KR101339221B1 - Control method of exhaust-gas recirculation rate according to combustion pressure for internal combustion engine - Google Patents

Control method of exhaust-gas recirculation rate according to combustion pressure for internal combustion engine Download PDF

Info

Publication number
KR101339221B1
KR101339221B1 KR1020080120065A KR20080120065A KR101339221B1 KR 101339221 B1 KR101339221 B1 KR 101339221B1 KR 1020080120065 A KR1020080120065 A KR 1020080120065A KR 20080120065 A KR20080120065 A KR 20080120065A KR 101339221 B1 KR101339221 B1 KR 101339221B1
Authority
KR
South Korea
Prior art keywords
exhaust gas
pressure
gas recirculation
internal combustion
standard deviation
Prior art date
Application number
KR1020080120065A
Other languages
Korean (ko)
Other versions
KR20100061163A (en
Inventor
진재민
이동철
김보용
정인수
Original Assignee
현대자동차 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차 주식회사 filed Critical 현대자동차 주식회사
Priority to KR1020080120065A priority Critical patent/KR101339221B1/en
Publication of KR20100061163A publication Critical patent/KR20100061163A/en
Application granted granted Critical
Publication of KR101339221B1 publication Critical patent/KR101339221B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

본 발명은 내연기관의 배기가스 재순환량 제어방법에 관한 것으로, 보다 상세하게는 실린더 내부의 연소압력에 따른 배기가스 재순환량 제어방법에 관한 것이다.The present invention relates to a method for controlling the exhaust gas recirculation amount of an internal combustion engine, and more particularly, to a method for controlling the exhaust gas recirculation amount according to the combustion pressure in a cylinder.

이를 위해, 본 발명은 a) 내연기관에 장착된 실린더 내부의 연소압력을 검출하는 단계;To this end, the present invention comprises the steps of: a) detecting the combustion pressure inside the cylinder mounted to the internal combustion engine;

b) 크랭크각도에 대한 연소압력의 최대기울기를 계산하는 단계; 그리고,b) calculating the maximum slope of the combustion pressure with respect to the crank angle; And,

c) 상기 최대 기울기의 표준편차를 연산하는 단계;c) calculating a standard deviation of the maximum slope;

를 포함하되, , ≪ / RTI &

상기 표준편차가 기 설정된 표준값보다 작을 경우에는 상기 a), b), c) 단계를 반복적으로 수행하고, 상기 표준편차가 기 설정된 표준값보다 큰 경우에는 배기가스 재순환량을 감소시키는 것을 특징으로 하는 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법을 제공한다.When the standard deviation is smaller than the preset standard value, steps a), b) and c) are repeatedly performed, and when the standard deviation is larger than the preset standard value, the exhaust gas recycle amount is reduced. It provides a method for controlling the exhaust gas recirculation amount according to the combustion pressure of the engine.

배기가스 재순환량, 연소압력, 내연기관 Exhaust gas recirculation, combustion pressure, internal combustion engine

Description

내연기관의 연소압력에 따른 배기가스 재순환량 제어방법{CONTROL METHOD OF EXHAUST-GAS RECIRCULATION RATE ACCORDING TO COMBUSTION PRESSURE FOR INTERNAL COMBUSTION ENGINE}CONTROL METHOD OF EXHAUST-GAS RECIRCULATION RATE ACCORDING TO COMBUSTION PRESSURE FOR INTERNAL COMBUSTION ENGINE}

본 발명은 내연기관의 배기가스 재순환량 제어방법에 관한 것으로, 보다 상세하게는 실린더 내부의 연소압력에 따른 배기가스 재순환량 제어방법에 관한 것이다.The present invention relates to a method for controlling the exhaust gas recirculation amount of an internal combustion engine, and more particularly, to a method for controlling the exhaust gas recirculation amount according to the combustion pressure in a cylinder.

일반적으로 내연기관에 적용되는 장치로서 배기가스 중의 NOx의 생성을 억제하기 위해서 배기가스의 일부를 흡기계로 재순환시키는 배기가스 재순환(Exhaust-Gas Recirculation; EGR) 장치가 널리 공지되어 있다.In general, as an apparatus applied to an internal combustion engine, an Exhaust-Gas Recirculation (EGR) apparatus that recycles a part of the exhaust gas to an intake machine in order to suppress generation of NOx in the exhaust gas is well known.

이와 같은 EGR장치를 구비하는 내연기관은 EGR경로에 설치되는 EGR밸브의 개도제어를 통하여 기관운전상태에 따른 EGR량의 조정을 행하도록 한다.The internal combustion engine provided with such an EGR device adjusts the amount of EGR according to the engine operation state through the opening degree control of the EGR valve provided in the EGR path.

이러한 배기가스 재순환 장치는 흡기계에 스로틀밸브를 구비하는 내연기관의 배기의 일부를 흡기계로 송출하는 배기가스 순환통로와, 그 배기가스 순환통로에 구비되어 스로틀밸브 하류의 흡기 부압을 구동원으로 구동되어 배기가스 순환량을 제어하는 배기가스 순환밸브와, 그 배기가스 순환밸브의 밸브체에 부가되는 배기가 스 압력을 받아, 그 배기가스 압력이 소정치 이하인 경우에 상기 배기가스 순환밸브에 흡기 부압을 이끄는 통로의 일부를 대기로 연통시켜 배기가스 압력이 소정치를 초과하면 대기로의 연통을 차단하도록 개폐동작하여 배기순환밸브에 가해지는 배압을 일정하게 제어하는 배압제어밸브를 구비한다.Such an exhaust gas recirculation apparatus includes an exhaust gas circulation passage for sending a part of the exhaust of an internal combustion engine having a throttle valve in the intake system to the intake machine, and an intake negative pressure downstream of the throttle valve provided as a driving source provided in the exhaust gas circulation passage. The exhaust gas circulation valve for controlling the exhaust gas circulation amount and the exhaust gas pressure applied to the valve element of the exhaust gas circulation valve, and when the exhaust gas pressure is less than or equal to a predetermined value, the intake negative pressure is applied to the exhaust gas circulation valve. It is provided with a back pressure control valve for communicating a part of the leading passage to the atmosphere to open and close to block the communication to the atmosphere when the exhaust gas pressure exceeds a predetermined value to constantly control the back pressure applied to the exhaust circulation valve.

즉, 이것은 배압제어식 배기순환 제어장치이며, 배압제어밸브의 압력작동실 내의 압력이 낮고, 밸브체가 개구부로부터 이격되는 때에는 배기가스 순환밸브의 압력작동실 내에는 대기가 도입되어 밸브체가 강하하여 배기가스 순환밸브가 폐성상태로 되지만, 배압제어밸브의 압력작동실 내의 압력이 높이 다이어프램이 상승함으로써 밸브체가 개구부를 폐쇄하면 배기가스 순환밸브의 압력작동실 내로 흡기매니폴드 내의 부압이 부압도입 파이프를 개입하여 전달되고, 밸브체가 상승하여 배기순환밸브가 폐성상태로 되어 배기의 일부를 배기순환통로를 구비하여 흡기계로 도입시키도록 한다.That is, this is a back pressure control type exhaust circulation control device. When the pressure in the pressure operating chamber of the back pressure control valve is low, and the valve body is spaced from the opening, the atmosphere is introduced into the pressure operating chamber of the exhaust gas circulation valve and the valve body drops to exhaust gas. The circulation valve is closed, but when the pressure in the pressure operating chamber of the back pressure control valve rises and the valve body closes the opening, the negative pressure in the intake manifold passes through the negative pressure introducing pipe into the pressure operating chamber of the exhaust gas circulation valve. And the valve body is raised to make the exhaust circulation valve closed, so that a part of the exhaust gas is introduced into the intake machine with an exhaust circulation passage.

그런데, 이와 같이 종래의 배기가스 재순환 장치를 갖춘 내연기관에 있어서는, 배기가스 재순환 밸브에 의하여 배기가스 순환을 실시하지 않는 소정 운전 영역, 예를 들면 감속 운전 영역에 있어도, 그 배기가스 재순환밸브를 개폐 제어하는 배압제어밸브 상류에서 소정의 배기가스 압력이 그 배압제어밸브에 작용하고 있으므로 이 압력에 의해 배압제어밸브 내의 다이어프램이 진동을 일으켜 소음이 발생한다는 문제점이 있다.By the way, in the conventional internal combustion engine provided with the conventional exhaust gas recirculation apparatus, even if it is in the predetermined | prescribed operation area | region which does not perform exhaust gas circulation by an exhaust gas recirculation valve, for example, a deceleration operation area | region, the exhaust gas recirculation valve is opened and closed. Since a predetermined exhaust gas pressure acts on the back pressure control valve upstream of the back pressure control valve to be controlled, there is a problem that the diaphragm in the back pressure control valve vibrates and noise is generated by this pressure.

또한, 배기가스 재순환량을 증가시키면 연소의 안정도가 악화하고, HC의 배출수준이 증대하고, 연비도 악화할 뿐만 아니라, 과도상태(transient mode)에서는 터보랙(turbo-lag)과 같은 흡입 공기량 지연으로 인하여 과도한 EGR이 엔진으로 유입되어 연소가 불안정해진다.In addition, increasing exhaust gas recirculation deteriorates combustion stability, increases HC emission levels, reduces fuel economy, and delays intake air volume such as turbo-lag in transient mode. This causes excessive EGR to flow into the engine, resulting in unstable combustion.

또한, 이와 같은 EGR의 유량이 증가함에 따라 EGR통로를 유통하는 EGR가스에는 압력맥동이 생긴다.In addition, as the flow rate of the EGR increases, pressure pulsation occurs in the EGR gas flowing through the EGR passage.

그리고, 이 압력맥동을 갖는 EGR가스가 케이스를 갖는 EGR쿨러로 유입된다면 EGR가스의 고압의 압력파가 EGR쿨러에 작용하고 EGr쿨러를 진동시키고 소음을 발생시켜 버리는 경우가 있다.If the EGR gas having this pressure pulsation flows into the EGR cooler having a case, the high pressure pressure wave of the EGR gas may act on the EGR cooler, vibrate the EGr cooler, and generate noise.

따라서, 목표로 하는 NOx의 배출수준과, 엔진의 연소의 안정도가 양립하는 배기가스 재순환량의 범위에 EGR 유량을 제어할 필요가 있다.Therefore, it is necessary to control the EGR flow rate in a range of the exhaust gas recirculation amount in which the target emission level of NOx and the combustion stability of the engine are compatible.

따라서, 본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 실린더 내부의 압력에 따라 배기가스 재순환량을 감소시키며, 소음 및 진동이 최적화 되는 상태까지 배기가스 재순환량을 조절함으로써 엔진의 품질을 향상시킬 수 있는 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법을 제공하는 것이다.SUMMARY OF THE INVENTION Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to reduce the exhaust gas recirculation amount according to the pressure inside the cylinder, And controlling the exhaust gas recirculation amount based on the combustion pressure of the internal combustion engine.

이러한 목적을 달성하기 위한 본 발명의 실시예에 따른 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법은,Exhaust gas recirculation amount control method according to the combustion pressure of the internal combustion engine according to an embodiment of the present invention for achieving this object,

a) 내연기관에 장착된 실린더 내부의 연소압력을 검출하는 단계;a) detecting the combustion pressure inside the cylinder mounted to the internal combustion engine;

b) 크랭크각도에 대한 연소압력의 최대기울기를 계산하는 단계; 그리고,b) calculating the maximum slope of the combustion pressure with respect to the crank angle; And,

c) 상기 최대 기울기의 표준편차를 연산하는 단계;c) calculating a standard deviation of the maximum slope;

를 포함하되, , ≪ / RTI &

상기 표준편차가 기 설정된 표준값보다 작을 경우에는 상기 a), b), c) 단계를 반복적으로 수행하고, 상기 표준편차가 기 설정된 표준값보다 큰 경우에는 배기가스 재순환량을 감소시키는 것을 특징으로 한다.When the standard deviation is smaller than the preset standard value, steps a), b) and c) are repeatedly performed. When the standard deviation is larger than the preset standard value, the exhaust gas recirculation amount is reduced.

또한, 상기 표준편차는 점화직후부터 폭발이 끝나 압력이 저하되는 시점까지 연산되는 것을 특징으로 한다.In addition, the standard deviation is calculated from immediately after the ignition until the end of the explosion pressure drop.

또한, 상기 연소압력은 실린더 내부에 장착되는 압력센서로 검출하는 것을 특징으로 한다.In addition, the combustion pressure is characterized in that detected by the pressure sensor mounted inside the cylinder.

상술한 바와 같이 본 발명에 따른 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법에 의하면 실린더 내부의 압력에 따라 소음 및 진동이 최적화되는 상태까지 배기가스 재순환량을 감소시킴으로써 엔진의 품질향상을 기대할 수 있다.As described above, according to the exhaust gas recirculation amount control method according to the combustion pressure of the internal combustion engine according to the present invention, it is expected that the quality of the engine can be improved by reducing the exhaust gas recirculation amount until the noise and vibration are optimized according to the pressure inside the cylinder .

이하, 본 발명의 바람직한 실시예를 첨부한 도면에 의거하여 상세하게 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 일 실시예에 의한 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법에 적용되는 엔진에는 본 발명의 본래 목적상 도시하지 않은 기본적인 구성을 개략적으로 설명하면 다음과 같다.The engine applied to the method for controlling the exhaust gas recirculation amount according to the combustion pressure of the internal combustion engine according to an embodiment of the present invention will be described in brief with reference to a basic configuration not shown for the purpose of the present invention.

엔진에는 피스톤과 실린더로 구성되는 연소실이 있고, 이 연소실에는 흡기밸브와 배기밸브가 장착된다.The engine has a combustion chamber composed of a piston and a cylinder, and the combustion chamber is equipped with an intake valve and an exhaust valve.

연료분사장치가 상기 연소실의 내부에 장착되고, 통상적으로 엔진의 압축행정에 연료를 분사하게 된다.A fuel injection device is mounted inside the combustion chamber and typically injects fuel into the compression stroke of the engine.

또한, 상기 연소실 내의 혼합기는 점화플러그에 의해 점화된다.The mixer in the combustion chamber is also ignited by a spark plug.

상기 실린더에는 압력을 검출하는 압력센서가 구비되고, 다기통 엔진에서는 기통별 압력을 검출할 수 있도록 각각의 실린더에 구비될 수 있다.The cylinder is provided with a pressure sensor for detecting the pressure, in the multi-cylinder engine may be provided in each cylinder to detect the pressure for each cylinder.

크랭크축에는 엔진회전수를 계측하는 회전센서가 장착될 수도 있다.The crankshaft may be equipped with a rotation sensor for measuring the engine speed.

연소실로부터 배기관으로 흐르는 배기의 일부는 환상유로를 통하여 흡기관으로 복귀된다.Part of the exhaust flowing from the combustion chamber to the exhaust pipe is returned to the intake pipe through the annular flow passage.

이와 같이 하여서 연소속도와 연소온도가 저하되므로 NOx 배출량을 억제할 수 있게 된다.In this way, the combustion speed and the combustion temperature are reduced, so that NOx emissions can be suppressed.

스로틀밸브를 통과한 공기와 환류가스와의 비율 즉, 배기가스 재순환량은 EGR밸브로 조절한다.The ratio between the air passing through the throttle valve and the reflux gas, that is, the exhaust gas recirculation amount, is controlled by the EGR valve.

실린더 내부의 압력센서와 크랭크축에 설치한 회전센서의 신호는 연산장치로 입력되고, 이 연산장치는 이들 신호를 기초로 점화장치 제어회로, EGR제어회로 및 분사장치 제어회로에 명령을 보낸다.Signals of the pressure sensor inside the cylinder and the rotation sensor mounted on the crankshaft are input to the computing device, which sends commands to the ignition control circuit, the EGR control circuit, and the injector control circuit based on these signals.

상기와 같은 구성으로 이루어진 본 발명의 일 실시예에 의한 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법을 상세하게 설명하면 다음과 같다.Referring to the exhaust gas recirculation amount control method according to the combustion pressure of the internal combustion engine according to an embodiment of the present invention having the configuration as described above in detail as follows.

우선, 실린더 내부의 압력센서로부터 압력을 검출한다. (S100)First, the pressure is detected from the pressure sensor inside the cylinder. (S100)

이후, 상기 압력센서로부터 입력받은 압력값을 이용하여 압력신호 상승기울기 최대값을 계산한다. (S110)Then, the maximum value of the pressure signal rising slope is calculated using the pressure value received from the pressure sensor. (S110)

이때, 상기 압력센서의 출력을 점화직후(θ1)부터 폭발이 끝나 압력이 저하될 때 (θn)까지 크랭크각도에 동기하여 샘플링함으로써 각각의 각도에 대한 압력비인 P(θ1), P (θ2), …, P(θn)을 얻을 수 있다.At this time, the output of the pressure sensor is sampled synchronously with the crank angle from immediately after ignition (θ 1 ) to when the pressure is lowered after the explosion (θ n ), so that the pressure ratio P (θ 1 ) and P ( θ 2 ),. , P (θ n ) can be obtained.

즉, 상기의 압력비에 대한 미분연산을 한다.That is, differential calculation is performed with respect to the above pressure ratio.

또한, 당업자의 판단에 따라 n은 1부터 100으로 설정하고 θn은 점화 후 60도로 설정할 수 있다.In addition, according to the judgment of those skilled in the art, n may be set from 1 to 100 and θ n may be set to 60 degrees after ignition.

이후, 상기 크랭크각도에 대한 압력을 1부터 100까지의 표준편차를 계산한다. (S120)Then, the standard deviation of the pressure for the crank angle from 1 to 100 is calculated. (S120)

이후, 실험을 통하여 소음과 안정성이 양호한 표준값을 미리 설정하고, 이러한 표준값이 상기 표준편차보다 큰지를 판단한다. (S130)Then, a standard value having a good noise and stability is set in advance through experiments, and it is determined whether the standard value is larger than the standard deviation. (S130)

상기 단계에서 표준값이 표준편차보다 큰 경우에는 압력신호의 상승기울기 최대값을 계산하는 단계(S110)로 재실행하며, 표준값이 표준편차보다 작을 경우에는 배기가스 재순환량을 10% 감소시키는 EGR제어를 실행한다. (S140)If the standard value is greater than the standard deviation in the above step, it is executed again to calculate the maximum value of the rising slope of the pressure signal (S110). If the standard value is less than the standard deviation, the EGR control is performed to reduce the exhaust gas recirculation amount by 10%. do. (S140)

전술한 모든 과정들은 이그니션 스위치가 ON되어 있는 상태에서 반복 수행되도록 함으로써 실린더 내의 압력에 따라 배기가스 재순환량이 과도하게 높아지지 않도록 제어하여서 그에 따른 소음 및 진동을 저감하며 엔진의 안정성을 개선할 수 있다. All the above-described processes can be repeatedly performed while the ignition switch is turned on, thereby controlling the exhaust gas recirculation amount not excessively increased according to the pressure in the cylinder, thereby reducing noise and vibration and improving engine stability.

이후, 본 발명의 일 실시예에 의한 배기가스 재순환량 제어방법을 이용한 실험데이터를 설명한다.Next, experimental data using the exhaust gas recirculation amount control method according to an embodiment of the present invention will be described.

도 2a는 종래기술에 의하여 나타나는 압력에 대한 표준편차를 도시한 것으로서, 표준편차가 크다는 것을 알 수 있으며, 도 2b는 본 발명의 일 실시예에 의한 배기가스 재순환량 제어방법에 따라 배기가스 재순환량을 감소시킨 상태로서, 표준 편차가 작아짐을 알 수 있다.Figure 2a shows the standard deviation with respect to the pressure represented by the prior art, it can be seen that the standard deviation is large, Figure 2b is the exhaust gas recirculation amount according to the exhaust gas recirculation amount control method according to an embodiment of the present invention As the state is reduced, it can be seen that the standard deviation becomes small.

또한, 도 3a는 종래기술에 의하여 나타나는 크랭크각도에 대한 표준편차를 도시한 것으로서, 상기와 같이 표준편차가 크다는 것을 알 수 있으며, 도 3b는 본 발명의 일 실시예에 의한 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법에 의해 나타나는 압력에 대한 표준편차로서, 표준편차가 작아짐을 알 수 있다.In addition, Figure 3a shows a standard deviation with respect to the crank angle shown by the prior art, it can be seen that the standard deviation is large as described above, Figure 3b is the combustion pressure of the internal combustion engine according to an embodiment of the present invention As a standard deviation with respect to the pressure exhibited by the exhaust gas recirculation amount control method according to the present invention, it can be seen that the standard deviation is small.

즉, 도 2a 내지 도 3b에 따르면 압력의 변동폭이 적어지므로 소음 및 진동이 개선되는 것을 알 수 있다.That is, according to Figures 2a to 3b it can be seen that the noise and vibration is improved because the fluctuation range of the pressure is reduced.

또한, 도 4a는 통상적인 배기가스 재순환량 대비 소음측정도를 나타낸 것으로서, 음파의 진폭이 크다는 것을 알 수 있으며, 도 4b는 배기가스 재순환량을 50% 감소시킨 상태를 나타낸 소음측정도로서 도 4a와 비교하여 볼때, 음파의 진폭이 작아진 것을 알 수 있다.In addition, Figure 4a shows a noise measurement of the conventional exhaust gas recirculation amount, it can be seen that the amplitude of the sound wave is large, Figure 4b is a noise measurement diagram showing a state of reducing the exhaust gas recirculation amount by 50% Figure 4a In comparison with, it can be seen that the amplitude of the sound wave is reduced.

즉, 도 4a 및 도 4b에 따르면 EGR양을 감소시킴으로서 전체적인 주행소음이 5dB 정도 개선되었다는 것을 알 수 있다.That is, according to Figures 4a and 4b it can be seen that the overall running noise is improved by about 5dB by reducing the amount of EGR.

이상으로 본 발명에 관한 바람직한 실시 예를 설명하였으나, 본 발명은 상기 실시 예에 한정되지 아니하며, 본 발명의 실시 예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, And all changes to the scope that are deemed to be valid.

도 1은 본 발명의 일 실시예에 의한 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법을 도시한 흐름도.1 is a flow chart showing a method for controlling the exhaust gas recirculation amount according to the combustion pressure of the internal combustion engine according to an embodiment of the present invention.

도 2a는 종래기술에 의하여 나타나는 압력에 대한 표준편차.Figure 2a is a standard deviation for the pressure represented by the prior art.

도 2b는 본 발명의 일 실시예에 의한 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법에 의해 나타나는 압력에 대한 표준편차.Figure 2b is a standard deviation of the pressure represented by the exhaust gas recirculation control method according to the combustion pressure of the internal combustion engine according to an embodiment of the present invention.

도 3a는 종래기술에 의하여 나타나는 크랭크각도에 대한 표준편차.Figure 3a is a standard deviation for the crank angle shown by the prior art.

도 3b는 본 발명의 일 실시예에 의한 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법에 의해 나타나는 압력에 대한 표준편차.Figure 3b is a standard deviation of the pressure represented by the exhaust gas recirculation control method according to the combustion pressure of the internal combustion engine according to an embodiment of the present invention.

도 4a는 통상적인 배기가스 재순환량 대비 소음측정도.Figure 4a is a noise measurement of the conventional exhaust gas recycle amount.

도 4b는 배기가스 재순환량을 50% 감소시킨 상태를 나타낸 소음측정도.4B is a noise measurement diagram showing a state in which the exhaust gas recirculation amount is reduced by 50%.

Claims (3)

a) 내연기관에 장착된 실린더 내부의 연소압력을 검출하는 단계;a) detecting the combustion pressure inside the cylinder mounted to the internal combustion engine; b) 크랭크각도에 대한 연소압력의 최대기울기를 계산하는 단계; 그리고,b) calculating the maximum slope of the combustion pressure with respect to the crank angle; And, c) 상기 최대 기울기의 표준편차를 연산하는 단계;c) calculating a standard deviation of the maximum slope; 를 포함하되, , ≪ / RTI & 상기 표준편차가 기 설정된 표준값보다 작을 경우에는 상기 a), b), c) 단계를 반복적으로 수행하고, 상기 표준편차가 기 설정된 표준값보다 큰 경우에는 배기가스 재순환량을 감소시키는 것을 특징으로 하는 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법.When the standard deviation is smaller than the preset standard value, steps a), b) and c) are repeatedly performed, and when the standard deviation is larger than the preset standard value, the exhaust gas recycle amount is reduced. A method for controlling the exhaust gas recirculation amount according to the combustion pressure of the engine. 제1항에 있어서,The method of claim 1, 상기 표준편차는 점화직후부터 폭발이 끝나 압력이 저하되는 시점까지 연산되는 것을 특징으로 하는 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법.The standard deviation is calculated from the end of the explosion immediately after the ignition until the pressure is lowered, the exhaust gas recirculation amount control method according to the combustion pressure of the internal combustion engine. 제 1항에 있어서.The method of claim 1, 상기 연소압력은 실린더 내부에 장착되는 압력센서로 검출하는 것을 특징으 로 하는 내연기관의 연소압력에 따른 배기가스 재순환량 제어방법.The combustion pressure is exhaust gas recirculation control method according to the combustion pressure of the internal combustion engine, characterized in that detected by the pressure sensor mounted inside the cylinder.
KR1020080120065A 2008-11-28 2008-11-28 Control method of exhaust-gas recirculation rate according to combustion pressure for internal combustion engine KR101339221B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080120065A KR101339221B1 (en) 2008-11-28 2008-11-28 Control method of exhaust-gas recirculation rate according to combustion pressure for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080120065A KR101339221B1 (en) 2008-11-28 2008-11-28 Control method of exhaust-gas recirculation rate according to combustion pressure for internal combustion engine

Publications (2)

Publication Number Publication Date
KR20100061163A KR20100061163A (en) 2010-06-07
KR101339221B1 true KR101339221B1 (en) 2013-12-09

Family

ID=42361982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080120065A KR101339221B1 (en) 2008-11-28 2008-11-28 Control method of exhaust-gas recirculation rate according to combustion pressure for internal combustion engine

Country Status (1)

Country Link
KR (1) KR101339221B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920000993B1 (en) * 1987-09-29 1992-02-01 미쓰비시전기 주식회사 Fuel injection timing control for internal combustion engine
JPH10110638A (en) * 1996-10-04 1998-04-28 Fuji Heavy Ind Ltd Combustion controller for engine
JP3302412B2 (en) 1992-09-30 2002-07-15 マツダ株式会社 Engine control device
JP2006009600A (en) 2004-06-23 2006-01-12 Honda Motor Co Ltd Fuel injection control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920000993B1 (en) * 1987-09-29 1992-02-01 미쓰비시전기 주식회사 Fuel injection timing control for internal combustion engine
JP3302412B2 (en) 1992-09-30 2002-07-15 マツダ株式会社 Engine control device
JPH10110638A (en) * 1996-10-04 1998-04-28 Fuji Heavy Ind Ltd Combustion controller for engine
JP2006009600A (en) 2004-06-23 2006-01-12 Honda Motor Co Ltd Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
KR20100061163A (en) 2010-06-07

Similar Documents

Publication Publication Date Title
US7841316B2 (en) Controller for direct injection engine
US8739760B2 (en) Control system of an internal combustion engine
KR101035439B1 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP2007278223A (en) Control device for cylinder-injection spark-ignition internal combustion engine
KR101339221B1 (en) Control method of exhaust-gas recirculation rate according to combustion pressure for internal combustion engine
US7000586B2 (en) Control device for compression ignition operation of internal combustion engine
JP2012255371A (en) Control device of internal combustion engine
KR101956030B1 (en) Method and apparatus for controlling engine system
JP2014134144A (en) Internal combustion engine fuel injection system
JP2007278145A (en) Method for adapting variable nozzle opening of turbocharger
JP4357685B2 (en) Direct injection engine controller
JP2019090330A (en) Intake pressure estimation device for engine
JP2018141404A (en) Internal combustion engine
JP4807125B2 (en) Ignition timing control device for compression ignition internal combustion engine
JP2005061265A (en) Fuel injection control device of engine
JP2018076828A (en) Control device of engine
KR100501360B1 (en) Smoke decreasing device of diesel automobile and method to decrease it
JP2008163807A (en) Control method of gasoline engine
JP6766500B2 (en) Engine control
JP2017002748A (en) Internal combustion engine device
JP2018105203A (en) Control device of internal combustion engine
JPH1018918A (en) Exhaust gas reflux control device for internal combustion engine
JP2013151897A (en) Internal combustion engine
JP2009013875A (en) Combustion noise control device of internal combustion engine
JP2020153255A (en) Control device for engine

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 5