KR101362240B1 - A method for manufacturing process of ferromolybdenum - Google Patents

A method for manufacturing process of ferromolybdenum Download PDF

Info

Publication number
KR101362240B1
KR101362240B1 KR1020120017353A KR20120017353A KR101362240B1 KR 101362240 B1 KR101362240 B1 KR 101362240B1 KR 1020120017353 A KR1020120017353 A KR 1020120017353A KR 20120017353 A KR20120017353 A KR 20120017353A KR 101362240 B1 KR101362240 B1 KR 101362240B1
Authority
KR
South Korea
Prior art keywords
content
manufacturing
reduction
pellet
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020120017353A
Other languages
Korean (ko)
Other versions
KR20130095933A (en
Inventor
윤재식
김병일
Original Assignee
순천대학교 산학협력단
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단, 한국기초과학지원연구원 filed Critical 순천대학교 산학협력단
Priority to KR1020120017353A priority Critical patent/KR101362240B1/en
Publication of KR20130095933A publication Critical patent/KR20130095933A/en
Application granted granted Critical
Publication of KR101362240B1 publication Critical patent/KR101362240B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/248Binding; Briquetting ; Granulating of metal scrap or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Compounds Of Iron (AREA)

Abstract

본 발명에 따른 공정단수화에 의한 페로몰리브덴 제조방법은 몰리브데나이트(MoS2), 철분말(Fe powder), 적철광(Fe2O3), 환원제, 바인더, 필러를 혼합하여 펠렛으로 제조하는 펠렛제조단계; 상기 펠렛제조단계를 거쳐 제조된 상기 펠렛을 감압상태에서 열환원반응을 수행한는 제1차환원단계; 및 상기 펠렛에서 황(S)을 제거하기 위해 수소가스(H2)를 취입 및 배기시키는 제2차환원단계를 포함하는 것을 특징으로 한다.Ferro molybdenum manufacturing method by the process step according to the present invention is prepared by mixing molybdenite (MoS 2 ), iron powder (Fe powder), hematite (Fe 2 O 3 ), a reducing agent, a binder, a filler Pellet manufacturing step; A first reduction step of performing a heat reduction reaction under reduced pressure on the pellets prepared through the pellet manufacturing step; And a second secondary reduction step of blowing and exhausting hydrogen gas (H 2) to remove sulfur (S) from the pellet.

Description

페로몰리브덴 제조방법{A method for manufacturing process of ferromolybdenum}A method for manufacturing process of ferromolybdenum

본 발명은 공정단수화에 의한 페로몰리브덴 제조방법에 관한 것이다.The present invention relates to a method for producing ferro molybdenum by the process singulation.

최근 원자재 가격의 상승에 따라 합금강의 제조를 위한 부자재 가격이 점점 높아지고, 특히 Mo 함유 합금강의 제조에 이용되는 Fe-Mo의 가격상승 폭이 매우 높기 때문에, 합금강의 제조원가 절감을 위하여 저가로 Fe-Mo을 제조 할 수 있는 새로운 공정 확립이 요구된다.With the recent rise in raw material prices, the price of subsidiary materials for the production of alloy steels is increasing, and the price range of Fe-Mo used for the production of alloy steel containing Mo is very high. Establishment of a new process to manufacture is required.

기존의 Fe-Mo의 제조공정은 몰리브데나이트(MoS2)를 배소(roasting) 및 침출(leaching) 공정을 거쳐 MoO3로 만든 후에, MoO3를 적철광(Fe2O3)과 혼합하여 환원제인 Al, Si을 이용하여 테르밋 반응에 의해 Fe-Mo을 제조한다. 이러한 방법은 제조공정이 복잡하고, 기타 첨가제 및 환원제의 가격이 높기 때문에 제조원가 상승의 원인이 되며, 특히 환원제인 Al, Si등의 가격이 매우 높은 단점이 있다. 뿐만 아니라 출발물질인 MoS2를 비롯한 Fe2O3, 환원제, 석회석등 여러가지 혼합물이 동시에 용융되어 반응하기 때문에 일부 편석구조(segregated structure)을 가지며 반응 이후 파쇄 및 알맞은 크기로 절단 및 제조하기가 매우 어려운 단점이 있다.In the conventional Fe-Mo manufacturing process, molybdenite (MoS 2 ) is converted into MoO 3 through roasting and leaching, and then MoO 3 is mixed with hematite (Fe 2 O 3 ) to reduce the amount of the reducing agent. Fe-Mo is manufactured by the thermite reaction using phosphorus Al and Si. This method is a cause of manufacturing cost increase because the manufacturing process is complicated, and the price of other additives and reducing agent is high, in particular, there is a disadvantage that the price of the reducing agent Al, Si, etc. are very high. In addition, several mixtures such as Fe 2 O 3 , the starting material MoS 2 , reducing agent, limestone, etc. are melted and reacted at the same time, so that they have some segregated structure and are difficult to crush and cut to a suitable size after the reaction. There are disadvantages.

기존의 페로 몰리브덴의 제조 공정은 1차공정으로 몰리브데나이트(MoS2)을 MoO3로 배소(roasting) 및 리칭(leaching) 공정을 거쳐 고순도 MoO3를 제조한다.In the conventional ferro molybdenum manufacturing process, molybdenite (MoS 2 ) is converted to MoO 3 through a process of roasting and leaching (MoS 2 ) to produce high purity MoO 3 .

2차공정으로 MoO3를 출발물질로 하여 첨가제인 적철광(Fe2O3), 석회석, 실리콘 등을 첨가하여 환원제인 Aluminum이나 Silicon을 이용한 테르밋 반응에 의해 페로 몰리브덴을 제조한다.Ferro molybdenum is prepared by thermite reaction using aluminum or silicon as a reducing agent by adding hematite (Fe 2 O 3 ), limestone, silicon, and the like, using MoO 3 as a starting material.

반응식 1은 종래의 상용 공정에 의한 Fe-Mo 제조공정이다.Scheme 1 is a Fe-Mo manufacturing process by a conventional commercial process.

Figure 112012013875988-pat00001
(반응식 1)
Figure 112012013875988-pat00001
(Scheme 1)

하지만, 위와 같은 기존공정에서 단점으로는However, the disadvantages of the existing process

첫째: 환원제로 사용되는 Al, Si등은 가격이 매우 높고,First: Al, Si, etc. used as reducing agents are very expensive.

둘째: 반응물을 one-batch에 장입하여 반응을 실시하므로 편석구조(segregated -structure)가 나타나기 쉬우며,Secondly, the reaction is carried out by loading the reactants into a one-batch, so segregated -structure is likely to appear.

셋째: 반응 후 파쇄 및 적당한 크기로 절단해야 하므로 많은 시간이 소요되는 문제점이 있다.Third: there is a problem that takes a lot of time because after the reaction to crush and cut to a suitable size.

따라서 본 발명에서는 출발물질인 MoS2와 산화철을 혼합하여 직접 환원함으로써 공정단순화에 의한 Fe-Mo을 제조하고자 한다.Therefore, the present invention intends to produce Fe-Mo by the process simplification by directly mixing the starting material MoS 2 and iron oxide.

또한, 공정단순화에 의한 Fe-Mo를 제조함으로써, 첫째, 제조공정 단순화 뿐만 아니라, 둘째, 환원제로 사용되는 Al, Si대신 C를 사용함으로써, 비용절감 효과, 셋째, 일정한 크기별로 펠렛을 제조한 후 Fe-Mo를 제조하기 때문에 편석이나 절단할 필요가 없으며, 넷째, 용량 변화에 따라 쉽게 Fe 및 Mo의 함량 제어가 가능한 효과가 있다.In addition, by manufacturing Fe-Mo by the process simplification, first, not only simplify the manufacturing process, second, by using C instead of Al, Si used as reducing agent, cost-effectiveness, third, after producing the pellet by a certain size Since Fe-Mo is manufactured, there is no need to segregate or cut. Fourth, the content of Fe and Mo can be easily controlled according to the capacity change.

본 발명에 따른 공정단수화에 의한 페로몰리브덴 제조방법은 몰리브데나이트(MoS2), 철분말(Fe powder), 적철광(Fe2O3), 환원제, 바인더, 필러를 혼합하여 펠렛으로 제조하는 펠렛제조단계; 상기 펠렛제조단계를 거쳐 제조된 상기 펠렛을 감압상태에서 열환원반응을 수행한는 제1차환원단계; 및 상기 펠렛에서 황(S)을 제거하기 위해 수소가스(H2)를 취입 및 배기시키는 제2차환원단계를 포함하는 것을 특징으로 한다.Ferro molybdenum manufacturing method by the process step according to the present invention is prepared by mixing molybdenite (MoS 2 ), iron powder (Fe powder), hematite (Fe 2 O 3 ), a reducing agent, a binder, a filler Pellet manufacturing step; A first reduction step of performing a heat reduction reaction under reduced pressure on the pellets prepared through the pellet manufacturing step; And a second secondary reduction step of blowing and exhausting hydrogen gas (H 2) to remove sulfur (S) from the pellet.

또한 본 발명에 따르면, 상기 환원제는 탄소(C)인 것을 특징으로 한다.According to the present invention, the reducing agent is characterized in that the carbon (C).

또한 본 발명에 따르면, 상기 바인더는 젤라틴(Gelatines), 전당분(Sugars), 당밀(Molarsses), Na2SiO3 중 어느 하나 이상인 것을 특징으로 한다.According to the present invention, the binder is characterized in that any one or more of gelatin (Gelatines), starch (Sugars), molasses (Molarsses), Na2SiO3.

또한 본 발명에 따르면, 상기 필러는 목분(Wood flour), 섬유(fiber), 입자(particles) 중 어느 하나 이상인 것을 특징으로 한다.In addition, according to the present invention, the filler is characterized in that any one or more of wood flour (fiber), fibers (fiber), particles (particles).

또한 본 발명에 따르면, 상기 제1차환원단계에서 환원반응온도는 1360℃ 내지 1400℃인 것을 특징으로 한다.According to the present invention, the reduction reaction temperature in the first reduction step is characterized in that 1360 ℃ to 1400 ℃.

또한 본 발명에 따르면, 상기 제1차환원단계에서 감압상태는 10-2torr 내지 1 torr인 것을 특징으로 한다.In addition, according to the present invention, the reduced pressure in the first reduction step is characterized in that 10 to 2 torr to 1 torr.

또한 본 발명에 따르면, 제2차환원단계는 298℃ 내지 300℃에서 수소가스(H2)를 3시간 취입 및 배기시키는 것을 특징으로 한다.In addition, according to the present invention, the second reduction step is characterized in that the injection and exhaust of hydrogen gas (H2) for 3 hours at 298 ℃ to 300 ℃.

따라서 본 발명에서는 출발물질인 MoS2와 산화철을 혼합하여 직접 환원함으로써 단순화된 공정에 의해 Fe-Mo을 제조할 수 있는 효과가 있다.Therefore, in the present invention, there is an effect that the Fe-Mo can be produced by a simplified process by directly reducing the starting material by mixing MoS 2 and iron oxide.

또한, 공정단순화에 의한 Fe-Mo를 제조함으로써, 첫째, 제조공정 단순화 뿐만 아니라, 둘째, 환원제로 사용되는 Al, Si대신 C를 사용함으로써, 비용절감 효과, 셋째, 일정한 크기별로 펠렛을 제조한 후 Fe-Mo를 제조하기 때문에 편석이나 절단할 필요가 없으며, 넷째, 용량 변화에 따라 쉽게 Fe 및 Mo의 함량 제어가 가능한 효과가 있다.In addition, by manufacturing Fe-Mo by the process simplification, first, not only simplify the manufacturing process, second, by using C instead of Al, Si used as reducing agent, cost-effectiveness, third, after producing the pellet by a certain size Since Fe-Mo is manufactured, there is no need to segregate or cut. Fourth, the content of Fe and Mo can be easily controlled according to the capacity change.

도 1은 본 발명에 따른 Fe-Mo 제조방법의 순서도이다.
도 2의 본 발명에 따른 MoS2의 입자 분포도이다.
도 3은 본 발명에 따른 실시예 1의 XRD 분석 그래프이다.
도 4는 본 발명에 따른 실시예 1의 반응후의 SEM 사진이다.
도 5는 본 발명에 따른 실시예 1의 반응후의 EDS 분석 결과이다.
도 6은 본 발명에 사용된 환원반응로 및 진공제어 장치 이다.
도 7은 본 발명에 따른 실시예 4의 1350℃에서 진공도가 변함에 따라 불순물의 함량의 변화를 나타낸다.
도 8은 본 발명에 따른 실시예 4의 1400℃에서 진공도가 변함에 따라 불순물의 함량의 변화를 나타낸다.
도 9은 본 발명에 따른 실시예 5의 1350℃에서 진공도가 변함에 따라 불순물의 함량의 변화를 나타낸다.
도 10은 본 발명에 따른 실시예 5의 1400℃에서 진공도가 변함에 따라 불순물의 함량의 변화를 나타낸다.
도 11은 본 발명에 따른 실시예 6의 1400℃에서의 Fe분말 첨가량이 변함에 따라 불순물의 함량을 나타낸다.
도 12는 본 발명에 따른 실시예 7의 1400℃에서의 Fe분말 첨가량이 변함에 따라 불순물의 함량을 나타낸다.
1 is a flow chart of the Fe-Mo manufacturing method according to the present invention.
2 is a particle distribution diagram of MoS2 according to the present invention.
3 is an XRD analysis graph of Example 1 according to the present invention.
Figure 4 is a SEM photograph after the reaction of Example 1 according to the present invention.
5 is an EDS analysis result after the reaction of Example 1 according to the present invention.
6 is a reduction reactor and a vacuum control apparatus used in the present invention.
Figure 7 shows the change in the content of impurities as the vacuum degree at 1350 ° C of Example 4 according to the present invention.
Figure 8 shows the change in the content of impurities as the vacuum degree at 1400 ° C of Example 4 according to the present invention.
Figure 9 shows the change in the content of impurities as the vacuum degree at 1350 ° C of Example 5 according to the present invention.
Figure 10 shows the change in the content of impurities as the vacuum degree at 1400 ° C of Example 5 according to the present invention.
11 shows the content of impurities as the amount of Fe powder added at 1400 ° C. of Example 6 according to the present invention is changed.
12 shows the content of impurities as the amount of Fe powder added at 1400 ° C. of Example 7 according to the present invention is changed.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 도 1은 본 발명에 따른 Fe-Mo 제조방법의 순서도이다.1 according to the present invention is a flow chart of the Fe-Mo manufacturing method according to the present invention.

도 1에 도시된 바와 같이, 본 발명에 따른 Fe-Mo 제조방법은 원료물질인 MoS2를 비롯한 반응물을 볼밀을 통해 혼합한 후 100ton 규모의 프레스로 압축하여 펠렛을 제조하는 펠렛제조단계(S100)를 포함한다.As shown in Figure 1, the Fe-Mo manufacturing method according to the present invention is a pellet manufacturing step (S100) to produce a pellet by mixing the reactants including the raw material MoS2 through a ball mill and then compressed into a 100ton scale press Include.

여기서 반응물에는 Fe, Fe2O3, 환원제(C), 젤라틴(Gelatines), 전당분(Sugars), 당밀(Molarsses), Na2SiO3와 같은 바인더(binder), 목분(Wood flour), 섬유(fiber), 입자(particles)와 같은 필러(filler)를 포함할 수 있다.The reactants include Fe, Fe 2 O 3 , reducing agent (C), gelatin (Gelatines), starch (Sugars), molasses (Molarsses), binders such as Na2SiO3, wood flour, fibers, It may include fillers such as particles.

이때 원료물질의 입자분포는 도 2의 MoS2의 입자 분포도에 나타낸 것과 같이 100mesh 이상은 30%, 100~325mesh는 46%, 그리고 325mesh 이하는 24%로 나타났다. 반응물의 입자분포는 반응물의 깊이 방향으로 균일한 반응을 위해 공극을 만들어 주는 중요한 역할을 함으로 적당한 입자 분포를 만드는 것이 매우 중요하다. At this time, as shown in the particle distribution diagram of MoS2 in FIG. 2, the particle distribution of the raw material was 30% for 100 mesh or more, 46% for 100 to 325mesh, and 24% for 325mesh or less. Particle distribution of the reactants plays an important role in creating voids for uniform reaction in the depth direction of the reactants, so it is very important to make proper particle distribution.

펠렛으로 제조된 원료물질과 반응물을 감압상태에서 열환원반응을 수행한는 제1차환원단계(S200)를 거치게 된다.The thermal reduction reaction of the raw material and the reactant prepared in the pellet under reduced pressure is subjected to the first reduction step (S200).

제1차환원단계(S200)에서 환원반응은 반응온도 1360℃ 내지 1400℃에서 열환원 반응을 실시하는 것이 바람직하며, 이 때의 압력은 10-2torr 내지 1 torr가 바람직하다.In the first reduction step (S200), the reduction reaction is preferably carried out a heat reduction reaction at a reaction temperature of 1360 ℃ to 1400 ℃, the pressure at this time is preferably from 10 -2 torr to 1 torr.

또한 환원반응 시간은 3 내지 6시간이 바람직하다.In addition, the reduction reaction time is preferably 3 to 6 hours.

제1차환원단계(S200)에서 환원반응이 종료되면 298℃까지 노냉시킨 후 반응물에 남아 있는 잔류 S를 완전히 제거하기 위해 298℃에서 H2 가스를 취입/배기를 시키는 제2차환원단계(S300)를 수행한다.After the reduction reaction is completed in the first reduction step (S200), the secondary reduction step (S300) of blowing and exhausting H2 gas at 298 ° C to completely remove residual S remaining in the reactant after cooling to 298 ° C. Perform

H2 가스 취입 및 배기 시간은 3시간이 바람직하다.
The H2 gas blowing and exhaust time is preferably 3 hours.

펠릿제조단계(S100), 제1, 2차 환원단계(S200, S300)을 포함하는 본 발명에 따른 공정단수화에 의한 페로몰리브덴 제조방법에 의해 페로몰리브덴(Fe-Mo)이 제조된다.
Ferro-molybdenum (Fe-Mo) is produced by the method for producing ferro-molybdenum by the process singulation according to the present invention including a pellet manufacturing step (S100), the first, secondary reduction steps (S200, S300).

실시예Example 1 One

온도에 따른 환원조건을 실험하기 위해 MoS2 6g, Fe 분말 1g, 환원제 C의 량은 1.2wt% 과잉으로 첨가하여 펠렛으로 제조한 후, 고온, 고진공 환원장치로 10-5torr 이상의 고진공을 위한 확산펌프(diffusion pump)를 통해 고진공 상태에서 반응온도 1360℃, 1380℃ 그리고 1400℃에서 각각 6시간 동안 환원반응을 실시하였으며, 이후 반응 시간이 종료되면 로냉을 실시하였다. 로냉 중 2차 환원방법은 1차 환원 후 반응물 내부에 잔류한 S 제거를 위해서 실시하며, 300℃에서 3시간 동안 H2가스 취입/배기를 통해 잔류 S를 최대한 제거하였다. To test the reducing conditions according to the temperature, MoS2 6g, Fe powder 1g, and the amount of reducing agent C were added in an amount of 1.2wt% excess to make pellets, and then, a high-temperature, high-vacuum reducing device diffused pump for high vacuum of 10 -5 torr or more. Reduction was carried out for 6 hours at 1360 ° C., 1380 ° C. and 1400 ° C. in a high vacuum state (diffusion pump), and then, after the reaction time was completed, furnace cooling was performed. The secondary reduction method in the furnace cooling was carried out to remove S remaining in the reactant after the primary reduction, and the residual S was removed as much as possible through H 2 gas blowing / exhaust at 300 ° C. for 3 hours.

표 1은 고온 고진공 분위기에서 환원반응 후 반응물의 불순물 종류 및 농도를 나타낸다. Table 1 shows the impurity types and concentrations of the reactants after the reduction reaction in a high temperature and high vacuum atmosphere.

Figure 112012013875988-pat00002
Figure 112012013875988-pat00002

초기 출발물질의 성분별 함량을 살펴보면 Mo의 경우, 74.53g, S는 20.1g으로 나타났으며, 반응온도 및 환원제의 첨가량의 변화에 따라 환원을 실시한 결과 S의 경우 대부분이 환원되어 <0.01g로 나타났다. In the case of Mo, 74.53g and S were 20.1g, and the reduction was carried out according to the change of reaction temperature and the addition amount of reducing agent. As a result, most of S was reduced to <0.01g. appear.

뿐만 아니라 도 3의 XRD 분석에서도 대부분이 Fe 및 Mo산화물 피크(peak)로 나타남을 알 수 있었다. In addition, it can be seen that most of the Fe and Mo oxide peaks (peak) also in the XRD analysis of FIG.

도 4는 반응물 내의 기타 불순물 분석을 위해 분말로 그라인딩(grinding)후 SEM 사진을 나타내고,FIG. 4 shows SEM images after grinding to powder for analysis of other impurities in the reactants.

도 5는 반응물 내의 기타 불순물 분석을 위해 분말로 그라인딩(grinding)후 EDS 분석 결과를 나타낸다. FIG. 5 shows the results of EDS analysis after grinding into powder for analysis of other impurities in the reactants.

도 4 및 5에서 보는 바와같이 대부분의 반응물이 Fe나 Mo로 구성되었음을 알 수 있었다. As shown in FIGS. 4 and 5, it was found that most of the reactants consisted of Fe or Mo.

실시예Example 2 2

진공에 따른 환원조건을 실험하기 위해 MoS2 5g, Fe 분말 1g, 환원제 C의 량은 1.5wt% 과잉으로 첨가하여 펠렛으로 제조한 후, 고진공이 아닌 분위기 로를 이용하여 환원을 실시하였다.
In order to test the reducing conditions according to vacuum, 5 g of MoS2, 1 g of Fe powder, and reducing agent C were added in an amount of 1.5 wt% excess to prepare pellets, and then the reduction was performed using an atmosphere furnace instead of a high vacuum.

고온 분위기 환원반응은 위와 같은 방법으로 실시하였으며, 환원반응시 Ar gas를 취입하면서 실험을 실시하였다. The high temperature atmosphere reduction reaction was carried out in the same manner as above, the experiment was carried out while blowing the Ar gas during the reduction reaction.

분위기 로에 의한 환원반응 결과를 표2에 나타내었다. Table 2 shows the results of the reduction reaction with an atmosphere furnace.

Figure 112012013875988-pat00003
Figure 112012013875988-pat00003

표2에서 불순물의 거동을 살펴보면, 고진공 설비에 비해 환원이 미약함을 알 수 있으며, 이는 환원반응 시 Mo-S간의 분해를 강화시킬 수 있는 진공 흡입력이 작용하지 않았기 때문으로 사료된다. 하지만 Fe(Iron)함량이 증가함에 따라 일부 S의 함량이 절반이상 감소됨을 알 수 있으며, 이는 고온에서 Fe(Iron) 분말이 반응물의 불순물로 작용하여 일부 표면이 용해(melting)되어 S의 분해를 촉진시킨 것으로 보인다.
Looking at the behavior of impurities in Table 2, it can be seen that the reduction is weak compared to the high vacuum equipment, because the vacuum suction force that can enhance the decomposition between the Mo-S during the reduction reaction is not acted. However, as the Fe (Iron) content increases, the content of some S decreases by more than half. This is because Fe (Iron) powder acts as an impurity of the reactants at high temperature, so that some surfaces are melted to prevent decomposition of S. It seems to have accelerated.

실시예Example 3 3

실시예 3에서는 진공도에 따라 Fe-Mo 제조시 환원조건에 미치는 영향을 알아보고자 상압에서부터 10×10-3torr까지 진공도를 높이면서 실험을 실시하였다. 실험장치는 도 6에 도시된 바와 같이, 일반 수평로를 개조하여 진공도를 제어할 수 있는 장치를 부착하였다.In Example 3, an experiment was performed while increasing the degree of vacuum from atmospheric pressure to 10 × 10 -3 torr to determine the effect on the reducing conditions when manufacturing Fe-Mo according to the degree of vacuum. As shown in FIG. 6, the experimental apparatus was equipped with a device capable of controlling the degree of vacuum by modifying a general horizontal furnace.

본 발명에 사용된 진공 제어 장치는 도 6에서 보는 바와 같이 게이트 밸브(gate valve)에 의해 반응존의 진공도 변화가 가능하며, 진공도는 2개의 피라니 게이지에 의해 정확히 표시된다.
The vacuum control device used in the present invention can be changed in the degree of vacuum of the reaction zone by a gate valve, as shown in Figure 6, the vacuum degree is accurately represented by two Piranha gauge.

표 3은 진공도에 따른 환원반응 후 ICP 분석을 나타낸다. Table 3 shows the ICP analysis after the reduction reaction according to the degree of vacuum.

Figure 112012013875988-pat00004
Figure 112012013875988-pat00004

먼저 반응온도가 1350℃와 1400℃에서 환원제 C의 량은 1.2wt% 과잉으로 첨가하고 반응온도 6시간 실시한 결과 진공도가 100torr에서 0.01torr로 변함에 따라 불순물의 변화를 ICP 분석한 결과이다. 1350℃에서는 진공도가 변함에 따라 불순물의 양은 급격히 저하되었으나, 상용 S함량에 미치지 못했으며, 1400℃, 1torr이하가 되면 S의 함량이 0.2wt% 이하로 상용 S 함량(<0.1wt%S)에 가까워짐을 알 수 있었으며, 반응온도 1400℃, 0.1torr이하부터는 상용 S함량과 동일하거나 그 이하의 함량을 나타냈다.
First, the reaction temperature is 1350 ℃ and 1400 ℃ the amount of reducing agent C is added in excess of 1.2wt% and the reaction temperature is carried out for 6 hours as a result of the ICP analysis of the change of impurities as the vacuum degree changes from 100torr to 0.01torr. At 1350 ° C, the amount of impurities rapidly decreased as the degree of vacuum changed, but it did not reach the commercial S content. When the temperature was 1400 ° C or less, 1torr or less, the S content was 0.2wt% or less and the commercial S content (<0.1wt% S). From the reaction temperature of 1400 ℃, 0.1torr or less showed the same or less than the commercial S content.

실시예Example 4 4

Fe 함량을 변화시키기 위해 Fe 분말을 1g 첨가하고, C의 량을 1.5wt% 과잉으로 첨가했을 때 석출 Fe-Mo 내 불순물의 거동을 표 2에 나타내었다.
In order to change the Fe content, 1g of Fe powder was added, and when the amount of C was added in an excess of 1.5wt%, the behavior of impurities in precipitated Fe-Mo is shown in Table 2.

Figure 112012013875988-pat00005
Figure 112012013875988-pat00005

도 7은 1350℃에서도 진공도가 변함에 따라 불순물의 함량을 나타내고, 도 8은 1400℃에서도 진공도가 변함에 따라 불순물의 함량을 나타낸다.Figure 7 shows the content of impurities as the degree of vacuum changes at 1350 ℃, Figure 8 shows the content of impurities as the degree of vacuum changes at 1400 ℃.

표 4 및 도 7, 8에서 보는 바와 같이 Fe 분말을 첨가했을 때 반응온도 1350℃와 1400℃에서 C양을 1.5wt과잉으로 첨가하고 반응시간 6hr 실시한 결과 진공도가 100torr에서 0.01torr로 변함에 따라 불순물의 거동은 표 1과는 달리 1350℃에서도 진공도가 변함에 따라 불순물의 함량은 급격히 저하되었으며, 0.01torr에서는 상용 S 함량과 유사하였다. 또한 1400℃에서 1torr 이하가 되면 S의 함량은 0.1wt%이하로 상용 S 함량에 가까웠다. 따라서 진공도를 낮추고 Fe 함량을 증가 시키면 낮은 진공도에서도 Fe-Mo 제조가 가능함을 알 수 있다.
As shown in Table 4 and FIGS. 7 and 8, when Fe powder was added, the amount of C was added in an amount of 1.5wt at a reaction temperature of 1350 ° C. and 1400 ° C. and the reaction time was 6hr. As the vacuum degree changed from 100torr to 0.01torr, Unlike in Table 1, the impurity content was drastically decreased as the vacuum degree was changed even at 1350 ° C., and it was similar to the commercially available S content at 0.01torr. In addition, when 1torr or less at 1400 ℃, the content of S was less than 0.1wt%, which was close to the commercial content of S. Therefore, lowering the degree of vacuum and increasing the Fe content, it can be seen that it is possible to produce Fe-Mo even at low vacuum.

실시예Example 5 5

실시예 5에서는 제조 단가를 낮추기 위해 반응시간을 6hr에서 3hr으로 줄이고, 같은 조건에서 환원반응 후 석출된 Fe-Mo에 대한 ICP 분석결과를 표 5에 나타내었다.
In Example 5, the reaction time was reduced from 6hr to 3hr in order to lower the manufacturing cost, and the results of ICP analysis on Fe-Mo precipitated after reduction under the same conditions are shown in Table 5.

Figure 112012013875988-pat00006
Figure 112012013875988-pat00006

도 9는 1350℃에서도 진공도가 변함에 따라 불순물의 함량을 나타내고, 도 10은 1400℃에서도 진공도가 변함에 따라 불순물의 함량을 나타낸다.Figure 9 shows the content of impurities as the degree of vacuum changes at 1350 ℃, Figure 10 shows the content of impurities as the degree of vacuum changes even at 1400 ℃.

표 5 및 도 9, 10에서 보는바와 같이 반응온도 1350℃, 진공도, 0.01torr에서 S의 함량이 0.26wt%로 나타났으며, 1400℃에서는 0.01torr 일 때 0.17wt%로 상용 S 함량과 유사하였다. 따라서 가장 경제적인 조건에서 반응시간, 진공도, 반응온도 등을 고려한다면, 공정단순화에 의한 Fe-Mo 제조가 가능할 것으로 판단된다. As shown in Table 5 and FIGS. 9 and 10, the content of S was 0.26 wt% at the reaction temperature of 1350 ° C., the degree of vacuum, and 0.01 torr, and 0.17 wt% at 1400 ° C., similar to the commercial S content. . Therefore, considering the reaction time, vacuum degree, reaction temperature, etc. at the most economical conditions, Fe-Mo production by process simplification is considered possible.

도 9는 1350℃에서도 진공도가 변함에 따라 불순물의 함량을 나타내고, 도 10은 1400℃에서도 진공도가 변함에 따라 불순물의 함량을 나타낸다.
Figure 9 shows the content of impurities as the degree of vacuum changes at 1350 ℃, Figure 10 shows the content of impurities as the degree of vacuum changes even at 1400 ℃.

실시예Example 6 6

실시예 6에서는 공정단순화에 의한 Fe-Mo 제조 시 반응에 참여하는 첨가제 중에서 Fe2O3 및 환원제인 C를 장입하지 않고 원료물질인 MoS2, Fe 분말(Iron powder), 및 기타 filler, 바인더를 혼합장입하여 실험을 실시하였다. In Example 6, experiments were carried out by mixing and loading MoS2, Fe powder (Iron powder), and other fillers and binders as raw materials without loading Fe2O3 and C as a reducing agent among the additives participating in the reaction when manufacturing Fe-Mo by the process simplification. Was carried out.

본 발명에서의 반응 메카니즘을 보면 MoS2는 1400℃이상에서 열분해 되며, 분해된 S2는 가스상태로 배기되고 Mo 및 Fe 가 반응하여 Fe-Mo를 형성할 것으로 판단되어 본 실험을 실시하였다. 반응식은 반응식 2와 같다.
Looking at the reaction mechanism in the present invention, MoS2 is pyrolyzed at 1400 ℃ or more, the decomposed S2 is evacuated to a gaseous state and Mo and Fe reacted to form Fe-Mo was carried out this experiment. Scheme is the same as in Scheme 2.

MoS2 + Fe + binder + filler → FeMo + S2↑ + M (반응식 2)
MoS2 + Fe + binder + filler → FeMo + S2 ↑ + M (Scheme 2)

실험 방법은 위의 방법과 동일하며, 반응 후 회수 Fe-Mo 내의 불순물의 함량을 살펴보면 표 6과 같다.
The experimental method is the same as the above method, and look at the content of impurities in the recovered Fe-Mo after the reaction as shown in Table 6.

Figure 112012013875988-pat00007
Figure 112012013875988-pat00007

도 11은 1400℃에서의 Fe분말 첨가량이 변함에 따라 불순물의 함량을 나타낸다.11 shows the content of impurities as the amount of Fe powder added at 1400 ° C. changes.

실시예 6를 통해 알 수 있듯이 Fe 함량 변화에 따라 약간의 차이를 보였으나, 5%이상의 SiO2가 불순물로 혼입된 것을 알 수 있었으며, 위의 반응에서 Fe2O3 및 C의 역할을 규명할 필요가 있어 아래의 실시예 7을 수행하였다.
As can be seen from Example 6, there was a slight difference according to the Fe content change, but it was found that more than 5% of SiO 2 was incorporated as an impurity, and it was necessary to identify the role of Fe 2 O 3 and C in the above reaction. Example 7 was carried out.

실시예Example 7 7

실시예 6에서 Fe2O3를 장입하지 않고 Fe-Mo 제조시 필요한 원소 즉, 원료물질인 MoS2와 Fe 함량 제어를 위한 Fe 분말, 그리고 바인더(binder), 필러(filler)등을 혼합하여 펠렛을 제조하고 환원실험을 실시한 결과 환원반응은 원활히 이루어 졌으나 모든 시료에서 SiO2의 함량이 5%이상 검출되었다. 다시 말해 원료물질 내에 함유된 SiO2는 전혀 반응하지 않고 그대로 시료에 남아 있었음을 알 수 있었으며, 고찰한 결과SiO2는 FeO 및 CaO와 함께 반응하여 슬래그로 반응 중 펠렛 표면으로 분리됨을 알 수 있었다. In Example 6, pellets are prepared and mixed by mixing elements necessary for manufacturing Fe-Mo without loading Fe2O3, that is, raw material MoS2, Fe powder for Fe content control, binder, filler, and the like. As a result of the experiment, the reduction reaction was performed smoothly, but more than 5% of SiO2 content was detected in all samples. In other words, it was found that SiO 2 contained in the raw material remained in the sample without reacting at all. As a result, SiO 2 reacted with FeO and CaO to be separated into the pellet surface during slag reaction.

표 7는 Fe2O3 혼합 장입 후 시료의 ICP 분석 결과를 나타낸다.
Table 7 shows the results of the ICP analysis of the sample after Fe2O3 mixed charging.

Figure 112012013875988-pat00008
Figure 112012013875988-pat00008

도 12는 1400℃에서의 Fe분말 첨가량이 변함에 따라 불순물의 함량을 나타낸다. 12 shows the content of impurities as the amount of Fe powder added at 1400 ° C. is changed.

도 12 및 표 7에서 알 수 있듯이 Fe2O3를 혼합 장입한 경우 SiO2 및 기타 불순물은 거의 검출되지 않았으며, 대부분이 FeO-SiO2의 2성분계 슬래그로 반응하여 시료에서 분리되어 제거됨을 알 수 있었다.
As shown in FIG. 12 and Table 7, when Fe2O3 was mixed and loaded, SiO2 and other impurities were hardly detected, and most of them were reacted with two-component slag of FeO-SiO2 to be separated and removed from the sample.

또한, 본 발명에 따른 공정단수화에 의한 페로몰리브덴 제조방법으로, 고온 저진공에서 환원반응을 실시한 결과 MoS2의 분해가 양호하여, S가 배기되고 순수 Fe-Mo 제조가 가능함을 알 수 있었다. In addition, as a method for producing ferro-molybdenum by the process step according to the present invention, the reduction reaction at high temperature and low vacuum resulted in good decomposition of MoS2, it was found that S is exhausted and pure Fe-Mo can be produced.

Figure 112012013875988-pat00009
Figure 112012013875988-pat00009

표 8에 나타난 바와 같이, 본 발명에 따른 공정단수화에 의한 페로몰리브덴 제조방법에 의해 Fe-Mo 제조시 Mo, Fe 및 기타 불순물의 함량치는 기존의 국내에서 유일하게 제조하는 기업인 세아M&S에서 제조되는 Fe-Mo와 주요 함량치를 비교한 결과, Fe-Mo내 주요 함량치와 일치하거나 그 이하로 양호하게 나타났다.
As shown in Table 8, the content of Mo, Fe and other impurities in the production of Fe-Mo by the ferro molybdenum manufacturing method by the process singularization according to the present invention is manufactured by SeAH M & S, the only company in Korea. Comparing the Fe-Mo with the main content, it was found to be consistent with or less than the main content in Fe-Mo.

이상에서 본 발명은 특정의 실시예와 관련하여 도시 및 설명하였지만, 첨부된 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도내에서 다양한 변경, 개조 및 변화가 가능하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.
While the invention has been shown and described in connection with specific embodiments thereof, it is conventional in the art that various changes, modifications and variations are possible without departing from the spirit and scope of the invention as indicated by the appended claims. Anyone who knows the knowledge of is easy to know.

S100: 펠릿제조단계
S200: 제1차 환원단계
S300: 제2차 환원단계
S100: pellet manufacturing step
S200: first reduction step
S300: second reduction step

Claims (7)

몰리브데나이트(MoS2), 철분말(Fe powder), 적철광(Fe2O3), 환원제로서의 탄소(C), 바인더, 필러를 혼합하여 펠렛으로 제조하는 펠렛제조단계;
상기 펠렛제조단계를 거쳐 제조된 상기 펠렛을 10-2torr 내지 1 torr의 감압상태 및 1350℃ 내지 1400℃의 온도에서 열환원반응을 수행하는 제1차환원단계; 및
상기 펠렛에서 황(S)을 제거하기 위해 298℃ 내지 300℃에서 수소가스(H2)를 3시간 취입 및 배기시키는 제2차환원단계를 포함하는 것을 특징으로 하는 공정단수화에 의한 페로몰리브덴 제조방법.
A pellet manufacturing step of mixing molybdenite (MoS 2 ), iron powder (Fe powder), hematite (Fe 2 O 3 ), carbon as a reducing agent (C), a binder, and a filler to produce pellets;
A first reduction step of performing a thermal reduction reaction on the pellets prepared through the pellet manufacturing step at a reduced pressure of 10 −2 torr to 1 torr and a temperature of 1350 ° C. to 1400 ° C .; And
In order to remove sulfur (S) from the pellet, a ferro molybdenum production process by the step-reduction step comprising a second reduction step of blowing and exhausting hydrogen gas (H2) at 298 ℃ to 300 ℃ for 3 hours. .
삭제delete 제1항에 있어서,
상기 바인더는 젤라틴(Gelatines), 전당분(Sugars), 당밀(Molarsses), Na2SiO3 중 어느 하나 이상인 것을 특징으로 하는 공정단수화에 의한 페로몰리브덴 제조방법.
The method of claim 1,
The binder is gelatin (Gelatines), starch (Sugars), molasses (Molarsses), Na2SiO3 characterized in that any one or more of the ferro molybdenum manufacturing method by the singularity.
제1항에 있어서,
상기 필러는 목분(Wood flour), 섬유(fiber), 입자(particles) 중 어느 하나 이상인 것을 특징으로 하는 공정단수화에 의한 페로몰리브덴 제조방법.
The method of claim 1,
The filler is a ferro molybdenum manufacturing method by a single stage, characterized in that any one or more of wood flour, fiber (fiber), particles (particles).
삭제delete 삭제delete 삭제delete
KR1020120017353A 2012-02-21 2012-02-21 A method for manufacturing process of ferromolybdenum Active KR101362240B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120017353A KR101362240B1 (en) 2012-02-21 2012-02-21 A method for manufacturing process of ferromolybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120017353A KR101362240B1 (en) 2012-02-21 2012-02-21 A method for manufacturing process of ferromolybdenum

Publications (2)

Publication Number Publication Date
KR20130095933A KR20130095933A (en) 2013-08-29
KR101362240B1 true KR101362240B1 (en) 2014-02-14

Family

ID=49219023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120017353A Active KR101362240B1 (en) 2012-02-21 2012-02-21 A method for manufacturing process of ferromolybdenum

Country Status (1)

Country Link
KR (1) KR101362240B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112635B1 (en) * 2017-12-19 2020-05-19 재단법인 포항산업과학연구원 The method for producing direct reduced iron by multi-stage reduction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039325A (en) * 1974-09-24 1977-08-02 Amax Inc. Vacuum smelting process for producing ferromolybdenum
JP2008274362A (en) 2007-05-01 2008-11-13 Kobe Steel Ltd Method for producing ferro-molybdenum
JP2009263723A (en) 2008-04-25 2009-11-12 Kobe Steel Ltd Method for producing ferromolybdenum
JP2011246760A (en) 2010-05-26 2011-12-08 Kobe Steel Ltd Method of manufacturing ferromolybdenum, and ferromolybdenum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039325A (en) * 1974-09-24 1977-08-02 Amax Inc. Vacuum smelting process for producing ferromolybdenum
JP2008274362A (en) 2007-05-01 2008-11-13 Kobe Steel Ltd Method for producing ferro-molybdenum
JP2009263723A (en) 2008-04-25 2009-11-12 Kobe Steel Ltd Method for producing ferromolybdenum
JP2011246760A (en) 2010-05-26 2011-12-08 Kobe Steel Ltd Method of manufacturing ferromolybdenum, and ferromolybdenum

Also Published As

Publication number Publication date
KR20130095933A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
CN102165083B (en) Process for production of sintered compact by powder metallurgy
JP5880941B2 (en) Method for producing reduced iron
CN110923559A (en) Vanadium-nitrogen alloy and production method thereof
KR20120106882A (en) A process for recycling of tungsten carbide alloy
US2205386A (en) Production of metals and alloys
KR101362240B1 (en) A method for manufacturing process of ferromolybdenum
CN104870660A (en) Reduced-iron production method and production device
US11117188B2 (en) Chromium metal powder
JPH03146625A (en) Manufacture of high purity metallic chromium
US9238854B2 (en) Method of producing carbide and carbon nitride powders containing binder, and cermet obtained from the same
EP3148931B1 (en) Processes for producing limxo4 and products thereof
KR101777208B1 (en) Method for recovering precious metal
CN111847458B (en) Preparation method of high-purity and low-cost molybdenum disilicide
CN107904410A (en) A kind of compound degasser prepares the production method of high temperature alloy and the special high-purity metal chromium of target
US12157671B2 (en) Method for producing technical silicon
KR20190058988A (en) Method for forming metal powder and appratus for the same
US855157A (en) Process of reducing metallic sulfids.
RU2835733C1 (en) Method of producing chromium-based alloys
US3066022A (en) Process for the manufacture of pulverized iron
RU2175988C1 (en) Titanium carbide production process
JP4462008B2 (en) Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron
Kim et al. Production of (Mn, Fe)-carbide containing low phosphorus by carbothermic reduction of Mn oxide and Fe oxide
KR102222202B1 (en) Method for manufacturing direct reduced iron with multi-stage fluid bed reduction using reformed coke oven gas
KR20130075278A (en) Method of dephosphorizing ferromanganese
JP7445122B2 (en) Method for producing agglomerates and method for producing reduced iron

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20120221

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20130719

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20140128

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140206

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140206

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20170206

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20170206

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20180202

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20180202

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20190201

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20200204

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20200204

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20200207

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20200207

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20220208

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20230111

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20231220

Start annual number: 11

End annual number: 11