KR101349328B1 - Plasma processing Apparatus - Google Patents

Plasma processing Apparatus Download PDF

Info

Publication number
KR101349328B1
KR101349328B1 KR1020110010720A KR20110010720A KR101349328B1 KR 101349328 B1 KR101349328 B1 KR 101349328B1 KR 1020110010720 A KR1020110010720 A KR 1020110010720A KR 20110010720 A KR20110010720 A KR 20110010720A KR 101349328 B1 KR101349328 B1 KR 101349328B1
Authority
KR
South Korea
Prior art keywords
temperature sensor
substrate support
temperature
substrate
processing apparatus
Prior art date
Application number
KR1020110010720A
Other languages
Korean (ko)
Other versions
KR20120090347A (en
Inventor
김재옥
Original Assignee
엘아이지에이디피 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘아이지에이디피 주식회사 filed Critical 엘아이지에이디피 주식회사
Priority to KR1020110010720A priority Critical patent/KR101349328B1/en
Publication of KR20120090347A publication Critical patent/KR20120090347A/en
Application granted granted Critical
Publication of KR101349328B1 publication Critical patent/KR101349328B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Abstract

기판지지대에 발생되는 유도전류에 의한 노이즈를 차단하여 온도센서가 기판지지대의 온도를 정확하게 측정할 수 있는 플라즈마 처리장치가 개시된다. 본 발명에 따른 플라즈마 처리장치는 내부에 플라즈마가 형성되는 챔버와, 상기 챔버의 내부에 배치되어 일면에 기판을 지지하며, 이면으로부터 함몰되는 온도센서 삽입홈이 형성되는 기판지지대와, 상기 온도센서 삽입홈에 삽입되어 상기 기판지지대의 온도를 측정하는 온도센서와, 상기 온도센서의 선단이 노출되도록 상기 온도센서를 감싸고 상기 온도센서 삽입홈의 내부에 삽입되어 상기 기판지지대에서 발생되는 상기 유도전류를 차단하는 제 1유도전류 차단캡을 포함한다.Disclosed is a plasma processing apparatus in which a temperature sensor can accurately measure the temperature of a substrate support by blocking noise caused by an induced current generated in the substrate support. The plasma processing apparatus according to the present invention includes a chamber in which a plasma is formed therein, a substrate support disposed in the chamber to support a substrate on one surface thereof, and having a temperature sensor insertion groove recessed from a rear surface thereof, and the temperature sensor insertion. A temperature sensor inserted into a groove to measure the temperature of the substrate support, and surrounding the temperature sensor so that the front end of the temperature sensor is exposed and inserted into the temperature sensor insertion groove to block the induced current generated from the substrate support. It includes a first inductive current blocking cap.

Description

플라즈마 처리장치{Plasma processing Apparatus}Plasma processing Apparatus

본 발명은 플라즈마 처리장치에 관한 것으로, 더욱 상세하게는 플라즈마를 이용하여 기판을 처리하는 플라즈마 처리장치에 관한 것이다.
The present invention relates to a plasma processing apparatus, and more particularly, to a plasma processing apparatus for processing a substrate using plasma.

플라즈마 화학 증착법(PACVD; Plasma Assisted Chemical Vapor Deposition)은 식각과 더불어 기판 처리에 있어서 많이 사용된다. Plasma Assisted Chemical Vapor Deposition (PACVD) is widely used in substrate processing along with etching.

이러한 플라즈마 화학 증착법은 열 기상 증착법에 비해 더 낮은 온도에서 박박을 증착할 수 있는 장점이 있다. 예를 들면, 소자의 보호를 위한 막으로 실리콘 질화막을 증착하고자 하는 경우, 열 기상 증착법으로는 NH3+SiH4 가스를 사용해야하고 기판의 온도는 700~900℃ 까지 도달되어 하지만, 플라즈마 화학 증착법은 기판의 온도가 400℃ 미만에서도 우수한 실리콘 질화막을 얻을 수 있다.This plasma chemical vapor deposition method has an advantage that can be deposited at a lower temperature than the thermal vapor deposition method. For example, when a silicon nitride film is to be deposited as a film for protecting the device, NH 3 + SiH 4 gas must be used as the thermal vapor deposition method, and the temperature of the substrate is reached to 700 to 900 ° C. An excellent silicon nitride film can be obtained even when the temperature of the substrate is less than 400 ° C.

이와 같이 플라즈마 화학 증착법은 반도체 소자나 플라스틱, 유리 등과 같이 온도에 민감한 재료로 이루어지는 기판이 열에 의해 손상되는 것을 방지하며, 기판을 처리할 수 있다.As described above, the plasma chemical vapor deposition prevents a substrate made of a temperature sensitive material such as a semiconductor device, a plastic, and a glass from being damaged by heat, and can process the substrate.

한편, 플라즈마 화학 증착법에 의해 형성되는 박막의 품질을 결정하는 요소로는 기판의 온도, RF 전력, 상, 하부전극 간의 거리, 가스 조성 등이 있다. 이 중에서 기판의 온도는 박막의 품질을 결정하는 가장 중요한 변수 중의 하나이다. Meanwhile, factors that determine the quality of the thin film formed by plasma chemical vapor deposition include substrate temperature, RF power, distance between upper and lower electrodes, gas composition, and the like. Of these, the temperature of the substrate is one of the most important variables that determine the quality of the thin film.

따라서, 플라즈마 처리장치는 기판을 지지하는 기판지지대에 설치되어 기판을 냉각시키는 냉각기를 포함한다. 냉각기는 기판지지대에 내설되는 냉각관으로 구성된다. Therefore, the plasma processing apparatus includes a cooler installed on a substrate support for supporting the substrate to cool the substrate. The cooler is composed of a cooling tube embedded in the substrate support.

상술한 바와 같은 플라즈마 처리장치는 플라즈마의 복사열에 의해 기판이 가열되고, 가열된 기판으로 플라즈마화된 공정가스가 입사되어 기판이 처리되도록 한다. In the plasma processing apparatus as described above, the substrate is heated by the radiant heat of the plasma, and the plasma-processed process gas is incident on the heated substrate so that the substrate is processed.

이때, 기판의 공정온도를 알맞게 유지하기 위해서는 플라즈마의 복사열에 의해 가열되는 기판의 온도를 측정하고, 기판의 온도에 따라 냉각기로 공급되는 냉매의 공급량을 조절해야 한다. At this time, in order to maintain the process temperature of the substrate properly, the temperature of the substrate heated by the radiant heat of the plasma should be measured, and the amount of the refrigerant supplied to the cooler should be adjusted according to the temperature of the substrate.

따라서, 플라즈마 처리장치는 기판의 온도 조절을 위해 기판의 온도를 검출하는 온도센서가 설치된다. 온도센서는 기판을 지지하는 기판지지대의 온도를 측정하며, 온도센서에 의해 측정되는 기판지지대의 온도는 기판의 온도를 추정할 수 있또록 한다. 이러한, 온도센서는 일반적으로 기판지지대에 접촉되는 접촉식 센서를 사용한다. Therefore, the plasma processing apparatus is provided with a temperature sensor for detecting the temperature of the substrate for temperature control of the substrate. The temperature sensor measures the temperature of the substrate support for supporting the substrate, and the temperature of the substrate support measured by the temperature sensor allows the temperature of the substrate to be estimated. Such a temperature sensor generally uses a contact sensor in contact with the substrate support.

하지만, 플라즈마 처리장치는 공정가스를 공급하는 샤워헤드를 상부전극으로 사용하고, 기판지지대를 하부전극으로 사용한다. 이에 따라 기판지지대에는 유도전류가 발생되고, 유도전류는 온도센서가 기판지지대의 온도를 측정하는 데 노이즈로 작용한다. 따라서, 온도센서는 기판지지대의 정확한 온도를 측정하기 곤란한 문제점이 있다. However, the plasma processing apparatus uses the shower head for supplying the process gas as the upper electrode and the substrate support as the lower electrode. Accordingly, an induction current is generated in the substrate support, and the induction current acts as a noise for the temperature sensor to measure the temperature of the substrate support. Therefore, the temperature sensor has a problem that it is difficult to measure the exact temperature of the substrate support.

본 발명의 목적은 온도센서가 기판지지대의 온도가 정확하게 측정되도록 한 플라즈마 처리장치를 제공하기 위한 것이다.
It is an object of the present invention to provide a plasma processing apparatus in which a temperature sensor allows the temperature of a substrate support to be measured accurately.

본 발명에 따른 플라즈마 처리장치는 내부에 플라즈마가 형성되는 챔버와, 상기 챔버의 내부에 배치되어 일면에 기판을 지지하며, 이면으로부터 함몰되는 온도센서 삽입홈이 형성되는 기판지지대와, 상기 온도센서 삽입홈에 삽입되어 상기 기판지지대의 온도를 측정하는 온도센서와, 상기 온도센서의 선단이 노출되도록 상기 온도센서를 감싸고 상기 온도센서 삽입홈의 내부에 삽입되어 상기 기판지지대에서 발생되는 상기 유도전류를 차단하는 제 1유도전류 차단캡을 포함한다.The plasma processing apparatus according to the present invention includes a chamber in which a plasma is formed therein, a substrate support disposed in the chamber to support a substrate on one surface thereof, and having a temperature sensor insertion groove recessed from a rear surface thereof, and the temperature sensor insertion. A temperature sensor inserted into a groove to measure the temperature of the substrate support, and surrounding the temperature sensor so that the front end of the temperature sensor is exposed and inserted into the temperature sensor insertion groove to block the induced current generated from the substrate support. It includes a first inductive current blocking cap.

상기 플라즈차 처리장치는 상기 온도센서 삽입홈에 삽입되어 상기 기판지지대에서 발생되는 유도전류를 차단하는 제 2유도전류 차단캡을 더 포함할 수 있다.The plasma processing apparatus may further include a second inductive current blocking cap inserted into the temperature sensor insertion groove to block an induced current generated from the substrate support.

상기 제 1유도전류 차단캡 및 상기 제 2유도전류 차단캡은 테프론(Teflon) 소재로 이루어질 수 있다.The first inductive current blocking cap and the second inductive current blocking cap may be made of Teflon material.

상기 플라즈차 처리장치는 상기 기판지지대에 내설되어 냉매가 순환되는 냉각관을 더 포함할 수 있다.The plasma processing apparatus may further include a cooling tube installed in the substrate support to circulate the refrigerant.

상기 플라즈차 처리장치는 상기 온도센서와 상기 냉각관에 연결되어 상기 온도센서에 의해 측정되는 상기 기판지지대의 온도에 따라 상기 냉매의 공급량을 조절하는 온도조절기를 더 포함할 수 있다.The plasma processing apparatus may further include a temperature controller connected to the temperature sensor and the cooling tube to adjust the supply amount of the refrigerant according to the temperature of the substrate support measured by the temperature sensor.

상기 온도센서는 백금 측온 저항체(RTD;Resistance Temperature Detector)일 수 있다.
The temperature sensor may be a platinum resistance thermometer (RTD).

본 발명에 따른 플라즈마 처리장치는 기판지지대에 발생되는 유도전류에 의한 노이즈를 차단하여 온도센서가 기판지지대의 온도를 정확하게 측정할 수 있는 효과가 있다.
Plasma processing apparatus according to the present invention has the effect that the temperature sensor can accurately measure the temperature of the substrate support by blocking the noise caused by the induced current generated in the substrate support.

도 1은 본 실시예에 따른 플라즈마 처리장치를 나타낸 구성도이다.
도 2는 본 실시예에 따른 플라즈마 처리장치 중 도 1에 표기된 "I"부를 나타낸 확대도이다.
1 is a block diagram showing a plasma processing apparatus according to the present embodiment.
FIG. 2 is an enlarged view of part “I” shown in FIG. 1 of the plasma processing apparatus according to the present embodiment.

이하, 본 실시예에 따른 플라즈마 처리장치의 구성에 대해 첨부된 도면을 참조하여 상세히 설명하도록 한다. Hereinafter, the configuration of the plasma processing apparatus according to the present embodiment will be described in detail with reference to the accompanying drawings.

도 1은 본 실시예에 따른 플라즈마 처리장치를 나타낸 구성도이며, 도 2는 본 실시예에 따른 플라즈마 처리장치 중 도 1에 표기된 "I"부를 나타낸 확대도이다.FIG. 1 is a configuration diagram illustrating a plasma processing apparatus according to the present embodiment, and FIG. 2 is an enlarged view of part “I” shown in FIG. 1 of the plasma processing apparatus according to the present embodiment.

도 1 및 도 2를 참조하면, 본 실시예에 따른 플라즈마 처리장치(100)는 챔버(110)를 포함한다. 도시되지 않았지만, 챔버(110)의 일측벽에는 기판(10)의 반입 및 반출이 용이하도록 게이드밸브, 또는 도어가 설치될 수 있다. 이러한 챔버(110)에는 배기관(111)이 연결되며, 배기관(111)은 도시되지 않은 진공펌프에 연결된다. 이에 따라 챔버(110)의 내부는 진공분위기로 형성될 수 있다. 1 and 2, the plasma processing apparatus 100 according to the present embodiment includes a chamber 110. Although not shown, a gate valve or a door may be installed at one side wall of the chamber 110 to facilitate loading and unloading of the substrate 10. The exhaust pipe 111 is connected to the chamber 110, and the exhaust pipe 111 is connected to a vacuum pump (not shown). Accordingly, the inside of the chamber 110 may be formed in a vacuum atmosphere.

챔버(110)의 내부에는 기판지지대(120)와 샤워헤드(130)가 배치된다. 기판지지대(120)는 챔버(110)의 내부로 반입되는 기판(10)을 지지한다. 샤워헤드(130)는 기판지지대(120)에 대향되어 기판(10)을 처리하기 위한 공정가스가 기판지지대(120)를 향해 공급되도록 한다. The substrate support 120 and the shower head 130 are disposed in the chamber 110. The substrate support 120 supports the substrate 10 carried into the chamber 110. The shower head 130 may face the substrate support 120 so that a process gas for processing the substrate 10 may be supplied toward the substrate support 120.

본 실시예에 따른 플라즈마 처리장치(100)는 샤워헤드(130)로부터 공급되는 공정가스를 플라즈마화 하기 위하여 필요한 전계를 발생시는데, 샤워헤드(130)는 상부전극으로 사용되며, 기판지지대(120)는 하부전극으로 사용될 수 있다. 따라서, 샤워헤드(130)에는 RF 전력이 공급되며, 기판지지대(120)는 챔버(110)의 벽, 또는 챔버(110)의 외부에 접지될 수 있다.Plasma processing apparatus 100 according to the present embodiment generates an electric field required to plasma the process gas supplied from the shower head 130, the shower head 130 is used as the upper electrode, the substrate support 120 May be used as the lower electrode. Therefore, the shower head 130 is supplied with RF power, and the substrate support 120 may be grounded to the wall of the chamber 110 or to the outside of the chamber 110.

한편, 본 실시예에 따른 플라즈마 처리장치(100)는 냉각관(140)을 포함한다. 냉각관(140)은 기판지지대(120)에 내설된다. 냉각관(140)에는 냉매가 공급되는데, 냉매로는 에어, 질소, 불활성가스, 플로리너트, 갈덴, 불소 함유 용액 중 적어도 어느 하나를 사용할 수 있다. 따라서, 기판(10)은 냉각관(140)을 따라 냉매가 순환됨으로써, 플라즈마의 복사열에 의하여 공정온도 이상으로 과열되는 것이 방지된다. On the other hand, the plasma processing apparatus 100 according to the present embodiment includes a cooling tube 140. The cooling tube 140 is embedded in the substrate support 120. The cooling tube 140 is supplied with a coolant, and at least one of air, nitrogen, an inert gas, florinant, galden, and a fluorine-containing solution may be used as the coolant. Therefore, the substrate 10 is prevented from being overheated above the process temperature by the radiant heat of the plasma by circulating the refrigerant along the cooling tube 140.

또한, 본 실시예에 따른 플라즈마 처리장치(100)는 기판지지대(120)의 온도를 측정하는 온도센서(150)를 포함한다. 온도센서(150)로는 넓은 온도 범위에서 안정된 출력을 제공하고 소폭의 온도 범위(-260~630℃)에서 정확하게 온도를 측정할 수 있는 백금 측온 저항체(RTD;Resistance Temperature Detector)를 사용할 수 있다. In addition, the plasma processing apparatus 100 according to the present embodiment includes a temperature sensor 150 for measuring the temperature of the substrate support 120. The temperature sensor 150 may use a platinum resistance thermometer (RTD) that provides a stable output in a wide temperature range and accurately measures the temperature in a small temperature range (-260 to 630 ° C.).

그리고 기판지지대(120)의 하부면에는 온도센서 삽입홈(121)이 형성된다. 온도센서 삽입홈(121)은 온도센서(150)가 기판지지대(120)에 삽입되도록 하여 기판지지대(120)의 정확한 온도를 측정할 수 있도록 한다. And the lower surface of the substrate support 120 is a temperature sensor insertion groove 121 is formed. The temperature sensor insertion groove 121 allows the temperature sensor 150 to be inserted into the substrate support 120 to measure the accurate temperature of the substrate support 120.

상술한 바와 같이, 샤워헤드(130)로 RF 전력이 인가되고 기판지지대(120)가 접지됨에 따라 기판지지대(120)는 유도전류가 발생될 수 있다. 따라서, 온도센서(150)에는 제 1유도전류 차단캡(151)이 설치되며, 온도센서 삽입홈(121)의 내부에는 제 2유도전류 차단캡(152)이 설치된다. 제 1유도전류 차단캡(151)은 온도센서(150)의 선단이 노출되도록 온도센서(150)를 감싼다. 제 2유도전류 차단캡(152)은 온도센서 삽입홈(121)의 내측벽에 결합된다. 제 1유도전류 차단캡(151)과 제 2유도전류 차단캡(152)은 절연성이 뛰어난 테프론 소재로 이루어질 수 있다. As described above, as RF power is applied to the shower head 130 and the substrate support 120 is grounded, the substrate support 120 may generate an induced current. Therefore, the first inductive current blocking cap 151 is installed in the temperature sensor 150, and the second inductive current blocking cap 152 is installed in the temperature sensor insertion groove 121. The first inductive current blocking cap 151 surrounds the temperature sensor 150 so that the front end of the temperature sensor 150 is exposed. The second inductive current blocking cap 152 is coupled to the inner wall of the temperature sensor insertion groove 121. The first inductive current blocking cap 151 and the second inductive current blocking cap 152 may be made of a Teflon material having excellent insulation.

이러한 제 1유도전류 차단캡(151)과 제 2유도전류 차단캡(152)은 기판지지대(120)에서 발생되는 유도전류에 의한 노이즈가 온도센서(150)에 간섭되는 중복 차단하여 온도센서(150)가 기판지지대(120)의 온도를 정확하게 측정할 수 있도록 한다. The first inductive current blocking cap 151 and the second inductive current blocking cap 152 are overlapped by the noise caused by the induced current generated from the substrate support 120 interfering with the temperature sensor 150 and the temperature sensor 150. ) Can accurately measure the temperature of the substrate support (120).

또한, 본 실시예에 따른 플라즈마 처리장치(100)는 온도센서(150)에 연결되고, 냉각관(140)에 연결되는 온도조절기(160)를 포함한다. 온도조절기(160)는 온도센서(150)에 의해 측정되는 기판지지대(120)의 온도에 따라 냉각관(140)으로 공급되는 냉매의 공급량을 조절함으로써, 기판(10)의 온도가 조절되도록 한다. In addition, the plasma processing apparatus 100 according to the present exemplary embodiment includes a temperature controller 160 connected to the temperature sensor 150 and connected to the cooling tube 140. The temperature controller 160 adjusts the supply amount of the refrigerant supplied to the cooling tube 140 according to the temperature of the substrate support 120 measured by the temperature sensor 150, thereby controlling the temperature of the substrate 10.

이러한 온도조절기(160)는 기판(10)의 적정온도와 온도센서(150)에 의해 측정되는 기판지지대(120)의 측정온도를 비교하고, 그 비교 결과값을 전기신호로 출력하는 단말기와, 냉각관(140)의 관로에 설치되고 단말기로부터 출력되는 전기신호에 따라 냉매의 공급량이 조절되도록 하는 질량유량조절기(MFC;mass flow control)로 구성될 수 있다.
The temperature controller 160 compares the measurement temperature of the substrate support 120 measured by the temperature sensor 150 with the proper temperature of the substrate 10, and outputs the comparison result as an electric signal, and cooling The mass flow controller (MFC) is installed in the pipeline of the pipe 140 and adjusts the supply amount of the refrigerant according to the electric signal output from the terminal.

이하, 본 실시예에 따른 플라즈마 처리장치의 작용에 대해 첨부된 도면을 참조하여 상세히 설명하도록 한다. Hereinafter, the operation of the plasma processing apparatus according to the present embodiment will be described in detail with reference to the accompanying drawings.

도 1 및 도 2를 참조하면, 기판(10)은 별도의 이송장치(미도시)에 의해 챔버(110)의 내부로 반입되어 기판지지대(120)에 안착된다. 이와 같이 기판(10)이 챔버(110)의 내부로 반입되면, 챔버(110)는 밀폐되고 배기관(111)을 통해 챔버(110)의 진공배기가 수행된다. 이에 따라 챔버(110)의 내부는 진공분위기로 전환된다. 1 and 2, the substrate 10 is loaded into the chamber 110 by a separate transfer device (not shown) and seated on the substrate support 120. As described above, when the substrate 10 is loaded into the chamber 110, the chamber 110 is sealed and vacuum evacuation of the chamber 110 is performed through the exhaust pipe 111. Accordingly, the interior of the chamber 110 is converted into a vacuum atmosphere.

이어, 샤워헤드(130)를 통해 챔버(110)의 내부로 공정가스가 공급되며, 샤워헤드(130)에는 RF 전력이 공급된다. 샤워헤드(130)로 RF 전력이 공급됨에 따라 샤워헤드(130)와 기판지지대(120)의 사이에서 공정가스는 플라즈마화 된다. 이에 따라, 기판(10)은 플라즈마의 복사열에 의해 가열된다. Subsequently, process gas is supplied into the chamber 110 through the shower head 130, and RF power is supplied to the shower head 130. As RF power is supplied to the shower head 130, the process gas is plasma-formed between the shower head 130 and the substrate support 120. Accordingly, the substrate 10 is heated by the radiant heat of the plasma.

이때, 온도센서(150)는 기판지지대(120)의 온도를 측정한다. 상술한 바와 같이, 샤워헤드(130)로 RF 전력이 샤워헤드(130)로 공급되고 기판지지대(120)가 접지됨에 따라 기판지지대(120)에는 유도전류가 발생될 수 있다. At this time, the temperature sensor 150 measures the temperature of the substrate support 120. As described above, as RF power is supplied to the shower head 130 and the substrate support 120 is grounded, an induced current may be generated in the substrate support 120.

하지만, 온도센서(150)에는 제 1유도전류 차단캡(151)이 설치되고, 온도센서 삽입홈(121)에는 제 2유도전류 차단캡(152)이 설치되어 있으므로, 온도센서(150)는 유도전류에 의한 노이즈에 간섭되지 않고 기판지지대(120)의 정확한 온도를 측정할 수 있다. 이렇게 온도센서(150)에 의해 측정되는 기판지지대(120)의 온도는 온도조절기(160)로 전송된다. 온도조절기(160)는 기판지지대(120)의 온도에 따라 냉매의 공급량이 조절되도록 한다.However, since the first inductive current blocking cap 151 is installed in the temperature sensor 150, and the second inductive current blocking cap 152 is installed in the temperature sensor insertion groove 121, the temperature sensor 150 is induced. The accurate temperature of the substrate support 120 can be measured without interfering with the noise caused by the current. The temperature of the substrate support 120 measured by the temperature sensor 150 is transmitted to the temperature controller 160. The temperature controller 160 allows the supply amount of the refrigerant to be adjusted according to the temperature of the substrate support 120.

이와 같이, 기판지지대(120)의 온도가 조절됨에 따라 기판(10)은 공정온도로 유지되며, 플라즈마화 된 공정가스는 기판(10)으로 입사되어 기판이 처리되도록 한다.
As such, as the temperature of the substrate support 120 is adjusted, the substrate 10 is maintained at the process temperature, and the plasma-processed process gas is incident on the substrate 10 to process the substrate.

100 : 플라즈마 처리장치 110 : 챔버
120 : 기판지지대 130 : 샤워헤드
140 : 냉각관 150 : 온도센서
151 : 제 1유도전류 차단캡 152 : 제 2유도전류 차단캡
160 : 온도조절기
100: plasma processing apparatus 110: chamber
120: substrate support 130: shower head
140: cooling tube 150: temperature sensor
151: first induction current blocking cap 152: second induction current blocking cap
160: temperature controller

Claims (6)

내부에 플라즈마가 형성되는 챔버와,
상기 챔버의 내부에 배치되어 일면에 기판을 지지하며, 이면으로부터 함몰되는 온도센서 삽입홈이 형성되는 기판지지대와,
상기 온도센서 삽입홈에 삽입되어 상기 기판지지대의 온도를 측정하는 온도센서와,
상기 온도센서 삽입홈에 삽입되어 상기 기판지지대에서 발생되는 상기 유도전류를 차단하는 제 1유도전류 차단캡과,
상기 온도센서 삽입홈의 내측벽에 밀착되고 상기 제 1유도전류 차단캡으로부터 이격되어 상기 기판지지대에서 발생되는 유도전류를 차단하는 제 2유도전류 차단캡을 포함하되,
상기 제 1유도전류 차단캡은
상기 온도센서가 상기 기판지지대의 온도를 정밀하게 측정할 수 있도록 상기 온도센서의 선단부가 노출되도록 개방되는 개방부와,
상기 기판지지대에서 발생되는 상기 유도전류가 차단되도록 상기 온도센서의 측면을 감싸는 차단부를 포함하는 것을 특징으로 하는 플라즈마 처리장치.
A chamber in which a plasma is formed therein,
A substrate support disposed in the chamber to support the substrate on one surface and having a temperature sensor insertion groove recessed from the rear surface thereof;
A temperature sensor inserted into the temperature sensor insertion groove to measure a temperature of the substrate support;
A first inductive current blocking cap inserted into the temperature sensor insertion groove to block the induced current generated from the substrate support;
A second inductive current blocking cap which is in close contact with the inner wall of the temperature sensor insertion groove and is spaced apart from the first inductive current blocking cap to block the induced current generated from the substrate support,
The first inductive current blocking cap
An opening part which is open to expose the distal end of the temperature sensor so that the temperature sensor can accurately measure the temperature of the substrate support;
And a blocking unit surrounding a side surface of the temperature sensor so that the induced current generated by the substrate support is blocked.
삭제delete 제 1항에 있어서, 상기 제 1유도전류 차단캡 및 상기 제 2유도전류 차단캡은 테프론(Teflon) 소재로 이루어지는 것을 특징으로 하는 플라즈마 처리장치.The plasma processing apparatus of claim 1, wherein the first inductive current blocking cap and the second inductive current blocking cap are made of Teflon material. 제 1항에 있어서,
상기 기판지지대에 내설되어 냉매가 순환되는 냉각관을 더 포함하는 것을 특징으로 하는 플라즈마 처리장치.
The method of claim 1,
And a cooling tube installed in the substrate support to circulate the refrigerant.
제 4항에 있어서, 상기 온도센서와 상기 냉각관에 연결되어 상기 온도센서에 의해 측정되는 상기 기판지지대의 온도에 따라 상기 냉매의 공급량을 조절하는 온도조절기를 더 포함하는 것을 특징으로 하는 플라즈마 처리장치.5. The plasma processing apparatus of claim 4, further comprising a temperature controller connected to the temperature sensor and the cooling tube to adjust the supply amount of the refrigerant according to the temperature of the substrate support measured by the temperature sensor. . 제 1항에 있어서, 상기 온도센서는 백금 측온 저항체(RTD;Resistance Temperature Detector)인 것을 특징으로 하는 플라즈마 처리장치.

The plasma processing apparatus of claim 1, wherein the temperature sensor is a platinum resistance thermometer (RTD).

KR1020110010720A 2011-02-07 2011-02-07 Plasma processing Apparatus KR101349328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110010720A KR101349328B1 (en) 2011-02-07 2011-02-07 Plasma processing Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110010720A KR101349328B1 (en) 2011-02-07 2011-02-07 Plasma processing Apparatus

Publications (2)

Publication Number Publication Date
KR20120090347A KR20120090347A (en) 2012-08-17
KR101349328B1 true KR101349328B1 (en) 2014-01-13

Family

ID=46883439

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110010720A KR101349328B1 (en) 2011-02-07 2011-02-07 Plasma processing Apparatus

Country Status (1)

Country Link
KR (1) KR101349328B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058927B1 (en) * 2019-12-02 2020-02-11 장병철 Improved test socket for small outline package ic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060076853A (en) * 2004-12-29 2006-07-05 주식회사 에이디피엔지니어링 Apparatus for processing substrate with plasma
JP2010245218A (en) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp Plasma processing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060076853A (en) * 2004-12-29 2006-07-05 주식회사 에이디피엔지니어링 Apparatus for processing substrate with plasma
JP2010245218A (en) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp Plasma processing apparatus

Also Published As

Publication number Publication date
KR20120090347A (en) 2012-08-17

Similar Documents

Publication Publication Date Title
TWI244108B (en) Substrate processing apparatus
US11024522B2 (en) Virtual sensor for spatially resolved wafer temperature control
US20160169766A1 (en) Leakage determining method, substrate processing apparatus and storage medium
CN105993062B (en) Gas cooled substrate support for stabilized high temperature deposition
TWI442479B (en) Heat treatment apparatus, method of processing substrate and method for manufacturing semiconductor device
TW201243955A (en) Apparatus for monitoring and controlling substrate temperature
KR20190138315A (en) Integrated substrate temperature measurement on high temperature ceramic heaters
US8734148B2 (en) Heat treatment apparatus and method of manufacturing semiconductor device
US20110204036A1 (en) Heat treatment apparatus
US10636630B2 (en) Processing chamber and method with thermal control
JP4251887B2 (en) Vacuum processing equipment
KR101349328B1 (en) Plasma processing Apparatus
US20110104363A1 (en) Plasma processing apparatus and method for controlling substrate attraction force in plasma processing apparatus
KR101509632B1 (en) Substrate processing apparatus and substrate processing method
JPH10144618A (en) Heater for manufacturing semiconductor device
TWI837124B (en) Virtual sensor for spatially resolved wafer temperature control
KR20120090343A (en) Plasma processing apparatus
TWI791558B (en) Method, non-transitory machine readable storage medium, and system for temperature control of processing chambers for semiconductor substrates
US20240087925A1 (en) Information processing apparatus and parameter control method
JP2005259902A (en) Substrate processor
JP2008218698A (en) Heat treatment apparatus
CN105088353B (en) Plasma reaction equipment and its temperature monitoring method
KR101629770B1 (en) Method for temperature compensation and appratus for manufacturing semiconductor devices
US20240110836A1 (en) Vacuum sealing integrity of cryogenic electrostatic chucks using non-contact surface temperature measuring probes
JP2006114638A (en) Heat treatment apparatus, heat treatment method, and method of calculating heat-up rate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee