KR101366181B1 - 고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를위한 시스템 및 공정 - Google Patents

고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를위한 시스템 및 공정 Download PDF

Info

Publication number
KR101366181B1
KR101366181B1 KR1020077021605A KR20077021605A KR101366181B1 KR 101366181 B1 KR101366181 B1 KR 101366181B1 KR 1020077021605 A KR1020077021605 A KR 1020077021605A KR 20077021605 A KR20077021605 A KR 20077021605A KR 101366181 B1 KR101366181 B1 KR 101366181B1
Authority
KR
South Korea
Prior art keywords
plasma
delete delete
deposition
epitaxial
sources
Prior art date
Application number
KR1020077021605A
Other languages
English (en)
Other versions
KR20070114361A (ko
Inventor
캐널 한스 본
Original Assignee
술처 멧코 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 술처 멧코 아게 filed Critical 술처 멧코 아게
Publication of KR20070114361A publication Critical patent/KR20070114361A/ko
Application granted granted Critical
Publication of KR101366181B1 publication Critical patent/KR101366181B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

화합물 반도체층들을 빠르게 에피택셜 증착하기 위한 장치 및 공정은 플라즈마 인헨스드 기상 에피택시를 위한 저 에너지 고밀도의 플라즈마 발생 장치를 포함한다. 상기 공정은, 일 단계에서, 증착 챔버 내에서 비 금속 원소들의 가스들과 하나 이상의 금속 증기들을 결합하는 것을 제공한다. 이후, 밀도 높은 저 에너지 플라즈마의 존재하에서 가스들을 고도로 활성화시킨다. 금속 증기와 고도로 활성화된 가스들을 반응시킴과 동시에, 플라즈마 내에 액침된 지지부(support)와 통신하는 가열된 기판상에 반응 결과(reaction product)를 증착시킴으로써, 기판 위에 반도체층을 형성한다. 상기 공정은 탄소가 없으며, 큰 면적의 실리콘 기판들 상에서 1000℃ 미만의 기판 온도 및 최대 10nm/s의 성장 속도에서의 나이트라이드 반도체들의 에피택셜 성장에 특히 적합하다. 본 공정은 탄소 함유 가스도 요구하지 않고, 수소를 방출하는 가스들도 요구하지 않으며, 유독성 캐리어 또는 반응물 가스들이 없기 때문에, 환경 친화적이다.
LEPECVD, LEPEVPE, 에피택셜 증착, 고 밀도 플라즈마, 저 에너지 플라즈마, 나이트라이드,

Description

고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를 위한 시스템 및 공정{SYSTEM AND PROCESS FOR HIGH-DENSITY, LOW-ENERGY PLASMA ENHANCED VAPOR PHASE EPITAXY}
관련 출원
본 출원은 2006년 2월 28일 출원된 미국 가 특허 출원 US 60/657,208호의 우선권을 주장하며, 그 내용은 본원의 참조로서 인용된다.
본 발명은 에피택시 성장 공정들 및 코팅 장치들의 분야에 관한 것이다. 보다 구체적으로, 본 발명은 물질을 증기 상태(vapor state) 또는 가스 상태(gaseous state)로부터 직접 증착함으로써 단결정(single crystal)을 에피택시 형성하기 위한 장치들 및 공정들에 관한 것이다.
Ⅲ-Ⅴ 화합물 반도체인 갈륨 나이트라이드(GaN) 및 그 알루미늄(Al) 및 인듐(In) 합금들은 고주파수 및 고전력 전자 응용들 모두에 대해 이상적인 물질들이다(예를 들어, Brown 등의, Solid-State El. 46, 1535(2002)를 참조하는바, 그 내용은 본원의 참조로서 인용된다). 이러한 물질들은 또한 단파장의 발광 다이오드들 및 레이저들에 대해서도 이상적이다(예를 들어, Nakamura, Annu. Mater. Sci. 28, 125 (1998); Nakamura, Science 281, 956(1998); 및 Smith 등의 J. Appl. Phys. 95, 8247 (2004)를 참조하는바, 이들의 내용은 본원의 참조로서 인용된다).
하지만, 이러한 물질들의 주요 단점들 중 하나는, 벌크 형태에서의 이들의 성장에 요구되는 높은 온도 및 압력의 과도한 조건들로 인한 커다란 단결정들의 결여이다. 상당한 크기의 GaN 웨이퍼들을 종합적으로 다루기 위한 유일한 방법은 헤데로에피택시(heteroepitaxy)로서, 이는 스스로 지탱(self-supporting)하는 두꺼운 GaN 층들이 사파이어 또는 실리콘 카바이드(SiC)와 같은 지지 기판상에 성장되게 하는 바, 이러한 기판은 이후 제거된다. 보다 얇은 헤테로에피택셜 Ⅲ-Ⅴ 나이트라이드층들은 기판을 제거하지 않으면서 디바이스 처리에 이용될 수 있다.
GaN의 헤테로에피택셜 성장에 이용되는 모든 기술들의 하나의 공통적인 문제는 성장하는 층들 내에 처음에 존재하는 높은 전위(dislocation) 밀도이다. 이러한 문제는 GaN과 이용가능한 기판 물질들(사파이어, 실리콘 카바이드 및 실리콘 등)의 서로 다른 격자 파라미터들로 인해 야기된다(예를 들어, Dadgar 등의 Phys. Stat. Sol. (c) 0, 1583 (2003)을 참조하는바, 그 내용은 본원의 참조로서 인용된다). 높은 부적합(misfit) 전위 밀도의 결과로서, 헤데로에피택셜 GaN 층들은 높은 밀도의 쓰레딩 전위(threading dislocation, TD)들을 포함하는 경향이 있는바, 이것들은 임의의 활성층들 내로 투과될 때마다 디바이스의 성능을 저하시킨다. 다양한 형태의 버퍼층 성장, 또는 마스크들을 이용한 그리고 이용하지 않는 측면 과성장(lateral overgrowth)과 같은, 디바이스 제조에 받아들일 수 있는 가치(value)들에 대한 TD 밀도를 감소시키기 위한 많은 방법들이 고안되었다(예를 들어, Davis 등의 Proc. IEEE 90, 993 (2002)를 참조하는바, 그 내용은 본원의 참조로서 인용된 다).
에피택셜 Ⅲ-Ⅴ 나이트라이드층들을 성장시키는 데에 이용되는 주요 방법들은 수소화물 기상 애피택시(HVPE), 금속-유기 화학 기상 증착(MOCVD) 및 분자 빔 에피택시(MBE)이다. HVPE에서는, 순수 금속들이 소스 물질들로서 이용되며, 이들은 가스 할라이드(halide)들로서 반응 구역으로 이송되어, 질소 함유 가스(대개, NH3)와 반응함으로써, 전형적으로 1000℃ 이상으로 가열되는 기판 위에 에피택셜층을 형성한다. HVPE는 최대 100㎛/h까지의 매우 높은 성장 속도의 장점을 갖는다(예를 들어, Nikolaev 등의 미국 특허 6,472,300호를 참조하는바, 그 내용은 본원의 참조로서 인용된다). 높은 성장 속도 때문에, HVPE는 주로 수십 마이크론 두께의 층들을 성장시키는 데에 이용되며, 특히 이후의 MOCVD 또는 MBE 단계들에 대한 기판들과 같이 스스로 지탱하는 층들을 제조하는 데에 이용된다.
하지만, 가파른 인터페이스들의 제어 및 낮은 속도는 HVPE에 의해 달성하기가 더욱 어려우며, 서로 다른 반응 구역들 간에 기판의 기계적인 이동을 요구한다(예를 들어, Tsvetkov 등의 미국 특허 6,706,119호를 참조하는바, 그 내용은 본원의 참조로서 인용된다). 또한, 반응 구역 내에 수소 가스가 존재하게 되면, 특히 예를 들어 Mg 불순물들에 의한 높은 p-타입 도핑이 이루어져야 할 때, 비활성 가스 환경에서 기판을 어닐링시킬 것을 요구한다(예를 들어, Nikolaev 등의 미국 특허 6,472,300호를 참조하는바, 그 내용은 본원의 참조로서 인용된다).
MOVCD(또는 "금속-유기 기상 에피택시"에 대해서는 MOVPE)는 금속-유기 전구 체(precursor)들이 음이온 함유의 다른 반응성 가스들(나이트라이드 성장의 경우에는, 암모니아)과 함께 이용되는 CVD 기술이다. 단지 수 ㎛/h의 다소 낮은 성장 속도와 함께, 값비싼 전구체 가스들의 필요성은 MOCVD의 큰 단점이다. 또한, GaN 헤테로에피택시에 대해서는, 활성층 스택들이 1000℃ 이상의 온도에서 증착되기 전에, 일반적으로 버퍼층이 보다 낮은 기판 온도에서 사파이어, SiC 또는 Si 상에 성장되어야 한다(예를 들어, Peczalski 등의 미국 특허 6,818,061호를 참조하는바, 그 내용은 본원의 참조로서 인용된다). 하지만, MOCVD는 디바이스 제조에 적절한 활성층 구조들을 성장시키는 데에 가장 빈번하게 이용되는 기술이다(예를 들어, Wang 등의 Appl. Phys. Lett. 74, 3531 (1999) 및 Nakamura의 Science 281, 956 (1998)을 참조하는바, 그 내용들은 본원의 참조로서 인용된다).
성장 동안의 높은 기판 온도와 함께, 공통의 기판들과 GaN 간의 열 팽창 계수의 큰 차이는 크랙이 없는(crack-free) 에피택셜층들을 달성하는 것을 크게 방해한다. 크랙을 피하기 위해서는, 다소 복잡한 인터레이어 방식(interlayer scheme)을 필요로 하는 것으로 여겨진다(예를 들어, Blasing 등의 Appl. Phys. Lett. 81, 2722 (2002)를 참조하는바, 그 내용은 본원의 참조로서 인용된다). HVPE 및 MOCVD는 모두 대기압 또는 다소 감소된 압력에서 이루어지는 증착 기술들이다. 반응기의 기하구조(geometry) 및 가스 흐름이 층의 균일성을 대부분 결정한다.
대조적으로, MBE에서, 압력은 고진공에서 초고진공의 범위에 있으며, 이에 따라 평균 자유 행로(mean-free path)는 반응기의 치수를 크게 넘는다. 금속들은 소위 이퓨젼 셀(effusion cell)들에서 증발(evaporate)되는 바, 이러한 이퓨젼 셀 들로부터 분자빔 또는 원자빔은 가스 상태에서 산란되지 않으면서 가열된 기판 쪽으로 이동한다. 나이트라이드 성장에 대해서는, 활성화된 질소를 제공하는 질소 소스가 이용되어야 한다. 활성화는 대개 분자 질소의 플라즈마 여기에 의해 이루어진다. 질소 활성화를 위해 전자 사이클로트론 공진(ECR) 플라즈마 소스를 이용하여 갈륨 나이트라이드층들을 에피택셜 성장시키는 시스템은, 예를 들어 Moustakas 등의 미국 특허 5,633,192호에서 설명되는바, 그 내용은 본원의 참조로서 인용된다. 갈륨(Ga)은 대개 이퓨젼 셀로부터 공급되기 때문에, MBE는 MOCVD에서는 일반적인 값비싼 금속-유기 전구체들을 요구하지 않는다. 또한, MBE는 층의 구성 및 인터페이스의 가파름을 우수하게 제어한다(예를 들어, Elsass 등의, Jpn. J. Appl. Phys. 39, L1023 (2000)을 참조하는바, 그 내용은 본원의 참조로서 인용된다). 하지만, 1㎛/h 정도의 낮은 성장 속도 및 복잡한 장비로 인해, MBE는 반도체 헤테로구조들의 큰 규모의 제조에 적절한 기술로서 여겨지지 않는다.
나이트라이드 반도체들의 큰 규모의 제조에 잠재적으로 적절한 다른 방법(예를 들어, von Kanel 등의 미국 특허 6,454,855호를 참조하는바, 그 내용은 본원의 참조로서 인용된다)은 저에너지의 플라즈마 인헨스드 화학 기상 증착(LEPECVD)이다. 원격 플라즈마 소스에서 질소 활성화가 일어나는 플라즈마 보조의 MBE와 대조적으로, LEPECVD에서는 밀도 높은 저에너지의 플라즈마가 기판의 표면과 직접 접촉한다. 저에너지의 플라즈마는 DC 아크 방전(arc discharge)에 의해 발생되는 바, 이러한 DC 아크 방전에 의해 금속 유기 전구체들 및 질소가 활성화된다(예를 들어, von Kanel 등의 미국 특허 6,918,352호를 참조하는바, 그 내용은 본원의 참조로서 인용된다). 가능하게는, LEPECVD는 성장 속도의 동적 범위를 최적으로 제어하면서, HVPE의 성장 속도(수십 ㎛/h)에 필적하는 성장 속도를 이룰 수 있는바, 결과적으로 우수한 인터페이스 품질을 달성할 수 있게 된다. 또한, 반응성 전구체들의 활성화는 열적으로 이루어지는 것이 아니라 플라즈마에 의해 이루어지기 때문에, 공정은 보다 낮은 기판 온도들에서 동작할 것으로 기대된다. LEPECVD에 이용되는 DC 플라즈마 소스는 300mm 기판들에 대해 확장(scalable)될 수 있는 것으로 나타났다(예를 들어, von Kanel 등의 WO 2006/000846을 참조하는바, 그 내용은 본원의 참조로서 인용된다).
비록 용어 "LEPECVD"가 DC 아크 방전과 관련하여 만들어지긴 하였지만(예를 들어, Rosenblad 등의 J. Vac. Sci. Technol. A 16, 2785 (1998)을 참조하는바, 그 내용은 본원의 참조로서 인용된다), 이러한 DC 아크 방전이 에피택시에 적절한 저에너지의 플라즈마를 발생시키는 유일한 방법은 아니다. 종래 기술에 따르면, 에피택셜 설장에 적절한 충분히 낮은 에너지의 이온들은 전자 사이클로트론 공진(ECR) 플라즈마 소스들로부터도 비롯될 수 있다(예를 들어, Heung-Sik Tae 등의 Apl. Phys. Lett. 64, 1021 (1994)를 참조하는바, 그 내용은 본원의 참조로서 인용된다). 큰 면적의 기판들 상에서의 플라즈마 인헨스드 CVD에 의한 에피택셜 성장에 적절한 ECR 플라즈마 소스는, 예를 들어 Katsuya Watanabe 등의 미국 특허 5,580,420호에서 설명되는바, 그 내용은 본원의 참조로서 인용된다. 하지만, 산업적인 반도체 공정에 있어서, 커다란 ECR 소스들은 에피택시 보다는 식각에 이용된다. Ⅲ-Ⅴ 나이트라이드의 경우, 매우 높은 식각 속도를 달성할 수 있다(예를 들어, Vartuli 등의 Appl. Phys. Lett. 69, 1426 (1996)을 참조하는바, 그 내용은 본원의 참조로서 인용된다.
고밀도 저에너지 플라즈마들의 또 다른 소스들은 유도 결합되는 플라즈마(ICP) 소스들이다. 이러한 소스들은 ECR 소스들에 비해, 큰 웨이퍼 치수들에 대한 보다 용이한 확장성 및 보다 낮은 비용과 같은 많은 장점들을 갖는다. 다른 종류의 ICP 소스들에 대해 살펴보기 위해서는, Hopwood의 Plasma Sources Sci. Technol. 1, 109 (1992)를 참조하는바, 그 내용은 본원의 참조로서 인용된다. 플라즈마 처리에 이용되는 가장 일반적인 변형들로는, 플라즈마 용기 주위에 코일이 감겨지는 나선형 유도 커플러(helical inductive coupler)들(예를 들어, Steinberg 등의 미국 특허 4,368,092호를 참조하는바, 그 내용은 본원의 참조로서 인용된다) 및 나선 형태의 평평한 코일들을 갖는 나선형(spiral) 유도 커플러들(예를 들어, Ogle의 미국 특허 4,948,458호를 참조하는바, 그 내용은 본원의 참조로서 인용된다)이 있다. 나선형 커플러들에 기초하는 플라즈마 소스들은 플라즈마 균일성이 보다 높고, 큰 반도체 크기로의 확장이 용이하다는 장점을 갖는다(예를 들어, Collision 등의 J. Vac. Sci. Technol. A 16, 100 (1998)을 참조하는바, 그 내용은 본원의 참조로서 인용된다).
ICP 소스들이 보통 13.56㎒의 주파수에서 동작하기는 하지만, 보다 낮은 주파수에서 동작하게 되면, 용량성 커플링을 감소시킴으로써 훨씬 더 낮은 이온 에너지들을 야기하는 것으로 나타났다(예를 들어, Ma 등의 미국 특허 5,783,101호를 참조하는바, 그 내용은 본원의 참조로서 인용된다).
일반적으로, ECR 소스들과 ICP 소스들은 모두 식각에 이용된다. ICP 소스들을 이용해서도, GaN에 대해 매우 높은 식각 속도가 얻어졌다(예를 들어, Shul 등의 Appl. Phys. Lett. 69, 1119 (1996)을 참조하는바, 그 내용은 본원의 참조로서 인용된다). 하지만, 반도체 품질 물질들의 에피택셜 성장에 이러한 소스들을 이용하는 것은 매우 드물다. 최근에는, 실리콘의 이온 도금(ion plating) 에피택셜 증착에 전기적으로 차폐된 ICP 소스를 적용하는 것이 제안되었다. 이 방법은 증착 챔버의 내부에 금속 시준기(metallic collimator)를 필요로 한다는 명백한 단점을 갖는다(예를 들어, Johnson의 미국 특허 6,811,611호를 참조하는바, 그 내용은 본원의 참조로서 인용된다).
ICP 소스들 역시, 원격 플라즈마 소스가 이용되는 것이 일반적인 열 CVD에 이용되는 챔버들과 같은 공정 챔버들의 효율적인 세정(cleaning)에 이용될 수 있다(예를 들어, Steger의 미국 특허 5,788,799호를 참조하는바, 그 내용은 본원의 참조로서 인용된다). 챔버 세정은, 미립자 오염이 가능한 한 적게 유지되어야 하는 반도체 공정에 특히 중요하다. 물론, ICP 소스와 같은 플라즈마 소스를 갖추고 있는 공정 챔버들은 효율적인 세정을 위해 부가적인 원격 소스를 요구하지 않는다(예를 들어, Nemoto 등의 미국 특허 6,992,011호를 참조하는바, 그 내용은 본원의 참조로서 인용된다).
플라즈마 인헨스드 화학 기상 증착을 위해 저에너지의 플라즈마를 발생시키는 데에 어떠한 플라즈마 소스가 이용되든지 간에, Ⅲ-Ⅴ 화합물 반도체 성장에 적용될 때, 성장하고 있는 층들 내에 MOCVD에서 보다 훨씬 더 큰 정도로 탄소가 혼 입(incorporation)되게 된다. 이러한 카본의 혼입은 MOCVD에서의 그리고 LEPECVD에서 제안되는 유기 전구체들의 이용으로부터 비롯된다(예를 들어, von Kanel 등의 미국 특허 6,454,855호를 참조하는바, 그 내용은 본원의 참조로서 인용된다). LEPECVD에서 전구체들을 크랙시키는 데에 이용되는 강한 플라즈마는 우연하게 탄소를 빨아들이는 것(uptake)을, 가능하게는 디바이스 응용들에 대해 수용할 수 없는 정도까지 크게 강화할 것으로 기대되는바, 이는 탄소가 도펀트로서 기능하기 때문이다(예를 들어, Green 등의 J. Appl. Phys. 95, 8456 (2004)를 참조하는바, 그 내용은 본원의 참조로서 인용된다).
본 발명의 목적은, 탄소 및 수소의 혼입, 높은 기판 온도 및 낮은 증착 속도와 같은 상기 설명한 종래 기술들의 단점들을 피하는 것이다. 종래 기술들의 부가적인 주요 한계는 비교적 작은 웨이퍼 크기(생산시 2인치, 사파이어 기판들에 대해서는 최대 6인치로 증명됨)이다. 300mm(또는 그 이상)까지 실리콘 웨이퍼들을 확장시키는 것은 본 발명의 목적들 중 하나이다.
본 발명은 반도체 지지 기판상에 화합물 반도체층들을 빠르게 에피택셜 증착하기 위한 새로운 저에너지 고밀도의 플라즈마 장치 및 공정에 관한 것이다. 본 발명은 증착 공정 동안 구성 반응물(constituent reagent)들 그리고/또는 이들의 농도를 제어가능하게 변경함으로써 다양한 화합물층들의 증착을 제공한다. 공정의 제 1 단계에서, 하나 또는 복수의 금속들이 기화되며, 금속 증기들은 장치의 증착 챔버의 내부에 주입된다. 기화는, 예를 들어 증착 챔버의 내부와 통해 있는(즉, 통신하는) 이퓨전 셀들 또는 스퍼터 타겟들을 이용하여 이루어질 수 있다. 동시에, 챔버 내에 금속 증기(예를 들어, 갈륨)를 주입할 때, 비 금속의 그리고 대개는 비 반응성의 비 유독성 가스(예를 들어, N2로서의 질소)가 또한 챔버 내에 주입된다. 실질적으로 동시에 발생하는 제 2 단계에서는, (전자 사이클로트론 공진(ECR) 플라즈마, 유도 결합 플라즈마(ICP) 또는 DC 아크 방전 플라즈마와 같은) 복수의 플라즈마 발생 메커니즘들 중 임의의 메커니즘에 의해 밀도 높은 저에너지의 플라즈마가 발생되어 증착 챔버 내에 유지된다. 플라즈마 내에 완전히 액침(immerse)될 때, 비 금속 가스는 고도로 활성화되고, 금속 증기와 반응하여, 플라즈마 내에 지지되는 가열된 반도체 기판 위에 에피택셜 반도체층(예를 들어, GaN)을 형성한다. 본 발명은 유기 전구체 반응물들의 부재로 인해 탄소가 없는 공정을 제공하며, 큰 면적의 실리콘 기판 위에 반도체층들을 생성하기 위한 응용에 특히 적합하다. 또한, 어떠한 유독성 캐리어 또는 반응물 가스들도 없기 때문에, 공정은 상당히 환경 친화적이 된다.
도 1은 유도 결합된 플라즈마(ICP) 소스 및 이퓨전 셀들을 갖는 저에너지 플라즈마 인헨스드 기상 에피택시(LEPEVPE) 시스템의 개략적인 측면도이다.
도 2는 저에너지 플라즈마에 노출된 기판 위에 성장하고 있는 막의 개략도이다.
도 3은 자기장에 의해 한정되는 플라즈마의 개략도이다.
도 4는 유도 결합된 플라즈마(ICP) 소스 및 이퓨전 셀들과 함께, 아래로 향하고 있는 기판을 갖는 저에너지 플라즈마 인헨스드 기상 에피택시(LEPEVPE) 시템의 변형의 개략적인 측면도이다.
도 5는 ICP 소스 및 스퍼터 소스들을 갖는 LEPEVPE 시스템의 개략적인 측면도이다.
도 6은 DC 플라즈마 소스 및 이퓨전 셀들을 갖는 본 발명의 LEPEVPE를 위한 시스템을 나타내는 개략도이다.
본 발명은 Ⅲ-Ⅴ 반도체들, 특히 GaN, GaAlN 및 GaInN과 같은 Ⅲ-나이트라이드들의 에피택셜 성장을 위한 공정 및 장치를 포함하는 시스템이다. 이러한 장치는 반도체 지지 기판 위에서의 반도체층들의 플라즈마 인헨스드 기상 에피택시를 위한 저에너지 고밀도의 플라즈마를 제공한다. 본 발명은 고주파수 전력 증폭기들, 바이올렛, 블루 및 화이트 LED들(발광), 및 블루와 울트라 바이올렛의 반도체 레이저들에 적절한 헤테로구조들을 경제적으로 제조할 수 있게 한다.
도 1을 참조하면, 장치(10)는 배출 라인(24)에 부착된 터보 분자 펌프(turbomolecular pump)와 같은 진공 펌핑 시스템(미도시)과 통신하는 챔버 내부(21)를 갖는 진공 증착 챔버(20)를 포함한다. 증착 챔버(20) 및 펌핑 시스템은 반도체들의 완전 무균 공정에 적합하도록 선택된다. 예를 들어, 공정 가스들이 없을 때에 초고진공을 가능하게 하는 시스템이 적절한 것으로 밝혀졌다. 아르곤 및 질소와 같은 비활성의 그리고 비 반응성의 가스들 및 공정에 적절한 임의의 부가적 인 가스들이 가스 입구(22)에 의해 증착 챔버(20)에 공급된다. N2 형태의 질소는 일반적으로 비반응성 가스이다. 하지만, 본 장치의 플라즈마 필드에 노출될 때, N2 질소는 자신의 원자 형태인 N으로 변환되고, 고도로 활성화되며, 반응적이 된다. 증착 챔버(20)는 유전체 창(dielectric window)(28)을 구비하는바, 이를 통해 고주파(high frequency wave)들이 나선형 코일 어셈블리(30)에 의해 챔버 내부(21)에 결합된다. 나선형 코일 어셈블리(30)는 임피던스 매칭 네트워크(32) 및 무선 주파수 발생기(34)와 통신한다. 나선형 코일들로부터 나오는 무선 주파(radio frequency wave)들은 챔버(20)의 내부(21)에 있는 밀도 높은 저에너지 플라즈마를 여기시킨다. 예를 들어, 독일 부퍼탈(Wuppertal)에 있는 JE PlasmaConsult사로부터의 유도 결합 플라즈마 소스 ICP-P 200은, 10-4 내지 10-2의 압력 범위 및 최대 1kW의 전력에서 동작할 때, 20eV 미만의 아르곤 및 질소 이온 에너지를 발생시키는 것으로 나타났다.
증착 어셈블리(50)는 절연기들(26)에 의해 증착 챔버(20)로부터 전기적으로 절연된다. 한개 또는 그 이상의 지지 기판(54)들은 저항성 히터 또는 램프 히터와 같은 가열 수단(52)에 의해 뒷면으로부터 가열된다. 지지 기판(54)은 유전체 창(28)과 가까운 최고 플라즈마 밀도 위치로부터 몇 표면 깊이(skin depth)(전형적으로, 5-20) 만큼 이격된다. 스킨 깊이는 본 발명에 따라 이용되는 전형적인 동작 압력들에 대해 1cm 정도이다. 증착 어셈블리(50)는 접지되거나, 또는 전기적으로 플로팅된 상태로 남아있을 수 있다. 대안적으로, 증착 어셈블리(50)는 DC 바이어스 파워 서플라이에 연결되거나, 또는 임피던스 매칭 네트워크(56)를 통해 DC 자기 -바이어스(DC self-bias)를 일으키는 RF 발생기(58)에 결합될 수 있다. 이러한 수단들은 플라즈마의 전기적인 전위에 대해 기판들(54)의 전기적인 전위를 제어하기 위해 취해지는 것이다. 이러한 방식으로, 기판들(54)의 표면에 수직하는 전기장 컴포넌트가 플라즈마(36)를 제어하는 파라미터들로부터 독립적으로 제어될 수 있게 된다. 이에 따라, 최적의 에피택셜 성장 조건들을 위해, 기판들 상에 충돌하는 이온들의 에너지를 조정할 수 있다.
또한, 증착 챔버(20)는 하나 또는 그 이상의 금속 증기 발산기(metal vapor emitter)(예시되는 실시예에서는, 이퓨젼 셀들)를 구비하는바, 이것들을 통해 Ga, In 및 Al과 같은 금속들이 기화되며, 이러한 증기들은 챔버 내부(21)에 주입된다. 이러한 금속들에 있어서, 분자 빔 에피택시(MBE)에 이용되는 표준 이퓨젼 셀들의 온도는, 이를 테면 이러한 기술에서 통상적인 것들보다 훨씬 더 높은 증발 속도를 가능하게 하도록 용이하게 조정될 수 있다. 예를 들어, MBE에서 전형적인 1 monolayer/sec의 GaAs 성장 속도의 100배 증가를 위해서는, 갈륨 셀 온도의 200℃ 증가가 적절한 것으로 나타났다. MBE와 유사하게, 고속 동작 셔터(fast-action shutter)(42)들은 증기 발산기들(40)로부터의 플럭스(flux)들을 완전히 막도록 제어가능하다.
에피택셜 증착 동안, 유도 코일들(30)에 인가되는 무선 주파수 전력 및 챔버(20) 내에서의 가스 압력들은 가열된 기판들(54)이 저에너지 플라즈마에 완전히 노출되도록 선택된다. 전형적으로, 챔버(20) 내에서의 가스 압력들은 10-4mbar 내지 1.0mbar의 범위이며, 10-2 내지 10-1mbar 범위의 압력들이 가장 전형적이다. 이러한 조건들 하에서, 이퓨전 셀들(40)로부터의 금속 증기와 활성화된 질소는 모두 플라즈마 내에서의 확산 이송에 의해 움직인다. 질소와 반응하는 금속 원자들은 뜨거운 기판들(54) 상에 에피택셜 나이트라이드층을 형성한다.
도 2는 저에너지 플라즈마(36)에 노출된 기판(54) 위에 성장하고 있는 막(55)을 상세히 나타낸다. 유전 창(28)으로부터 기판(54)으로의 플라즈마의 이온 밀도는 멱지수적(exponential)으로(즉, 기하급수적으로) 감소한다. 예를 들어, 플라즈마 소스 "ICP-P 200"에 있어서, 10sccm의 가스 흐름에서의 10-1mbar의 질소 압력 및 1000W의 rf-전력이 이용될 때, 질소 플라즈마 내에서의 이온 밀도는 유전 창(28)의 약 10cm 아래에 위치하는 기판에서 여전히 1011cm-3를 넘게 된다. 이온 밀도를 낮게 유지하기 위해서는, 실질적으로 10-1mbar 미만의 질소 부분 압력이 이용될 때, 가스 입구(22)를 통한 Ar의 제어된 흐름이 질소 가스와 함께 진공 챔버(20)에 들어갈 수 있게 함으로써, 총 가스 압력을, 예를 들어 10-1mbar로 고정되게 유지하는 것이 유익하다.
밀도 높은 플라즈마(36) 내에서의 반응 종(species)의 효율적인 활성화 및 저에너지 이온들에 의한 기판(54) 표면의 강한 충격의 결과로서, 기판 온도는 MOCVD에 대해 전형적인 1000℃ 및 그 이상의 기판 온도에 비해 상당히 낮아질 수 있게 된다. 이에 따라, 전형적인 기판들(사파이어, 실리콘 카바이드 및 실리콘)의 서로 다른 열 팽창 계수들로 인한 층 크래킹(cracking) 문제가 크게 감소될 것으로 기대된다.
도 3은 진공 챔버(20)의 일부를 상세히 나타내는바, 여기에서는 플라즈마(36)를 한정하고, 그 밀도 및 균일성을 증가시키기 위해, 챔버는 코일들 또는 영구 자석들(70)을 선택적으로 구비한다. 이러한 코일들 또는 영구 자석들에 의해 발생되는 자기장은 플라즈마를 형상화(shaping)하는 것을 돕는다. 10-3 내지 10-2 Tesla 정도의 약한 필드 만으로도 유익한 효과를 갖기에 충분한 것으로 고려된다.
본 발명의 바람직한 실시예에서는, 에피택셜 나이트라이드 반도체 성장에 어떠한 반응 가스도 이용되지 않는다. 부가적인 셀들(40a)은 Mg, Zn 및 억셉터 불순물들의 역할을 하는 유사한 금속들과 같은, 원소 형태로 이용되는 것이 바람직한 도핑 종을 포함할 수 있다. 유사하게, 실리콘과 같은, 도너들의 역할을 하는 도펀트들이 부가적인 셀들(40a)에 의해 제공될 수 있다. 이러한 발산기들(이퓨전 셀들)(40a)은 또한 도펀트 증기들의 고속의 완전한 중단을 가능하게 하는 고속 동작 셔터들(42)을 구비한다. 300mm 웨이퍼들 및 가능하게는 그 이상으로의 확장을 가능하게 하기 위해, 바람직한 지지 기판(54)은 실리콘으로 선택된다. 하지만, 최신의 기술들에서 이용되는 다른 기판들의 이용도 본 발명에 따른 새로운 기술에서 동등하게 가능하다.
에피택셜 층 증착에 적절한 밀도 높은 저에너지 플라즈마와 금속 증발을 위한 이퓨전 셀들의 결합은 지금까지 제안되지 않았다. 우리는 새로운 공정인 저에너지 플라즈마 인헨스드 기상 에피택시(LEPEVPE)를 명명(call)하였다. LEPEVPE는, DC 플라즈마 방전 및 반응성의 가스 상태 전구체들이 이용되는 LEPECVD를 포함한 기존의 다른 모든 공정들에 대해 완전히 다른 조건들 하에서 동작하는 공정이다.
본 발명의 일 실시예에서, 증기 발산기들(300)의 영역은 내부의 뜨거운 금속들과의 열 반응들 및 증착 챔버로의 연결 튜브에서의 확산 이송을 허용하지 않기 위해 차별적으로 펌핑된다(도 6의 320). 본 발명의 바람직한 실시예에서는, 한개 이상의 증기 발산기(이퓨전 셀)(40 및 40a)가 증발되는 금속마다 이용된다. 각 셀은 서로 다른 온도에서 동작할 수 있으며, 이에 의해 한 셀로부터 다른 셀로의 스위칭에 의해 도핑 밀도 또는 증착 속도의 고속의 변경을 가능하게 한다.
본 발명의 다른 실시예에서는, 부가적인 가스 라인들(23)을 이용하여, 가스 형태로 가해지는 것이 바람직한 도핑 원소들(elements)에 대해 증착 챔버 내에 도핑 가스들을 삽입한다. n-타입 도핑을 위한 실란(silane)과 같은 도핑 가스들은 아르곤과 같은 비 반응성 가스 내에서 희석되는 것이 바람직하다. 도핑 가스마다 하나 이상의 가스 라인을 이용함으로써, 도핑의 동적 범위를 증가시킬 수 있다. 단지 고체 소스 타입의 증기 발산기들(40a) 만이 도핑에 이용되는 바람직한 실시예에서, 공정은 수소가 없이 동작한다. 이러한 실시예는 p-도핑된 GaN에 대해 특히 바람직한데, 그 이유는 수소가 없는 공정은 열 어닐링에 의한 어떠한 도펀트 활성화도 필요로 하지 않기 때문이다. 본 발명의 공정은 어떠한 탄소 함유 전구체 가스도 요구 하지 않기 때문에, 탄소가 없는 공정이다.
도 1에 나타낸 본 발명의 바람직한 실시예에서, 지지 기판(54)의 어셈블리는 위를 향하고 있다. 반도체 공정에서 통상적으로 이용되는 이러한 구성은 웨이퍼 취급 및 증착 어셈블리 또는 기판 홀더(50)의 설계를 용이하게 한다. 본 발명에 따르면, LEPEVPE는 지지 기판(54)의 표면과 직접 접촉하는 고밀도 저에너지의 플라즈마에 의해 특징화된다. 이에 따라, 지지 기판(54)의 표면은 저에너지 이온들의 강한 충격을 받게 되는바, 그 에너지는 기판 바이어스의 적절한 선택에 의해 조정될 수 있다. 이것은, 원격 플라즈마 소스들을 이용하는 플라즈마 처리 방법들과 현저하게 차이가 나는바, 이러한 플라즈마 처리 방법들은 전형적으로 래디컬(radical) 만을 전달하고, 기판 표면에서의 이온 밀도는 무시할 정도로 낮다. 저에너지 이온들에 의한 격렬한 기판 충격은, 500℃로 낮은 기판 온도에서 5nm/s 이상의 극도로 높은 성장 속도로 디바이스 품질의 반도체 층들의 에피택셜 성장시키는 데에 유익한 것으로 나타났다(예를 들어, von Kanel 등의 Appl. Phys. Lett. 80, 2922 (2002)를 참조하는바, 그 내용은 본원의 참조로서 인용된다). 이에 따라, 본 발명에 따르면, 최신의 웨이퍼 취급 툴들(미도시)과 LEPEVPE를 결합시킴으로써 매우 높은 쓰루풋이 기대된다.
본 발명에 따르면, 장치(10)는 특별히 처리된 단결정 기판들(54) 상에 Ⅲ-Ⅴ 반도체들, 특히 Ⅲ-나이트라이드들을 에피택셜 증착시키는 데에 이용될 수 있다. 기판들(54)의 가능한 표면 처리는 최신의 화학적인 프리-세정, 인사이츄(in situ) 열 세정 또는 플라즈마 세정을 수반하며, 이후 후속의 에피택셜 나이트라이드 반도 체 성장에 적절한 산화물, 카바이드 또는 저온 나이트라이드와 같은 에피택셜 템플릿(template)들이 인사이츄 형성된다.
도 4는 본 시스템의 장치(10)를 도시하는바, 여기서 성장 물질들이 증착되는 지지 기판(54)은 내부 챔버(21)의 기판 홀더(50)의 테이블 상에 장착되며, 아래를 향하고 있다. 이러한 구성은, 보다 복잡한 웨이퍼 취급 시스템 및 기판 홀더(50)의 설계를 희생으로 하여, 미립자 오염에 의한 문제가 보다 적다는 것이 특징이다. 상기 주목한 바와 같이, 증착 챔버(20)는 플라즈마를 형상화하는 것을 돕는 선택적인 코일들 또는 영구 자석들을 구비할 수 있으며, 유사하게 이퓨전 셀들(40) 등을 구비한다.
도 5는 챔버(20) 내의 증착 어셈블리(50) 상에 장착되는 지지 기판(54)이 아래를 향하고 있는 본 발명의 다른 실시예를 나타낸다. 증착 챔버(20)는 플라즈마를 형상화하는 것을 돕는 선택적인 코일들 또는 영구 자석들(도 3 참조)을 구비할 수 있다.
이러한 실시예에서, 원소 금속 증기(element metal vapor)들은 스퍼터 타겟들(62)을 홀딩하고 있는 물 냉각(water cooled) 스퍼터 소스들(60)에 의해 플라즈마에 공급된다. 스퍼터 타겟들(62)은 ICP 소스의 유전 창(28) 주위에 동심 링들 또는 링 세그먼트들의 형태로 배열하는 것이 적절하다. 이러한 스퍼터 타겟들은 임피던스 매치 박스(64)를 통해 RF 파워 서플라이(66)에 연결되며, 이에 의해 파워 서플라이(66)는 바람직하게는 ICP 코일들(30)에 전력을 공급하기 위해 발생기(34)에 의해 이용되는 주파수와 실질적으로 다른 주파수로 교류 전압을 제공한다. 이에 의 해, 두 종류의 전력 소스들(34 및 66) 간의 바람직하지 않은 간섭을 감소시킨다. 본 발명의 다른 실시예에서, 스퍼터 소스들(60)은 DC 파워 서플라이에 의해 전력이 공급된다. 0.2×10-2 mbar m 정도의 전형적인 압력-거리의 곱에 있어서, 기판에 도달하는 스퍼터 입자들의 열중성자화(thermalization)는 거의 완전하며, 이에 따라 전자 등급(electronic-grade)의 반도체 물질이 스퍼터 소스들을 이용함으로써 성장될 수 있는 것으로 나타났다(예를 들어, Sutter 등의 Appl. Phys. Lett. 67, 3594 (1995)를 참조하는바, 그 내용은 본원의 참조로서 인용된다).
에피택셜 층 증착 이전에 스퍼터 소스들(60)의 세정을 가능하게 하기 위해, 챔버(20)는 이동가능한 셔터 어셈블리(82)를 선택적으로 구비함으로써, 셔터 블레이드(shutter blade)(80)가 기판들(54)에 인접하게 그리고 그 아래에 위치될 수 있게 되며, 이에 따라 프리 스퍼터링 동안, 어떠한 스퍼터 입자도 기판에 도달하지 못하게 한다.
본 발명의 바람직한 실시예에서는, 에피택셜 나이트라이드 반도체 성장에 어떠한 반응 가스도 이용되지 않는다. 부가적인 스퍼터 타겟들(40a)은 Mg, Zn 및 억셉터 불순물들의 역할을 하는 유사한 금속들과 같은, 원소 형태로 이용되는 것이 바람직한 도핑 종을 포함할 수 있다. 유사하게, 실리콘과 같은, 도너들의 역할을 하는 도펀트들이 부가적인 스퍼터 타겟들(60a)에 의해 제공될 수 있다. 본 발명의 다른 실시예에서, 각 스퍼터 건(sputter gun)(62)은 개별적인 타겟들(60) 간의 교차 오염(cross-contamination)을 피하기 위해 선택적인 셔터들(미도시)을 구비할 수 있다.
에피택셜 증착 동안, 유도 코일들(30)에 인가되는 무선 주파수 전력 및 챔버(20) 내에서의 가스 압력들은 가열된 기판들(54)이 저에너지 플라즈마에 완전히 노출되도록 선택된다. 전형적으로, 챔버(20) 내에서의 가스 압력들은 10-3mbar 내지 10-1mbar의 범위이며, 10-2 내지 10-1 범위의 압력이 가장 전형적이다. 이러한 조건들 하에서, 스퍼터 건들(62)로부터의 금속 증기와 활성화된 질소는 모두 플라즈마 내에서의 확산 이송에 의해 이동하며, 공정은 상기 설명한 바와 같이 진행된다.
본 발명의 다른 실시예에서, 스퍼터 건들(62)은 이퓨전 셀들(40)과 결합될 수 있으며, 이에 의해 양쪽 소스들은 유전 창(28) 주위에 대칭적으로 배열되는 것이 바람직하다. 에피택셜 층 증착에 적절한 밀도 높은 저에너지 플라즈마에 의해 원자 형태로 반응체(reactant)들 및 도펀트들을 증발시키기 위해 스퍼터 건들과 이퓨전 셀들을 결합하는 것은 지금까지 제안되지 않았다. 본 발명의 바람직한 실시예에서는, 한 개 이상이 스퍼터 건(62) 및 이퓨전 셀(40)이 증발되는 금속마다 이용된다. 각 소스는 금속 증기들의 서로 다른 플럭스를 전달하는 방식으로 동작할 수 있으며, 이에 의해 한 소스로부터 다른 소스로 스위칭함으로써 도핑 밀도 또는 성장 속도에 있어서의 급속한 변경을 쉽게 가능하게 한다. 또 다른 실시예에서, 이퓨전 셀들(40) 및 스퍼터 건들(62)은 전자 빔 증발기들에 의해 대체 또는 보충될 수 있다. 전자 빔 증발기들은 낮은 증기 압력으로 원소들을 증발시키는 데에 특히 적절한 바, 여기에서는 이퓨전 셀들(40)에 의해 상당한 플럭스들을 달성하기가 어렵 다.
도 6은 본 발명의 다른 실시예를 나타내는바, 여기서 장치(10)는 통합된 또는 개별적인 애노드(110), 비활성 가스 입구(120) 및 열이온 캐소드들(thermionic cathode)(130)의 어셈블리와 함께 넓은 면적의 플라즈마 소스(broad-area plasma source)(100)를 포함한다. 바람직하게는, 캐소드들(130)과 애노드(110) 간의 전압차는 30V 미만이며, 이에 따라 기판을 치는 이온들은 약 20V 미만의 에너지를 갖는다. 아크 플라즈마(140)가 발화(ignite)될 수 있는 플라즈마 소스(100)는 증착 챔버(200)에 부착된다. 적재 로크(220)를 구비하는 증착 챔버는, 예를 들어 밸브(205)에 의해 챔버(200)와 통신하는 터보 분자 펌프(210)에 의해 펌핑되며, 기판 가열기 어셈블리(230)를 포함한다. 질소와 같은 비활성 가스 및 수소와 같은 부가 가스들을 주입하기 위한 가스 라인들(240)이 증착 챔버에 연결된다. 플라즈마 밀도는 코일들(250)에 의해 생성되는 한정 자기장을 변경시킴으로써 빠르게 변경될 수 있다.
또한, 이러한 챔버는 이퓨전 셀들(300)을 구비하는바, 이것들로부터 Ga, In 및 Al과 같은 금속들이 기화될 수 있다. 부가적인 셀들(300)은 Mg, Zn 및 억셉터 불순물들의 역할을 하는 유사한 금속들과 같은, 원소 형태로 이용되는 것이 바람직한 도핑 종을 포함할 수 있다. 이퓨전 셀들은 금속 증기의 완전한 차단(interruption)을 가능하게 하는 셔터들(310)을 구비한다.
기판들(400)의 가열된 어셈블리는, 플라즈마 소스 내에서의 아크 방전에 의해 발생되어 침투성 애노드(110)를 통해 증착 챔버 내에 퍼져있는 저에너지 플라즈 마에 완전히 노출된다. 아크 방전은 플라즈마 챔버(200) 내의 열이온 캐소드들(130)에 의해 유지되며, 증착 챔버 내에서 10-4mbar로부터 적어도 10-1mbar까지의 넓은 압력 범위에서 동작할 수 있으며, 10-2mbar의 압력이 가장 전형적이다. 증착 챔버를 통해 흐르는 플라즈마 활성된 질소는 금속 증기와 반응하여, 기판(400) 위에 에피택셜 나이트라이드막을 형성한다.
대개, 이퓨전 셀들은, 예를 들어 분자 빔 에피택시 시스템에서, 초고진공에서 금속들을 증발시키는 데에 이용된다. 여기서, 이들은 약 10-2mbar의 전형적인 압력(이 압력에서 이송이 확산적이 된다)에서 발생되는 고밀도 저에너지의 플라즈마 내에 금속 증기를 도입시키는 역할을 한다. 이에 따라, LEPEVPE는 다른 공정들과 완전히 다른 조건들 하에서 동작하는 공정이다. 본 발명의 일 실시예에서, 이퓨전 셀들(300)의 영역은 차별적으로 펌핑되어(320), 내부의 뜨거운 금속들과의 열 반응 및 증착 챔버에 대한 연결 튜브 내에서의 확산 이송을 허용하지 않는다.
본 발명의 바람직한 실시예에서는, 증발되는 금속마다 한 개 이상의 이퓨전 셀(300)이 이용된다. 각 셀은 서로 다른 온도에서 동작함으로써, 한 셀로부터 다른 셀로 스위칭함으로써 성장 속도 또는 도핑 밀도에 있어서의 신속한 변경을 쉽게 가능하게 한다. 또한, 코일들(250)에 의해 생성되는 자기장을 변경함으로써 야기되는 플라즈마 밀도의 변경은 성장 속도의 동적 범위를 더욱 늘릴 수 있다.
본 발명의 다른 실시예들에서는, 부가적인 가스 라인들(240a)을 이용하여, 가스 형태로 가해지는 것이 바람직한 도핑 원소들을 위해 증착 챔버 내에 도핑 가 스들을 삽입한다. n-타입 도핑을 위한 실란과 같은 도핑 가스들은 아르곤과 같은 비 반응성 가스 내에서 희석되는 것이 바람직하다. 도핑 가스마다 하나 이상의 가스 라인을 이용함으로써, 도핑의 동적 범위를 증가시킬 수 있다.
본 발명의 공정은 어떠한 탄소 함유 전구체 가스도 요구하지 않기 때문에, 탄소가 없는 공정이다. 바람직한 실시예에서는, 본 발명의 공정은 수소가 없이도 동작한다. 이러한 실시예는 p-도핑된 GaN 층들에 특히 바람직한데, 그 이유는 수소가 없는 공정은 열 어닐링에 의한 어떠한 도펀트 활성화도 필요로 하지 않기 때문이다.
LEPEVPE는 플라즈마에 의해 활성화되는 공정이기 때문에, 에피층(epilayer)과 기판의 서로 다른 열 팽창 계수들에 의해 야기되는 인장 변형력이 종종 성장 온도로부터의 냉각 동안 바람직하지 않은 크랙을 야기하는 경쟁 기술들보다 낮은 기판 온도들에서 동작할 수 있다.
ANNEX A - 하기의 문서들이 본 출원의 참조로서 인용되며, 본 출원은 이러한 문서들에 의존한다.
Figure 112007068281882-pct00001
Figure 112007068281882-pct00002
Figure 112007068281882-pct00003

Claims (39)

  1. 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템으로서,
    a. 압력 제어되는 증착 챔버(200)로서, 에피택셜 증착 중에 압력을 10-2mbar 와 10-1mbar 사이로 유지하는 증착 챔버(200)와;
    b. 기판(400)을 지지하고, 1000℃ 미만의 온도로 가열하는, 상기 증착 챔버 내의 기판 홀더(230)와;
    c. 물질들을 증기 입자들로 기화시키는 증기 발산기(300, 300')로서, 상기 증기 입자는 상기 증착 챔버에 공급될 원소 금속들 입자들, 금속 합금들 혹은 도펀트들을 포함하는 증기 발산기(300, 300')와,;
    d. 상기 증착 챔버에 가스들을 공급하는 가스 분배 시스템(240)과;
    e. 적어도 하나의 열이온 캐소드(130), 비활성 가스 입구(120)를 구비하는 플라즈마 소스(100)로서, 상기 플라즈마 소스(100)는 상기 증착 챔버(200)에서 30V 이하의 상기 적어도 하나의 열이온 캐소드와 개별적인 애노드(110) 사이의 전압에서의 저-전압 직류 아크 방전에 의하여 저-에너지 플라즈마(140)를 발생시키고, 상기 플라즈마 소스(100)는 상기 기판을 완전히 상기 저-에너지 플라즈마에 노출시키는 플라즈마 소스(100)와;
    f. 상기 증착 챔버(200) 내에서의 상기 플라즈마(140)의 밀도를 변화시킬 수 있는 자기장을 발생시키는 자기장 발생기(250)를 포함하며;
    여기서, 상기 시스템은 가스 및 증기 입자들이 상기 증착 챔버(200) 내에서 확산하여 퍼지게 하며, 상기 가스 및 증기 입자들은 상기 플라즈마(140)에 의해 활성화되어, 저 에너지 플라즈마 인헨스드 기상 에피택시의 반응에 의해, 상기 기판 홀더(230)에 고정된 가열된 기판(400) 상에 균일한 에피택셜 반도체 층(410)을 반응하여 형성하는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  2. 제 1 항에 있어서, 상기 에피택셜 화합물 반도체층의 성장동안, 20V 미만의 에너지를 갖는 이온들은, 상기 저-전압 아크 방전에 의하여 발생된 상기 저-에너지 플라즈마(140)에 노출된 상기 기판(400)을 치는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  3. 제 1 항에 있어서, 상기 저-에너지 플라즈마(140)의 밀도, 상기 가스 분배 시스템(240)의 가스 흐름, 및 상기 증기 발산기(300)에 의하여 발산되는 증기의 증기압은 10nm/s까지의 상기 에피택셜 화합물 반도체층(410)의 성장속도에 맞도록 조절되는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  4. 제 1 항에 있어서, 상기 플라즈마 소스(100)는 하나 이상의 열이온 캐소드(130)를 포함하는 직류 플라즈마 소스이고,
    상기 플라즈마 소스 안의 상기 캐소드는 플라즈마에 대해 침투성인 애노드(110)와 통신하는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  5. 제 4 항에 있어서, 상기 직류 플라즈마 소스(100)의 플라즈마 추출 영역이 샤워 헤드(shower head)에 의해 형성되고, 상기 샤워 헤드는 상기 침투성 애노드(110)와 통신하여, 상기 가열된 기판(400)을 균일한 플라즈마(140)에 노출시키는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  6. 제 1 항에 있어서, 상기 원소 금속 및 금속 합금 증기들을 공급하는 물질들을 기화하기 위한 소스들은, 이퓨전 셀들(40, 300) 및 스퍼터 소스들(62)을 포함하는 증기 플럭스들을 전달할 수 있는 소스들의 그룹으로부터 선택되는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  7. 제 1 항에 있어서, 상기 도펀트들의 소스들은 이퓨전 셀들(40'), 스퍼터 소스들(62') 및 반응성 가스 소스들(23')로 구성되는 소스들의 그룹으로부터 선택되는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  8. 제 1 항에 있어서, 상기 가스 분배 시스템(240)에 의해 상기 증착 챔버에 공급되는 가스들은, 아르곤 및 질소를 포함하여, 비 유독성의 비 반응성 가스들인 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  9. 제 1 항에 있어서, 상기 플라즈마에 의해 활성화되는 가스들은 플라즈마 활성화된 금속 증기들과 반응할 수 있게 되어, 상기 기판 홀더(230)에 고정된 가열된 기판들(54, 400) 상에 에피택셜 템플릿층(55, 410)을 형성하며, 상기 템플릿층은 이후의 나이트라이드 반도체층들의 에피택시에 충분한 품질을 갖는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  10. 제 1 항에 있어서, 질소 가스가 상기 가스 분배 시스템(240)에 의해 상기 증착 챔버에 공급되고 상기 플라즈마에 의해 활성화되며, Ga, In 및 Al을 포함하는 금속들의 그룹으로부터 선택되는 플라즈마 활성화된 금속 증기들과 반응할 수 있게 되어, 상기 가열된 기판 홀더에 의해 지지되는 기판들 상에 에피택셜 나이트라이드 반도체층을 형성하는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  11. 제 1 항에 있어서, 상기 도펀트들의 소스들은 Si, Mg, Zn, Be 및 Cd를 포함하는 원소들의 그룹으로부터 선택되는 원소들을 포함하는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  12. 제 1 항에 있어서, 각각의 증발되는 물질과 함께 이용하기 위한 하나 이상의 소스(40, 40', 62, 62', 300, 300')가 제공되고, 동일한 물질에 대해 이용되는 소스들은 동작시 증기 입자들의 서로 다른 플럭스들을 발생시키는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  13. 제 4 항에 있어서, 상기 시스템은 비활성 가스로 희석된 실란과 같은 도핑 가스들(23')을 상기 증착 챔버 내에 공급하는 것을 특징으로 하는 에피택셜 화합물 반도체층의 증착을 위한 진공 시스템.
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
KR1020077021605A 2005-02-28 2006-02-28 고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를위한 시스템 및 공정 KR101366181B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US65720805P 2005-02-28 2005-02-28
US60/657,208 2005-02-28
PCT/IB2006/000421 WO2006097804A2 (en) 2005-02-28 2006-02-28 System and process for high-density,low-energy plasma enhanced vapor phase epitaxy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020127009425A Division KR101358966B1 (ko) 2005-02-28 2006-02-28 고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를 위한 시스템 및 공정

Publications (2)

Publication Number Publication Date
KR20070114361A KR20070114361A (ko) 2007-12-03
KR101366181B1 true KR101366181B1 (ko) 2014-02-24

Family

ID=36972965

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020127009425A KR101358966B1 (ko) 2005-02-28 2006-02-28 고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를 위한 시스템 및 공정
KR1020077021605A KR101366181B1 (ko) 2005-02-28 2006-02-28 고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를위한 시스템 및 공정

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020127009425A KR101358966B1 (ko) 2005-02-28 2006-02-28 고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를 위한 시스템 및 공정

Country Status (10)

Country Link
US (2) US8647434B2 (ko)
EP (1) EP1872383A2 (ko)
JP (1) JP5214251B2 (ko)
KR (2) KR101358966B1 (ko)
CN (1) CN101128911B (ko)
AU (1) AU2006224282B2 (ko)
CA (1) CA2597623C (ko)
RU (1) RU2462786C2 (ko)
SG (1) SG160345A1 (ko)
WO (1) WO2006097804A2 (ko)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1513233B1 (en) * 2003-09-05 2008-10-29 Epispeed S.A. InGaAs/GaAs lasers on Silicon produced by LEPECVD and MOCVD
KR100754404B1 (ko) * 2006-05-25 2007-08-31 삼성전자주식회사 확산튜브와, 확산공정용 도펀트 소스 및 상기 확산튜브와도펀트 소스를 이용한 확산방법
JP5041883B2 (ja) * 2007-06-07 2012-10-03 昭和電工株式会社 Iii族窒化物半導体層の製造方法、iii族窒化物半導体発光素子の製造方法
JP4982259B2 (ja) * 2007-06-14 2012-07-25 昭和電工株式会社 Iii族窒化物化合物半導体発光素子の製造方法
US20110017127A1 (en) * 2007-08-17 2011-01-27 Epispeed Sa Apparatus and method for producing epitaxial layers
US20100086703A1 (en) 2008-10-03 2010-04-08 Veeco Compound Semiconductor, Inc. Vapor Phase Epitaxy System
CN101494151B (zh) * 2009-03-05 2013-11-13 苏州晶能科技有限公司 高效率的一维线性等离子体清洗磁控阴极装置
JP2011213557A (ja) * 2010-04-01 2011-10-27 Hitachi Cable Ltd 導電性iii族窒化物単結晶基板の製造方法
TWI562195B (en) 2010-04-27 2016-12-11 Pilegrowth Tech S R L Dislocation and stress management by mask-less processes using substrate patterning and methods for device fabrication
US8884525B2 (en) * 2011-03-22 2014-11-11 Advanced Energy Industries, Inc. Remote plasma source generating a disc-shaped plasma
DE102012201953A1 (de) * 2012-02-09 2013-08-14 Singulus Technologies Ag Verfahren und Vorrichtung zur Passivierung von Solarzellen mit einer Aluminiumoxid-Schicht
CN102534511B (zh) * 2012-02-28 2013-10-16 东北大学 一种气相沉积薄膜的装置及其使用方法
KR102152786B1 (ko) * 2012-07-13 2020-09-08 갈리움 엔터프라이지즈 피티와이 엘티디 필름 형성 장치 및 방법
KR101456549B1 (ko) * 2012-09-10 2014-10-31 한국표준과학연구원 플라즈마 도움 화학 기상 증착 장치 및 플라즈마 도움 화학 기상 증착 방법
RU2548578C2 (ru) * 2013-08-19 2015-04-20 Валерий Анатольевич Буробин Способ получения эпитаксиального слоя бинарного полупроводникового материала на монокристаллической подложке посредством металлоорганического химического осаждения из газовой фазы
US9378941B2 (en) * 2013-10-02 2016-06-28 Applied Materials, Inc. Interface treatment of semiconductor surfaces with high density low energy plasma
CN104752162A (zh) * 2013-12-31 2015-07-01 江西省昌大光电科技有限公司 一种半绝缘GaN薄膜及其制备方法
CN103806093B (zh) * 2014-02-17 2017-01-18 清华大学 基于icp的化合物半导体的外延生长装置及方法
RU2578870C2 (ru) * 2014-03-26 2016-03-27 Открытое акционерное общество "Ордена Трудового Красного Знамени Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (ОАО "НИФХИ им. Л.Я. Карпова") Способ выращивания пленки нитрида галлия
CN103938272A (zh) * 2014-04-03 2014-07-23 清华大学 等离子体辅助的外延生长装置及方法
RU2570099C1 (ru) * 2014-08-05 2015-12-10 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") Способ изготовления полупроводниковой гетероструктуры
EP3176293A4 (en) * 2014-08-29 2018-07-04 Soko Kagaku Co., Ltd. Template for epitaxial growth and method of preparing same, and nitride semiconductor device
WO2018081144A1 (en) 2016-10-24 2018-05-03 Kla-Tencor Corporation Process module(s) integrated into a metrology and/or inspection tool
WO2019005144A1 (en) * 2017-06-30 2019-01-03 Intel Corporation HIGH FLOW MOLECULAR BEAM EPITAXY AND SELECTIVE EPITAXIAL APPARATUS
RU2657674C1 (ru) * 2017-08-14 2018-06-14 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Способ получения гетероструктуры Mg(Fe1-xGax)2O4/Si со стабильной межфазной границей
CN107675141B (zh) * 2017-10-25 2023-08-04 南昌大学 一种用于制备氮化物材料的装置
US10892137B2 (en) * 2018-09-12 2021-01-12 Entegris, Inc. Ion implantation processes and apparatus using gallium
DE102018220678A1 (de) * 2018-11-30 2020-06-04 Thyssenkrupp Ag Verfahren zum PVD-Beschichten von Werkstücken
RU2715080C1 (ru) * 2018-12-18 2020-02-25 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Способ наращивания монокристаллических слоёв полупроводниковых структур
CN109817518B (zh) * 2019-01-18 2020-03-10 重庆市妙格科技有限公司 一种发光二极管原材料加热磷扩装置
CN109830419B (zh) * 2019-01-24 2020-05-19 中国原子能科学研究院 一种微型潘宁离子源
US11519095B2 (en) * 2019-04-22 2022-12-06 Peng DU MBE system with direct evaporation pump to cold panel
RU2723477C1 (ru) * 2019-04-26 2020-06-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Узел фиксации нагреваемой подложки в вакуумной камере (варианты)
US11150120B2 (en) * 2019-09-22 2021-10-19 Applied Materials, Inc. Low temperature thermal flow ratio controller
CN115992346B (zh) * 2023-02-16 2024-08-06 北京理工大学 一种多功能的离子沉积薄膜制备装置及薄膜沉积方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022408A2 (en) * 1995-01-13 1996-07-25 Trustees Of Boston University Device and method for epitaxially growing gallium nitride layers
JPH1012908A (ja) * 1996-06-21 1998-01-16 Toshiba Corp 半導体装置及び微粒子半導体膜の製造方法及び光電変換素子
JP2004288964A (ja) * 2003-03-24 2004-10-14 Sumitomo Electric Ind Ltd GaN結晶の成長方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368092A (en) 1981-04-02 1983-01-11 The Perkin-Elmer Corporation Apparatus for the etching for semiconductor devices
JPH0652716B2 (ja) * 1984-08-24 1994-07-06 日本電信電話株式会社 半導体結晶性膜製造装置
JPS61135126A (ja) * 1984-12-06 1986-06-23 Hitachi Ltd プラズマ処理装置
US4948458A (en) 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
JPH03146656A (ja) * 1989-11-02 1991-06-21 Hitachi Ltd 膜形成装置及び膜形成方法
TW264601B (ko) 1993-09-17 1995-12-01 Hitachi Seisakusyo Kk
JPH07288237A (ja) 1994-04-15 1995-10-31 Nippon Steel Corp プラズマ励起セル装置
US5783101A (en) 1994-09-16 1998-07-21 Applied Materials, Inc. High etch rate residue free metal etch process with low frequency high power inductive coupled plasma
JP3769059B2 (ja) * 1996-02-02 2006-04-19 雅弘 西川 超音波・プラズマ・粒子ビーム複合プロセス装置及び薄膜の形成方法並びに表面の平滑化方法
US5788799A (en) 1996-06-11 1998-08-04 Applied Materials, Inc. Apparatus and method for cleaning of semiconductor process chamber surfaces
JP4906169B2 (ja) 1997-06-13 2012-03-28 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ 被覆工作物を製造するための方法、その方法の利用およびそのための装置
US6472300B2 (en) 1997-11-18 2002-10-29 Technologies And Devices International, Inc. Method for growing p-n homojunction-based structures utilizing HVPE techniques
AU2001241947A1 (en) 2000-03-02 2001-09-12 Tokyo Electron Limited Esrf source for ion plating epitaxial deposition
AU2002252566A1 (en) 2001-03-30 2002-10-15 Technologies And Devices International Inc. Method and apparatus for growing submicron group iii nitride structures utilizing hvpe techniques
US6992011B2 (en) 2003-01-15 2006-01-31 Tokyo Electron Limited Method and apparatus for removing material from chamber and wafer surfaces by high temperature hydrogen-containing plasma
US6818061B2 (en) 2003-04-10 2004-11-16 Honeywell International, Inc. Method for growing single crystal GaN on silicon
RU2244984C1 (ru) * 2003-08-08 2005-01-20 Институт физики полупроводников Объединенного института физики полупроводников СО РАН Способ изготовления гетероструктуры
ES2380699T3 (es) 2004-06-08 2012-05-17 Dichroic Cell S.R.L. Sistema para la deposición química en fase de vapor asistida por plasma de baja energía
WO2008000846A1 (es) 2006-06-19 2008-01-03 Natraceutical S.A. Método para la esterilización de materiales de cacao mediante co2 supercrítico

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022408A2 (en) * 1995-01-13 1996-07-25 Trustees Of Boston University Device and method for epitaxially growing gallium nitride layers
JPH1012908A (ja) * 1996-06-21 1998-01-16 Toshiba Corp 半導体装置及び微粒子半導体膜の製造方法及び光電変換素子
JP2004288964A (ja) * 2003-03-24 2004-10-14 Sumitomo Electric Ind Ltd GaN結晶の成長方法

Also Published As

Publication number Publication date
KR20120054093A (ko) 2012-05-29
KR20070114361A (ko) 2007-12-03
US8647434B2 (en) 2014-02-11
JP5214251B2 (ja) 2013-06-19
WO2006097804A3 (en) 2007-01-18
WO2006097804A2 (en) 2006-09-21
AU2006224282B2 (en) 2012-02-02
CA2597623A1 (en) 2006-09-21
US20080152903A1 (en) 2008-06-26
EP1872383A2 (en) 2008-01-02
JP2008532306A (ja) 2008-08-14
RU2007135977A (ru) 2009-04-10
AU2006224282A1 (en) 2006-09-21
CN101128911A (zh) 2008-02-20
KR101358966B1 (ko) 2014-02-21
CN101128911B (zh) 2010-09-08
WO2006097804B1 (en) 2007-02-15
SG160345A1 (en) 2010-04-29
US20130260537A1 (en) 2013-10-03
RU2462786C2 (ru) 2012-09-27
CA2597623C (en) 2015-07-14
US9466479B2 (en) 2016-10-11

Similar Documents

Publication Publication Date Title
KR101366181B1 (ko) 고밀도 저에너지의 플라즈마 인헨스드 기상 에피택시를위한 시스템 및 공정
US6692568B2 (en) Method and apparatus for producing MIIIN columns and MIIIN materials grown thereon
US8580670B2 (en) Migration and plasma enhanced chemical vapor deposition
JP2008532306A5 (ko)
US20190112708A1 (en) Electrostatic control of metal wetting layers during deposition
US20110017127A1 (en) Apparatus and method for producing epitaxial layers
Oda et al. Novel epitaxy for nitride semiconductors using plasma technology
US6811611B2 (en) Esrf source for ion plating epitaxial deposition
AU2012202511B2 (en) System and Process for High-Density, Low-Energy Plasma Enhanced Vapor Phase Epitaxy
JP4549573B2 (ja) Iii族窒化物薄膜の形成方法
Berishev et al. High growth rate GaN films using a modified electron cyclotron resonance plasma source

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170213

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee