KR101329700B1 - Heating and cooling load-dependent heat source equipment, automatic control system - Google Patents

Heating and cooling load-dependent heat source equipment, automatic control system Download PDF

Info

Publication number
KR101329700B1
KR101329700B1 KR1020130100776A KR20130100776A KR101329700B1 KR 101329700 B1 KR101329700 B1 KR 101329700B1 KR 1020130100776 A KR1020130100776 A KR 1020130100776A KR 20130100776 A KR20130100776 A KR 20130100776A KR 101329700 B1 KR101329700 B1 KR 101329700B1
Authority
KR
South Korea
Prior art keywords
heat source
cooling
heating
fan coil
unit
Prior art date
Application number
KR1020130100776A
Other languages
Korean (ko)
Inventor
이길수
Original Assignee
(주)코젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)코젠 filed Critical (주)코젠
Priority to KR1020130100776A priority Critical patent/KR101329700B1/en
Application granted granted Critical
Publication of KR101329700B1 publication Critical patent/KR101329700B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/18Details or features not otherwise provided for combined with domestic apparatus
    • F24F2221/183Details or features not otherwise provided for combined with domestic apparatus combined with a hot-water boiler

Abstract

The present invention according to an automatic control method for heating and cooling load-dependent heat source equipment saves power and enables the efficient use of energy by controlling the operation of a fan coil unit and opening and closing for variable air volume (VAV) systems at the tip end of each air conditioner to the corresponding areas; and by controlling the proper operation capacity of the air conditioner and a heat source device according to the load changes to make the temperature of the tip end uniform. [Reference numerals] (100) Fan coil unit;(300) Temperature sensor;(400) Terminal control unit;(500) Main control device unit;(600) Air conditioner;(700) Heat source device

Description

냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법{Heating and cooling load-dependent heat source equipment, automatic control system}Automatic control method of cooling / heating source equipment according to cooling / heating load variation {Heating and cooling load-dependent heat source equipment, automatic control system}

본 발명은 건물의 냉·난시스템 장비인 팬코일유니트(FCU)와 VAV(Variable Air Volume)의 제어를 통하여 공기조화기와 열원장비의 제어가 가능한 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법에 관한 것으로, 더욱 구체적으로 설명하면, 사람들이 거주하면서 작업하는 건축물의 내부의 냉난방 부하 변동에 따라 공기조화기 및 냉동기나 보일러와 같은 열원장비의 출력용량을 제어하여 가장 효율적으로 에너지를 사용할 수 있게 하는 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법에 관한 것이다.
The present invention is the automatic control of the cooling and heating source equipment according to the heating and cooling load fluctuations that can control the air conditioner and the heat source equipment through the control of the fan coil unit (FCU) and VAV (Variable Air Volume) equipment of the building heating and cooling system The control method, and more specifically, the most efficient use of energy by controlling the output capacity of air conditioners and heat source equipment such as a refrigerator or a boiler according to the change in the heating and cooling loads of the buildings where people live and work. The present invention relates to an automatic control method of a cooling / heating source device according to a cooling / heating load variation.

일반적으로, 종래의 건물에 사용되는 냉난방 부하변동에 따른 냉온수기의 대수제어시스템은 열량에 의한 제어, 온도차에 의한 제어, 유량에 의한 제어로 냉온수기의 열원을 제어하고 있다.In general, the logarithmic water control system of a cold and hot water heater according to the heating and cooling load fluctuations used in a conventional building controls the heat source of the cold and hot water heater by control by heat quantity, control by temperature difference, and flow rate control.

즉, 도 1에 도시된 바와 같이, 건물의 지하에 설치된 복수개의 냉온수기(1)에 펌프(2)가 각기 설치되고 냉온수기에서 처리된 냉수(하절기)와 온수(동절기)가 냉온수기(1)가 공급헤더(3)에 모이고 상기 공급헤더(3)에서 분기되어 건물의 각 층으로 공급되어 각 층의 공조기, 팬코일유니트와 같은 열원장비에 열원을 공급하고 열원장비를 통해 환수된 유량과 차압밸브(4)를 통한 유량과 합해져서 환수헤더(8)를 거쳐 냉온수기(1)로 재공급되는 구조이다.That is, as shown in Figure 1, the pump 2 is installed in each of the plurality of cold and hot water heaters 1 installed in the basement of the building, the cold water (summer) and hot water (winter) treated in the cold and hot water supply is supplied by the cold and hot water heaters (1) Gathered in the header (3) and branched from the supply header (3) and supplied to each floor of the building to supply a heat source to a heat source equipment such as an air conditioner and a fan coil unit of each floor, and a flow rate and a differential pressure valve returned through the heat source equipment ( 4) is combined with the flow rate through the return header (8) to the cold and hot water heater (1) structure.

이러한 종래의 냉온수를 공급하는 냉온수기의 대수제어시스템은, 온도차에 의한 제어를 할 경우에는, 상기 냉온수기(1)를 통과하여 처리된 처리수가 모인 공급헤더(3)에서 유출되는 부분에 공급부온도센서(5)가 부착되어 온도를 체크하고 각 층을 돌아서 환수되는 부분에 환수부온도센서(5')에서 감지한 온도의 차이를 비교하여 각 냉온수기(1)의 가동시킬 대수를 결정하는 방식으로 수행되고 있으며, 이러한 방식은 냉동기전용콘트롤러(7)에서 공급측과 환수측의 온도차에 의하여 간접적으로 부하량을 구하여 냉온수기의 운전대수를 제어하는 방식으로, 각층의 온도를 정밀하게 제어하지 못하여 전기적으로나 효율적으로 냉온수기를 사용할 수 없는 문제점이 있었다.In the conventional logarithmic water control system for supplying cold and hot water, the control part of the cold / hot water machine supplies the temperature of the supply part temperature sensor (3) to a portion flowing out from the supply header (3) in which the treated water passing through the cold / hot water machine (1) is collected. 5) is attached and checks the temperature, and compares the difference of the temperature detected by the return part temperature sensor (5 ') to the part to be returned by turning each layer to determine the number of running of each cold and hot water heater (1) In this method, the controller for refrigeration controller (7) indirectly obtains the load by the temperature difference between the supply side and the return side to control the number of operating units of the cold / hot water machine, and does not control the temperature of each layer precisely. There was a problem that could not be used.

유량에 의한 제어는 공급측과 환수측의 유량의 변화를 비교하여 냉온수기의 가동을 제어하는 방식이나, 일반적으로 부하량의 변화와 유량의 변화가 직선적인 비례관계가 형성되지 않으므로 적당하지 않은 방식이다.The control by the flow rate is a method of controlling the operation of the cold / hot water machine by comparing the change in the flow rate on the supply side and the return side, but in general, it is not suitable because the change in load amount and the change in flow rate do not form a linear proportional relationship.

그리고, 열량에 의한 제어는 부하계통에 흐르는 유체의 공급측과 환수측의 온도의 변화와 유량의 변화를 감지하여 냉온수기의 가동 대수를 제어하는 방식이므로 유량이나 온도만에 의한 제어보다는 정밀하게 제어하는 것이 가능하나, 이 또한, 미세한 온도변화나 유량의 변화와 같은 냉온수기의 정밀한 제어는 불가능하므로 미세한 온도의 차이나 유량의 차이를 인지하지 못하게 되므로 건물의 냉난방비용이 증가하게 되어 효율적으로 에너지를 관리할 수 없게 되는 문제점이 있었다.In addition, the control based on the amount of heat is a method of controlling the operation number of the cold / hot water machine by detecting the change of the temperature and the flow rate of the supply side and the return side of the fluid flowing in the load system. Although it is possible, however, precise control of cold and hot water heaters such as minute temperature change and flow rate change is impossible, so it is impossible to recognize the difference of minute temperature or difference in flow rate, so the heating and cooling cost of the building increases, which makes it impossible to manage energy efficiently. There was a problem.

이러한 문제점을 해결하기 위하여, 대한민국 등록특허 10-1043197에는 각 부하부(6)의 온도제어까지 가능한 냉온수기대수제어시스템이 제안된 바가 있으나, 상기의 특허에서는 각 부하부(6)의 전체의 온도제어만을 할 수 있을 뿐이고, 각 부하부(6)의 중앙과 구석의 온도의 변화 등을 제어할 수 없게 되는 문제점이 있었다.
In order to solve this problem, Korean Patent No. 10-1043197 has proposed a cold and hot water logarithmic control system that can control the temperature of each load unit 6, but in the above patent, the overall temperature control of each load unit 6 There was a problem that only it could be done and it was not possible to control changes in the temperature of the center and the corner of each load part 6 and the like.

등록특허 10-1043197Patent Registration 10-1043197

본 발명의 목적은, 이러한 문제점을 해결하기 위한 것으로, 사람들이 거주하면서 작업하는 건축물의 내부의 냉난방시스템에 있어서 VAV의 개폐와 각 팬코일유니트의 작동을 제어하는 것이 가능한 부하 변동에 따른 냉난방용 열원장치와 공기조화기의 적절한 가동을 구현함으로써 에너지의 낭비를 막고 절전화를 가능하게 하고, 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법을 제공하는 것이다.
An object of the present invention is to solve this problem, and in the air-conditioning system of a building where people live and work, the heat source for heating and cooling according to the load fluctuation which can control the opening and closing of the VAV and the operation of each fan coil unit. The proper operation of the device and the air conditioner prevents waste of energy, saves power, and provides an automatic control method of cooling and heat source equipment in response to changes in cooling and heating loads.

본 발명의 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법은,The automatic control method of the cooling and heat source equipment according to the cooling and heating load variation of the present invention,

각 층의 실내의 냉·난방을 위하여 바닥에 설치되는 팬코일유니트; 건물 내부의 천정에 설치되는 공급덕트의 공기 토출부에 구비되어 공기의 유량을 조절하는 댐퍼가 구비된 VAV; 건물 내부에 구비되어 해당 구역의 온도를 감지하여 실시간 전송하는 온도센서; 상기 온도센서의 신호를 받아 사전에 설정된 기준온도와 비교하여 상기 팬코일유니트와 VAV를 실시간 제어하는 단말제어유니트; 상기 단말제어유니트와 공기조화기 및 열원장치와 통신하는 통신부와, 팬코일유니트, VAV, 공기조화기 및 열원장치의 제원 및 용량데이터 등을 저장하는 저장부와, 팬코일유니트, VAV, 공기조화기 및 열원장치의 가동상태 따른 냉 난방용 공기소요량에 대한 계산을 수행하고 그 결과에 따라 공기조화기 및 열원장치를 제어하는 알고리즘을 갖는 연산.제어부, 데이터를 입력하는 입력부, 데이터를 출력하는 출력부로 이루어지는 주제어장치부; 상기 주제어장치부에 의하여 제어되며 팬코일유니트와 VAV에 냉.난방용 공기를 공급하는 공기조화기; 상기 공기조화기 및 팬코일유니트에 저온유체 또는 고온유체를 생산하여 공급하는 열원장치와; 본 발명의 이러한 목적은 감량운전되거나 정지중인 팬코일유니트와 VAV의 미사용 용량의 총량을 산출하여 산출된 용량만큼 공기조화기와 열원장치의 산출 용량을 감소시키는 것을 특징으로 하는 본 발명에 따른 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법에 의하여 달성된다.
Fan coil unit installed on the floor for cooling and heating the room of each floor; A VAV provided with an air discharge part of the supply duct installed on the ceiling inside the building and having a damper for adjusting the flow rate of air; A temperature sensor provided inside the building to sense a temperature of a corresponding area and transmit the data in real time; A terminal control unit which receives the signal of the temperature sensor and controls the fan coil unit and the VAV in real time by comparing with a preset reference temperature; A communication unit communicating with the terminal control unit, an air conditioner and a heat source device, a storage unit for storing specifications and capacity data of a fan coil unit, a VAV, an air conditioner and a heat source device, a fan coil unit, a VAV, and an air conditioner Calculation and control unit, an input unit for inputting data, and an output unit for outputting data. Main controller unit made of; An air conditioner controlled by the main controller and supplying air for cooling and heating to the fan coil unit and the VAV; A heat source device for producing and supplying a low temperature fluid or a high temperature fluid to the air conditioner and the fan coil unit; This object of the present invention is to reduce the output capacity of the air conditioner and the heat source device by the calculated capacity by calculating the total amount of the unused capacity of the fan coil unit and the VAV running or stopped weight reduction, according to the present invention It is achieved by the automatic control method of cold / heat source equipment according to load variation.

본 발명의 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법은 해당구역의 각 공기조화기 말단의 VAV의 개폐와 각 팬코일유니트의 작동을 제어하고 이를 통하여 말단의 온도가 균일하게 되도록, 부하 변동에 따른 공기조화기 및 열원장치 적정가동용량을 제어하는 것이 가능하게 되어 가장 효율적으로 에너지를 사용할 수 있게 함으로써 에너지를 절약하고 절전화가 가능한 효과가 있다.
The automatic control method of the cooling / heating source equipment according to the cooling / heating load fluctuation of the present invention controls the opening and closing of the VAV and the operation of each fan coil unit at each end of the air conditioner in the corresponding zone so that the temperature of the end is made uniform. In addition, it is possible to control the air conditioner and the heat source device proper operating capacity according to the load fluctuations, thereby making it possible to use energy most efficiently, thereby saving energy and saving power.

도 1은 종래의 일 실시 예에 따른 냉온수기의 대수제어시스템의 계장도
도 2는 본 발명의 제1 실시 예에 따른 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어시스템의 블록도.
도 3은 본 발명의 제1 실시 예에 따른 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어시스템이 구비된 건물내부의 평면도
도 4는 본 발명의 제1 실시 예에 따른 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어시스템의 주 제어장치부의 구성도.
도 5는 본 발명의 제1 실시 예에 따른 냉·난방 부하 변동에 따른 냉·열원장비용 자동제어시스템의 계장도
1 is an instrumentation diagram of a logarithmic control system of a cold and hot water heater according to a conventional embodiment
2 is a block diagram of an automatic control system of a cooling / heating source equipment according to a cooling / heating load variation according to a first embodiment of the present invention.
Figure 3 is a plan view of the interior of the building equipped with an automatic control system of cooling and heat source equipment according to the cooling and heating load change according to the first embodiment of the present invention
4 is a block diagram of a main control unit of the automatic control system of the cooling and heat source equipment according to the cooling and heating load change according to the first embodiment of the present invention.
5 is an instrumentation diagram of an automatic control system for a cold / heat source equipment according to a cooling / heating load variation according to a first embodiment of the present invention;

이하에서는 본 발명의 바람직한 실시 예를 첨부된 도면에 의거하여 상세하게 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 제1 실시 예에 따른 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어시스템의 블록도이고, 도 3은 본 발명의 제1 실시 예에 따른 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어시스템이 구비된 건물 내부의 평면도이고, 도 4는 본 발명의 제1 실시 예에 따른 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어시스템의 주제어장치부의 구성도이고, 도 5는 본 발명의 제1 실시 예에 따른 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어시스템의 계장도이다. 2 is a block diagram of an automatic control system of a cooling / heating source device according to a cooling / heating load change according to a first embodiment of the present invention, and FIG. 3 is a cooling / heating load change according to a first embodiment of the present invention. 4 is a plan view of an interior of a building equipped with an automatic control system for cold / heat source equipment, and FIG. 4 is a configuration of a main control unit of an automatic control system for cold / heat source equipment according to a cooling / heating load variation according to a first embodiment of the present invention. 5 is an instrumentation diagram of an automatic control system of a cooling / heating source device according to a cooling / heating load variation according to a first embodiment of the present invention.

이하에서는 예시된 도면을 중심으로 상세히 설명하기로 한다. Hereinafter will be described in detail with reference to the illustrated drawings.

본 발명은 각 층의 실내의 냉·난방을 위하여 바닥에 설치되는 팬코일유니트(100)와, 천정에 설치되는 공급덕트의 공기 토출부에 구비되어 공기의 유량을 조절하는 댐퍼(210)가 구비된 VAV(Variable Air Volume)(200)와, 건물 내부에 구비되어 해당 구역의 온도를 감지하여 단말제어유니트(400)로 전송하는 온도센서(300)와, 상기 온도센서(300)의 신호를 받아 사전에 설정된 기준온도와 비교하여 상기 팬코일유니트(100)와 VAV(300)를 제어하는 단말제어유니트(400)와, 상기 단말제어유니트(400)로부터 각각의 팬코일제어유니트(100)와 VAV(200)의 동작 여부에 따른 냉난방용 소요공기량을 계산하여 그 결과에 따라 공기조화기(600)와 냉동기(710)나 보일러(720)와 같은 열원장비(700)를 제어하는 주제어장치부(500)로 이루어지는 것을 특징으로 한다. The present invention is provided with a fan coil unit (100) installed on the floor for cooling and heating the interior of each floor, and a damper (210) is provided in the air discharge portion of the supply duct installed on the ceiling to control the flow of air VAV (Variable Air Volume) 200, the temperature sensor 300 is provided inside the building to sense the temperature of the area and transmits to the terminal control unit 400, and receives the signal of the temperature sensor 300 A terminal control unit 400 for controlling the fan coil unit 100 and the VAV 300 in comparison with a preset reference temperature, and each fan coil control unit 100 and VAV from the terminal control unit 400. Main control unit 500 for controlling the amount of air required for heating and cooling according to the operation of the operation 200 and controlling the heat source equipment 700 such as the air conditioner 600 and the refrigerator 710 or the boiler 720 according to the result It characterized by consisting of).

상기 팬코일유니트(100)는 건물 내부에 설치되어 냉열원장비부터 유입되는 냉.난방용 유체를 코일형태의 관으로 통과시켜 냉각되거나, 뜨거워진 코일의 주변공기를 팬코일유니트팬(110)에 의하여 실내로 공급하는 장치로서 유체의 양을 조절하는 팬코일유니트밸브(120)와 연동되어 작동하며 단말제어유니트(400)에 의하여 실시간 제어된다. The fan coil unit 100 is installed inside the building to pass the cooling and heating fluid flowing from the cold heat source equipment through the coil-shaped tube, or cooled, or the surrounding air of the hot coil by the fan coil unit fan 110 As a device for supplying indoors, the device operates in conjunction with the fan coil unit valve 120 for controlling the amount of fluid and is controlled in real time by the terminal control unit 400.

상기 VAV(200)는 공기조화기(600)의 일부로서 천정에 설치되는 것으로서 공기조화기에서 발생한 공기가 천정의 급기덕트를 경유하여 실내로 공급하는 기능을 수행하며, 실내의 온도변화에 따라 VAV(200)로 토출되는 공기의 유량을 조절하는 댐퍼(210)를 구비하며, 상기 댐퍼(210)는 단말제어유니트(400)에 의하여 실시간 제어된다. The VAV 200 is installed on the ceiling as part of the air conditioner 600, and the air generated from the air conditioner is supplied to the room via the air supply duct of the ceiling. It is provided with a damper 210 for adjusting the flow rate of the air discharged to the 200, the damper 210 is controlled in real time by the terminal control unit 400.

예를 들어 동절기에 난방시 실제온도가 목표온도보다 낮을 시에는 더 많은 공기양을 토출시켜야 하므로 댐퍼(210)의 열림각도를 크게하여 공기의 토출량을 크게하고, 반대의 경우에는 온도의 상승을 저지해야 하므로 공기의 토출량을 적게 하여야 하므로 열림 각도를 작게하거나 폐쇄시킨다.For example, when the actual temperature is lower than the target temperature during the winter heating, more air volume must be discharged, so the opening angle of the damper 210 is increased to increase the discharge amount of air, and in the opposite case, to prevent the increase in temperature. Since the discharge amount of air must be reduced, the opening angle is reduced or closed.

상기 온도센서(300)는 해당구역의 실시간 온도(Ta)를 측정하여 주제어장치부(500)로 송부하는 역할을 수행하는 것으로서 건물 내에 측정하고자 하는 구역에 설치되며, 상기 온도센서(300)는 해당구역의 냉난방장치인 팬코일유니트(100)와 VAV(200)의 동작을 제어하는 기초데이터인 온도데이터를 단말제어유니트(400)로 송신한다. The temperature sensor 300 serves to measure the real-time temperature (Ta) of the corresponding area and send it to the main control unit 500, which is installed in the area to be measured in the building, the temperature sensor 300 is The temperature data, which is the basic data for controlling the operations of the fan coil unit 100 and the VAV 200, which are the air-conditioning and heating devices of the zone, is transmitted to the terminal control unit 400.

도 3은 상기 온도센서(300)와 팬코일유니트(100) 및 VAV(200)가 설치된 실내의 평면도를 예시한 것으로서, 본 도면에 의하면 팬코일유니트 F1, F2 및 VAV(200)인 V1의 냉난방 범위의 온도를 측정하는 온도센서(300)인 T1, 팬코일유니트(100)인 F3, F4 및 VAV(200)인 V2의 냉난방 범위의 온도를 측정하는 온도센서(300)인 T2, 팬코일유니트(100)인 F5 F6 및 VAV(200)인 V3의 냉난방 범위의 온도를 측정하는 온도센서(300)인 T3, 팬코일유니트(100)인 F7, F8 및 VAV(200)인 V4의 냉난방 범위의 온도를 측정하는 온도센서(300)인 T4의 구역인 냉방장치의 유효범위인 구역a ~ 구역d가 점선으로 도시되어 있다. FIG. 3 illustrates a plan view of a room in which the temperature sensor 300, the fan coil unit 100, and the VAV 200 are installed, and according to this drawing, the heating and cooling of V1 which is the fan coil units F1, F2, and VAV 200. T1, the temperature sensor 300 to measure the temperature of the range, T2, the fan coil unit 100, F3, F4 and VAV (200) temperature sensor 300 to measure the temperature of the heating and cooling range of the V2, fan coil unit F5 F6 (100) and the temperature of the heating and cooling range of the VAV (200) V3 T3, the temperature sensor 300 of the fan coil unit 100 F7, F8 and VAV (200) of the heating and cooling range of V4 Zones a to d, which are the effective range of the cooling device, which is a zone of T4, which is a temperature sensor 300 for measuring temperature, are shown in dotted lines.

즉, 일정구역을 중심으로 냉난방장치와 온도센서(300)를 연계하여 온도센서의 결과치를 가지고 보다 정밀하게 냉난방장치를 제어하는 것이 본 발명의 핵심사항이며, 예시된 온도센서(300)와 냉난방장치의 연계는 현장의 실정과, 적용하는 온도센서(300)의 사양에 따라서 다를 수도 있다. That is, the key point of the present invention is to control the air conditioning and heating device more precisely with the result of the temperature sensor by connecting the air conditioning unit and the temperature sensor 300 around a certain area, and the illustrated temperature sensor 300 and the air conditioning unit The linkage may vary depending on the actual situation of the site and the specifications of the temperature sensor 300 to be applied.

상기 단말제어유니트(400)는 온도센서(300)로부터 검출된 데이터에 의하여 상기 팬코일유니트(100)와 VAV(200)를 제어한다. 즉, a구역의 온도는 온도센서 T1에 의하여 측정되고 측정된 데이터는 단말제어기(400)로 전송되며, 전송된 데이터는 사전에 설정된 기준온도(Ts)와 비교하여 높거나, 낮으면 구역a를 담당하는 냉난방기구인 팬코일유니트(100) F1,F2의 팬코일유니트팬(110)과 팬코일유니트밸브(120) 및 VAV(200) V1의 댐퍼(210)가 가동되어 기준온도에 수렴될 때까지 가동되도록 하고, 기준온도에 수렴하면 동작을 멈추도록 알고리즘이 설계되어 있다. 이러한 작동원리는 구역b, 구역c, 구역d가 동일하며, 도 3에서 예시된 온도센서(300)와 팬코일유니트(100) 및 VAV(200)의 설치위치 및 연계는 본 발명의 원리를 설명하기 위한 하나의 예에 불과하고 현장상황에 따라서 변경 가능함은 물론이다.The terminal control unit 400 controls the fan coil unit 100 and the VAV 200 based on the data detected from the temperature sensor 300. That is, the temperature of the zone a is measured by the temperature sensor T1, and the measured data is transmitted to the terminal controller 400, and the transmitted data is higher or lower than the preset reference temperature Ts, and the zone a is Fan coil unit fan (100) F1, F2 that is in charge of heating and cooling equipment fan coil unit fan 110 and fan coil unit valve 120 and damper 210 of VAV (200) V1 is operated until converged to the reference temperature The algorithm is designed to be activated and to stop operation when it converges to the reference temperature. This operation principle is the same zone b, zone c, zone d, the installation position and linkage of the temperature sensor 300 and the fan coil unit 100 and the VAV 200 illustrated in Figure 3 illustrates the principle of the present invention This is just one example and can be changed according to the site situation.

또한 상기 단말제어유니트(400)는 팬코일유니트(100)와 VAV(200)의 가동상황 데이터를 주제어장치부(500)로 전송한다. In addition, the terminal control unit 400 transmits the operation status data of the fan coil unit 100 and the VAV 200 to the main control unit 500.

상기 주제어장치부(500)는 건물의 관제실에 설치되어 각각의 단말제어유니트(400)로부터 전송된 데이터를 기초로 공기조화기(AHU: Air handling unit)의 급기팬과 온도제어밸브를 제어한다. The main controller 500 is installed in the control room of the building and controls the air supply fan and the temperature control valve of the air handling unit (AHU) based on the data transmitted from each terminal control unit 400.

도 4는 주제어장치부(500)의 구성을 보여주는 것으로서 이에 따르면 단말제어유니트(400)와 공기조화기(600) 및 열원장치(700)와 통신하는 통신부(510)와, 팬코일유니트(100), VAV(200), 공기조화기(600) 및 열원장치(700)의 제원 및 용량 등을 저장하는 저장부(520)와, 팬코일유니트(100), VAV(200), 공기조화기(600) 및 열원장치(700) 가동상태 따른 연산을 수행하고 그 결과에 따라 냉동기(710)와 보일러(720)과 같은 열원장치(700)를 제어하는 알고리즘을 갖는 연산.제어부(530)와, 데이터를 입력하는 입력부(540)와, 데이터를 출력하여 디스플레이하는 모니터(551)와 프린트하는 프린터(552)로 구성되며 상기 통신부(510)는 무선방식으로 구성될 수도 있다. 4 shows the configuration of the main control unit 500 according to the terminal control unit 400 and the air conditioner 600 and the heat source device 700 and the communication unit 510 and the fan coil unit 100 , A storage unit 520 for storing specifications and capacity of the VAV 200, the air conditioner 600, and the heat source device 700, the fan coil unit 100, the VAV 200, and the air conditioner 600. And an algorithm for performing calculation according to the operation state of the heat source device 700 and controlling the heat source device 700 such as the refrigerator 710 and the boiler 720 according to the result. An input unit 540 for input, a monitor 551 for outputting and displaying data, and a printer 552 for printing may be included. The communication unit 510 may be configured in a wireless manner.

상기 공기조화기(600)는 열원장치(700)에서 공급된 냉·온 유체를 코일에 흘러보내 외부공기와 열 교환시켜서 냉.온공기를 생성시키는 장치로서 단말부의 VAV(200)를 통하여 실내에 냉.온공기를 공급하며 공기조화기팬(610)과 공기조화기밸브(620)의 제어는 주제어장치부(500)에서 제어된다. The air conditioner 600 is a device for generating cold and warm air by flowing the cold and hot fluid supplied from the heat source device 700 to a coil and exchanging heat with external air. The control of the air conditioner fan 610 and the air conditioner valve 620 is controlled by the main control unit 500 while supplying cold and hot air.

상기 열원장치(700)는 냉방용의 저온유체를 생성시키는 냉동기(710)와 난방용의 고온유체를 생성시키는 보일러(720) 등을 포함하는 것으로서 생성된 냉.온 유체는 주제어장치부(500)에 의하여 제어되는 순환펌프(730)에 의하여 공급헤더로 공급된 후 팬코일유니트(100)와 공기조화기(600)와 같은 부하장치로 공급된다. The heat source device 700 includes a refrigerator 710 for generating a low temperature fluid for cooling and a boiler 720 for generating a high temperature fluid for heating. After being supplied to the supply header by the circulation pump 730 is controlled by the circulation coil 730 is supplied to the load device, such as the fan coil unit 100 and the air conditioner 600.

본 발명의 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법의 동작을 냉방 시를 예를 들어 설명하면,Referring to the operation of the automatic control method of the cooling and heat source equipment according to the cooling and heating load fluctuations of the present invention for example,

온도센서(300)인 T1이 팬코일유니트(100) F1, F2와 VAV(200) V1에 의하여 냉방이되는 구역 a의 온도를 실시간으로 측정하여 그 데이터를 단말제어유니트(400)로 보내면 단말제어유니트(400)는 사전에 설정된 기준온도(Ts)와 실시간 온도(Ta)를 비교하여 Ta>Ts이면 팬코일유니트(100) F1, F2와 VAV(200) V1의 가동을 계속하고, Ta<Ts 이면 팬코일유니트(100) F1, F2와 구역a의 VAV(200) V1의 가동이 중지되어 팬코일유니트(100)의 팬코일유니트팬(110)의 전원이 차단됨과 동시에 팬코일유니트밸브(120)가 닫히고 VAV V1의 댐퍼(210)가 폐쇄됨으로써 구역a의 실제온도(Ta)가 기준온도(Ts) 이하로 과도하게 내려가 에너지가 낭비되는 것을 방지하게 된다. When the temperature sensor 300 T1 measures the temperature of the zone a in which air is cooled by the fan coil units 100 F1 and F2 and the VAV 200 V1 in real time, and transmits the data to the terminal control unit 400, the terminal control. The unit 400 compares the preset reference temperature Ts with the real time temperature Ta, and continues operation of the fan coil units 100 F1, F2 and VAV 200 V1 when Ta> Ts, and Ta <Ts. The fan coil unit 100 F1 and F2 and the VAV 200 and V1 of the zone a are stopped, and the power of the fan coil unit fan 110 of the fan coil unit 100 is cut off and at the same time the fan coil unit valve 120 ) Is closed and the damper 210 of the VAV V1 is closed, so that the actual temperature Ta of the zone a is excessively lowered below the reference temperature Ts to prevent waste of energy.

단말제어유니트(400)에서는 상기의 과정을 반복함으로써 구역별 온도를 조절하게 되고 이러한 팬코일유니트(100)와 VAV(200)의 운전상황이 주제어장치부(500)로 실시간 전송되며, 전송된 데이터는 냉방소요량을 산출하는 기준데이터로 환산되어 공기조화기(600) 및 열원장치(700)의 소요가동량을 산출하게 되며 산출된 소요가동용량에 의해 공기조화기(600)와 열원장치(700)의 가동용량이 조절되어 과잉운전에 의해 에너지가 낭비되는 것을 방지하게 된다. In the terminal control unit 400, the temperature of each zone is controlled by repeating the above process, and the operating conditions of the fan coil unit 100 and the VAV 200 are transmitted to the main controller 500 in real time. Calculate the required amount of operation of the air conditioner 600 and the heat source device 700 is converted to the reference data for calculating the cooling requirements and the air conditioner 600 and the heat source device 700 by the calculated required operating capacity The operating capacity of the is adjusted to prevent the waste of energy by the excessive operation.

상기 공기조화기(600)의 제어는 공기조화기팬(610) 및 공기조화기밸브(620)의 제어로 이루어지며, 열원장치(700)제어는 순환펌프(730)의 회전수의 조절을 통하여 이루어지며, 복수대의 열원장치(700)일 경우에는 적정가동용량을 초과하는 열원장치(700)의 운전을 정지시키는 것을 포함한다. The air conditioner 600 is controlled by the air conditioner fan 610 and the air conditioner valve 620, and the heat source device 700 is controlled by adjusting the rotation speed of the circulation pump 730. In the case of the plurality of heat source apparatuses 700, the operation of the heat source apparatuses 700 exceeding an appropriate operating capacity is included.

본 발명의 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법은 해당구역 내의 냉난방 장치인 팬코일유니트와 VAV를 제어하고 이를 통한 냉온수기를 제어하는 것을 가능하게 하는 시스템으로서 팬코일유니트, VAV, 공기조화기와 열원장치의 과잉운전을 제어함으로써 에너지의 낭비를 방지하게 되어 에너지의 효율적 사용을 가능하게 하는 것으로서 산업상 이용가능성이 대단히 높은 우수한 발명이라고 할 수 있다.
The automatic control method of the cooling and heating source equipment according to the cooling and heating load fluctuation of the present invention is a system for controlling the fan coil unit and the VAV which are the heating and cooling devices in the corresponding zone, and controlling the cold and hot water machine through the fan coil unit and the VAV. In order to prevent the waste of energy by controlling the excessive operation of the air conditioner and the heat source device, it is an excellent invention having very high industrial applicability.

100: 팬코일유니트 110: 팬코일유니트팬
120: 팬코일유니트밸브 200: VAV(Variable Air Volume)
210: 댐퍼 300: 온도센서
400: 단말제어유니트 500: 주제어장치부
510: 통신부 520: 저장부
530: 연산.제어부 540: 입력부
550: 출력부 551: 모니터
552: 프린터 600: 공기조화기
610: 공기조화기팬 620: 공기조화기밸브
700: 열원장치 710: 냉동기
720: 보일러 730: 순환펌프
100: fan coil unit 110: fan coil unit fan
120: fan coil unit valve 200: VAV (Variable Air Volume)
210: damper 300: temperature sensor
400: terminal control unit 500: main controller unit
510: communication unit 520: storage unit
530: operation and control unit 540: input unit
550: output unit 551: monitor
552: printer 600: air conditioner
610: air conditioner fan 620: air conditioner valve
700: heat source device 710: freezer
720: boiler 730: circulation pump

Claims (1)

냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법은,
감량운전되거나 정지중인 팬코일유니트(100)와 VAV(200)의 미사용 용량의 총량을 산출하여 산출된 용량만큼 공기조화기(600)와 열원장치(700)의 산출 용량을 감소시키는 것을 특징으로 하는 냉·난방 부하 변동에 따른 냉·열원장비의 자동제어방법.










Automatic control method of cooling / heating source equipment according to cooling / heating load fluctuation,
It is characterized in that the output capacity of the air conditioner 600 and the heat source device 700 is reduced by the calculated capacity by calculating the total amount of unused capacity of the fan coil unit 100 and the VAV 200 that are being reduced or operated. Automatic control method of cooling / heating source equipment according to cooling / heating load variation.










KR1020130100776A 2013-08-26 2013-08-26 Heating and cooling load-dependent heat source equipment, automatic control system KR101329700B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130100776A KR101329700B1 (en) 2013-08-26 2013-08-26 Heating and cooling load-dependent heat source equipment, automatic control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130100776A KR101329700B1 (en) 2013-08-26 2013-08-26 Heating and cooling load-dependent heat source equipment, automatic control system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120055711A Division KR101382129B1 (en) 2012-05-25 2012-05-25 Heating and cooling load-dependent heat source equipment, automatic control system

Publications (1)

Publication Number Publication Date
KR101329700B1 true KR101329700B1 (en) 2013-11-14

Family

ID=49857801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130100776A KR101329700B1 (en) 2013-08-26 2013-08-26 Heating and cooling load-dependent heat source equipment, automatic control system

Country Status (1)

Country Link
KR (1) KR101329700B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069442A (en) * 2001-02-26 2002-09-04 엘지전자주식회사 Air conditioning system and method
KR20050075096A (en) * 2004-01-15 2005-07-20 엘지전자 주식회사 Each room load calculate method of a multi-type air conditioner and control method of linear expansion valve
KR20060065802A (en) * 2004-12-10 2006-06-14 엘지전자 주식회사 Control method for air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069442A (en) * 2001-02-26 2002-09-04 엘지전자주식회사 Air conditioning system and method
KR20050075096A (en) * 2004-01-15 2005-07-20 엘지전자 주식회사 Each room load calculate method of a multi-type air conditioner and control method of linear expansion valve
KR20060065802A (en) * 2004-12-10 2006-06-14 엘지전자 주식회사 Control method for air conditioner

Similar Documents

Publication Publication Date Title
US10635120B2 (en) Method for operating and/or monitoring an HVAC system
EP2363658B1 (en) Air conditioning control system
JP2022137259A (en) Method for improving work efficiency of cooling system by remodeling building by main control device
US10408486B2 (en) Self-modulating HVAC system
US20170067662A1 (en) Conditioning and/or heating plant and process of controlling the same plant
EP2946146B1 (en) Advanced air terminal
US10066857B2 (en) Controller for controlling an air conditioning system and radiant heating apparatus in a building
KR101343863B1 (en) Variable Flow Heating Control System and Heating Control Method using thereof
JP4988682B2 (en) Control device for heat source unit for air conditioner and control method therefor
KR101230647B1 (en) The heat source for a building energy curtailment and mutual assistance integrated operation control system and embodiment method
KR20160051596A (en) Air-conditioning system
JP6570766B2 (en) Heating control system and heat pump hot water supply heating system
KR101382129B1 (en) Heating and cooling load-dependent heat source equipment, automatic control system
JP2017053507A (en) Air conditioning system, controller to be used in air conditioning system, program
KR101450063B1 (en) Active type energy management system for building
KR101329700B1 (en) Heating and cooling load-dependent heat source equipment, automatic control system
KR20170039114A (en) Conveyance energy-saving control apparatus in HVAC equipment
EP3688376B1 (en) Portable air conditioner and control method
CN104633773A (en) Temperature adjusting system
KR101898281B1 (en) Heating water pressure controlling apparatus for multiple buildings
KR20170027164A (en) Air-conditioner and the method for the same
KR101100302B1 (en) Multi air-conditioning system
Poddar et al. Green building air conditioning system with Variable Frequency Drive and Variable Air flow controller
KR101726436B1 (en) Compound individual flow control system

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161104

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171108

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191105

Year of fee payment: 7