JP2010245218A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2010245218A
JP2010245218A JP2009090990A JP2009090990A JP2010245218A JP 2010245218 A JP2010245218 A JP 2010245218A JP 2009090990 A JP2009090990 A JP 2009090990A JP 2009090990 A JP2009090990 A JP 2009090990A JP 2010245218 A JP2010245218 A JP 2010245218A
Authority
JP
Japan
Prior art keywords
sensor
base material
temperature
processing apparatus
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009090990A
Other languages
Japanese (ja)
Other versions
JP5232064B2 (en
Inventor
Satoyuki Watanabe
智行 渡辺
Hiroo Kitada
裕穂 北田
Yutaka Omoto
大本  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009090990A priority Critical patent/JP5232064B2/en
Publication of JP2010245218A publication Critical patent/JP2010245218A/en
Application granted granted Critical
Publication of JP5232064B2 publication Critical patent/JP5232064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing apparatus that enhances the reproducibility of wafer processing precision by monitoring the secular change of a temperature sensor. <P>SOLUTION: A sample placing table 107 of the plasma processing apparatus includes a metallic substrate 201, a dielectric-made film 202 arranged on an upper surface of the substrate and having a sample mounted thereupon, a film-like heater 204 arranged in the film, a passage 203 which is disposed in the substrate and in which a refrigerant flows, and the sensor 205 which is inserted into the substrate and detects the temperature of the substrate, abnormality of the sensor being detected upon temporal variation in output from the sensor when a heater is supplied with predetermined electric power. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プラズマ処理装置に係り、特に、温度センサの経時劣化を監視し、試料の加工精度の低下を抑制することのできるプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus, and more particularly, to a plasma processing apparatus capable of monitoring deterioration over time of a temperature sensor and suppressing a decrease in processing accuracy of a sample.

真空容器内の処理室に配置されたウエハを処理室内に発生させたプラズマを用いて処理するプラズマ処理装置においては、処理室内に置かれた試料載置台の温度を処理に適した温度に調整してウエハを処理することが重要である。このため、プラズマ処理装置の試料載置台には温度センサが取り付けられている。   In a plasma processing apparatus for processing a wafer placed in a processing chamber in a vacuum chamber using plasma generated in the processing chamber, the temperature of a sample mounting table placed in the processing chamber is adjusted to a temperature suitable for processing. It is important to process the wafer. For this reason, a temperature sensor is attached to the sample mounting table of the plasma processing apparatus.

このように、プラズマ処理装置においては、ウエハを加工する場合、加工に適した温度に調整し加工精度を高めることが行われてきた。   As described above, in the plasma processing apparatus, when a wafer is processed, the processing accuracy is increased by adjusting the temperature to a temperature suitable for the processing.

このような従来の技術として特許文献1が知られている。特許文献1は、試料載置台に取り付けられた温度センサにより試料載置台の温度を測定して試料載置台に置かれたウエハの温度を推定し、試料載置台の上部に埋め込まれたヒータでウエハを加熱することにより、ウエハを加工に適した温度に調整し、ウエハに高精度な加工を施すものである。   Patent Document 1 is known as such a conventional technique. In Patent Document 1, the temperature of the sample mounting table is measured by a temperature sensor attached to the sample mounting table, the temperature of the wafer placed on the sample mounting table is estimated, and a wafer embedded in the upper part of the sample mounting table is used for the wafer. By heating the wafer, the wafer is adjusted to a temperature suitable for processing, and the wafer is processed with high accuracy.

特開2008−177285号公報JP 2008-177285 A

前記従来技術においては、試料載置台に取り付けられた温度センサの測定精度がウエハ温度の制御に影響を与えるため、高精度のウエハ加工を行うためには温度センサの測定精度が重要となる。   In the prior art, since the measurement accuracy of the temperature sensor attached to the sample mounting table affects the control of the wafer temperature, the measurement accuracy of the temperature sensor is important for performing high-precision wafer processing.

前記温度センサは接触熱抵抗が小さくなるように試料載置台に取り付けられている。しかしながら、経時変化などの理由で試料台との接触状態が変化すると、接触熱抵抗が変化し、温度測定精度が低下することになる。この場合、測定系は実際の温度と異なる値を測定することになり、誤ったヒータ制御が行われて、ウエハ加工の精度が低下する。   The temperature sensor is attached to the sample mounting table so as to reduce the contact thermal resistance. However, if the contact state with the sample stage changes due to a change over time or the like, the contact thermal resistance changes and the temperature measurement accuracy decreases. In this case, the measurement system measures a value different from the actual temperature, erroneous heater control is performed, and the accuracy of wafer processing decreases.

本発明はこれらの問題点に鑑みてなされたもので、温度センサの経時変化を監視して、ウエハの加工精度の低下を招く以前に温度測定精度の低下を検知することのできるプラズマ処理装置を提供するものである。   The present invention has been made in view of these problems, and a plasma processing apparatus capable of monitoring a change in temperature sensor over time and detecting a decrease in temperature measurement accuracy before causing a decrease in wafer processing accuracy. It is to provide.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

真空処理室と、該真空処理室内に配置され、導入された処理ガスに高周波エネルギを供給してプラズマを生成するプラズマ生成用高周波波電源と、前記真空処理室内に配置された試料載置台と、前記試料載置台に高周波電圧を供給する高周波バイアス電源を備え、前記プラズマ中のイオンを吸引して前記試料載置台上に載置した試料にプラズマ処理を施すプラズマ処理装置において、前記試料載置台は、金属製の基材と、該基材の上面に配置されその上に前記試料が載せられる誘電体製の膜と、該膜内に配置された膜状のヒータと、前記基材内に配置され内部に冷媒が流れる通路と、前記基材の内部に挿入され前記基材の温度を検知するセンサとを備え、前記ヒータに所定の電力を供給した際の前記センサからの出力の時間変化をもとに前記センサの異常を検知する。   A vacuum processing chamber, a high-frequency wave power source for generating plasma that supplies high-frequency energy to the introduced processing gas and generates plasma, and a sample mounting table disposed in the vacuum processing chamber; A plasma processing apparatus comprising a high-frequency bias power source for supplying a high-frequency voltage to the sample mounting table, wherein the sample mounting table performs plasma processing on the sample mounted on the sample mounting table by attracting ions in the plasma. A metal substrate, a dielectric film disposed on the upper surface of the substrate and on which the sample is placed, a film-shaped heater disposed in the film, and a substrate disposed in the substrate And a passage through which the refrigerant flows, and a sensor that is inserted inside the base material and detects the temperature of the base material, and the time change of the output from the sensor when a predetermined power is supplied to the heater. Based on the above Detecting an abnormality of the capacitor.

本発明は、以上の構成を備えるため、温度センサの経時変化を監視して、ウエハの加工精度の低下を招くことなく温度測定精度の低下を検知することができる。   Since the present invention has the above-described configuration, it is possible to detect a decrease in temperature measurement accuracy by monitoring a change with time of the temperature sensor without causing a decrease in wafer processing accuracy.

本発明の実施形態に係るプラズマ処理装置を説明する図である。It is a figure explaining the plasma processing apparatus which concerns on embodiment of this invention. 真空容器内に配置された試料載置台の詳細を説明する図である。It is a figure explaining the detail of the sample mounting base arrange | positioned in a vacuum vessel. 経時変化に伴う温度測定精度の低下を検知する方法を説明する図である。It is a figure explaining the method of detecting the fall of the temperature measurement precision accompanying a time-dependent change. 経時変化に伴う温度測定精度の低下を検知する方法を説明する図である。It is a figure explaining the method of detecting the fall of the temperature measurement precision accompanying a time-dependent change. 時定数τの経時変化の例を示す図である。It is a figure which shows the example of a time-dependent change of time constant (tau).

以下、本発明の実施形態を添付図面を参照しながら説明する。図1は、本発明の実施形態に係るプラズマ処理装置を説明する図である。図1において、プラズマ処理装置は真空容器101、該容器により形成される処理室103を備え、処理室103内は真空排気装置102により減圧される。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram illustrating a plasma processing apparatus according to an embodiment of the present invention. In FIG. 1, the plasma processing apparatus includes a vacuum vessel 101 and a processing chamber 103 formed by the vessel, and the inside of the processing chamber 103 is decompressed by a vacuum exhaust device 102.

処理室103の上部には共振容器106が配置され、マイクロ波源104からのマイクロ波は導波管105を介して共振容器106内に導入される。なお、真空容器101には図示しないガス導入系が接続されている。   A resonance container 106 is disposed above the processing chamber 103, and the microwave from the microwave source 104 is introduced into the resonance container 106 through the waveguide 105. A gas introduction system (not shown) is connected to the vacuum vessel 101.

真空容器101の下部中央には、ウエハがその上面に載置される試料載置台107(試料載置電極)が配置され、試料載置台107には、バイアス電源108によりバイアス電圧を加えることができる。また試料載置台107は、ウエハの温度を制御するヒータ及び該ヒータ用の電源109、試料載置台を冷却するための冷媒を循環して供給する温調器110が接続されている。また、ヒータ電源109,バイアス電源108,温調器110は、コントローラ111を介してユーザインターフェイス112に接続されている。   A sample mounting table 107 (sample mounting electrode) on which a wafer is mounted on the upper surface of the vacuum vessel 101 is disposed at the lower center of the vacuum vessel 101, and a bias voltage can be applied to the sample mounting table 107 by a bias power source 108. . The sample mounting table 107 is connected to a heater that controls the temperature of the wafer, a power source 109 for the heater, and a temperature controller 110 that circulates and supplies a coolant for cooling the sample mounting table. The heater power supply 109, the bias power supply 108, and the temperature controller 110 are connected to the user interface 112 via the controller 111.

前記ガス導入系を介して真空容器101内に導入されたガスは、マイクロ波によりプラズマ化され、ウエハに所定のプラズマ処理を施すことができる。なお、プラズマの生成手段は、前記マイクロ波を用いた手段に限定されるものではなく、高周波を用いた静電結合手段または誘導結合手段によるプラズマ生成手段であってもよい。   The gas introduced into the vacuum vessel 101 through the gas introduction system is turned into plasma by microwaves, and a predetermined plasma treatment can be performed on the wafer. The plasma generating means is not limited to the means using the microwave, but may be a plasma generating means using electrostatic coupling means or inductive coupling means using high frequency.

図2は、真空容器101内に配置された試料載置台107の詳細を説明する図である。試料載置台はAlまたはTi等の金属で構成される基材部201と、Al等の誘電体で構成された誘電体膜202を備える。ここで基材部201の厚さは30mm程度である。また、基材部201の内部には基材部201の冷却のための冷媒が流れる流路である冷媒溝203が形成されている。 FIG. 2 is a diagram for explaining details of the sample mounting table 107 arranged in the vacuum vessel 101. The sample mounting table includes a base material portion 201 made of a metal such as Al or Ti, and a dielectric film 202 made of a dielectric material such as Al 2 O 3 . Here, the thickness of the base material part 201 is about 30 mm. In addition, a coolant groove 203 that is a flow path through which a coolant for cooling the substrate portion 201 flows is formed inside the substrate portion 201.

また、Al等からなる誘電体膜202は、例えば溶射によって形成される。誘電体膜202の内部には、ヒータ機能を備えた電極膜204が配置されており、その上下を誘電体膜202が覆っている。前記電極膜204は、例えば溶射によって形成される。溶射に用いる金属をしては、W、抵抗率を制御したニッケル−クロム合金やニッケル−アルミ合金、あるいはWに適当な添加金属を混ぜ抵抗率を制御したものなどの抵抗率が管理された金属が用いられる。 Further, the dielectric film 202 made of Al 2 O 3 or the like is formed by, for example, thermal spraying. An electrode film 204 having a heater function is disposed inside the dielectric film 202, and the dielectric film 202 covers the upper and lower sides thereof. The electrode film 204 is formed by thermal spraying, for example. The metal used for thermal spraying is W, a nickel-chromium alloy or nickel-aluminum alloy whose resistivity is controlled, or a metal whose resistivity is controlled such as a suitable additive metal mixed with W. Is used.

電極膜204を挟み込んだ誘電体膜202の厚さは0.5mm程度と基材部201に比して薄く、低熱容量である。このため、ヒータ機能を有する電極膜204により誘電体膜202の温度をステップ状に変化させることができる。   The thickness of the dielectric film 202 sandwiching the electrode film 204 is about 0.5 mm, which is thinner than the substrate part 201 and has a low heat capacity. Therefore, the temperature of the dielectric film 202 can be changed stepwise by the electrode film 204 having a heater function.

基材部201には、基材部201の温度を測定する温度センサ205を取り付けるための開口部があり、この開口部に温度センサ205が取り付けられている。温度センサ205に用いる素子としては白金測温抵抗体あるいは熱電対が用いられる。温度センサ205と基材部201との良好な接触を保つため、温度センサ205の下部には圧縮バネ206が取り付けられており、押さえ部207により圧縮バネ208を圧縮することにより接触を保持している。センサの先端は前記通路と前記誘電体の膜が配置される面との間の面に位置している。また、温度センサ205はコントローラ111を通じてユーザインターフェイス112に接続されている。   The base material part 201 has an opening for attaching a temperature sensor 205 for measuring the temperature of the base material part 201, and the temperature sensor 205 is attached to this opening part. As an element used for the temperature sensor 205, a platinum resistance thermometer or a thermocouple is used. In order to maintain good contact between the temperature sensor 205 and the base material part 201, a compression spring 206 is attached to the lower part of the temperature sensor 205, and the contact is maintained by compressing the compression spring 208 by the pressing part 207. Yes. The tip of the sensor is located on a surface between the passage and the surface on which the dielectric film is disposed. The temperature sensor 205 is connected to the user interface 112 through the controller 111.

コントローラ111は、温度センサ205を介して得た基材部201の温度をもとに誘電体膜202上のウエハの温度を推定し、加工に適したウエハ温度分布が得られるようにヒータ電源109を制御する。   The controller 111 estimates the temperature of the wafer on the dielectric film 202 based on the temperature of the base material portion 201 obtained through the temperature sensor 205, and the heater power supply 109 so as to obtain a wafer temperature distribution suitable for processing. To control.

ウエハ温度分布を高精度で制御するためには、基材部201の温度を正確に得ることが重要であり、経時変化あるいは取り付けの緩み等による基材部201と温度センサ205間の接触状態に変化が生じると、該変化に伴い温度測定精度が低下して、ウエハ加工精度が低下することがある。   In order to control the wafer temperature distribution with high accuracy, it is important to accurately obtain the temperature of the base material portion 201. The contact state between the base material portion 201 and the temperature sensor 205 due to a change over time or looseness of attachment or the like is important. When a change occurs, the temperature measurement accuracy may decrease with the change, and the wafer processing accuracy may decrease.

図3、図4は、温度センサの測定系の経時変化に伴う温度測定精度の低下を検知する方法を説明する図である。   FIG. 3 and FIG. 4 are diagrams for explaining a method for detecting a decrease in temperature measurement accuracy accompanying a change with time of the measurement system of the temperature sensor.

まず、冷媒により電極107を一定の温度に調整する。ヒータ機能を有する電極膜204に一定の電力をヒータ電源109から供給すると、誘電体膜202の温度はステップ状に上昇する。温度が上昇した誘電体膜202により基材部201が暖められ、温度センサ205の示す温度も上昇する。   First, the electrode 107 is adjusted to a constant temperature with a refrigerant. When constant power is supplied from the heater power supply 109 to the electrode film 204 having a heater function, the temperature of the dielectric film 202 rises in a stepped manner. The base material portion 201 is warmed by the dielectric film 202 whose temperature has increased, and the temperature indicated by the temperature sensor 205 also increases.

図3は、温度センサが検知した温度の時間変化を示した図である。後述する手順によりこの関係から、基材部と温度センサとの接触部固有の時定数τを求めることができる。この値は接触状態が変化しなければ一定の値をとる。このため、前記時定数τの変化の傾向を調べることにより経時変化による温度測定精度の低下を検知することができる。   FIG. 3 is a diagram showing a temporal change in temperature detected by the temperature sensor. From this relationship, a time constant τ specific to the contact portion between the base material portion and the temperature sensor can be obtained from the relationship described later. This value is a constant value unless the contact state changes. For this reason, it is possible to detect a decrease in temperature measurement accuracy due to a change with time by examining the change tendency of the time constant τ.

図4は、異常検知の手順を説明する図である。まず、時間t1において、冷媒により電極の温度を一定に調整した後、ユーザインターフェイスを介して異常検知の実施指令を出力する。なお、予め設定した一定の期間ごとに前記実施指令を出力するようにしてもよい(ステップS401)。次に、温度センサ205により電極107の温度(開始温度:T0)を取得する(ステップS402)。その後ヒータ電源109により電極膜204に一定の電力を供給し、所定の時間が経過後の時間t2において、電極107の温度(到達温度:T1)を取得する(ステップS403,404)。   FIG. 4 is a diagram illustrating an abnormality detection procedure. First, at time t1, after the temperature of the electrode is adjusted to be constant by the refrigerant, an abnormality detection execution command is output via the user interface. Note that the execution command may be output every predetermined period (step S401). Next, the temperature of the electrode 107 (starting temperature: T0) is acquired by the temperature sensor 205 (step S402). Thereafter, a constant power is supplied to the electrode film 204 by the heater power supply 109, and the temperature (attainment temperature: T1) of the electrode 107 is acquired at a time t2 after a predetermined time has elapsed (steps S403 and 404).

次に、開始温度(T0)と到達温度(T1)から温度の変化量(ΔT)を求め、ヒータ電源109で電力を印加後、一定の割合だけ温度変化するのにかかった時間(時定数:τ1)を求める(ステップS406)。なお、時定数τは図3に示すように、前記温度変化量ΔTの約63%に達するに要する時間t(=t1−t0)として求めることができる。   Next, the amount of temperature change (ΔT) is obtained from the start temperature (T0) and the reached temperature (T1), and the time required for the temperature to change by a certain rate after applying power by the heater power supply 109 (time constant: (τ1) is obtained (step S406). As shown in FIG. 3, the time constant τ can be obtained as a time t (= t1−t0) required to reach about 63% of the temperature change amount ΔT.

次に、取得した時定数(τ1)を、プラズマ処理装置の例えば運用開始時に取得した時定数(τ0)と比較する。運用開始時の時定数からの変化量が基準を超えた場合は、経時変化により温度測定精度が低下したと判断し、センサ異常と判定する(ステップS408a,409)。変化量が基準内であれば正常と判定する(ステップS408b,409)。判定結果は表示器に表示する(ステップS409)。   Next, the acquired time constant (τ1) is compared with the time constant (τ0) acquired at the start of operation of the plasma processing apparatus, for example. If the amount of change from the time constant at the start of operation exceeds the reference, it is determined that the temperature measurement accuracy has decreased due to changes over time, and it is determined that the sensor is abnormal (steps S408a and 409). If the amount of change is within the reference, it is determined as normal (steps S408b and 409). The determination result is displayed on the display (step S409).

なお、測定開始時の試料載置電極の温度T0は、測定ごとに同じ温度T0にしておくことが望ましいが、同じ温度にしておくことが困難である場合は、運用開始前に、複数の開始温度Tnで時定数を測定して、温度Tnにおける時定数を開始温度T0における時定数に換算するテーブルを用意しておき、このテーブルにしたがって補正を加えるとよい(ステップS406)
図5は、時定数τの経時変化の例を示す図である。プラズマ処理装置の運用開始時に取得した時定数を基準として、基準からの変化量を示している。図の例では初期から運用開始後11回目までの時定数の変化量は、測定誤差で得られる基準の範囲内にあり、温度測定精度は正常であった。しかし、運用開始後12回目において時定数の変化量が基準を超えており、温度測定精度が低下していることを検知できた。異常検知後、温度センサ205を再調整することによりウエハ加工精度の低下を防止できた。
Note that the temperature T0 of the sample mounting electrode at the start of measurement is desirably set to the same temperature T0 for each measurement. A table for measuring the time constant at the temperature Tn and converting the time constant at the temperature Tn into the time constant at the start temperature T0 is prepared, and correction is made according to this table (step S406).
FIG. 5 is a diagram illustrating an example of a change with time of the time constant τ. The amount of change from the reference is shown based on the time constant acquired at the start of operation of the plasma processing apparatus. In the example of the figure, the amount of change in the time constant from the initial stage to the 11th time after the start of operation is within the reference range obtained by the measurement error, and the temperature measurement accuracy is normal. However, the change amount of the time constant exceeded the reference at the 12th time after the start of operation, and it was detected that the temperature measurement accuracy was lowered. After the abnormality was detected, the temperature sensor 205 was readjusted to prevent a decrease in wafer processing accuracy.

以上説明したように、本実施形態によれば、基材部と温度センサとの接触部固有の時定数τの変化をもとに温度センサの経時変化を監視することができ、ウエハの加工精度を低下させることなく温度測定精度の低下を検知することができる。   As described above, according to the present embodiment, it is possible to monitor the change over time of the temperature sensor based on the change in the time constant τ inherent in the contact portion between the base material portion and the temperature sensor, and the wafer processing accuracy It is possible to detect a decrease in temperature measurement accuracy without lowering.

101 真空容器
103 処理室
104 マイクロ波源
107 試料載置台
109 ヒータ電源
201 基材部
202 誘電体膜
203 冷媒溝
204 電極膜(ヒータ)
205 温度センサ
206 圧縮ばね
207 押さえ部
DESCRIPTION OF SYMBOLS 101 Vacuum container 103 Processing chamber 104 Microwave source 107 Sample mounting base 109 Heater power supply 201 Base material part 202 Dielectric film 203 Refrigerant groove 204 Electrode film (heater)
205 Temperature sensor 206 Compression spring 207 Presser

Claims (5)

真空処理室と、該真空処理室内に配置され、導入された処理ガスに高周波エネルギを供給してプラズマを生成するプラズマ生成用高周波波電源と、前記真空処理室内に配置された試料載置台と、前記試料載置台に高周波電圧を供給する高周波バイアス電源を備え、前記プラズマ中のイオンを吸引して前記試料載置台上に載置した試料にプラズマ処理を施すプラズマ処理装置において、
前記試料載置台は、金属製の基材と、該基材の上面に配置されその上に前記試料が載せられる誘電体製の膜と、該膜内に配置された膜状のヒータと、前記基材内に配置され内部に冷媒が流れる通路と、前記基材の内部に挿入され前記基材の温度を検知するセンサとを備え、前記ヒータに所定の電力を供給した際の前記センサからの出力の時間変化をもとに前記センサの異常を検知することを特徴とするプラズマ処理装置。
A vacuum processing chamber, a high-frequency wave power source for generating plasma that supplies high-frequency energy to the introduced processing gas and generates plasma, and a sample mounting table disposed in the vacuum processing chamber; A plasma processing apparatus comprising a high-frequency bias power source for supplying a high-frequency voltage to the sample mounting table, and performing plasma processing on the sample mounted on the sample mounting table by attracting ions in the plasma.
The sample mounting table includes a metal base material, a dielectric film disposed on the top surface of the base material on which the sample is placed, a film-like heater disposed in the film, A passage disposed inside the base material through which a refrigerant flows, and a sensor inserted into the base material to detect the temperature of the base material, from the sensor when a predetermined electric power is supplied to the heater A plasma processing apparatus for detecting an abnormality of the sensor based on a temporal change in output.
請求項1記載のプラズマ処理装置において、
前記センサは、その先端を前記基材の内部に形成された面に押圧して保持されていることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
The plasma processing apparatus, wherein the sensor has its tip pressed against a surface formed inside the substrate.
請求項1記載のプラズマ処理装置において、
前記センサの先端は前記通路と前記誘電体の膜が配置される面との間の面に位置することを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
The plasma processing apparatus according to claim 1, wherein a tip of the sensor is located on a surface between the passage and a surface on which the dielectric film is disposed.
請求項1記載のプラズマ処理装置において、
前記センサの異常は、ヒータに所定の電力を供給した際の前記センサからの出力の時間変化をもとに演算した時定数の経時変化をもとに検出することを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
An abnormality of the sensor is detected based on a change with time of a time constant calculated based on a change with time of an output from the sensor when a predetermined power is supplied to a heater.
金属製の基材と、該基材の上面に配置されその上に前記試料が載せられる誘電体製の膜と、該膜内に配置された膜状のヒータと、前記基材内に配置され内部に冷媒が流れる通路と、前記基材の内部に挿入されて前記基材の温度を検知するセンサとを備えた試料載置台における前記センサの異常を検知するセンサの異常検知方法であって、前記ヒータに所定の電力を供給した際の前記センサからの出力の時間変化およびその経時変化をもとに、基材部と温度センサとの接触部固有の時定数の経時変化を取得し前記センサの異常を検知することを特徴とするセンサの異常検知方法。   A metal base material, a dielectric film disposed on the top surface of the base material on which the sample is placed, a film-like heater disposed in the film, and a base material disposed in the base material A sensor abnormality detection method for detecting an abnormality of the sensor in a sample mounting table including a passage through which a refrigerant flows and a sensor inserted into the substrate to detect the temperature of the substrate, Based on the change over time of the output from the sensor when a predetermined power is supplied to the heater and the change over time, the change over time of the time constant specific to the contact portion between the base material part and the temperature sensor is acquired, and the sensor An abnormality detection method for a sensor, characterized by detecting an abnormality in the sensor.
JP2009090990A 2009-04-03 2009-04-03 Plasma processing equipment Active JP5232064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090990A JP5232064B2 (en) 2009-04-03 2009-04-03 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090990A JP5232064B2 (en) 2009-04-03 2009-04-03 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2010245218A true JP2010245218A (en) 2010-10-28
JP5232064B2 JP5232064B2 (en) 2013-07-10

Family

ID=43097926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090990A Active JP5232064B2 (en) 2009-04-03 2009-04-03 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5232064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349328B1 (en) * 2011-02-07 2014-01-13 엘아이지에이디피 주식회사 Plasma processing Apparatus
WO2021176887A1 (en) * 2020-03-04 2021-09-10 株式会社Kokusai Electric Substrate treatment device, manufacturing method of semiconductor device, substrate treatment method and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141870A (en) * 1996-11-05 1998-05-29 Kokusai Electric Co Ltd Temperature monitoring apparatus for treating furnace
JP2006080222A (en) * 2004-09-08 2006-03-23 Hitachi Ltd Wafer processing apparatus
JP2008177285A (en) * 2007-01-17 2008-07-31 Hitachi High-Technologies Corp Plasma processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141870A (en) * 1996-11-05 1998-05-29 Kokusai Electric Co Ltd Temperature monitoring apparatus for treating furnace
JP2006080222A (en) * 2004-09-08 2006-03-23 Hitachi Ltd Wafer processing apparatus
JP2008177285A (en) * 2007-01-17 2008-07-31 Hitachi High-Technologies Corp Plasma processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349328B1 (en) * 2011-02-07 2014-01-13 엘아이지에이디피 주식회사 Plasma processing Apparatus
WO2021176887A1 (en) * 2020-03-04 2021-09-10 株式会社Kokusai Electric Substrate treatment device, manufacturing method of semiconductor device, substrate treatment method and program
JP2021141167A (en) * 2020-03-04 2021-09-16 株式会社Kokusai Electric Substrate processing device, manufacturing method for semiconductor device, and program

Also Published As

Publication number Publication date
JP5232064B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US11557468B2 (en) Plasma processing apparatus, temperature control method, and temperature control program
TWI782133B (en) Plasma processing apparatus, temperature control method, and temperature control program
US11546970B2 (en) Plasma processing apparatus and temperature control method
US11862438B2 (en) Plasma processing apparatus, calculation method, and calculation program
US10892144B2 (en) Plasma processing apparatus, monitoring method, and monitoring program
JP7202972B2 (en) PLASMA PROCESSING APPARATUS, PLASMA STATE DETECTION METHOD AND PLASMA STATE DETECTION PROGRAM
JP2012253222A (en) Method of predicting service life of resistance heating type heater, and thermal processing device
US20050173407A1 (en) Feedback control system and method for maintaining constant resistance operation of electrically heated elements
JP5232064B2 (en) Plasma processing equipment
US20070240825A1 (en) Wafer processing apparatus capable of controlling wafer temperature
US20210166916A1 (en) Plasma processing apparatus and electrode consumption amount measuring method
JP2023099617A (en) Plasma processing apparatus, monitoring method and monitoring program
US11621177B2 (en) Plasma processing apparatus and calculation method
JP2006080222A (en) Wafer processing apparatus
JP2021130864A (en) Plasma treatment apparatus and member temperature determining method
TWI837124B (en) Virtual sensor for spatially resolved wafer temperature control
KR101629770B1 (en) Method for temperature compensation and appratus for manufacturing semiconductor devices
TWI819012B (en) Plasma treatment device, plasma state detection method and plasma state detection program
WO2024034355A1 (en) Parameter estimation system, parameter estimation method, computer program, and substrate processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5232064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350