KR101379899B1 - Composition of transparent thermal resistance and manufacturing method thereof - Google Patents

Composition of transparent thermal resistance and manufacturing method thereof Download PDF

Info

Publication number
KR101379899B1
KR101379899B1 KR1020120029880A KR20120029880A KR101379899B1 KR 101379899 B1 KR101379899 B1 KR 101379899B1 KR 1020120029880 A KR1020120029880 A KR 1020120029880A KR 20120029880 A KR20120029880 A KR 20120029880A KR 101379899 B1 KR101379899 B1 KR 101379899B1
Authority
KR
South Korea
Prior art keywords
material composition
transparent heat
heat resistance
resistance material
polyamide acid
Prior art date
Application number
KR1020120029880A
Other languages
Korean (ko)
Other versions
KR20130107801A (en
Inventor
최경호
신교직
이상국
이민혜
정승용
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020120029880A priority Critical patent/KR101379899B1/en
Priority to US13/849,916 priority patent/US9045897B2/en
Publication of KR20130107801A publication Critical patent/KR20130107801A/en
Application granted granted Critical
Publication of KR101379899B1 publication Critical patent/KR101379899B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Abstract

본 발명은 투명 열저항소재 조성물 및 그 제조방법에 관한 것으로서, 본 발명에 의한 투명 열저항소재 조성물은, 폴리아마이드산 및 기공유도중합체를 포함하며, 상기 폴리아마이드산 100중량부에 대하여, 상기 기공유도중합체를 5 내지 20중량부 포함하고, 상기 기공유도중합체는 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리비닐알코올(polyvinyl alcohol) 또는 폴리비닐피롤리돈(polyvinylpyrrolidone) 중 적어도 하나인 것을 특징으로 한다.
본 발명에 의하면, 산무수물, 디아민화합물 및 유기용매를 혼합하여 반응시켜 형성된 폴리아마이드산과 기공유도중합체를 최적의 비율로 혼합함으로써, 가시광선의 투과율의 저하를 최소화하면서, 열전도도 등의 열저항 특성을 현저히 향상시키는 장점이 있다.
The present invention relates to a transparent heat resistant material composition and a method for manufacturing the same, wherein the transparent heat resistant material composition according to the present invention comprises a polyamide acid and a covalent polymer, and the pores with respect to 100 parts by weight of the polyamide acid, 5 to 20 parts by weight of an induction polymer, wherein the covalent polymer is characterized in that at least one of polymethyl methacrylate (polymethyl methacrylate), polyvinyl alcohol (polyvinyl alcohol) or polyvinylpyrrolidone (polyvinylpyrrolidone) .
According to the present invention, the polyamide acid formed by mixing and reacting an acid anhydride, a diamine compound, and an organic solvent is mixed at an optimum ratio, thereby minimizing a decrease in the transmittance of visible light, while reducing heat resistance characteristics such as thermal conductivity. It has the advantage of significantly improving.

Description

투명 열저항소재 조성물 및 그 제조방법 {COMPOSITION OF TRANSPARENT THERMAL RESISTANCE AND MANUFACTURING METHOD THEREOF}Transparent heat resistant material composition and manufacturing method thereof {COMPOSITION OF TRANSPARENT THERMAL RESISTANCE AND MANUFACTURING METHOD THEREOF}

본 발명은 투명 열저항소재 조성물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 산무수물, 디아민화합물 및 유기용매를 혼합하여 반응시켜 형성된 폴리아마이드산과 기공유도중합체를 최적의 비율로 혼합함으로써, 가시광선의 투과율은 높이면서도 열전도도 등의 열저항 특성은 현저히 향상시키는 투명 열저항소재 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a transparent heat-resisting material composition and a method for manufacturing the same, and more particularly, by mixing polyamide acid formed by reacting an acid anhydride, a diamine compound and an organic solvent in an optimal ratio, The present invention relates to a transparent heat resistant material composition and a method of manufacturing the same, which have a high transmittance and significantly improve heat resistance characteristics such as thermal conductivity.

전세계적으로 온실가스 감축과 화석에너지 고갈로 인한 대안기술로 신재생 에너지나 대체에너지 기술개발이 이슈로 떠오르고 있으며, 이와 더불어 에너지의 효율적인 관리기술을 통한 부가가치 창출에 대한 관심도 급증하고 있다.The development of renewable energy or alternative energy technologies is emerging as an alternative technology due to greenhouse gas reduction and fossil energy depletion, and interest in creating added value through efficient management of energy is increasing rapidly.

이에, 여름철에는 실내로 유입되는 열선을 차단하여 내방효율을 높이면서 가시광선은 기존의 유리와 동등하게 유지하여 쾌적한 실내를 유지하며, 겨울철에는 실내의 열손실을 최소화하여 효율적인 열관리를 할 수 있는 기능성 소재에 대한 요구가 지속되고 있으며, 특히 투명열차단 소재에 대한 수요가 급증할 것으로 예상된다. Therefore, in summer, the heat rays flowing into the room are blocked to increase the efficiency of the room, while the visible light is kept the same as the existing glass to maintain a comfortable interior, and in winter, the function to manage the heat efficiently by minimizing the heat loss in the room. The demand for materials continues, and the demand for transparent thermal barrier materials is expected to soar.

열선흡수물질에 대한 개념은 1960년대에 제안되었지만, 본격적인 연구는 1998년 경부터 시작되었고, 2000년 경 첫 상품이 출시되었으며, 2005년 경에 이르러 1세대 상품군이 형성되었다.The concept of heat-absorbing materials was proposed in the 1960s, but full-scale research began around 1998, the first products were launched in 2000, and by 2005 the first generation of products was formed.

이렇게 열선을 제어하기 위한 시도는 틸트유리(tinted glass), 틸트필름, 스퍼터 코팅유리 및 스퍼터 코팅필름 등의 기술로도 다양하게 개발되었으며, 일부는 이미 상용화되었으나, 아직 널리 보급되기에는 성능이나 신뢰성 부분에 한계가 있다. 특히, 종래 기술에 있어서, 스퍼터 코팅유리는 고가공정이고, 산화 및 변색에 약한 단점이 있으며, 틸트필름은 내구성이 떨어지는 단점이 있다.These attempts to control the heating wire have been developed in various ways such as tilted glass, tilt film, sputter coated glass and sputter coated film, and some of them have already been commercialized, but performance or reliability are still widely available. There is a limit to. In particular, in the prior art, sputter-coated glass is an expensive process, has a weak disadvantage in oxidation and discoloration, the tilt film has a disadvantage of poor durability.

이에 에너지문제에 대해 일찍부터 대안을 마련해 온 유럽에서는 1990~2000년대 초에 걸쳐 가장 열차단특성이 우수한 것으로 알려진 스퍼터 코팅유리를 복층으로 하고, 중간에 아르곤과 같은 불활성 가스가 채워진 형태의 단열창호(저방사유리,low-E유리)를 개발하여 사용하였다.In Europe, which has been preparing alternatives to energy problems early in the 1990s and 2000s, sputter-coated glass, which is known to have the best thermal barrier properties, has a double layer, and an insulated window filled with an inert gas such as argon in the middle ( Low emission glass, low-E glass) was developed and used.

또한, 금속코팅형태의 저방사 유리는 독일을 시작으로 오스트리아, 스위스, 영국 등의 제도적 장치를 가지고 있어 수요가 증가해 왔으며, 아시아에서도 일본,중국 등의 사용비율이 점차 상승하고 있다. 다만, 한국에서는 아직 에너지관리기술에 대한 인식부족으로 국제적으로 최저수준의 적용율을 나타내고 있다.In addition, metal-coated low-emission glass has institutional devices such as Austria, Switzerland and the UK since Germany, and demand has increased, and the use ratio of Japan, China, etc. is gradually increasing in Asia. However, Korea still has the lowest application rate internationally due to lack of awareness of energy management technology.

다만, 박막금속코팅을 입히는 기술은 높은 투과율과 열선차단특성 등의 성능적 특성은 구현이 어느정도 가능하나, 습도가 높은 지역에서는 부식이 발생하여 막이 분리되거나 변색이 발생하는 문제가 있으며, 이동전화 송수신에 방해가 되는 문제가 있다.However, the thin film metal coating technology can realize the performance characteristics such as high transmittance and heat ray shielding characteristics.However, there is a problem that the membrane is separated or discolored due to corrosion in high humidity areas. There is a problem that interferes with.

또한, 필름위에 금속박막을 증착시키는 기술을 이용한 사우스웰(Southwall)사의 V-KOOL 제품은 적외선 차단율이 96%에 이르는 등 특성이 우수하나, 그 제조공정이 매우 복잡하고, 그에 따라 제품가격이 매우 고가라는 단점이 있다.In addition, Southwall's V-KOOL product, which uses a technology of depositing a metal thin film on a film, has excellent characteristics such as infrared blocking rate of 96%, but the manufacturing process is very complicated, and thus the product price is very high. There is a disadvantage of being expensive.

또한, 높은 열차단성능을 부여한 제품에서는 외부에서 유입된 열선흡수로 열팽창 특성의 차이가 크게 발생하여 지속적으로 응력을 받고 있던 복층 저방사유리가 폭발현상을 일으키는 문제가 있다.In addition, in a product to which high heat-transfer performance is given, there is a problem that a multilayer low-emission glass which is continuously stressed due to a large difference in thermal expansion characteristics due to heat radiation absorption introduced from the outside causes an explosion phenomenon.

또한, 종래의 열차단유리는 가시광선 파장의 빛 또한 차단하여 내부가 어두워지는 문제가 있다.In addition, the conventional heat shield glass also has a problem that the inside of the light is also darkened by blocking the visible light wavelength.

즉, 종래의 열차단유리 및 필름 개발기술의 경우, 열저항특성과 투명성, 경제성 그리고 내구성을 모두 만족시킬 수 없으므로, 종래의 방식이 아닌 새로운 개념을 적용하여 획기적으로 이러한 문제들을 해결하고 상용화할 수 있는 기술개발이 요구되고 있다. In other words, in the case of the conventional thermal barrier glass and film development technology, it is impossible to satisfy all of the heat resistance characteristics, transparency, economy and durability, so it is possible to solve these problems and commercialize them by applying a new concept rather than the conventional method. Technology development is required.

본 발명은 상기 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 산무수물, 디아민화합물 및 유기용매를 혼합하여 반응시켜 형성된 폴리아마이드산과 기공유도중합체를 최적의 비율로 혼합함으로써, 가시광선의 투과율의 저하를 최소화하면서, 열전도도 등의 열저항 특성을 현저히 향상시키는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to reduce the transmittance of visible light by mixing polyamide acid and a covalent polymer formed by mixing an acid anhydride, a diamine compound and an organic solvent in an optimum ratio. It is aimed at remarkably improving heat resistance characteristics, such as thermal conductivity, while minimizing this.

또한, 포어 형성 물질 및 포어의 크기와 분산을 최적화함으로써, 가시광선 투과율의 저하를 최소화할 수 있을 뿐만 아니라, 내구성의 저하를 최소화할 수 있는 것을 목적으로 한다.In addition, by optimizing the size and dispersion of the pore-forming material and the pores, it is not only to minimize the decrease in visible light transmittance, but also to minimize the decrease in durability.

또한, 종래에 비해, 반응공정을 최적화함으로써, 공정 단계를 최소화하여, 빠르고 경제적으로 열저항 소재를 제조하는 것을 목적으로 한다.In addition, compared to the prior art, by optimizing the reaction process, minimizing the process step, it is an object to manufacture a heat resistance material quickly and economically.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 투명 열저항소재 조성물은, 폴리아마이드산 및 기공유도중합체를 포함하며, 상기 폴리아마이드산 100중량부에 대하여, 상기 기공유도중합체를 5 내지 20중량부 포함하는 것을 특징으로 하며, 상기 기공유도중합체는 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리비닐알코올(polyvinyl alcohol) 또는 폴리비닐피롤리돈(polyvinylpyrrolidone) 중 적어도 하나인 것을 특징으로 한다.The transparent heat resistant material composition according to the present invention for achieving the above object comprises a polyamide acid and a covalent copolymer, with respect to 100 parts by weight of the polyamide acid, 5 to 20 parts by weight of the covalent polymer It is characterized in that it comprises, the group covalent polymer is characterized in that at least one of polymethyl methacrylate (polymethyl methacrylate), polyvinyl alcohol (polyvinyl alcohol) or polyvinylpyrrolidone (polyvinylpyrrolidone).

또한, 상기 기공유도중합체의 입자크기는 0.1㎛ 내지 3㎛인 것을 특징으로 하며, 상기 기공유도중합체의 분자량은 10,000 내지 30,000인 것을 특징으로 한다.In addition, the particle size of the pore copolymer is characterized in that 0.1 ㎛ to 3㎛, the molecular weight of the pore copolymer is characterized in that 10,000 to 30,000.

상기 폴리아마이드산은, 산무수물, 디아민화합물 및 유기용매를 혼합하여 반응시켜 형성된 것을 특징으로 하며, 상기 산무수물 1.0당량에 대하여, 상기 디아민화합물은 0.8 내지 1.2당량으로 혼합된 것을 특징으로 하며, 상기 산무수물은, 피로멜리틱디안하이드라이드(Pyromelliticdianhydride), 4,4'-(헥사플루오로이소프로필리덴)디프탈릭디안하이드라이드(4,4'(Hexafluoroisopropylidene)diphthalicanhydride),3,3,4,4-벤조페논테트라카르복실디안아이드라이드, 디페틸에테르-3,3',4,4'-테트라카르복실디안하이드라이드 또는 4,4'-옥시디프탈릭디안하이드라이드 중 적어도 하나인 것을 특징으로 한다.The polyamide acid is formed by mixing an acid anhydride, a diamine compound and an organic solvent. The diamine compound is mixed in an amount of 0.8 to 1.2 equivalents based on 1.0 equivalent of the acid anhydride. Anhydrides are pyromelliticdianhydrides, 4,4 '-(hexafluoroisopropylidene) diphthalic dianhydrides (4,4' (Hexafluoroisopropylidene) diphthalicanhydride), 3,3,4,4- Benzophenonetetracarboxylic dianide, difetylether-3,3 ', 4,4'-tetracarboxylic dianhydride or 4,4'-oxydiphthalic dianhydride.

또한, 상기 디아민화합물은, 4,4'-옥시디아닐린(4,4'-Oxydianilline), 4,4'-디아미노디페닐에테르 또는 2,6-비스(3-아미노페녹시)펜조니트릴 중 적어도 하나인 것을 특징으로 하며, 상기 유기용매는, N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone), 디메틸아세트아미드, 아세토니트릴, t-부탄올, 아세톤, 디메틸포름아미드, 이소프로필알콜 또는 에틸 아세테이트 중 적어도 하나인 것을 특징으로 한다.In addition, the diamine compound is in 4,4'-Oxidianilline, 4,4'- diaminodiphenyl ether or 2,6-bis (3-aminophenoxy) phenonitrile At least one, characterized in that the organic solvent, N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone), dimethylacetamide, acetonitrile, t-butanol, acetone, dimethylformamide, iso At least one of propyl alcohol or ethyl acetate.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 투명 열저항소재 조성물의 제조방법은, 산무수물, 디아민화합물 및 유기용매를 혼합하여 혼합물을 제조하는 혼합단계; 상기 혼합물을 교반하여 반응시켜, 폴리아마이드산 용액을 제조하는 반응단계; 및 상기 폴리아마이드산 용액에 기공유도중합체를 첨가하여, 투명 열저항소재 조성물을 제조하는 첨가단계;를 포함하여 이루어지는 것을 특징으로 한다.Method for producing a transparent heat resistance material composition according to the present invention for achieving the above object, the mixing step of preparing a mixture by mixing an acid anhydride, a diamine compound and an organic solvent; Reacting the mixture by stirring to prepare a polyamide acid solution; And adding an air-covalent polymer to the polyamide acid solution to prepare a transparent heat resistance material composition.

상기 반응단계에서, 상기 반응온도는 10℃ 내지 50℃인 것을 특징으로 하며,상기 반응단계에서, 반응시간은 8시간 내지 15시간인 것을 특징으로 하며, 상기 첨가단계에서, 상기 폴리아마이드산용액 100중량부에 대하여, 상기 기공유도중합체를 5 내지 20중량부 포함하는 것을 특징으로 한다.In the reaction step, the reaction temperature is characterized in that 10 ℃ to 50 ℃, in the reaction step, the reaction time is characterized in that 8 hours to 15 hours, in the addition step, the polyamide acid solution 100 It is characterized by including 5 to 20 parts by weight of the group covalent polymer with respect to parts by weight.

또한, 상기 첨가단계에서, 상기 기공유도중합체는 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리비닐알코올(polyvinyl alcohol) 또는 폴리비닐피롤리돈(polyvinylpyrrolidone) 중 적어도 하나인 것을 특징으로 한다.In addition, in the addition step, the group covalent polymer is characterized in that at least one of polymethyl methacrylate (polymethyl methacrylate), polyvinyl alcohol (polyvinyl alcohol) or polyvinylpyrrolidone (polyvinylpyrrolidone).

상기 혼합단계에서, 상기 산무수물 1.0당량에 대하여, 상기 디아민화합물은 0.8 내지 1.2당량으로 혼합된 것을 특징으로 하며, 상기 혼합단계에서, 상기 산무수물은, 피로멜리틱디안하이드라이드(Pyromelliticdianhydride), 4,4'-(헥사플루오로이소프로필리덴)디프탈릭디안하이드라이드(4,4'(Hexafluoroisopropylidene)diphthalicanhydride),3,3,4,4-벤조페논테트라카르복실디안아이드라이드, 디페틸에테르-3,3',4,4'-테트라카르복실디안하이드라이드 또는 4,4'-옥시디프탈릭디안하이드라이드 중 적어도 하나이며, 상기 디아민화합물은, 4,4'-옥시디아닐린(4,4'-Oxydianilline), 4,4'-디아미노디페닐에테르 또는 2,6-비스(3-아미노페녹시)펜조니트릴 중 적어도 하나이고, 상기 유기용매는, N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone), 디메틸아세트아미드, 아세토니트릴, t-부탄올, 아세톤, 디메틸포름아미드, 이소프로필알콜 또는 에틸 아세테이트 중 적어도 하나인 것을 특징으로 한다.In the mixing step, with respect to 1.0 equivalent of the acid anhydride, the diamine compound is characterized in that it is mixed in 0.8 to 1.2 equivalents, in the mixing step, the acid anhydride, pyromelliticdian hydride, 4 , 4 '-(hexafluoroisopropylidene) diphthalic hydride (4,4' (Hexafluoroisopropylidene) diphthalicanhydride), 3,3,4,4-benzophenonetetracarboxylic dianideide, difetylether-3 , 3 ', 4,4'-tetracarboxylic dianhydride or at least one of 4,4'-oxydiphthalic dianhydride, the diamine compound is 4,4'-oxydianiline (4,4' -Oxydianilline), 4,4'-diaminodiphenylether or 2,6-bis (3-aminophenoxy) phenozonitrile, and the organic solvent is N-methyl-2-pyrrolidone (N -methyl-2-pyrrolidone), dimethylacetamide, acetonitrile, t-butanol, acetone, dimethylforma De, characterized in that at least one of isopropyl alcohol or ethyl acetate.

또한, 상기 반응단계에서, 상기 폴리아마이드산 용액의 점도는 80CPS 내지 250CPS인 것을 특징으로 한다.In addition, in the reaction step, the viscosity of the polyamide acid solution is characterized in that the 80CPS to 250CPS.

본 발명의 투명 열저항소재 조성물 및 그 제조방법에 따르면, 산무수물, 디아민화합물 및 유기용매를 혼합하여 반응시켜 형성된 폴리아마이드산과 기공유도중합체를 최적의 비율로 혼합함으로써, 가시광선의 투과율의 저하를 최소화하면서, 열전도도 등의 열저항 특성을 현저히 향상시키는 장점이 있다.According to the transparent heat-resisting material composition of the present invention and a method for manufacturing the same, the polyamide acid formed by mixing an acid anhydride, a diamine compound, and an organic solvent is mixed with an air-copolymer in an optimal ratio, thereby minimizing a decrease in transmittance of visible light. At the same time, there is an advantage of remarkably improving heat resistance characteristics such as thermal conductivity.

또한, 포어 형성 물질 및 포어의 크기와 분산을 최적화함으로써, 가시광선 투과율의 저하를 최소화할 수 있을 뿐만 아니라, 내구성의 저하를 최소화할 수 있는 장점이 있다.In addition, by optimizing the size and dispersion of the pore-forming material and the pore, not only can the reduction of visible light transmittance be minimized, but also the durability can be minimized.

또한, 종래에 비해, 반응공정을 최적화함으로써, 공정 단계를 최소화하여, 빠르고 경제적으로 열저항 소재를 제조할 수 있는 장점이 있다.In addition, compared to the prior art, by optimizing the reaction process, the process step is minimized, there is an advantage that can be produced quickly and economically heat resistant material.

도 1은 본 발명의 투명 열저항소재 조성물의 제조방법을 순차적으로 나타낸 순서도
도 2는 본 발명의 투명 열저항소재 조성물의 제조방법에 따른 투명 열저항소재 조성물의 형성과정을 모사한 모사도
도 3은 본 발명의 투명 열저항소재 조성물의 제조방법에서, 반응단계(S20)를 나타낸 반응식
도 4는 본 발명의 투명 열저항소재 조성물의 제조방법에서, 반응단계(S20)를 나타낸 반응식
도 5는 도 4의 반응단계(S20)를 거쳐 형성된 투명 열저항소재를 촬영한 SEM사진
도 6은 도 3의 반응단계(S20)를 거쳐 형성된 투명 열저항소재를 촬영한 SEM사진
도 7은 본 발명에 의해 제조된 투명 열저항소재를 촬영한 SEM 사진
도 8은 종래의 폴리이미드 소재(PI)와 본 발명의 투명 열저항소재(PI foam)의 열전도도를 나타낸 그래프
도 9는 종래의 폴리이미드 소재(PI)와 본 발명의 투명 열저항소재(PI foam)의 영률을 나타낸 그래프
1 is a flow chart sequentially showing a manufacturing method of a transparent heat resistance material composition of the present invention
Figure 2 is a schematic diagram illustrating the formation process of the transparent heat resistance material composition according to the manufacturing method of the transparent heat resistance material composition of the present invention
Figure 3 is a reaction scheme showing a reaction step (S20) in the method for producing a transparent heat resistant material composition of the present invention
Figure 4 is a reaction scheme showing a reaction step (S20) in the method for producing a transparent heat resistant material composition of the present invention
FIG. 5 is a SEM photograph of a transparent heat resistance material formed through the reaction step S20 of FIG. 4.
6 is a SEM photograph of a transparent heat resistance material formed through the reaction step (S20) of FIG.
Figure 7 is a SEM photograph of the transparent heat resistance material produced by the present invention
8 is a graph showing the thermal conductivity of the conventional polyimide material (PI) and the transparent thermal resistance material (PI foam) of the present invention
9 is a graph showing the Young's modulus of the conventional polyimide material (PI) and the transparent thermal resistance material (PI foam) of the present invention

이하, 본 발명에 의한 투명 열저항소재 조성물 및 그 제조방법에 대하여 본 발명의 바람직한 하나의 실시형태를 첨부된 도면을 참조하여 상세히 설명한다. 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시목적을 위한 것이고, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the present invention with respect to the transparent heat resistance material composition and its manufacturing method according to the present invention will be described in detail. The present invention may be better understood by the following examples, which are for the purpose of illustrating the present invention and are not intended to limit the scope of protection defined by the appended claims.

먼저, 본 발명에 의한 투명 열저항소재 조성물에 대하여 살펴본다. 본 발명의 조성물은 폴리아마이드산 및 기공유도중합체를 포함하여 이루어진다. 이는 내부에 효과적으로 기공을 형성하여 열전도도를 현저히 감소시키면서도, 물성저하를 최소화하기 위함이다. First, look at with respect to the transparent heat resistance material composition according to the present invention. The composition of the present invention comprises a polyamide acid and a covalent polymer. This is to minimize the physical property deterioration while significantly reducing the thermal conductivity by forming pores effectively inside.

상기 폴리아미드산은 산무수물, 디아민화합물 및 유기용매를 혼합하여 반응시켜 형성된 것이 본 발명에 가장 효과적이다. The polyamic acid is most effective in the present invention formed by mixing and reacting an acid anhydride, a diamine compound and an organic solvent.

여기서, 산무수물 1.0당량에 대하여, 상기 디아민화합물은 0.8 내지 1.2당량으로 혼합된 것이 바람직하며, 더욱 바람직하게는 0.9 내지 1.1당량 혼합된 것이 효과적이다. 0.8당량 미만이거나 1.2당량을 초과하는 경우에는, 폴리아미드산의 물성이 저하될 뿐만 아니라, 투명도가 떨어지는 문제가 있다. Here, for 1.0 equivalent of the acid anhydride, the diamine compound is preferably mixed in an amount of 0.8 to 1.2 equivalents, more preferably 0.9 to 1.1 equivalents. When less than 0.8 equivalent or more than 1.2 equivalent, there is a problem that not only the physical properties of the polyamic acid are lowered but also the transparency is inferior.

또한, 상기 산무수물은 피로멜리틱디안하이드라이드(Pyromelliticdianhydride), 4,4'-(헥사플루오로이소프로필리덴)디프탈릭디안하이드라이드(4,4'-(Hexafluoroisopropylidene)diphthalicanhydride),3,3,4,4-벤조페논테트라카르복실디안아이드라이드, 디페틸에테르-3,3',4,4'-테트라카르복실디안하이드라이드 또는 4,4'-옥시디프탈릭디안하이드라이드 중 적어도 하나인 것이 바람직하며, 더욱 바람직하게는, 피로멜리틱디안하이드라이드(Pyromelliticdianhydride)를 사용하는 것이 가장 효과적이다. 이는 열저항소재로써, 최적의 물성 및 투명도를 구현하기 위함이다.In addition, the acid anhydride may be pyromelliticdianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic dianhydride (4,4'-(Hexafluoroisopropylidene) diphthalicanhydride), 3,3, At least one of 4,4-benzophenonetetracarboxylic dianide, difetylether-3,3 ', 4,4'-tetracarboxylic dianhydride or 4,4'-oxydiphthalic dianhydride Preferably, more preferably, pyromelliticdianhydride is most effective. This is a heat resistance material, to realize the optimum physical properties and transparency.

또한, 상기 디아민화합물은, 4,4'-옥시디아닐린(4,4'-Oxydianilline), 4,4'-디아미노디페닐에테르 또는 2,6-비스(3-아미노페녹시)펜조니트릴 중 적어도 하나인 것이 바람직하며, 더욱 바람직하게는 4,4'-옥시디아닐린(4,4'-Oxydianilline)인 것이 가장 효과적이다. 이는 열저항소재로써, 최적의 물성 및 투명도를 구현하기 위함이다.In addition, the diamine compound is in 4,4'-Oxidianilline, 4,4'- diaminodiphenyl ether or 2,6-bis (3-aminophenoxy) phenonitrile At least one is preferred, and more preferably 4,4'-oxydianilline is most effective. This is a heat resistance material, to realize the optimum physical properties and transparency.

상기 유기용매는 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone), 디메틸아세트아미드, 아세토니트릴, t-부탄올, 아세톤, 디메틸포름아미드, 이소프로필알콜 또는 에틸 아세테이트 중 적어도 하나인 것이 바람직하며, 더욱 바람직하게는 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone)인 것이 효과적이다. 이는 폴리아마이드산의 합성과정을 최적화하기 위함이다.The organic solvent is at least one of N-methyl-2-pyrrolidone, dimethylacetamide, acetonitrile, t-butanol, acetone, dimethylformamide, isopropyl alcohol or ethyl acetate It is preferable that N-methyl-2-pyrrolidone is more preferable. This is to optimize the synthesis process of polyamide acid.

또한, 상기 기공유도중합체는, 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리비닐알코올(polyvinyl alcohol) 또는 폴리비닐피롤리돈(polyvinylpyrrolidone) 중 적어도 하나인 것이 바람직하다. 이는 열저항소재 내에 기공을 효과적으로 형성함으로써, 열전도도 등의 열저항 특성을 개선하는 역할을 한다. In addition, the group covalent polymer is preferably at least one of polymethyl methacrylate, polyvinyl alcohol or polyvinylpyrrolidone. This effectively forms pores in the heat resistant material, thereby improving heat resistance characteristics such as thermal conductivity.

상기 기공유도중합체는, 상기 폴리아마이드산 내에서 효과적으로 반응하여, 기공을 고르고 최적한 크기로 분포시킴으로써, 열저항 특성을 현저히 향상시키면서도, 물성 저하를 최소화하는 장점이 있다.The pore-copolymer is effectively reacted in the polyamide acid, evenly distributed pores in the optimum size, while significantly improving the heat resistance characteristics, there is an advantage of minimizing physical property degradation.

또한, 상기 기공유도중합체의 함량은, 상기 폴리아마이드산 100중량부에 대하여, 상기 기공유도중합체를 5 내지 20중량부 포함하는 것이 바람직하며, 더욱 바람직하게는 8 내지 14중량부, 가장 바람직하게는 10중량부를 포함하는 것이 효과적이다. 5중량부 미만인 경우에는, 열저항 특성의 개선효과가 미미하며, 20중량부를 초과하는 경우에는, 열저항소재의 물성이 현저히 저하될 뿐만 아니라, 투명도 또한 현저히 떨어지는 문제가 있다. In addition, the content of the pore copolymer is preferably 5 to 20 parts by weight, more preferably 8 to 14 parts by weight, most preferably 100 parts by weight of the polyamide acid. It is effective to include 10 parts by weight. If it is less than 5 parts by weight, the effect of improving the heat resistance characteristics is insignificant, and if it exceeds 20 parts by weight, not only the physical properties of the heat resistance material are significantly lowered, but also the transparency is significantly lowered.

상기 기공유도중합체의 입자크기는 0.1㎛ 내지 3㎛인 것이 바람직하며, 더욱 바람직하게는, 0.5㎛ 내지 1㎛인 것이 효과적이다. 0.1㎛미만인 경우에는, 그 제조공정이 어렵고 경제성이 떨어질 뿐만 아니라, 열저항 특성 개선효과가 낮으며, 3㎛를 초과하는 경우에는, 투명도가 현저히 떨어져, 투명 열저항 소재로 사용하기 어려운 문제가 있다.The particle size of the pore-copolymer is preferably 0.1 μm to 3 μm, more preferably 0.5 μm to 1 μm. If the thickness is less than 0.1 mu m, the manufacturing process is difficult and economic efficiency is low, and the effect of improving the heat resistance characteristics is low. If the thickness is more than 3 mu m, the transparency is remarkably poor, which makes it difficult to use the transparent heat resistance material. .

또한, 상기 기공유도중합체의 분자량은 10,000 내지 30,000인 것이 바람직하며, 더욱 바람직하게는, 15,000 내지 25,000, 가장 바람직하게는 20,000인 것이 효과적이다. 10,000미만이거나 30,000초과인 경우에는, 효과적으로 폴리아마이드산 내에 기공을 형성시키지 못하는 문제가 있다. In addition, the molecular weight of the group-copolymer is preferably 10,000 to 30,000, more preferably 15,000 to 25,000, most preferably 20,000. If less than 10,000 or more than 30,000, there is a problem that can not effectively form pores in the polyamide acid.

다음으로, 본 발명의 투명 열저항소재 조성물의 제조방법은, 도 1에 나타난 바와 같이, 혼합단계(S10), 반응단계(S20) 및 첨가단계(S30)를 포함하여 이루어지는 것을 특징으로 한다. 이하에서 설명되지 않는 내용은 상기 본 발명의 투명 열저항소재 조성물에서 언급한 바와 같다. Next, the method for producing a transparent heat resistant material composition of the present invention, as shown in Figure 1, characterized in that it comprises a mixing step (S10), the reaction step (S20) and the addition step (S30). Details that are not described below are as mentioned in the transparent heat resistant material composition of the present invention.

혼합단계(S10)는 산무수물, 디아민화합물 및 유기용매를 혼합하여 혼합물을 제조하는 단계이다. 이는 폴리아마이드산을 합성하기 위한 준비단계이다. Mixing step (S10) is a step of preparing a mixture by mixing an acid anhydride, a diamine compound and an organic solvent. This is a preparation step for synthesizing polyamide acid.

여기서, 상기 산무수물 1.0당량에 대하여, 상기 디아민화합물은 0.8 내지 1.2당량으로 혼합되는 것이 바람직하다.Here, with respect to 1.0 equivalent of the acid anhydride, the diamine compound is preferably mixed in 0.8 to 1.2 equivalents.

상기 혼합단계(S10)에서, 산무수물, 디아민화합물 및 유기용매는 순서없이 투입하여 혼합할 수 있다.In the mixing step (S10), the acid anhydride, the diamine compound and the organic solvent may be mixed in any order.

또한, 상기 산무수물은, 피로멜리틱디안하이드라이드(Pyromelliticdianhydride), 4,4'-(헥사플루오로이소프로필리덴)디프탈릭디안하이드라이드(4,4'-(Hexafluoroisopropylidene)diphthalicanhydride),3,3,4,4-벤조페논테트라카르복실디안아이드라이드, 디페틸에테르-3,3',4,4'-테트라카르복실디안하이드라이드 또는 4,4'-옥시디프탈릭디안하이드라이드 중 적어도 하나이며, 상기 디아민화합물은, 4,4'-옥시디아닐린(4,4'-Oxydianilline), 4,4'-디아미노디페닐에테르 또는 2,6-비스(3-아미노페녹시)펜조니트릴 중 적어도 하나이고, 상기 유기용매는, N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone), 디메틸아세트아미드, 아세토니트릴, t-부탄올, 아세톤, 디메틸포름아미드, 이소프로필알콜 또는 에틸 아세테이트 중 적어도 하나인 것이 바람직하다.In addition, the acid anhydride, pyromelliticdian hydride, 4,4'- (hexafluoroisopropylidene) diphthalic dianhydride (4,4'- (Hexafluoroisopropylidene) diphthalicanhydride), 3,3 At least one of 4,4-benzophenone tetracarboxylic dianide, difetyl ether-3,3 ', 4,4'-tetracarboxylic dianhydride or 4,4'-oxydiphthalic dianhydride. The diamine compound may be at least one of 4,4'-oxydianiline (4,4'-Oxydianilline), 4,4'-diaminodiphenyl ether or 2,6-bis (3-aminophenoxy) phenozonitrile. The organic solvent is N-methyl-2-pyrrolidone, dimethylacetamide, acetonitrile, t-butanol, acetone, dimethylformamide, isopropyl alcohol or ethyl acetate. It is preferable that it is at least one of.

다음으로, 반응단계(S20)는 상기 혼합물을 교반하여 반응시켜, 폴리아마이드산 용액을 제조하는 단계이다. 이는 반응을 통해, 폴리아마이드산을 합성하는 공정이다.Next, the reaction step (S20) is to react the mixture by stirring, to prepare a polyamide acid solution. This is a process for synthesizing polyamide acid through a reaction.

여기서, 반응온도는 챔버내의 혼합물에 대하여, 챔버 외부에서 열을 가하거나 냉각시켜 유지하는 것이 바람직하며, 교반은 어떠한 방식으로 해도 무방하나, 교반기를 사용하여 일정한 속도로 교반시키는 것이 효과적이다.Here, the reaction temperature is preferably maintained by applying heat or cooling outside the chamber to the mixture in the chamber, and stirring may be performed in any manner, but it is effective to stir at a constant speed using a stirrer.

상기 반응단계(S20)에서, 상기 반응온도는 10℃ 내지 50℃인 것이 바람직하며, 더욱 바람직하게는 20℃ 내지 30℃인 것이 효과적이다. 10℃미만인 경우에는, 합성 반응이 충분히 일어나지 않으며, 50℃를 초과하는 경우에는, 과반응으로, 열저항소재의 투명도 및 물성이 현저히 저하되는 문제가 있다. In the reaction step (S20), the reaction temperature is preferably 10 ℃ to 50 ℃, more preferably 20 ℃ to 30 ℃ effective. If the temperature is less than 10 ° C., the synthesis reaction does not occur sufficiently. If the temperature exceeds 50 ° C., there is a problem that the transparency and physical properties of the heat resistant material are significantly reduced due to overreaction.

또한, 반응단계(S20)에서, 반응시간은 8시간 내지 15시간인 것이 바람직하며, 더욱 바람직하게는 10시간 내지 12시간인 것이 효과적이다. 8시간 미만인 경우에는, 충분한 합성반응이 일어나지 않으며, 15시간을 초과하는 경우에는, 과반응으로 투명도가 저하될 뿐만 아니라, 경제성이 떨어지는 문제가 있다.In addition, in the reaction step (S20), the reaction time is preferably 8 hours to 15 hours, more preferably 10 hours to 12 hours is effective. If it is less than 8 hours, sufficient synthetic reaction does not occur, and if it exceeds 15 hours, there is a problem that not only the transparency is lowered due to overreaction but also the economy is inferior.

또한, 반응단계(S20)에서, 상기 폴리아미이드산 용액의 점도는 80CPS 내지 250CPS인 것이 바람직하며, 더욱 바람직하게는 120CPS 내지 200CPS, 가장 바람직하게는 140CPS 내지 170CPS인 것이 바람직하다. 80CPS미만이거나 250CPS를 초과하는 경우에는 합성반응이 효과적으로 이루어지지 못한 것으로, 향후 첨가단계(S30)에서 기공유도중합체와의 반응이 충분히 일어나지 않을 뿐만 아니라, 기공이 고르게 형성되기 어려운 문제가 있다.In addition, in the reaction step (S20), the viscosity of the polyamide acid solution is preferably 80CPS to 250CPS, more preferably 120CPS to 200CPS, most preferably 140CPS to 170CPS. If it is less than 80CPS or exceeds 250CPS, the synthetic reaction is not made effectively, and the reaction with the covalent polymer in the future addition step (S30) does not sufficiently occur, there is a problem that pores are not formed evenly.

마지막으로, 첨가단계(S30)는 상기 폴리아마이드산 용액에 기공유도중합체를 첨가하여, 투명 열저항소재 조성물을 제조하는 단계이다. 이는 기공을 형성하기 위한 공정이다.Finally, the adding step (S30) is a step of preparing a transparent heat resistance material composition by adding a covalent polymer to the polyamide acid solution. This is a process for forming pores.

반응단계(S20)에서 생성된 폴리아마이드산 용액에 기공유도중합체를 첨가한 후, 교반하면, 폴리아마이드산 용액과 기공유도중합체가 반응을 일으켜, 기공이 형성된 열저항소재를 형성한다. After adding the covalent polymer to the polyamide acid solution produced in the reaction step (S20), and then stirred, the polyamide acid solution and the covalent polymer react with each other to form a heat resistant material having pores.

여기서, 교반은 어떠한 방식으로 해도 무방하나, 교반기를 사용하여 일정한 속도로 교반시키는 것이 효과적이다. Here, although stirring may be carried out in any manner, it is effective to stir at a constant speed using a stirrer.

또한, 첨가단계(S30)에서의 온도는 30℃ 내지 80℃인 것이 바람직하며, 더욱 바람직하게는, 50℃ 내지 60℃인 것이 효과적이다. 상기 온도범위를 벗어나면, 기공형성 반응이 효과적으로 일어나기 어려운 문제가 있다. In addition, the temperature in the addition step (S30) is preferably 30 ℃ to 80 ℃, more preferably, it is effective that 50 ℃ to 60 ℃. Outside the temperature range, there is a problem that the pore-forming reaction hardly occurs.

또한, 첨가단계(S30)에서는, 상기 폴리아마이드산용액 100중량부에 대하여, 상기 기공유도중합체를 5 내지 20중량부 포함하는 것이 바람직하며, 상기 기공유도중합체는 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리비닐알코올(polyvinyl alcohol) 또는 폴리비닐피롤리돈(polyvinylpyrrolidone) 중 적어도 하나인 것이 효과적이다.In addition, in the addition step (S30), it is preferable to include 5 to 20 parts by weight of the group covalent polymer, based on 100 parts by weight of the polyamide acid solution, the group covalent polymer is polymethyl methacrylate (polymethyl methacrylate) At least one of polyvinyl alcohol or polyvinylpyrrolidone is effective.

첨가단계(S30) 이후에는, 10℃ 내지 25℃에서 1시간 내지 3시간동안 경화시키는 것이 바람직하다.After the addition step (S30), it is preferable to cure for 1 hour to 3 hours at 10 ℃ to 25 ℃.

이하에서는 본 발명의 투명 열저항소재 조성물 및 그 제조방법의 우수성을 입증하기 위해 실시한 실험결과를 살펴보도록 한다. Hereinafter, look at the experimental results carried out to demonstrate the superiority of the transparent heat resistance material composition and the manufacturing method of the present invention.

먼저, 도 2는 본 발명의 투명 열저항소재 조성물의 제조방법에 따른 투명 열저항소재 조성물의 형성과정을 모사한 모사도로써, 기공이 형성되는 과정을 나타낸 것이다. 여기서는, 매트릭스 상에 본 발명의 투명 열저항소재를 적층하였다.First, Figure 2 is a schematic diagram illustrating the formation process of the transparent heat resistance material composition according to the method of manufacturing a transparent heat resistance material composition of the present invention, it shows a process in which pores are formed. Here, the transparent heat resistant material of the present invention was laminated on the matrix.

또한, 도 3 및 도 4는 본 발명의 투명 열저항소재 조성물의 제조방법에서, 반응단계(S20)를 나타낸 반응식으로, 반응이 일어나는 화학적인 기작을 설명하기 위한 것이다. In addition, Figure 3 and Figure 4 is a reaction formula showing the reaction step (S20) in the method for producing a transparent heat resistant material composition of the present invention, to explain the chemical mechanism of the reaction occurs.

도 5 내지 도 7은 본 발명의 투명 열저항소재 조성물의 제조방법을 거쳐 제조된 투명 열저항 소재를 촬영한 SEM사진으로, 기공이 균일하게 본 발명에서 요구하는 사이즈로 형성되어 있음을 알 수 있다. 5 to 7 is a SEM photograph of a transparent heat resistant material prepared through the method of manufacturing a transparent heat resistant material composition of the present invention, it can be seen that the pores are uniformly formed in the size required by the present invention. .

도 8은 종래의 폴리이미드 소재와 본 발명의 투명 열저항소재의 열전도도값을 측정한 결과로, 약 10%이상 열전도도가 감소하여, 열저항특성이 현저히 개선되었음을 알 수 있다. 8 is a result of measuring the thermal conductivity of the conventional polyimide material and the transparent thermal resistance material of the present invention, it can be seen that the thermal conductivity is reduced by about 10% or more, the thermal resistance characteristic is significantly improved.

또한, 도 9는 종래의 폴리이미드 소재와 본 발명의 투명 열저항소재의 영률(E-modulus)을 측정한 결과로, 약 20%정도 영률이 감소하여, 물성저하가 최소화된 것으로, 투명 열저항소재가 요구하는 물성을 만족할 수 있음을 알 수 있다.
In addition, Figure 9 is a result of measuring the Young's modulus (E-modulus) of the conventional polyimide material and the transparent thermal resistance material of the present invention, the Young's modulus is reduced by about 20%, the physical property degradation is minimized, transparent thermal resistance It can be seen that the properties required by the material can be satisfied.

Claims (17)

폴리아마이드산 및 기공유도중합체를 포함하며,
상기 폴리아마이드산 100중량부에 대하여, 상기 기공유도중합체를 5 내지 20중량부 포함하며, 상기 기공유도중합체의 입자크기는 0.1㎛ 내지 3㎛인 것을 특징으로 하는 투명 열저항소재 조성물
Polyamide acid and covalent polymer,
To about 100 parts by weight of the polyamide acid, containing 5 to 20 parts by weight of the covalent polymer, the particle size of the covalent polymer is characterized in that the transparent heat resistance material composition characterized in that 0.1㎛ to 3㎛
제 1항에 있어서,
상기 기공유도중합체는 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리비닐알코올(polyvinyl alcohol) 또는 폴리비닐피롤리돈(polyvinylpyrrolidone) 중 적어도 하나인 것을 특징으로 하는 투명 열저항소재 조성물
The method according to claim 1,
The covalent polymer is a transparent heat resistance material composition, characterized in that at least one of polymethyl methacrylate (polymethyl methacrylate), polyvinyl alcohol (polyvinyl alcohol) or polyvinylpyrrolidone (polyvinylpyrrolidone)
삭제delete 제 1항 또는 제 2항에 있어서,
상기 기공유도중합체의 분자량은 10,000 내지 30,000인 것을 특징으로 하는 투명 열저항소재 조성물
3. The method according to claim 1 or 2,
The molecular weight of the covalent polymer is a transparent heat resistance material composition, characterized in that 10,000 to 30,000
제 1항 또는 제 2항에 있어서,
상기 폴리아마이드산은, 산무수물, 디아민화합물 및 유기용매를 혼합하여 반응시켜 형성된 것을 특징으로 하는 투명 열저항소재 조성물
3. The method according to claim 1 or 2,
The polyamide acid is formed by mixing an acid anhydride, a diamine compound and an organic solvent to react.
제 5항에 있어서,
상기 산무수물 1.0당량에 대하여, 상기 디아민화합물은 0.8 내지 1.2당량으로 혼합된 것을 특징으로 하는 투명 열저항소재 조성물
6. The method of claim 5,
With respect to 1.0 equivalent of the acid anhydride, the diamine compound is a transparent heat resistance material composition, characterized in that mixed in 0.8 to 1.2 equivalents
제 5항에 있어서,
상기 산무수물은, 피로멜리틱디안하이드라이드(Pyromelliticdianhydride), 4,4'-(헥사플루오로이소프로필리덴)디프탈릭디안하이드라이드(4,4'-(Hexafluoroisopropylidene)diphthalicanhydride),3,3,4,4-벤조페논테트라카르복실디안아이드라이드, 디페틸에테르-3,3',4,4'-테트라카르복실디안하이드라이드 또는 4,4'-옥시디프탈릭디안하이드라이드 중 적어도 하나인 것을 특징으로 하는 투명 열저항소재 조성물
6. The method of claim 5,
The acid anhydride is pyromelliticdian hydride, 4,4 '-(hexafluoroisopropylidene) diphthalic dianhydride (4,4'-(Hexafluoroisopropylidene) diphthalicanhydride), 3,3,4 At least one of 4-benzophenone tetracarboxylic dianide, difetyl ether-3,3 ', 4,4'-tetracarboxylic dianhydride or 4,4'-oxydiphthalic dianhydride. Transparent heat resistant material composition
제 5항에 있어서,
상기 디아민화합물은, 4,4'-옥시디아닐린(4,4'-Oxydianilline), 4,4'-디아미노디페닐에테르 또는 2,6-비스(3-아미노페녹시)펜조니트릴 중 적어도 하나인 것을 특징으로 하는 투명 열저항소재 조성물
6. The method of claim 5,
The diamine compound is at least one of 4,4'-oxydianiline (4,4'-Oxydianilline), 4,4'-diaminodiphenyl ether or 2,6-bis (3-aminophenoxy) phenozonitrile Transparent heat resistance material composition, characterized in that
제 5항에 있어서,
상기 유기용매는, N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone), 디메틸아세트아미드, 아세토니트릴, t-부탄올, 아세톤, 디메틸포름아미드, 이소프로필알콜 또는 에틸 아세테이트 중 적어도 하나인 것을 특징으로 하는 투명 열저항소재 조성물
6. The method of claim 5,
The organic solvent is at least one of N-methyl-2-pyrrolidone, dimethylacetamide, acetonitrile, t-butanol, acetone, dimethylformamide, isopropyl alcohol or ethyl acetate Transparent heat resistance material composition, characterized in that
산무수물, 디아민화합물 및 유기용매를 혼합하여 혼합물을 제조하는 혼합단계;
상기 혼합물을 교반하여 반응시켜, 폴리아마이드산 용액을 제조하는 반응단계; 및
상기 폴리아마이드산 용액에 기공유도중합체를 첨가하여, 투명 열저항소재 조성물을 제조하는 첨가단계;를 포함하여 이루어지며,
상기 반응단계에서, 반응시간은 8시간 내지 15시간인 것을 특징으로 하는 투명 열저항소재 조성물의 제조방법
A mixing step of preparing a mixture by mixing an acid anhydride, a diamine compound and an organic solvent;
Reacting the mixture by stirring to prepare a polyamide acid solution; And
And adding an air-covalent polymer to the polyamide acid solution to prepare a transparent heat resistance material composition.
In the reaction step, the reaction time is a method for producing a transparent heat resistant material composition, characterized in that 8 hours to 15 hours.
제 10항에 있어서,
상기 반응단계에서, 반응온도는 10℃ 내지 50℃인 것을 특징으로 하는 투명 열저항소재 조성물의 제조방법
11. The method of claim 10,
In the reaction step, the reaction temperature is a method for producing a transparent heat resistance material composition, characterized in that 10 ℃ to 50 ℃.
삭제delete 제 10항 또는 제 11항에 있어서,
상기 첨가단계에서, 상기 폴리아마이드산용액 100중량부에 대하여, 상기 기공유도중합체를 5 내지 20중량부 포함하는 것을 특징으로 하는 투명 열저항소재 조성물의 제조방법
The method according to claim 10 or 11,
In the addition step, with respect to 100 parts by weight of the polyamide acid solution, a method for producing a transparent heat resistance material composition comprising 5 to 20 parts by weight of the group covalent polymer
제 10항 또는 제 11항에 있어서,
상기 첨가단계에서, 상기 기공유도중합체는 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리비닐알코올(polyvinyl alcohol) 또는 폴리비닐피롤리돈(polyvinylpyrrolidone) 중 적어도 하나인 것을 특징으로 하는 투명 열저항소재 조성물의 제조방법
The method according to claim 10 or 11,
In the addition step, the group covalent polymer is at least one of polymethyl methacrylate (polymethyl methacrylate), polyvinyl alcohol (polyvinyl alcohol) or polyvinylpyrrolidone (polyvinylpyrrolidone) of the transparent heat resistance material composition Manufacturing method
제 10항 또는 제 11항에 있어서,
상기 혼합단계에서, 상기 산무수물 1.0당량에 대하여, 상기 디아민화합물은 0.8 내지 1.2당량으로 혼합된 것을 특징으로 하는 투명 열저항소재 조성물의 제조방법
The method according to claim 10 or 11,
In the mixing step, with respect to 1.0 equivalent of the acid anhydride, the diamine compound is a method for producing a transparent heat resistance material composition, characterized in that mixed in 0.8 to 1.2 equivalents
제 10항 또는 제 11항에 있어서,
상기 혼합단계에서, 상기 산무수물은, 피로멜리틱디안하이드라이드(Pyromelliticdianhydride), 4,4'-(헥사플루오로이소프로필리덴)디프탈릭디안하이드라이드(4,4'-(Hexafluoroisopropylidene)diphthalicanhydride),3,3,4,4-벤조페논테트라카르복실디안아이드라이드, 디페틸에테르-3,3',4,4'-테트라카르복실디안하이드라이드 또는 4,4'-옥시디프탈릭디안하이드라이드 중 적어도 하나이며, 상기 디아민화합물은, 4,4'-옥시디아닐린(4,4'-Oxydianilline), 4,4'-디아미노디페닐에테르 또는 2,6-비스(3-아미노페녹시)펜조니트릴 중 적어도 하나이고, 상기 유기용매는, N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone), 디메틸아세트아미드, 아세토니트릴, t-부탄올, 아세톤, 디메틸포름아미드, 이소프로필알콜 또는 에틸 아세테이트 중 적어도 하나인 것을 특징으로 하는 투명 열저항소재 조성물의 제조방법
The method according to claim 10 or 11,
In the mixing step, the acid anhydride, pyromelliticdian hydride, 4,4'- (hexafluoroisopropylidene) diphthalic dianhydride (4,4'- (Hexafluoroisopropylidene) diphthalicanhydride), In 3,3,4,4-benzophenonetetracarboxylic dianide, dipetylether-3,3 ', 4,4'-tetracarboxylic dianhydride or 4,4'-oxydiphthalic dianhydride At least one, and the said diamine compound is 4,4'- oxy dianiline (4,4'- Oxydianilline), 4,4'- diamino diphenyl ether or 2, 6-bis (3-amino phenoxy) phenzo At least one of nitriles, and the organic solvent is N-methyl-2-pyrrolidone, dimethylacetamide, acetonitrile, t-butanol, acetone, dimethylformamide, isopropyl alcohol Or at least one of ethyl acetate.
제 10항 또는 제 11항에 있어서,
상기 반응단계에서, 상기 폴리아마이드산 용액의 점도는 80CPS 내지 250CPS인 것을 특징으로 하는 투명 열저항소재 조성물의 제조방법
The method according to claim 10 or 11,
In the reaction step, the viscosity of the polyamide acid solution is a method for producing a transparent heat resistance material composition, characterized in that 80CPS to 250CPS
KR1020120029880A 2012-03-23 2012-03-23 Composition of transparent thermal resistance and manufacturing method thereof KR101379899B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120029880A KR101379899B1 (en) 2012-03-23 2012-03-23 Composition of transparent thermal resistance and manufacturing method thereof
US13/849,916 US9045897B2 (en) 2012-03-23 2013-03-25 Infrared ray blocking multi-layered structure insulating film having thermal anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120029880A KR101379899B1 (en) 2012-03-23 2012-03-23 Composition of transparent thermal resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20130107801A KR20130107801A (en) 2013-10-02
KR101379899B1 true KR101379899B1 (en) 2014-04-01

Family

ID=49631040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120029880A KR101379899B1 (en) 2012-03-23 2012-03-23 Composition of transparent thermal resistance and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101379899B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990168B1 (en) * 2010-07-16 2010-10-29 한국과학기술연구원 Forward osmosis membranes and method for fabricating the same
KR20110084849A (en) * 2010-01-18 2011-07-26 한양대학교 산학협력단 Porous support and polymer electrolyte membrane for fuel cell including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084849A (en) * 2010-01-18 2011-07-26 한양대학교 산학협력단 Porous support and polymer electrolyte membrane for fuel cell including the same
KR100990168B1 (en) * 2010-07-16 2010-10-29 한국과학기술연구원 Forward osmosis membranes and method for fabricating the same

Also Published As

Publication number Publication date
KR20130107801A (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP6721070B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP2021088721A (en) Polyimide material, method for producing the same, and polyimide precursor composition used in the production
CN107001662B (en) Polyimide film, polyimide precursor, and polyimide
WO2017071643A1 (en) Transparent polyimide film with ultraviolet (uv) blocking function, preparation and use thereof
WO2015053312A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
CN105440284A (en) Preparation method for colorless transparent high-temperature-resistant polyimide nanometer composite film
JPWO2019131894A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
KR20200055879A (en) Polyimide based film, polyimide based composition and preparation method for the polyimide based film
KR101430976B1 (en) Preparation method of colorless and transparent polyimide film
US9045897B2 (en) Infrared ray blocking multi-layered structure insulating film having thermal anisotropy
KR101379899B1 (en) Composition of transparent thermal resistance and manufacturing method thereof
JP6939779B2 (en) Polyimide precursors, polyimides, polyimide films, and substrates, and tetracarboxylic dianhydrides used in the production of polyimides.
KR101357648B1 (en) Composition of transparent thermal resistance including clays and manufacturing method thereof
KR20140049382A (en) Polyimide film and method for preparing same
CN108912753A (en) A kind of preparation method of the heat-insulated PC sunlight board of light transmission
CN104529965B (en) Hexafluoro dianhydride preparation method
KR20210086571A (en) Method for preparing multilayer film, multilayer film and optical memeber
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
TWI399395B (en) High refractive index aromatic polyimide polymers-titania hybrid film and its preparation
CN103171221A (en) Stable and transparent dimmable heat-insulation film capable of penetrating blocks based on metal oxide
CN113429601B (en) Preparation method of high-barrier polyimide film
CN110845345B (en) Aromatic diamine monomer and preparation method thereof
CN108530308B (en) Polyfluoro-substituted diamine compound and preparation method thereof
KR101926667B1 (en) Perfluorophenylene-based diamine compound, polymer prepared therewith and polyimide film containing the polymer
Xi et al. Synthesis of UV-resistant and colorless polyimide films for optoelectrical applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170208

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170803

Year of fee payment: 18