like.

상기 제1센서코일(20)은 상기 보빈(10)의 제1권취부(12)에 권취되고, 상기 제2센서코일(30)은 상기 보빈(10)의 제2권취부(14)에 권취된다.The first sensor coil 20 is wound around the first winding portion 12 of the bobbin 10 and the second sensor coil 30 is wound around the second winding portion 14 of the bobbin 10, do.

상기 제1센서코일(20) 및 제2센서코일(30)의 권취되는 길이는 동일한 길이를 유지하도록 권취한다.The lengths of the first sensor coil 20 and the second sensor coil 30 that are wound are wound to be the same length.

상기 제1권취부(12)와 제2권취부(14) 사이에 형성되는 차단판(16)은 두께(S)를 3mm 이상 유지하도록 형성한다.The shield plate 16 formed between the first winding part 12 and the second winding part 14 is formed to maintain the thickness S of 3 mm or more.

상기에서 차단판(16)의 두께(S)를 3mm 미만으로 형성하게 되면, 상기 제1권취부(12)쪽에서 피검물체(예를 들면, 금속재질)가 접근할 때에 상기 제2센서코일(30)에 인덕턴스가 변화하도록 영향을 미치게 된다.When the thickness S of the blocking plate 16 is less than 3 mm, when the inspected object (for example, metal material) approaches the first winding section 12, the second sensor coil 30 ) To affect the inductance.

상기 차단판(16)의 두께(S)는 두껍게 형성할수록 피검출체에 의한 제2센서코일(30)의 자기장 변화가 거의 없도록 최소화하는 것이 가능하므로 바람직하지만, 보빈(10)의 전체적인 크기와 무게, 원료의 절감 등을 감안하여 결정하는 것이 바람직하다.It is preferable that the thickness S of the blocking plate 16 is minimized so that the change in the magnetic field of the second sensor coil 30 due to the detected object is minimized as the thickness S of the blocking plate 16 is increased. , Reduction of raw materials, and the like.

상기 제1센서코일(20)의 한쪽 끝단인 제1접지단(24)과 상기 제2센서코일(30)의 한쪽 끝단인 제2접지단(34)은 서로 접지되는 상태로 설치된다.A first ground terminal 24, which is one end of the first sensor coil 20, and a second ground terminal 34, which is one end of the second sensor coil 30, are grounded.

상기 제1센서코일(20)의 제1접지단(24)과 상기 제2센서코일(30)의 제2접지단(34)이 서로 접지되는 접지부로부터 접지신호선(40)이 인출된다.The ground signal line 40 is drawn out from the grounding portion where the first grounding end 24 of the first sensor coil 20 and the second grounding end 34 of the second sensor coil 30 are grounded.

상기 제1센서코일(20)의 다른 한쪽 끝단에서는 제1센서신호선(22)이 인출되고, 상기 제2센서코일(30)의 다른 한쪽 끝단에서는 제2센서신호선(32)이 인출된다.The first sensor signal line 22 is drawn out from the other end of the first sensor coil 20 and the second sensor signal line 32 is drawn out from the other end of the second sensor coil 30.

상기 접지신호선(40), 제1센서신호선(22), 제2센서신호선(32)은 상기 신호처리기(50)에 연결된다.The ground signal line 40, the first sensor signal line 22 and the second sensor signal line 32 are connected to the signal processor 50.

상기 신호처리기(50)에서는 상기 제1센서신호선(22)과 접지신호선(40)을 통하여 입력되는 신호값(인덕턴스값)과, 상기 제2센서신호선(32)과 접지신호선(40)을 통하여 입력되는 신호값(인덕턴스값)을 비교하여 피검물체의 접근여부를 판단한다.The signal processor 50 calculates a signal value (inductance value) input through the first sensor signal line 22 and the ground signal line 40 and a signal value (inductance value) through the second sensor signal line 32 and the ground signal line 40 (Inductance value) to determine whether the object to be inspected is approaching or not.

예를 들면, 상기 제2센서신호선(32)과 접지신호선(40)을 통하여 입력되는 신호값(인덕턴스값)을 기준으로, 상기 제1센서신호선(22)과 접지신호선(40)을 통하여 입력되는 신호값(인덕턴스값)의 변화를 판단하여 피검물체의 접근여부를 감지한다.The first sensor signal line 22 and the ground signal line 40 are inputted based on a signal value (inductance value) inputted through the second sensor signal line 32 and the ground signal line 40 And judges the change of the signal value (inductance value) to detect whether or not the object to be inspected is approaching.

도 2에는 상기 차단판(16)의 두께를 3.5mm로 형성한 경우에 피검물체의 접근에 따른 인덕턴스값의 변화를 측정하여 그래프로 나타내고, 도 3에는 상기 차단판(16)의 두께를 2mm로 형성한 경우에 피검물체의 접근에 따른 인덕턴스값의 변화량을 측정하여 그래프로 나타낸다.FIG. 2 is a graph showing changes in the inductance according to approach of the object when the thickness of the shield plate 16 is 3.5 mm. In FIG. 3, the thickness of the shield plate 16 is 2 mm The change amount of the inductance value according to approach of the object to be inspected is measured and shown in a graph.

먼저, 도 2에 나타낸 바와 같이, 상기 차단판(16)의 두께를 3.5mm로 형성한 경우에는, 상기 제2센서신호선(32)과 접지신호선(40)을 통하여 입력되는 신호값(인덕턴스값)인 기준코일의 신호(도 2에서 청색선)가 일정한 값을 나타내고 있음을 확인할 수 있다.2, when the shield plate 16 is formed to have a thickness of 3.5 mm, the signal value (inductance value) inputted through the second sensor signal line 32 and the ground signal line 40, It can be confirmed that the signal (blue line in FIG. 2) of the reference coil as shown in FIG.

그리고 도 3에 나타낸 바와 같이, 상기 차단판(16)의 두께를 2mm로 형성한 경우에는, 상기 제2센서신호선(32)과 접지신호선(40)을 통하여 입력되는 신호값(인덕턴스값)인 기준코일의 신호(도 3에서 청색선)가 일정하지 않고 일부 변화되는 것임을 확인할 수 있다.As shown in FIG. 3, when the thickness of the blocking plate 16 is 2 mm, the signal value (inductance value) input through the second sensor signal line 32 and the ground signal line 40 It can be confirmed that the signal of the coil (blue line in FIG. 3) is not constant but partly changed.

따라서, 상기 차단판(16)의 두께가 얇을 경우에는 피검물체의 접근에 따라 제2센서코일(30)에 자기장의 변화를 초래하게 됨을 확인할 수 있다.Therefore, when the thickness of the blocking plate 16 is thin, it can be confirmed that the magnetic field is changed in the second sensor coil 30 according to approach of the object to be inspected.

본 발명에서는 차단판(16)의 두께를 다양하게 변화시키면서 실험을 거듭한 결과, 상기 차단판(16)의 두께를 3mm이상으로 형성한 경우에 제2센서코일(30)의 자기장의 변화(인덕턴스값의 변화)가 없음을 확인하였다.In the present invention, as a result of repeatedly experimenting while varying the thickness of the shield plate 16, it has been found that when the thickness of the shield plate 16 is set to 3 mm or more, the change in the magnetic field of the second sensor coil 30 No change in value).

상기에서는 본 발명에 따른 인덕턴스방식 근접센서의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고, 특허청구범위와 명세서 및 첨부한 도면의 범위 안에서 여러가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범위에 속한다.Although the preferred embodiments of the inductance-based proximity sensor according to the present invention have been described above, the present invention is not limited thereto, and various modifications may be made within the scope of the claims, the specification and the accompanying drawings, And falls within the scope of the present invention.

10 - 보빈, 12 - 제1권취부, 14 - 제2권취부, 16 - 차단판
20 - 제1센서코일, 22 - 제1센서신호선, 24 - 제1접지단
30 - 제2센서코일, 32 - 제2센서신호선, 26 - 제2접지단
40 - 접지신호선, 50 - 신호처리기
10 - Bobbin, 12 - First winding attachment, 14 - Second winding attachment, 16 - Shield plate
20 - first sensor coil, 22 - first sensor signal line, 24 - first ground terminal
30 - second sensor coil, 32 - second sensor signal line, 26 - second ground terminal
40 - ground signal line, 50 - signal processor

Claims (3)

피검물체가 접근하는 쪽에 제1권취부가 형성되고 상기 제1권취부와 자기장을 차단하는 차단판을 사이에 두고 제2권취부가 형성되는 보빈과,
상기 보빈의 제1권취부 및 제2권취부에 각각 권취되고 한쪽 끝단이 서로 접지되는 한쌍의 제1센서코일 및 제2센서코일과,
상기 제1센서코일 및 제2센서코일의 다른 한쪽 끝단과 접지부에 연결된 선이 연결되어 입력되는 신호의 변화를 처리하여 피검물체의 접근여부에 의하여 자기장이 변화하지 않는 제2센서코일의 신호값을 기준으로 피검물체의 접근여부에 의하여 자기장이 변화하는 제1센서코일의 신호값 변화를 분석하여 피검물체의 접근여부를 판단하는 신호처리기를 포함하는 인덕턴스방식 근접센서.
A bobbin in which a first wind-up portion is formed on a side closer to the object to be inspected and a second wind-up portion is formed with a shield plate intercepting the magnetic field between the first wind-
A pair of first sensor coils and second sensor coils wound on the first winding portion and the second winding portion of the bobbin and each having one end grounded,
A line connected to the other end of the first sensor coil and the second sensor coil and a ground line is connected to process the change of the input signal so that the signal value of the second sensor coil, And a signal processor for analyzing a change in a signal value of the first sensor coil whose magnetic field changes according to whether the object is approaching or not, and determining whether the object is approaching.
청구항 1에 있어서,
상기 차단판의 두께가 3mm 이상을 유지하도록 형성하는 인덕턴스방식 근접센서.
The method according to claim 1,
Wherein the thickness of the blocking plate is maintained at 3 mm or more.
청구항 1 또는 청구항 2에 있어서,
상기 제1센서코일 및 제2센서코일의 권취되는 길이는 동일한 길이를 유지하도록 권취하는 인덕턴스방식 근접센서.
The method according to claim 1 or 2,
Wherein the winding lengths of the first sensor coil and the second sensor coil are wound to maintain the same length.
KR1020130018417A 2013-02-21 2013-02-21 Inductive Proximity Sensor KR101421110B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130018417A KR101421110B1 (en) 2013-02-21 2013-02-21 Inductive Proximity Sensor
PCT/KR2013/004705 WO2014129703A1 (en) 2013-02-21 2013-05-29 Inductive proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130018417A KR101421110B1 (en) 2013-02-21 2013-02-21 Inductive Proximity Sensor

Publications (1)

Publication Number Publication Date
KR101421110B1 true KR101421110B1 (en) 2014-07-18

Family

ID=51391467

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130018417A KR101421110B1 (en) 2013-02-21 2013-02-21 Inductive Proximity Sensor

Country Status (2)

Country Link
KR (1) KR101421110B1 (en)
WO (1) WO2014129703A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160109121A (en) * 2015-03-10 2016-09-21 주식회사 트루윈 Inductive Displacement Sensor Using Frequency Modulation
KR20190016797A (en) * 2017-08-09 2019-02-19 엘에스오토모티브테크놀로지스 주식회사 Contact-less break switch
KR20200125293A (en) 2019-04-26 2020-11-04 (주)인피니어 Proximity sensor module having good durability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189552A (en) 2008-02-14 2009-08-27 Mamiya Op Co Ltd Proximity sensor and game machine with the proximity sensor disposed in game medium channel
JP2010164472A (en) 2009-01-16 2010-07-29 Yamatake Corp High-frequency oscillation type proximity sensor
JP2012185033A (en) 2011-03-04 2012-09-27 Makome Kenkyusho:Kk Proximity sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8701980A (en) * 1987-08-24 1989-03-16 Catena Product Dev Bv INDUCTIVE APPROACH SENSOR.
IT1238726B (en) * 1990-05-03 1993-09-01 Alessandro Dreoni INDUCTIVE PROXIMITY SENSOR AND POSITION TRANSDUCER WITH PASSIVE SCALE
US7129701B2 (en) * 2004-11-18 2006-10-31 Simmonds Precision Products, Inc. Method of inductive proximity sensing
JP2009264992A (en) * 2008-04-28 2009-11-12 Shinshu Univ Induction type proximity sensor
US8618791B2 (en) * 2010-09-30 2013-12-31 Rockwell Automation Technologies, Inc. Double-coil inductive proximity sensor apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189552A (en) 2008-02-14 2009-08-27 Mamiya Op Co Ltd Proximity sensor and game machine with the proximity sensor disposed in game medium channel
JP2010164472A (en) 2009-01-16 2010-07-29 Yamatake Corp High-frequency oscillation type proximity sensor
JP2012185033A (en) 2011-03-04 2012-09-27 Makome Kenkyusho:Kk Proximity sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160109121A (en) * 2015-03-10 2016-09-21 주식회사 트루윈 Inductive Displacement Sensor Using Frequency Modulation
KR101697975B1 (en) * 2015-03-10 2017-01-19 주식회사 트루윈 Inductive Displacement Sensor Using Frequency Modulation
KR20190016797A (en) * 2017-08-09 2019-02-19 엘에스오토모티브테크놀로지스 주식회사 Contact-less break switch
KR102348877B1 (en) * 2017-08-09 2022-01-06 엘에스오토모티브테크놀로지스 주식회사 Contact-less break switch
KR20200125293A (en) 2019-04-26 2020-11-04 (주)인피니어 Proximity sensor module having good durability

Also Published As

Publication number Publication date
WO2014129703A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP4960767B2 (en) Displacement sensor
US7710109B2 (en) Method and apparatus for position detection
US7262596B2 (en) Method for the contactless determination of a layer thickness via resistance and inductance measurement of a sensor oil
US20140084910A1 (en) Surface property inspection device and surface property inspection method
KR101984024B1 (en) Contactless magnetic linear position sensor
KR101421110B1 (en) Inductive Proximity Sensor
JP2011525236A (en) Position sensor
US10288759B2 (en) Contactless semsor
CN105806202A (en) Probe of electrical vortex sensor and electrical vortex sensor
WO2018012407A1 (en) Magnetic marker detection system and magnetic marker detection method
US6215296B1 (en) Arrangement for the measurement of alternating or direct current
US20220178970A1 (en) Non-contact voltage sensing method and apparatus
US7248042B2 (en) Method for the contactless determination of a thickness of a layer made of electrically-conductive material
JP6008756B2 (en) Current sensor and three-phase AC current sensor device
EP3322976B1 (en) Method and device for determining the wear of a carbon ceramic brake disc in a vehicle by impedance measurements
CN110687339B (en) Current sensor
JP6388672B2 (en) Coin detection system
CN205718820U (en) The probe of a kind of current vortex sensor and current vortex sensor
EP2966656B1 (en) Coil architecture for inductive sensors
WO2020049883A1 (en) Electric current measurement apparatus and electric current measurement method
CN112034268A (en) Method and system for measuring space electric field for eliminating charge accumulation effect
KR20150047272A (en) Apparatus and method for defect detection
JP2016065813A (en) Magnetic sensor array calibration method and magnetic sensor array calibration device
KR101185095B1 (en) Apparatus for temperature compensation of magnetism
KR100415922B1 (en) Non-magnetic coating layer thickness calibration method using magnetic induction sensor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170710

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180611

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190710

Year of fee payment: 6