KR101362549B1 - 미셀을 주형으로 이용한 금 나노입자의 제조방법 - Google Patents

미셀을 주형으로 이용한 금 나노입자의 제조방법 Download PDF

Info

Publication number
KR101362549B1
KR101362549B1 KR1020130002647A KR20130002647A KR101362549B1 KR 101362549 B1 KR101362549 B1 KR 101362549B1 KR 1020130002647 A KR1020130002647 A KR 1020130002647A KR 20130002647 A KR20130002647 A KR 20130002647A KR 101362549 B1 KR101362549 B1 KR 101362549B1
Authority
KR
South Korea
Prior art keywords
gold nanoparticles
acid
tocopherol
micelles
copolymer
Prior art date
Application number
KR1020130002647A
Other languages
English (en)
Inventor
정지훈
이민상
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020130002647A priority Critical patent/KR101362549B1/ko
Priority to PCT/KR2013/009152 priority patent/WO2014109459A1/ko
Application granted granted Critical
Publication of KR101362549B1 publication Critical patent/KR101362549B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 항산화물질을 포접한 나노-스케일의 환원성 미셀을 주형으로 사용하여 미셀 외각에 금 입자의 핵을 형성하고 이를 성장시켜 금 나노입자를 제조하는 방법에 관한 것이다.본 발명에 의해서 제조된 금 나노입자는 미셀의 고-가지성 표면 구조를 따라 금 입자의 핵이 형성된 후 성장하여 미셀의 외각 및 표면 모양을 본 뜬 돌기구조를 갖게 된다. 또한, 본 발명의 금 나노입자의 제조방법에 의해서 제조된 금 나노입자는 미셀의 표면 구조와 동일한바, 미셀 표면 구조의 시각화에 응용할 수 있다. 또한, 본 발명의 금 나노입자의 제조방법에 의해서 제조된 돌기구조의 금 나노입자는 약물전달체 및 라만분광광도계를 위한 프로브 입자로 응용할 수 있다.

Description

미셀을 주형으로 이용한 금 나노입자의 제조방법{A method for manufacturing dendritic gold nanoparticles using antioxidative micelles as a template}
본 발명은 항산화물질을 포접한 나노-스케일의 환원성 미셀을 주형으로 사용하여 미셀 외각에 금 입자의 핵을 형성하고 이를 성장시켜 금 나노입자를 제조하는 방법에 관한 것이다.
금 나노입자(AuNPS)는 이들의 뛰어난 화학적 안정성, 생체 적합성, 광학, 전기적, 촉매적 성질 때문에 높은 관심을 끌고 있으며, 약물전달, 전자공학, 감지장치 및 촉매에 있어서의 금 나노입자의 넓은 응용 때문에 더 높은 관심을 끌고 있다 (1) P. Ghosh, G. Han, M. et al, Adv Drug Deliv Rev 60 (2008) 1307; 2) R.J. Tseng, J.X. Huang, J. et al, Nano Letters 5 (2005) 1077; 3) G.A. Baker, D.S. Moore, Analytical and Bioanalytical Chemistry 382 (2005) 1751; 4) D.T. Thompson, Nano Today 2 (2007) 40).
모양과 크기와 같은 위상적인 요소는 금 나노입자(AuNPS)의 성질에 상당한 영향을 끼치기 때문에, 나노스케일 범위에서 위상을 조절하는 것은 금 나노입자(AuNPS)를 응용하는 분야에 있어서, 효과의 향상을 위해서 중요하게 여겨진다. 현재까지 구형, 막대형, 가지형, 다면체형 및 속이 빈 형태를 포함하는 다양한 모양을 갖는 금 나노입자(AuNPs)를 합성하기 위한 다양한 방법들이 개발되어 왔다 (1) T.K. Sau, C.J. Murphy, Journal of the American Chemical Society 126 (2004) 8648; 2) S.F. Pang, T. Kondo, T. Kawai, Chemistry of Materials 17 (2005) 3636; 3) B.L. Sanchez-Gaytan, S.J. Park, Langmuir 26 (2010) 19170; 4) B.E. Brinson, J.B. Lassiter, C.S. Levin, R. Bardhan, N. Mirin, N.J. Halas, Langmuir 24 (2008) 14166; 5) J. Perez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney, Coordination Chemistry Reviews 249 (2005) 1870).
이들 구형, 막대형, 가지형, 다면체형 및 속이 빈 형태의 금 나노입자(AuNPS) 중에서, 고 표면-대-부피 비율을 갖는 다면체형 및 가지형의 금 나노입자 등의 이방성의 금 나노입자(AuNPs)는 이들의 놀라운 촉매 활성 및 표면 강화 라만 산란(SERS)에 있어서 강화된 신호를 위한 국소적 표면 플라즈몬 공명 (surface plasmon resonance) 여기 때문에 높은 관심의 대상이 되고 있다 (1) H.G. Liao, Y.X. Jiang, Z.Y. Zhou, S.P. Chen, S.G. Sun, Angew Chem Int Ed Engl 47 (2008) 9100; 2) M.K. Hossain, Y. Kitahama, G.G. Huang, X. Han, Y. Ozaki, Anal Bioanal Chem 394 (2009) 1747).
현재까지 보고된 바에 따르면 다면체형, 별-모양형 및 가지형의 금나노입자(AuNPs)를 캡핑 계면활성제 세틸트리메틸암모늄 브로마이드 (cetyltrimethylammonium bromide, CTAB), 공융용매 (deep eutectic solvents), 및 하이드록시페놀 유도체를 각각 사용하여 합성하였다 (1) S. Chen, Z.L. Wang, J. Ballato, S.H. Foulger, D.L. Carroll, J Am Chem Soc 125 (2003) 16186; 2) H.G. Liao, Y.X. Jiang, Z.Y. Zhou, S.P. Chen, S.G. Sun, Angew Chem Int Ed Engl 47 (2008) 9100; 3) Y. Lee, T.G. Park, Langmuir 27 (2011) 2965). 또한, 고-가지화 덴드릭 금나노입자(AuNPs)를 계면활성제, 3-헵타데카플루오르옥틸-설포닐 아미노프로필트리메틸-암모늄아이오다이드(HFOTAI)를 환원제 (S.F. Pang, T. Kondo, T. Kawai, Chemistry of Materials 17 (2005) 3636)로 사용하여 제조하였다.
물-에탄올 이중 용매 혼합물에 있어서 폴리[1-메틸-3-(4-바이닐벤질)-이미다졸리움 클로라이드(Poly[1-methyl-3-(4-vinylbenzyl)-imidazolium chloride])를 포함하는 고분자성 이온성 액체 (polymeric ionic liquid, PIL)는 덴드릭 금나노입자(AuNPs)를 제조하기 위한 안정제로서 또한 사용되었다 (J. Zhang, L. Meng, D. Zhao, Z. Fei, Q. Lu, P.J. Dyson, Langmuir 24 (2008) 2699).
그러나, 상기와 같은 덴드릭 금나노입자(AuNPs)의 제조 방법에 따르면 HFOTAI- 및 PIL- 기반 시스템에서 각각 덴드릭 나노입자 구조를 형성하는데 일주일 내지 한 달 그리고 5일 내지 10일이 걸렸다. 게다가, 고-가지화 나노입자 구조의 형성 메커니즘이 분명하지 않기 때문에, 덴드릭 금나노입자(AuNPs)의 새로운 합성방법을 개발할 필요성은 여전히 요구되고 있는 실정이다.
이에 본 발명자들은, 항산화제와 양친성 공중합체를 이용하여 제조된 고-가지화 환원성 미셀을 주형으로 사용하여 간단하게 덴드릭 금나노입자(AuNPs)를 제조할 수 있다는 것을 확인하여 본 발명을 완성하였다.
본 발명의 목적은 나노-스케일의 환원성 미셀을 주형으로 사용하여 미셀 외각에 금 입자의 핵을 형성하고 이를 성장시켜 금 나노입자를 제조하는 방법을 제공하기 위한 것이다.
상기 과제를 해결하기 위해, 본 발명은 양친성 공중합체 및 항산화 물질을 이용하여 자기조립 현상에 의해서 항산화물질을 포접한 환원성 미셀을 제조하는 단계 (단계 1), 상기 단계 1에서 제조한 미셀 표면에 금 이온을 환원시켜 미셀 외각 구조에 따라 핵을 형성하는 단계 (단계 2) 및 미셀 외각에 형성된 핵을 성장시켜 금 나노입자를 제조하는 단계 (단계 3)를 포함하는 금 나노입자의 제조방법을 제공한다.
금 나노입자를 제조하는 방법에 있어서 상기 단계 1)은 항산화제를 포접한 환원성 미셀을 제조하는 단계로서, 본 발명의 환원성 미셀은 친수성 고분자블록 및 소수성 고분자블록을 갖는 양친성 블록공중합체나 그래프트공중합체가 자기조립을 통해서 미셀의 형태를 갖게 되는 것 또는 양친성 지질이 자기조립에 의한 미셀 형태를 갖게 되는 것으로서 이때 내부에 항산화제를 포접하게 된다.
본 발명에서 사용되는 용어 "중합체"는 올리고머를 포함하는 개념으로 사용하고 있으며, "미셀 형태"는 양친성 고분자 또는 지질의 자기조립에 의해 소수성 코어(core)와 친수성 쉘(shell)로 이루어진 코어-쉘(core-shell) 형태의 나노 구조체를 지칭하는 개념으로 사용하고 있다.
본 발명에서 사용되는 용어 "자기조립"이란 특정 효소나 인자의 도움 없이 기본이 되는 분자로부터 복합구조가 자발적으로 형성되는 것으로서, 본 발명에서는 친수성 고분자블록 및 소수성 고분자블록을 갖는 양친성 블록공중합체나 그래프트 공중합체 또는 양친성 지질이 자기 조립에 의해서 수용액상에서 미셀구조를 형성한다.
본 발명의 양친성 블록공중합체나 그래프트공중합체는 단량체 X의 사슬로 이루어진 친수성 고분자블록(X) 및 단량체 Y의 사슬로 이루어진 소수성 고분자블록(Y)으로 구성된다. 이때 단량체 X는 에틸렌이민, 알킬렌옥사이드, 옥사졸린, 비닐피롤리돈, 아크릴아미드, 비닐알콜, 아미노산, 당(sacharide) 등을 들 수 있으며, 이러한 단량체 중에서 선택한 1종 또는 이들을 공중합시킨 공중합체를 포함한다. 한편 이들 고분자는 분자량에 상관없이 사용할 수 있으나, 중량 평균분자량이 1,000 내지 300,000 인 것을 사용하는 것이 보다 바람직하다.
한편 실시 예에서 언급한 폴리에틸렌이민은 그 구조에 따라 선형(linear) 고분자와 가지형(branched) 고분자가 있으며 양친성 공중합체의 제조는 그 구조에 상관없이 가능하며, 대체로 중량 평균분자량은 25,000 이하인 것을 사용하는 것이 바람직하다.
소수성 고분자블록(Y)은 생분해성 소수성 지방족 폴리에스테르계 고분자일 수 있다. 이때 단량체 Y는 D-락트산, L-락트산, DL-락트산, 글리콜산, 카프로락톤, 아미노산, 발레로락톤, 하이드록시 부티레이트, 알킬(메타)아크릴레이트, (메타)아크릴로니트릴, (메타)아크릴산, 말레산 등의 불포화 카르복시산, 비닐아세테이트, 비닐 프로피오네이트, 비닐부티레이트, 비닐에테르, 스티렌, p- 혹은 m-알킬스티렌, p- 혹은 m-클로로스티렌, p- 혹은 m-클로로메틸스티렌, 스티렌설포닉산 등을 들 수 있으며, 이러한 단량체 중에서 선택한 1종 또는 이들을 공중합시킨 공중합체를 포함한다. 한편 이들 고분자는 분자량에 상관없이 사용할 수 있으나, 중량 평균분자량이 1,000 내지 300,000 인 것을 사용하는 것이 보다 바람직하다.
지방족 폴리에스터 중 폴리-D,L-락트산-co-글리콜산 (poly-D,L-lactic-co-glycolic acid; 이하 "PLGA" 라고 함)의 경우 락트산과 글리콜산 단량체의 비율을 조절하거나, 고분자 합성과정을 변형시킴으로써 다양한 분해수명을 갖는 생분해성 고분자를 얻을 수 있어서, 그 성질이 우수하다.
한편, 상기 블록 공중합체는 친수성 고분자블록과 소수성 고분자블록이 에스테르 결합, 언하이드라이드 결합, 카바메이트 결합, 카보네이트 결합, 이민 또는 아미드 결합, 2차 아민결합, 우레탄 결합, 포스포디에스테르 결합 또는 하이드라존 결합을 통해 공유결합 되는 것일 수 있다. 또한, 상기 친수성 고분자인 폴리에틸렌이민(X)과 상기 소수성 고분자인 지방족 폴리에스테르계 고분자(Y)가 X-Y 형태의 이중블록형 또는 X-Y-X, Y-X-Y으로 구성된 삼중블록형이어도 된다.
본 발명에 있어서 상기 양친성 지질은 항산화제를 포접할 수 있는 모든 지질 종류일 수 있으며, 다이헥사노일포스파티딜콜린, N,N-디올레일-N,N-디메틸암모늄클로라이드(DODAC), N,N-디스테아릴-N,N-디메틸암모늄브로마이드(DDAB), N-(1-(2,3-디올레오일옥시)프로필-N,N,N-트리메틸암모늄클로라이드(DOTAP), N,N-디메틸-(2,3-디올레오일옥시)프로필아민(DODMA), N,N,N-트리메틸-(2,3-디올레오일옥시)프로필아민(DOTMA), 1,2-디아실-3-트리메틸암모늄-프로판(TAP), 1,2-디아실-3-디메틸암모늄-프로판(DAP), 3베타-[N-(N',N',N'-트리메틸아미노에탄)카바모일]콜레스테롤(TC-콜레스테롤), 3베타[N-(N',N'-디메틸아미노에탄)카바모일]콜레스테롤(DC-콜레스테롤), 3베타[N-(N'-모노메틸아미노에탄)카바모일]콜레스테롤(MC-콜레스테롤), 3베타[N-(아미노에탄)카바모일]콜레스테롤(AC-콜레스테롤), 콜레스테릴옥시프로판-1-아민 (COPA), N-(N'-아미노에탄)카바모일프로파노익 토코페롤(AC-토코페롤) 및 N-(N'-메틸아미노에탄)카바모일프로파노익 토코페롤(MC-토코페롤), 포스파티딜에탄올아민, 포스파티딜콜린 및 포스파티딘산, 디라우로일 포스파티딜에탄올아민, 디미리스 토일 포스파티딜에탄올아민, 디팔미토일 포스파티딜에탄올아민, 디스테아로일 포스파티딜에탄올아민, 디올레오일 포스파티딜에탄올아민, 디리놀레오일 포스파티딜에탄올아민, 1-팔미토일-2-올레오일 포스파티딜에탄올아민, 1,2-디피타노일-3-sn-포스파티딜에탄올아민, 디라우로일 포스파티딜콜린, 디미리스토일 포스파티딜콜린, 디팔미토일 포스파티딜콜린, 디스테아로일 포스파티딜콜린, 디올레오일 포스파티딜콜린, 디리놀레오일 포스파티딜콜린, 1-팔미토일-2-올레오일 포스파티딜콜린, 1,2-디피타노일-3-sn-포스파티딜콜린, 디라우로일 포스파티딘산, 디미리스토일 포스파티딘산, 디팔미토일 포스파티딘산, 디스테아로일 포스파티딘산, 디올레오일 포스파티딘산, 디리놀레오일 포스파티딘산, 1-팔미토일-2-올레오일 포스파티딘산, 1,2-디피타노일-3-sn-포스파티딘산으로 구성된 군으로부터 선택된 하나 또는 둘 이상의 조합일 수 있다.
본 발명의 상기 양친성 공중합체는 더욱 바람직하게는 폴리에틸렌이민-g-폴리(락틱-코-글라이콜산)(PEI-g-PLGA), 폴리(에틸렌글리콜)-g-폴리카프로락톤(PCL-g-PEG), PEG-PPG-PEG 삼중블록 공중합체 (Pluronic® F-127), 다이헥사노일포스파티딜콜린(DHPC) 리피드 바이셀 또는 알부민-PEG의 형태를 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 블록 공중합체나 그래프트 공중합체에서 소수성 고분자블록(Y)와 친수성 고분자블록(X)의 중량비는 100:1 내지 1:10으로 하는 것이 바람직하다. 소수성 고분자블록(Y)의 양이 많아질 경우 안정한 나노 미셀을 형성하지 못하고 침전되는 문제점이 있고, 친수성 고분자블록(X)의 양이 지나치게 많아질 경우 코어부분이 감소하는 문제점이 있기 때문에 그 비율을 상기와 같이 조정하는 것이 바람직하게 된다. 또한, 상기 그래프트 공중합체는 친수성 고분자인 폴리에틸렌이민 주사슬에 소수성 폴리에스터 중합체로 이루어진 양친성 그래프트 공중합체인 것이 바람직하다.
상기에서 언급한 친수성 고분자블록으로서 예를 들어 폴리에틸렌이민은 그 구조에 따라 선형(linear) 고분자와 가지형(branched) 고분자가 있는데, 고분자 나노 미셀의 형성은 그 구조에 상관없이 형성시킬 수 있으며, 특히 폴리에틸렌이민의 경우 분자량에 의존해 사용할 수 있는 범위가 정해지는 바, 대체로 10,000 이하인 것을 사용하는 것이 보다 바람직하다.
본 발명의 항산화 물질은 α-토코페롤, 폴리페놀, 레티놀, 레티닐 팔미테이트, 티옥트산, 카로티노이드, 비타민 C, 비타민 C 유도체, 카페산(Caffeic acid), 몰식자산(Gallic acid) 및 스코폴레틴(Scopoletin)으로 이루어진 군으로부터 선택되는 하나 이상 일 수 있으나, 이에 제한되지 않는다. 또한, 본 발명의 비타민 C 유도체는 에틸아스코빌에테르 또는 포타슘 아스코빌 토코페릴 포스페이트일 수 있으나, 이에 제한되지 않는다.
본 발명의 상기 폴리에틸렌이민 및 생분해성 폴리에스테르 공중합체(PEI-g-PLGA)는 수용액상에서 양이온성 미셀의 구조를 형성하고 형성되는 양이온성 미셀의 크기는 광산란법(DLS)을 이용하여 측정한바, 150 nm 내지 200 nm 정도의 나노크기이다.
본 발명의 일 실시예에 따르면 덴드릭 AuNPs의 형성과정을 도 1에 나타내었다. 미셀-형성 양친성 공중합체로서 PEI-g-PLGA를 사용하고 항산화 물질로서 α-토코페롤을 사용하여 α-토코페롤을 포접한 PEI-g-PLGA 미셀을 공-용매 증발 후 증류수로 수화시켜 필름-캐스팅 방법에 의해서 제조하였다.
금 나노입자를 제조하는 방법에 있어서 상기 단계 2)는 상기 단계 1)에서 제조한 미셀 표면에 금 이온이 환원되어 미셀 외각 구조를 따라 금 입자의 핵을 형성하는 단계이다. 이 단계에서 미셀의 표면을 따라서 Au3 + 이온은 Au°로 환원되기 시작한다.
본 발명의 일 실시예에 의하면 덴드릭 금나노입자(AuNPs)는 다른 추가적인 환원제 없이 미셀 내부에 포접된 항산화물질에 의해서 형성되는 미셀 표면의 환원구배에 의해서 HAuCl4 용액을 첨가하여 제조할 수 있다. 금 입자의 핵의 형성은 수용성 HAuCl4가 양이온성 미셀의 양자화된 작용기와 정전기적 상호교환을 통해서 AuCl4 -가 되고 그 후 Au3 + 이온의 환원에 의해서 개시될 수 있다. 본 발명의 상기 단계 2)는 실온에서 수행하는 것이 바람직하다.
금 나노입자를 제조하는 방법에 있어서 상기 단계 3)은 미셀 외각에 형성된 핵이 성장하여 금 나노입자가 생성되는 단계이다. 미셀 표면에서 금 입자의 핵이 일단 형성되면, Au°클러스터(cluster) 형성 및 자동촉매과정 및/또는 오스발트 리프닝(Ostwald ripening)에 의한 입자의 크기의 성장에 의해서 커다란 덴드릭 형태가 형성될 수 있다. 상기 덴드릭 형태는 금 나노입자의 중심에서 가지가 뻗어나가는 돌기구조가 형성된 구조이다.
본 발명의 상기 단계 2 내지 단계 3은 수용액 상에서 이루어지는 것이 바람직하며 그에 따라서 미셀의 표면에서 금 나노입자 핵의 형성 및 성장이 일어날 수 있다.
본 발명에서 제조되는 금 나노입자는 양친성 공중합체를 이용하여 자기조립 현상에 의해서 제조된 양이온성 미셀을 주형으로 하여 미셀의 외각 및 표면 모양을 본 뜬 구조로 그 모양이 형성되는바, 최종 형성된 금 나노입자의 구조는 나노입자의 중심으로부터 덴드릭(dendric) 형태로 가지가 발달한 구조이다. 가지화 정도 및 금 나노입자의 크기는 HAuCl4 (시클로로금(III)산)의 농도를 다양화하여 조절할 수 있다. 본 발명의 일 실시예에 따르면, 금 이온의 농도가 증가함에 따라서 금 나노입자의 크기는 증가하게 된다. 또한, 본 발명에 있어서 사용되는 HAuCl4의 양은 60 uM 내지 120 uM를 사용하는 것이 바람직하다. 상기 HAuCl4의 양이 60 uM 이하일 경우에는 금 나노입자의 구조가 형성되기 어려운 문제점이 있으며, 상기 HAuCl4의 양이 120 uM 이상일 경우에는 돌기 형태의 덴드릭 구조가 형성된다는 문제점이 있다.
또한, 본 발명에 의해서 제조된 금 나노입자는 미셀의 고-가지성 표면 구조를 따라 금 입자의 핵이 형성된 후 성장하여 미셀의 외각 및 표면 모양을 본 뜬 돌기구조를 갖게 된다. 따라서, 본 발명의 금 나노입자의 제조방법에 의해서 제조된 금 나노입자는 미셀의 표면 구조와 동일한바, 미셀 표면 구조의 시각화에 응용할 수 있다. 또한, 본 발명의 금 나노입자의 제조방법에 의해서 제조된 덴드릭 형태의 돌기구조를 갖는 금 나노입자는 약물전달체 및 라만분광광도계를 위한 프로브 입자로 응용할 수 있다.
본 발명의 항산화제 물질을 포접한 환원성 미셀을 주형으로 사용하여 금 나노입자를 제조하는 방법에 의하면, 금 나노입자의 형태 및 구조는 다양한 형태 및 표면 구조를 갖는 미셀 주형의 간단한 변화에 의해서 조절될 수 있다. 또한, 금 나노입자의 구조는 직접적으로 미셀의 표면구조로부터 형성되기 때문에, 특별한 염색이나 복잡한 현미경을 이용하는 기술의 도움 없이 다양한 미셀의 표면 구조를 시각화하는 대안적인 방법으로 사용될 수 있다.
도 1은 α-토코페롤을 포접한 PEI-g-PLGA 미셀을 이용한 금 나노입자의 제조과정 및 이의 TEM 이미지를 나타낸 것이다.
도 2A는 HAuCl4의 다양한 농도에서 α-토코페롤이 담지된 PEI-g-PLGA 미셀에 의한 덴드릭 AuNPs의 형성을 나타낸 TEM 이미지 및 AuNPs의 크기분배 그래프를 나나타낸 것이다 ((a) 30 uM HAuCl4 (b) 60μM HAuCl4 (c) 120μM HAuCl4 (d) 240μM HAuCl4).
도 2B는 도 2A의 TEM 이미지를 저배율에서 관찰한 금 나노입자 모양을 나타낸 것이다.
도 3은 AuCl4 - 농도에 따른 zeta-전위의 값을 나타낸 것이다.
도 4A는 본 발명의 일 실시예에 따른 (a) 30 uM HAuCl4 (b) 60μM HAuCl4 (c) 120μM HAuCl4 (d) 240μM HAuCl4를 사용하여 금 나노입자를 실온에서 24시간 동안 합성한 후의 금 나노입자의 흡수 스펙트럼을 나타낸 것이다.
도 4B는 본 발명의 일 실시예에 따른 (b) 60μM HAuCl4를 사용하여 금 나노입자를 실온에서 합성한 후의 금 나노입자의 시간-의존적 흡수 스펙트럼을 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 (b) 60μM HAuCl4를 사용하여 제조한 금 나노입자 (AuNPS)의 EDS 분석 영상을 나타낸 것이다. 원소 분석을 위한 관심 영역 부분은 적색의 사각형으로 표시하였다 (내부, 막대 = 20 nm). 화살표는 질소(A) 및 산소(B) 피크를 지시한다.
도 6A는 PEI-g-PLGA 공중합체 미셀을 사용하여 형성한 금 나노입자의 TEM 영상 및 흡수스펙트럼을 나타낸 것이다.
도 6B는 α-토코페롤을 외부적으로 첨가했을 때, PEI-g-PLGA 공중합체 미셀을 사용하여 형성한 금 나노입자의 TEM 영상 및 흡수스펙트럼을 나타낸 것이다.
도 7A는 α-토코페롤이 담지된 PEG-g-PCL 공중합체 미셀을 사용하여 형성한 금 나노입자의 TEM 이미지이다.
도 7B는 α-토코페롤이 담지된 PEG-g-PCL 공중합체 미셀을 사용하여 금 나노입자의 원소분석을 위한 관심 영역 부분을 적색의 사각형으로 표시한 것이다 (내부, 막대 = 20 nm). 화살표는 산소 피크를 지시한다.
도 7C는 α-토코페롤이 담지된 PEG-g-PCL 공중합체 미셀을 사용하여 형성한 금 나노입자의 크기 분포를 광분산법을 통해 분석한 것이다.
도 7D는 α-토코페롤이 담지된 PEG-g-PCL 공중합체 미셀을 사용하여 형성한 금 나노입자의 흡수 스펙트럼 그래프를 나타낸 것이다.
도 8A는 α-토코페롤이 담지된 PEG-PPG-PEG 삼중블록 공중합체 미셀을 사용하여 형성한 금 나노입자의 TEM 이미지이다. (a) 480 uM HAuCl4 (b) 960 μM HAuCl4
도 8B는 α-토코페롤이 담지된 PEG-PPG-PEG 삼중블록 공중합체 미셀을 사용하여 형성한 금 나노입자의 크기 분포를 광분산법을 통해 분석한 것이다.
도 8C는 α-토코페롤이 담지된 PEG-PPG-PEG 삼중블록 공중합체 미셀을 사용하여 형성한 금 나노입자의 흡수 스펙트럼 그래프를 나타낸 것이다.
도 9는 α-토코페롤이 담지된 다이헥사노일포스파티딜콜린 (dihexanoylphosphatidylcholine, DHPC) 리피드 바이셀을 사용하여 형성한 금 나노입자의 TEM 이미지이다.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해서 한정되는 것은 아니다.
재료
가지화 폴리에틸렌이민 (PEI, Mw 10 KDa)을 Polysciences (Warrington, PA)로부터 구매하였다. 자유 하이드록시 및 카르복시 기를 각각 말단에 갖는 폴리(D, L-락틱-코-글리콜산)(Poly(D,L-lactic-co-glycolic acid), Mw 14KDa, 락틱산, 글리콜산 몰비 = 50/50)은 Boeringer Ingelheim (Ingelheim, Germany)에서 구매하였다. 다이클로로헥실 카보다이이미드 (DCC), N-하이드록실 숙신이미드 (NHS), α-토코페롤 및 씨클로로금(III)산(HAuCl4)은 Sigma (St Louis, MO)에서 구매하였다. 유기 용매는 Merck (Darmstadt, Germany)에서 구매하였고 추가적인 정제없이 사용하였다. 또한, 미셀의 제조방법은 M.S. Lee, M.G. Kim, Y.L. Jang, K. Lee, T.G. Kim, S.H. Kim, T.G. Park, H.T. Kim, J.H. Jeong, Macromolecular Research 19 (2011) 688에서 공지된 방법에 따라서 제조하였다.
제조예 1: PEI -g- PLGA 미셀의 제조
폴리(락틱-코-글리콜산) (Poly(lactic-co-glycolic acid, PLGA, Mw 14,000)을 테트라하이드로퓨란 0.11 mM의 농도로 녹이고, 이를 다이클로로헥실 카보다이이미드 (DCC) 및 N-하이드록실 석신이미드 (NHS)와 섞어 활성화시켰다. 이때, PLGA : DCC : NHS의 몰비는 1: 6 : 6이었다. 활성화된 PLGA는 헥산에 침전시키고, 감압 건조시켜 정제하였다.
상기 활성화된 PLGA를 메틸렌클로라이드/DMSO를 1:1로 섞은 공용매상에 0.02 mM의 농도로 용해하였다. 한편, 가지화된 PEI (bPEI, Mw 10,000)는 DMSO에 0.01 mM로 용해하여 준비하였다. 이렇게 준비한 PLGA와 bPEI를 2:1의 몰비로 섞어 실온에서 교반기로 교반하였다.
상기 생성된 PEI-g-PLGA는 탈이온수(MWCO 10,000, Spectrun, Rancho Dominguez, CA)에서 투석하고, 필터를 통과시켜 용해되지 않은 해당 용액을 냉동건조시켜 PEI-g-PLGA를 합성하였다. 합성의 반응식은 하기와 같았으며, 1H-NMR과 FT-IR spectroscopy를 이용하여 공중합체 합성을 확인하였다.
[반응식 1]
Figure 112013002443731-pat00001

제조예 2: α-토코페롤이 담지된 PEI -g- PLGA 미셀의 제조
상기 제조예 1에서 제조한 PEI-g-PLGA 공중합체를 이용하여 α-토코페롤을 포함한 미셀을 필름 캐스팅 (casting) 방법에 의해서 제조하였다. 보다 구체적으로, α-토코페롤 2mg 과 PEI-g-PLGA 10mg을 다이클로로메탄(DCM)에 녹이고, 실온에서 30분 동안 교반하였다. 감압상태에서 회전증발기를 사용하여 플라스크에 필름을 형성한 후, 증류수를 넣고 초음파 수조에서 용해시켰다. 이때 침전물이 없는 투명한 용액이 얻어졌으며, 용액은 0.80 ㎛ 여과 필터를 통과한 후에도 투명성을 유지하였다.
비이온수의 미셀 용액을 300-메쉬 탄소-코팅된 구리 격자에 놓고 주위 온도에서 건조하였다. 상기 격자를 2% 우라닐 아세트산으로 염색하였고 투과전자 현미경으로 관찰하였다 (JEM-3010, ZEOL, Tokyo, Japan). PEI-g-PLGA 공중합체가 수성 배지에서 자발적으로 양이온성 미셀을 형성하기 때문에, 물-불용성 항산화제, α-토코페롤은 미셀의 소수성 코어에 적재될 수 있었다. α-토코페롤이 적재된 미셀 (PEI-g-PLGA/Toco)은 약 120 nm의 지름으로 구형 형태의 나노입자가 형성됨을 투과전자 현미경(TEM)을 통해 확인하였다.
α-토코페롤의 정량을 위해 나노입자를 동결건조한 후 DMSO에 녹이고 HPLC를 이용하여 정량화하였다. HPLC를 사용하여 정량화한 바에 따르면, 적재량이 11 %, 적재효율은 73.3 % 였다.
제조예 3: α-토코페롤이 담지된 PEG -g- PCL 미셀의 제조
PEG-g-PCL을 이용하여 α-토코페롤을 포함한 미셀을 필름 캐스팅 (casting) 방법에 의해서 제조하였다. 보다 구체적으로, α-토코페롤 2mg 과 PEG-g-PCL 10mg을 다이클로로메탄(DCM)에 녹이고, 실온에서 30분 동안 교반하였다. 감압상태에서 회전증발기를 사용하여 플라스크에 필름을 형성한 후, 증류수를 넣고 초음파 수조에서 용해시켰다. 이때 침전물이 없는 투명한 용액이 얻어졌으며, 용액은 0.80 ㎛ 여과 필터를 통과한 후에도 투명성을 유지하였다.
제조예 4: α-토코페롤이 담지된 PEG - PPG - PEG 미셀의 제조
PEG-PPG-PEG 삼중블록 공중합체 (Pluronic? F-127)를 이용하여 α-토코페롤을 포함한 미셀을 필름 캐스팅(casting) 방법에 의해서 제조하였다. 보다 구체적으로, α-토코페롤 4mg 과 PEG-PPG-PEG 삼중블록 공중합체 (Pluronic? F-127) 10mg을 다이클로로메탄(DCM)에 녹이고, 실온에서 30분 동안 교반하였다. 감압상태에서 회전증발기를 사용하여 플라스크에 필름을 형성한 후, 증류수를 넣고 초음파 수조에서 용해시켰다. 이때 침전물이 없는 투명한 용액이 얻어졌으며, 용액은 0.80 ㎛ 여과 필터를 통과한 후에도 투명성을 유지하였다.
제조예 5: α-토코페롤이 담지된 다이헥사노일포스파티딜콜린 (dihexanoylphosphatidylcholine, DHPC ) lipid bicelle 미셀의 제조
DHPC lipid bicelle (dihexanoylphosphatidylcholine, DHPC)를 이용하여 α-토코페롤을 포함한 미셀을 필름 캐스팅 (casting) 방법에 의해서 제조하였다. 보다 구체적으로, α-토코페롤 4mg 과 DHPC lipid bicelle (dihexanoylphosphatidylcholine, DHPC) 10mg을 다이클로로메탄(DCM)에 녹이고, 실온에서 30분 동안 교반하였다. 감압상태에서 회전증발기를 사용하여 플라스크에 필름을 형성한 후, 증류수를 넣고 초음파 수조에서 용해시켰다. 이때 침전물이 없는 투명한 용액이 얻어졌으며, 용액은 0.80 ㎛ 여과 필터를 통과한 후에도 투명성을 유지하였다.
실시예 1: 항산화제인 α-토코페롤을 함유한 PEI -g- PLGA 미셀을 이용한 금 나노입자의 합성 과정 ( AuNPs )
α-토코페롤이 적재된 PEI-g-PLGA 미셀 용액에 HAuCl4 용액을 천천히 적가하여 소정의 HAuCl4 농도 (30 uM, 60 uM, 120 uM 및 240 uM)가 되도록 농도를 맞추어 금 나노입자를 제조하였다. 시클로로금(III)산(tetra-chloroaurate, HAuCl4)의 첨가 후에 무색에서 적자색으로 즉각적으로 용액의 색이 변화하였다. 반응을 24 시간 동안 수행하였다. 생성용액을 반복적인 원심분리 (14,000 rpm, 10 분)로 정제하고 증류수에서 다시-재부유 시켜 금 나노입자를 제조하였다. 상기 제조된 금 나노입자를 TEM, EDS, 분광광도계 및 광분산법을 통해서 확인하였다.
실시예 2: 항산화제인 α-토코페롤을 함유한 PCL -g- PEG 미셀을 이용한 금 나노입자의 합성 과정 ( AuNPs )
1mg/ml 농도로 물에 용해시킨 α-토코페롤을 함유한 PCL-g-PEG 미셀 1ml을 시클로로금(III)산(tetra-chloroaurate, HAuCl4)과 혼합하여 30μM 농도가 되게 혼합하였다. 하루 동안 교반기에서 반응시킨 후 원심 분리기를 이용하여, 과량으로 들어간 반응물을 제거하고, 남은 금 입자를 물에 다시 용해시키고 재부유 시켜 금 나노입자를 제조하였다. 상기 제조된 금 나노입자를 TEM, EDS, 분광광도계 및 광분산법을 통해서 확인하였다.
실시예 3: 항산화제인 α-토코페롤을 함유한 Pluronic F-127 미셀을 이용한 금 나노입자의 합성 과정 ( AuNPs )
4mg/ml 농도로 물에 용해시킨 α-토코페롤을 함유한 PEG-PPG-PEG 삼중블록 공중합체 (Pluronic? F-127) 미셀 1ml을 시클로로금(III)산(tetra-chloroaurate, HAuCl4)과 혼합하여 480μM, 960μM 농도가 되게 혼합하였다. 하루 동안 교반기에서 반응시킨 후에 원심 분리기를 이용하여, 과량으로 들어간 반응물을 제거하고, 남은 금 입자를 물에 다시 용해시키고 재부유 시켜 금 나노입자를 제조하였다. 상기 제조된 금 나노입자를 TEM, 분광광도계 및 광분산법을 통해 확인하였다.
실시예 4: 항산화제인 α-토코페롤을 함유한 다이헥사노일포스파티딜콜린 (dihexanoylphosphatidylcholine, DHPC ) 리피드 바이셀을 이용한 금 나노입자의 합성 과정 ( AuNPs )
1mg/ml 농도로 물에 용해시킨 α-토코페롤을 함유한 다이헥사노일포스파티딜콜린 (dihexanoylphosphatidylcholine, DHPC) 1ml를 시클로로금(III)산(tetra-chloroaurate, HAuCl4)과 혼합하여 240μM 농도가 되게 혼합하였다. 하루 동안 교반기에서 반응시킨 후에 원심 분리기를 이용하여, 과량으로 들어간 반응물을 제거하고, 남은 금 입자를 물에 다시 용해시키고 재부유 시켜 금 나노입자를 제조하였다. 상기 제조된 금 나노입자를 TEM을 통해 확인하였다.
실험예 1: 금나노입자(AuNPs)의 특성 분석
투과전자현미경(TEM)으로 EDS unit(Tokyo, Japan)이 장착된 JEOL JEM-3010을 사용하여 금 나노입자(AuNPS)의 TEM 영상을 측정하였다. 흡광 스펙트럼은 Agilent Cary 5000 UV-Vis-NIR 분광광도계 (Santa Clara, CA)를 사용하여 측정하였다. 유체역학상의 크기 및 제타-전위는 90° 측정각에서 632 nm의 파장에서 He-Ne 레이저가 장착된 광분산법(light scattering method, zeta plus, Brookhaven Instrument Co,, New York)에 의해서 측정하였다.
결 과
도 2는 PEI-g-PLGA 미셀 주형으로부터 금 나노입자(AuNPS)가 생성되는 것을 나타낸다. 주요 가지 각각이 나노입자의 중심으로부터 발달되었다. 이것은 PLGA 핵심으로부터 퍼져나가는 덴드릭 금 나노입자 가지의 형성을 의미하였다. 가지화 정도 및 금 나노입자의 크기는 AuCl4 -의 농도를 다양화하여 조절할 수 있었다. 금 나노입자의 크기는 금 이온 농도가 증가함에 따라서, 165 ± 16.1 nm로 증가하였다.
광분산법에 의해서 관찰한 바에 따르면, 입자크기가 큰 금 나노입자의 집합(aggregate)은 관측되지 않았다. 또한 낮은 배율을 갖는 TEM 영상은 HAuCl4의 각각의 농도와 관계없이 (도 2B) 개별적으로 분리된 AuNPs의 형성을 보여주었다. 입자의 개별적 분리 현상은 표면에 PEI의 아민기로 부터 유래한 AuNPs의 표면이 양전하를 띄어 입자간 전기적 척력 때문에 효과적으로 나타날 수 있는 것으로 보인다.
금 이온으로 환원된 AuNPs의 zeta-전위는 금 이온 농도가 증가함에 따라서 감소하였다. 이것은 미셀-주형 입자의 표면에 금이 증착되었다는 것을 의미한다 (도 3). AuNPs의 표면 플라즈몬 공명(SPR)에 의한 흡수 밴드의 적색-전이는 가지화 정도 및 입자 크기 (도 4A)에 따라서 각각 관찰하였다. 특히, 60 uM HAuCl4 (샘플 b)에서 형성되는 고-가지화된 AuNPS는 SPR 흡수가 627 nm에서 최대로 나타났다. 이것은 가지의 끝은 돌출된 끝을 갖는 상대적으로 낮은 측면비를 갖는 나노막대, 삼각대 및 별 모양 금 나노입자 ((1) J. Perez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney, Coordination Chemistry Reviews 249 (2005) 1870. (2) E. Hao, R.C. Bailey, G.C. Schatz, J.T. Hupp, S.Y. Li, Nano Letters 4 (2004) 327. (3) F. Hao, C.L. Nehl, J.H. Hafner, P. Nordlander, Nano Lett 7 (2007) 729)와 본 발명에 따른 방법에 의해서 제조한 덴드릭 금 나노입자가 서로 유사하게 행동할 수 있다는 것을 나타냈다. 대조적으로, 240 uM HAuCl4에서 형성된 AuNPs (샘플 d)는 구 모양의 AuNPs와 유사하게 533 nm에서 SPR 최대 흡광을 나타냈다 (S. Eustis, M.A. el-Sayed, Chem Soc Rev 35 (2006) 209).
30 uM 및 120 uM HAuCl4 (sample a 와 c)로 제조된 AuNPs에서는 넓은 SPR 밴드가 관찰되었다. 이것은 530 nm 및 630 nm 사이에서의 주요 SPR 밴드의 겹침으로부터 발생되었다. 도 4B는 샘플 b의 시간-의존적 흡수 스펙트럼의 진화를 보여주었다. 반응이 진행됨에 따라서, 최대 SPR 흡수는 690 nm 에서 645 nm로 이동하였다. 이것은 가지화된 PEI 주형에 있어서 하루 이상 계속적으로 금이 성장한 것을 나타내고, 시간의 흐름에 따라서 더욱 구형이고 부드러운 표면 형태를 갖는 AuNPs를 만들어냈다.
AuNPs의 원소분석은 에너지-분산 분광학(EDS)을 사용하여 수행하였다. 금, 질소 그리고 산소에 대한 EDS 패턴을 도 5에 나타냈다. PEI로부터 질소 그리고 PLGA의 에스테르기로부터 산소는 외부 껍질 부분(도 5A) 및 내부 핵 부분(도 5B)에 금과 함께 각각 공존하였다. 상기 결과를 통해 AuNPS는 PEI-g-PLGA 미셀의 고-가지화된 표면에 미셀 표면형상을 본뜬 형상의 표면을 지닌 금 입자가 형성된 다는 것을 확인할 수 있었다.
PEI는 AuCl4 -를 환원시켜, AuNPs를 형성하는 능력을 갖고 있는 것으로 보고되었다 (P.L. Kuo, C.C. Chen, M.W. Jao, J Phys Chem B 109 (2005) 9445). PEI를 통해 제조된 AuNPs는 4 nm 내지 25 nm의 입자크기를 갖는 구형의 형태를 나타냈다. 대조적으로, α-토코페롤이 담지된 PEI-g-PLGA 미셀은 가지화된 PEI로부터 덴드릭 구조의 형성을 촉진하였다.
이는 PEI-g-PLGA로부터 방출된 항산화제는 미셀 주위에 환원환경을 제공할 수 있고, 이것은 PEI 사슬 상에 AuCl4 -의 생성에 의한 핵 생성을 가속화하였다. α-토코페롤은 이것의 강한 소수성 성질 때문에 물에서 매우 낮은 용해도를 갖고, 이로 인하여 미셀로부터 항산화제의 방출은 매우 제한적이다. 따라서, α-토코페롤은 미셀의 친수성 PEI 코로나를 둘러싸는 환원구배 표면을 만든다 (도 1 II).
AuNPs의 성장을 유도하는 α-토코페롤의 능력에 대해서는 이미 보고된 바 있다 (W. Sermsri, P. Jarujamrus, J. Shiowatana, A. Siripinyanond, Anal Bioanal Chem 396 3079). 이는 이전의 연구결과와 일치하며, PEI-g-PLGA를 포함하는 반응배지에 α-토코페롤의 추가는 또한, 15 ± 2.25 nm 평균지름을 갖는(도 6B) 작은 구형 AuNPs를 형성시켰다.
또한 PEI-g-PLGA 공중합체 그 자체로서 AuNPs를 형성할 수 있었다. 그러나, 나노입자의 결과적인 형태는 대부분이 구형의 형태를 나타냈다(도 6A). 상기 결과는 PEI-g-PLGA가 α-토코페롤이 존재하든 존재하지 않든 간에 Au3 +의 Au0 로의 환원에 관여할 수 있음을 나타내지만, α-토코페롤을 담지하지 않은 PEI-g-PLGA는 주형으로서의 역할이 아닌 단지 환원력의 주위 전달을 통한 금 나노입자형성을 유도할 수 있음을 의미한다.
또한, 폴리(에틸렌 옥사이드)-b-폴리(프로필렌 옥사이드)-b-폴리(에틸렌 옥사이드) (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide, PEO-PPO-PEO) 및 폴리(에틸렌 옥사이드)-b-폴리(프로필렌 옥사이드) (poly(ethylene oxide)-b-poly(propylene oxide, PEO-PPO)와 같은 폴리에테르 기반 블록-공중합체는 추가적인 환원제 없이 AuCl4 - 로부터 AuNPS를 형성할 수 있다고 보고된 바 있다 ((1) T. Sakai, P. Alexandridis, Langmuir 20 (2004) 8426. (2) S. Goy-Lopez, P. Taboada, A. Cambon, J. Juarez, C. Alvarez-Lorenzo, A. Concheiro, V. Mosquera, Journal of Physical Chemistry B 114 (2010) 66).
그러나, 상기와 같은 폴리에테르-기반 블록 공중합체를 이용하는 기존의 방법에 따르면, 반응 동안에 원하는 구조의 나노입자의 형태를 얻기 위해서 파라미터의 조절 및 유지를 위한 추가적인 조건에 대한 연구가 요구되었다. 왜냐하면 PEO 및 PPO 블록 조성, 농도, 용매 성질, 반응 시간 및 온도를 포함하는 몇몇의 요소에 의해서 AuNPs의 모양 및 크기가 영향을 받기 때문이다 ((1) P. Khullar, V. Singh, A. Mahal, H. Kaur, V. Singh, T.S. Banipal, G. Kaur, M.S. Bakshi, Journal of Physical Chemistry C 115 (2011) 10442. (2) S. Chen, C. Guo, G.H. Hu, J. Wang, J.H. Ma, X.F. Liang, L. Zheng, H.Z. Liu, Langmuir 22 (2006) 9704).
이와 대조적으로, 본 발명에 따른 방법은 실온에서 동일한 형태를 가진 AuNPS의 제조를 이끌었고 동일한 형태가 균일하게 형성되었다.
본 발명에서는 또한 PEI-g-PLGA 이외의 중성 표면을 갖는 다른 고분자성 미셀을 사용하여 시험하였다. α-토코페롤을 내포한 폴리(에틸렌글리콜)-g-폴리카프로락톤 (PEG-g-PCL) 미셀은 또한 AuNPs를 형성할 수 있었다 (도 7A). 또한, PEG-g-PCL을 주형으로 사용하여 제조한 금 나노입자의 EDS 패턴은 PEG-g-PCL을 지시하는 PEG 또는 PCL 블록상의 금 또는 산소 원자가 공존하는 것을 나타냈다 (도 7B).
PEG-g-PCL 주형으로부터 형성된 AuNPs의 표면 구조는 컴퓨터 시뮬레이션 (computer-aided coarse-grain molecular simulation)에 의해서 예측되는 PEG-g-PCL 미셀의 표면 형태(G. Srinivas, D.E. Discher, M.L. Klein, Nat Mater 3 (2004) 638.)와 굉장한 유사성을 보였다. 따라서, 본 발명의 금 나노입자의 제조방법에 따르면 미셀 표면의 세밀한 구조를 가시화하는데 응용할 수 있다.
본 발명에서는 또한 PEG-PPG-PEG 삼중블록 공중합체 (Pluronic? F-127) 미셀을 사용하여 시험하였다. α-토코페롤을 내포한 PEG-PPG-PEG 삼중블록 공중합체 (Pluronic? F-127) 미셀은 또한 AuNPs를 형성할 수 있었다 (도 8).
본 발명에서는 또한 다이헥사노일포스파티딜콜린 (dihexanoylphosphatidylcholine, DHPC) 미셀을 사용하여 시험하였다. α-토코페롤을 내포한 DHPC 미셀은 또한 AuNPs를 형성할 수 있었다 (도 9).

Claims (14)

  1. 양친성 공중합체 및 항산화 물질을 이용하여 자기조립 현상에 의해서 항산화물질을 포접한 환원성 미셀을 제조하는 단계 (단계 1);
    상기 단계 1에서 제조한 미셀 표면에 금 이온을 환원시켜 미셀 외각 구조에 따라 핵을 형성하는 단계 (단계 2); 및
    미셀 외각에 형성된 핵을 성장시켜 금 나노입자를 제조하는 단계 (단계 3)를 포함하는 금 나노입자의 제조방법.
  2. 제1항에 있어서, 상기 항산화 물질은 α-토코페롤, 폴리페놀, 레티닐 팔미테이트, 티옥트산, 카로티노이드, 비타민 C, 비타민 C 유도체, 카페산 (Caffeic acid), 몰식자산 (Gallic acid) 및 스코폴레틴 (Scopoletin)으로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 금 나노입자의 제조방법.
  3. 제1항에 있어서, 상기 양친성 공중합체는 친수성 고분자블록 및 소수성 고분자블록을 갖는 양친성 블록공중합체, 친수성 고분자블록 및 소수성 고분자블록을 갖는 양친성 그래프트공중합체, 또는 양친성 지질인 것을 특징으로 하는 금 나노입자의 제조방법.
  4. 제3항에 있어서, 상기 친수성 고분자블록은 에틸렌이민, 알킬렌옥사이드, 옥사졸린, 비닐피롤리돈, 아크릴아미드, 비닐알콜, 아미노산 및 당으로 이루어진 군으로부터 선택되는 어느 하나의 단량체 또는 둘 이상의 단량체들을 공중합시킨 공중합체인 것을 특징으로 하는 금 나노입자의 제조방법.
  5. 제3항에 있어서, 상기 소수성 고분자블록은 D-락트산, L-락트산, DL-락트산, 글리콜산, 카프로락톤, 아미노산, 발레로락톤, 하이드록시 부티레이트, 알킬(메타)아크릴레이트, (메타)아크릴로니트릴, (메타)아크릴산, 말레산, 비닐아세테이트, 비닐 프로피오네이트, 비닐부티레이트, 비닐에테르, 스티렌, p-알킬스티렌, m-알킬스티렌, p-클로로스티렌, m-클로로스티렌, p-클로로메틸스티렌, m-클로로메틸스티렌, 스티렌설포닉산으로 이루어진 군으로부터 선택되는 어느 하나의 단량체 또는 둘 이상의 단량체들을 공중합시킨 공중합체인 것을 특징으로 하는 금 나노입자의 제조방법.
  6. 제3항에 있어서, 상기 양친성 지질은 다이헥사노일포스파티딜콜린, N,N-디올레일-N,N-디메틸암모늄클로라이드(DODAC), N,N-디스테아릴-N,N-디메틸암모늄브로마이드(DDAB), N-(1-(2,3-디올레오일옥시)프로필-N,N,N-트리메틸암모늄클로라이드(DOTAP), N,N-디메틸-(2,3-디올레오일옥시)프로필아민(DODMA), N,N,N-트리메틸-(2,3-디올레오일옥시)프로필아민(DOTMA), 1,2-디아실-3-트리메틸암모늄-프로판(TAP), 1,2-디아실-3-디메틸암모늄-프로판(DAP), 3베타-[N-(N',N',N'-트리메틸아미노에탄)카바모일]콜레스테롤(TC-콜레스테롤), 3베타[N-(N',N'-디메틸아미노에탄)카바모일]콜레스테롤(DC-콜레스테롤), 3베타[N-(N'-모노메틸아미노에탄)카바모일]콜레스테롤(MC-콜레스테롤), 3베타[N-(아미노에탄)카바모일]콜레스테롤(AC-콜레스테롤), 콜레스테릴옥시프로판-1-아민(COPA), N-(N'-아미노에탄)카바모일프로파노익 토코페롤(AC-토코페롤) 및 N-(N'-메틸아미노에탄)카바모일프로파노익 토코페롤(MC-토코페롤), 포스파티딜에탄올아민, 포스파티딜콜린 및 포스파티딘산, 디라우로일 포스파티딜에탄올아민, 디미리스토일 포스파티딜에탄올아민, 디팔미토일 포스파티딜에탄올아민, 디스테아로일 포스파티딜에탄올아민, 디올레오일 포스파티딜에탄올아민, 디리놀레오일 포스파티딜에탄올아민, 1-팔미토일-2-올레오일 포스파티딜에탄올아민, 1,2-디피타노일-3-sn-포스파티딜에탄올아민, 디라우로일 포스파티딜콜린, 디미리스토일 포스파티딜콜린, 디팔미토일 포스파티딜콜린, 디스테아로일 포스파티딜콜린, 디올레오일 포스파티딜콜린, 디리놀레오일 포스파티딜콜린, 1-팔미토일-2-올레오일 포스파티딜콜린, 1,2-디피타노일-3-sn-포스파티딜콜린, 디라우로일 포스파티딘산, 디미리스토일 포스파티딘산, 디팔미토일 포스파티딘산, 디스테아로일 포스파티딘산, 디올레오일 포스파티딘산, 디리놀레오일 포스파티딘산, 1-팔미토일-2-올레오일 포스파티딘산, 1,2-디피타노일-3-sn-포스파티딘산으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 조합인 것을 특징으로 하는 금 나노입자의 제조방법.
  7. 제3항에 있어서, 상기 블록공중합체는 친수성 고분자블록과 소수성 고분자블록이 에스테르 결합, 언하이드라이드 결합, 카바메이트 결합, 카보네이트 결합, 이민 또는 아미드 결합, 2차 아민결합, 우레탄 결합, 포스포디에스테르 결합 또는 하이드라존 결합을 통해 공유결합되어 있는 것을 특징으로 하는 금 나노입자의 제조방법.
  8. 제3항에 있어서, 상기 그래프트 공중합체는 친수성 고분자인 폴리에틸렌이민 주사슬에 소수성 폴리에스터 중합체로 이루어진 양친성 그래프트 공중합체인 것을 특징으로 하는 금 나노입자의 제조방법.
  9. 제1항에 있어서, 상기 양친성 공중합체는 PEI-g-PLGA, PCL-g-PEG, PEG-PPG-PEG 삼중블록 공중합체, 또는 다이헥사노일포스파티딜콜린 리피드 바이셀인 것을 특징으로 하는 금 나노입자의 제조방법.
  10. 제1항에 있어서, 제조된 금 나노입자는 미셀의 외각 및 표면 모양을 본 뜬 구조인 것을 특징으로 하는 금 나노입자의 제조방법.
  11. 제1항에 있어서, 제조된 금 나노입자는 덴드릭 형태인 것을 특징으로 하는 금 나노입자의 제조방법.
  12. 제1항에 있어서, 상기 미셀의 크기는 나노-스케일인것을 특징으로 하는 금 나노입자의 제조방법.
  13. 제1항에 있어서, 상기 금이온은 HAuCl4인 것을 특징으로 하는 금 나노입자의 제조방법.
  14. 제13항에 있어서, 상기 HAuCl4을 60 uM 내지 120 uM로 사용하는 것을 특징으로 하는 금 나노입자의 제조방법.


KR1020130002647A 2013-01-09 2013-01-09 미셀을 주형으로 이용한 금 나노입자의 제조방법 KR101362549B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130002647A KR101362549B1 (ko) 2013-01-09 2013-01-09 미셀을 주형으로 이용한 금 나노입자의 제조방법
PCT/KR2013/009152 WO2014109459A1 (ko) 2013-01-09 2013-10-14 미셀을 주형으로 이용한 금 나노입자의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130002647A KR101362549B1 (ko) 2013-01-09 2013-01-09 미셀을 주형으로 이용한 금 나노입자의 제조방법

Publications (1)

Publication Number Publication Date
KR101362549B1 true KR101362549B1 (ko) 2014-02-25

Family

ID=50270844

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130002647A KR101362549B1 (ko) 2013-01-09 2013-01-09 미셀을 주형으로 이용한 금 나노입자의 제조방법

Country Status (2)

Country Link
KR (1) KR101362549B1 (ko)
WO (1) WO2014109459A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888214A (zh) * 2014-03-06 2015-09-09 中国科学院过程工程研究所 一种金纳米粒子光热疗剂及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106543323B (zh) * 2015-09-23 2018-10-16 合肥炜烨光学科技有限公司 一种聚类胡萝卜素丙烯酸酯蓝光吸收剂及其制备方法
CN109517182A (zh) * 2017-09-20 2019-03-26 上海双洳生物科技有限公司 一种聚乙烯醇多齿聚合物的合成方法
CN115351288B (zh) * 2022-08-23 2023-06-23 西北工业大学 一种金纳米花及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837046B1 (ko) 2007-02-08 2008-06-11 광주과학기술원 금속-블록공중합체 나노복합체의 형성 방법 및 이의 제어방법
US20120292579A1 (en) 2011-03-18 2012-11-22 Syracuse University Nanoparticle array comprising distributed nanoparticles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560285B2 (en) * 2004-03-04 2009-07-14 Intel Corporation Micelle-controlled nanoparticle synthesis for SERS
KR101019747B1 (ko) * 2008-08-19 2011-03-08 이화여자대학교 산학협력단 자기 조립 이중블록 공중합체를 이용한 금/산화티탄 복합나노구조체의 제조방법 및 이에 따라 제조된 2차원 배열된 금/산화티탄 나노점 및 나노선
KR101462656B1 (ko) * 2008-12-16 2014-11-17 삼성전자 주식회사 나노입자/블록공중합체 복합체의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837046B1 (ko) 2007-02-08 2008-06-11 광주과학기술원 금속-블록공중합체 나노복합체의 형성 방법 및 이의 제어방법
US20120292579A1 (en) 2011-03-18 2012-11-22 Syracuse University Nanoparticle array comprising distributed nanoparticles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chapter 9 Homo- and Hybrid-Monolayers of Dendritic Polymers, Interface Science and Technology, Volume 14, 2007, Pages 219-245. *
Fate of micelles and quantum dots in cells, European Journal of Pharmaceutics and Biopharmaceutics 65 (2007) 270-281. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888214A (zh) * 2014-03-06 2015-09-09 中国科学院过程工程研究所 一种金纳米粒子光热疗剂及其制备方法和应用

Also Published As

Publication number Publication date
WO2014109459A1 (ko) 2014-07-17

Similar Documents

Publication Publication Date Title
Du et al. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery
Wang et al. Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery
Abedi et al. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells
Kumbhar et al. Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: physicochemical investigations
Yuan et al. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells
Yang et al. Self-assembly and β-carotene loading capacity of hydroxyethyl cellulose-graft-linoleic acid nanomicelles
Jia et al. In vitro and in vivo evaluation of paclitaxel-loaded mesoporous silica nanoparticles with three pore sizes
He et al. Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin
Zhang et al. Pullulan acetate nanoparticles prepared by solvent diffusion method for epirubicin chemotherapy
Nosrati et al. Bovine serum albumin: an efficient biomacromolecule nanocarrier for improving the therapeutic efficacy of chrysin
KR101362549B1 (ko) 미셀을 주형으로 이용한 금 나노입자의 제조방법
Sadighian et al. Magnetic nanogels as dual triggered anticancer drug delivery: toxicity evaluation on isolated rat liver mitochondria
Kumar et al. Biocompatible PLGA-oil hybrid nanoparticles for high loading and controlled delivery of resveratrol
CN115433291B (zh) 海藻酸-g-香豆素衍生物的合成及其制备负载阿霉素的Pickering乳液的方法
Contreras-Cáceres et al. Paclitaxel-loaded hollow-poly (4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines
Jain et al. Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles
Jain et al. Lyotropic liquid crystalline nanoparticles of amphotericin B: Implication of phytantriol and glyceryl monooleate on bioavailability enhancement
Chu et al. Synthesis and application of a series of amphipathic chitosan derivatives and the corresponding magnetic nanoparticle-embedded polymeric micelles
Ma et al. Liposomes‐Camouflaged Redox‐Responsive Nanogels to Resolve the Dilemma between Extracellular Stability and Intracellular Drug Release
Lo et al. From a silane monomer to anisotropic buckled silica nanospheres: a polymer-mediated, solvent-free and one-pot synthesis
Khalili et al. Development of an albumin decorated lipid-polymer hybrid nanoparticle for simultaneous delivery of methotrexate and conferone to cancer cells
Patel et al. Structural transitions in mixed phosphatidylcholine/pluronic micellar systems and their in vitro therapeutic evaluation for poorly water-soluble drug
Chidambaram et al. Application of Plackett-Burman Factorial Design in The Development of Curcumin Loaded Eudragit E 100 Nanoparticles.
Tang et al. A green and highly efficient method to deliver hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius for enhanced anti-atherosclerotic effect via metal-phenolic network
Pei et al. Quantum dots encapsulated glycopolymer vesicles: synthesis, lectin recognition and photoluminescent properties

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180201

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee