KR101309720B1 - Al-Si alloy for piston of car added vanadium and manufacturing method of the same - Google Patents

Al-Si alloy for piston of car added vanadium and manufacturing method of the same Download PDF

Info

Publication number
KR101309720B1
KR101309720B1 KR1020100060252A KR20100060252A KR101309720B1 KR 101309720 B1 KR101309720 B1 KR 101309720B1 KR 1020100060252 A KR1020100060252 A KR 1020100060252A KR 20100060252 A KR20100060252 A KR 20100060252A KR 101309720 B1 KR101309720 B1 KR 101309720B1
Authority
KR
South Korea
Prior art keywords
alloy
vanadium
added
piston
manufacturing
Prior art date
Application number
KR1020100060252A
Other languages
Korean (ko)
Other versions
KR20110140061A (en
Inventor
임성철
권혁천
김경훈
박용섭
Original Assignee
(주)제물포금속
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제물포금속, 한국생산기술연구원 filed Critical (주)제물포금속
Priority to KR1020100060252A priority Critical patent/KR101309720B1/en
Publication of KR20110140061A publication Critical patent/KR20110140061A/en
Application granted granted Critical
Publication of KR101309720B1 publication Critical patent/KR101309720B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/10Making specific metal objects by operations not covered by a single other subclass or a group in this subclass pistons
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0084Pistons  the pistons being constructed from specific materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

본 발명은, Al-Si 합금 잉곳이 820℃ ~ 950℃의 온도 범위에서 용해된 용탕에 바나듐이 첨가되는 것을 특징으로 하는 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금 및 그 제조방법에 관한 것이다.
이러한 본 발명에 의하면, 자동차 피스톤용 Al-Si 합금계에 대한 바나듐의 첨가 수율이 향상됨으로써, 합금의 고온 강도 및 열적 특성을 향상되고, 또한 균일한 합금 조성의 관리가 가능하게 되어 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금의 고부가 알루미늄 지금 제조가 가능하게 된다.
The present invention relates to an Al-Si alloy for a vanadium-added automobile piston, and a method for manufacturing the same, wherein vanadium is added to the molten metal in which the Al-Si alloy ingot is dissolved at a temperature range of 820 ° C to 950 ° C.
According to the present invention, the addition yield of vanadium to the Al-Si alloy system for automobile pistons is improved, thereby improving the high temperature strength and thermal properties of the alloy, and also enables the management of a uniform alloy composition to which vanadium is added. High value-added aluminum in Al-Si alloys for automotive pistons is now available.

Description

바나듐이 첨가된 자동차 피스톤용 Al-Si 합금 및 그 제조방법{Al-Si alloy for piston of car added vanadium and manufacturing method of the same}Al-Si alloy for piston of car added vanadium and manufacturing method of the same}

본 발명은 V(바나듐)이 첨가된 자동차 피스톤용 Al-Si 합금 및 그 제조방법에 관한 것으로, 더욱 상세하게는 자동차 피스톤용 Al-Si 합금계에 대한 V(바나듐)의 첨가 수율을 향상시킴으로써, 합금의 고온 강도 및 열적 특성을 향상시킬 수 있는 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금 및 그 제조방법에 관한 것이다.The present invention relates to an Al-Si alloy for automobile pistons to which V (vanadium) is added and to a method of manufacturing the same, and more particularly, by improving the addition yield of V (vanadium) to an Al-Si alloy system for automobile pistons. The present invention relates to an Al-Si alloy for automobile pistons containing vanadium capable of improving high temperature strength and thermal properties of the alloy and a method of manufacturing the same.

현재 국내는 물론 세계적으로 사용되고 있는 자동차용 피스톤은 Al-Si-Cu-Mg계 합금으로 제작되는데, 이러한 자동차 피스톤용 합금은 열팽창 계수 및 비중이 작고, 내마멸성 및 고온 강도가 큰 것을 주요 특징으로 한다. 최근, 미시간주의 사우스필드에 위치한 federal-Mogul Power Cylinder Systems 사의 연구진은 직접 분사 디젤 엔진 피스톤에 사용할 목적으로 새로운 종류의 알루미늄 합금을 개발했다.Automotive pistons currently used domestically and globally are made of Al-Si-Cu-Mg-based alloys, which are characterized by low thermal expansion coefficient and specific gravity, high abrasion resistance and high temperature strength. Recently, researchers at federal-Mogul Power Cylinder Systems in Southfield, Michigan, have developed a new class of aluminum alloy for use in direct injection diesel engine pistons.

이 회사에서 발표한 보고서에는 경량의 디젤 자동차(LVD)에서 피스톤이 갖추어야 할 특성들이 기술되어 있는데, 특히 고온에서 피로 내성에 대한 특성이 자세히 상술되어 있다. 또한 이 보고서에는 고온에서 LVD 피스톤에 충분한 피로 내성을 제공하는 중력 캐스팅(gravity casting) 알루미늄 합금의 개발 과정이 기술되어 있다. 국내의 관련 업계에서도 자동차용 피스톤 합금의 특성 및 고온 피로 내성을 향상시키기 위해, Al-Si 합금계에 V(바나듐) 원소를 첨가하고 있으나, 합금 기술의 부족으로 바나듐 첨가 수율이 저하되어 생산원가가 상승하고, 균일한 합금 조성의 관리가 어려운 실정이다.
The company's report describes the characteristics that pistons should have in lightweight diesel vehicles (LVDs), detailing their fatigue resistance in particular at high temperatures. The report also describes the development of a gravity casting aluminum alloy that provides sufficient fatigue resistance to LVD pistons at high temperatures. In the related industry in Korea, V (vanadium) element is added to Al-Si alloys to improve the properties of automobile piston alloys and high temperature fatigue resistance.However, the production cost is reduced because the yield of vanadium is lowered due to the lack of alloying technology. It is difficult to manage a uniform alloy composition.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 자동차 피스톤용 Al-Si 합금계에 대한 바나듐의 첨가 수율을 향상시킴으로써, 합금의 고온 강도 및 열적 특성을 향상시킬 수 있는 바나듐이 첨가된 Al-Si 합금 및 그 제조방법을 제공하는 것을 주요한 해결 과제로 한다.
The present invention has been made to solve the above-mentioned conventional problems, vanadium is added to improve the high-temperature strength and thermal properties of the alloy by improving the addition yield of vanadium to the Al-Si alloy system for automobile pistons It is a main problem to provide the prepared Al-Si alloy and its manufacturing method.

상기와 같은 목적을 해결하기 위한 본 발명에 따른 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금의 제조방법은, Al-Si 합금 잉곳이 820℃ ~ 950℃의 온도 범위에서 용해된 용탕에 바나듐이 첨가되는 것을 특징으로 한다.In the manufacturing method of the Al-Si alloy for vanadium-added automobile piston according to the present invention for solving the above object, vanadium is added to the molten Al-Si alloy ingot dissolved in the temperature range of 820 ℃ to 950 ℃ It is characterized by.

상기 Al-Si 합금의 제조방법에 있어서, 상기 Al-Si 합금은 Al을 기지 금속으로 하고, Si 성분이 12% 이상으로 이루어지는 과공정 Al-Si 합금인 것이 바람직하다.In the manufacturing method of the said Al-Si alloy, it is preferable that the said Al-Si alloy is a hypereutectic Al-Si alloy which uses Al as a base metal and whose Si component is 12% or more.

또는 상기 Al-Si 합금의 제조방법에 있어서, 상기 Al-Si 합금이 Al을 기지 금속으로 하고, Si 성분이 11% ~ 13% 범위로 이루어지도록 구성될 수도 있다.Alternatively, in the manufacturing method of the Al-Si alloy, the Al-Si alloy may be configured such that Al is a known metal and the Si component is in the range of 11% to 13%.

또한 상기 Al-Si 합금의 제조방법에 있어서, 상기 Al-Si 합금의 용해 온도 범위가 820℃ ~ 850℃의 범위에서 이루어지는 것이 더욱 바람직하다.Further, in the method for producing the Al-Si alloy, it is more preferable that the melting temperature range of the Al-Si alloy is in the range of 820 ° C to 850 ° C.

그리고 본 발명에 따른 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금은, Al-Si 합금 잉곳이 820℃ ~ 950℃의 온도 범위에서 용해된 용탕에 바나듐이 첨가되어 제조되는 것을 특징으로 한다.The vanadium-added Al-Si alloy for automobile piston according to the present invention is characterized in that the Al-Si alloy ingot is manufactured by adding vanadium to a molten metal dissolved in a temperature range of 820 ° C to 950 ° C.

상기 Al-Si 합금에 있어서, Al을 기지 금속으로 하고, Si 성분이 12% 이상으로 이루어지는 과공정 Al-Si 합금이 이용되는 것이 바람직하다.In the Al-Si alloy, an eutectic Al-Si alloy having Al as a known metal and having a Si component of 12% or more is preferably used.

또는 상기 Al-Si 합금에 있어서, Al을 기지 금속으로 하고, Si 성분이 11% ~ 13% 범위로 이루어지는 Al-Si 합금이 이용될 수도 있다.Alternatively, in the Al-Si alloy, an Al-Si alloy having Al as a known metal and having a Si component in the range of 11% to 13% may be used.

아울러, 상기 Al-Si 합금에 있어서, Al-Si 합금의 용해 온도 범위가 820℃ ~ 850℃의 범위에서 이루어지는 것이 더욱 바람직하다.
In addition, in the Al-Si alloy, the melting temperature range of the Al-Si alloy is more preferably in the range of 820 ° C to 850 ° C.

상기와 같은 구성을 가지는 본 발명에 따르면, 자동차 피스톤용 Al-Si 합금계에 대한 바나듐의 첨가 수율이 향상됨으로써, 합금의 고온 강도 및 열적 특성을 향상되고, 또한 균일한 합금 조성의 관리가 가능하게 되어 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금의 고부가 알루미늄 지금 제조가 가능하게 된다.
According to the present invention having the configuration described above, the addition yield of vanadium to the Al-Si alloy system for automobile pistons is improved, thereby improving the high temperature strength and thermal properties of the alloy, and also enables the management of a uniform alloy composition. It is now possible to manufacture high-value aluminum of Al-Si alloys for automobile pistons with vanadium.

도 1은 본 발명에서 바나듐이 첨가되기 전의 Al-Si 합금의 주요 구성 성분을 나타내는 성분표.
도 2는 본 발명에 따른 바나듐이 첨가된 Al-Si 합금에서 바나듐의 수율 변화를 나타내는 그래프.
도 3은 본 발명에서 바나듐이 첨가된 후의 Al-Si 합금의 주요 구성 성분을 나타내는 성분표.
1 is a component table showing the main components of the Al-Si alloy before vanadium is added in the present invention.
2 is a graph showing the change in yield of vanadium in the vanadium-added Al-Si alloy according to the present invention.
3 is a component table showing the main components of the Al-Si alloy after vanadium is added in the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명에 따른 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금 및 그 제조방법에 대한 바람직한 실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the Al-Si alloy for vanadium-added automobile piston according to the present invention and a method for manufacturing the same.

본 발명에 따른 Al-Si 합금은 자동차 엔진블럭, 피스톤, 실린더 , 펌프 등의 소재로 사용되기 위한 경량 주물재료로서, 우수한 내마모성 및 고온 강도 특성과 함께 열팽창율이 적고 비강도가 큰 성질을 갖는다.The Al-Si alloy according to the present invention is a lightweight casting material for use as a material for automobile engine blocks, pistons, cylinders, pumps, etc., and has excellent thermal resistance and high specific strength along with excellent wear resistance and high temperature strength characteristics.

특히, 본 발명에 따른 자동차 피스톤용 Al-Si 합금의 지금은 합금의 고온 강도 및 내열피로 특성 향상을 위해 바나듐이 첨가되고, 이때 바나듐의 첨가 수율을 높여서 생산원가 절감 및 균일한 합금 조성의 관리가 가능하게 된다.In particular, vanadium is now added to the Al-Si alloy for automobile piston according to the present invention to improve the high temperature strength and the fatigue resistance of the alloy, and at this time, by increasing the addition yield of vanadium, it is possible to reduce the production cost and manage the uniform alloy composition. It becomes possible.

이처럼 본 발명에 따른 자동차 피스톤용 Al-Si 합금에 대한 바나듐의 첨가 수율을 높이기 위한 공정은 다음과 같이 진행된다.As such, the process for increasing the addition yield of vanadium to the Al-Si alloy for automobile piston according to the present invention proceeds as follows.

우선, Al-Si 합금 잉곳을 820℃ ~ 950℃의 온도 범위에서 용해시켜서 용탕을 형성한다. 이후, 상기 용탕에 바나듐(V)을 첨가한다.First, the Al-Si alloy ingot is melted at a temperature range of 820 ° C to 950 ° C to form a molten metal. Thereafter, vanadium (V) is added to the molten metal.

본 발명에서 사용되는 Al-Si 합금은, Al을 기지 금속으로 하고, 여기에 Si을 주요 성분으로 하여 구성되는 합금이다. 특히, 본 발명에서 자동차 피스톤용으로 사용되는 Al-Si 합금은, Si 성분이 12% 이상으로 이루어지는 과공정 Al-Si 합금을 사용하며, 이는 과공정 Al-Si 합금 내에 존재하는 초정 Si 성분이 피스톤 왕복운동 시 발생하는 마모율을 감소시키는 윤활 역할을 함으로써, 내마모성을 향상시켜 사용수명을 연장시킬 수 있기 때문이다. The Al-Si alloy used in the present invention is an alloy composed of Al as a known metal and Si as a main component. In particular, in the present invention, the Al-Si alloy used for automobile pistons uses a hypereutectic Al-Si alloy having a Si content of 12% or more, and the primary Si component present in the hypereutectic Al-Si alloy is a piston. This is because the lubrication role of reducing the wear rate generated during the reciprocating motion can be improved, thereby improving the wear resistance and extending the service life.

다만, 피스톤용으로 사용되는 과공정 Al-Si 합금의 Si 성분 함량이 증가되면 초정 Si의 크기가 크고 불균일하게 분포되어, 피스톤의 불균일한 마모 상태가 형성될 수 있고, 또한 내충격성 및 피스톤의 강도에도 부정적인 영향을 미치기 때문에, 본 발명에 따른 자동차 피스톤용 Al-Si 합금에서는 초정 Si의 균일화된 미세화를 이루기 위해, Si 성분의 함량 범위를 11% ~ 13% 범위로 한다.However, when the Si component content of the hypereutectic Al-Si alloy used for the piston is increased, the size of primary Si is large and unevenly distributed, thereby forming a non-uniform wear state of the piston, and also impact resistance and strength of the piston. In addition, in order to achieve uniform micronization of primary Si in the Al-Si alloy for automobile piston according to the present invention, the content range of the Si component is in the range of 11% to 13%.

즉, Si 성분이 11wt% 미만으로 첨가되면 초정 Si 생성율이 낮아져서 피스톤의 내마모성이 감소될 수 있고, 반대로 Si 성분이 13wt%를 초과하여 첨가되면 초정 Si의 불균일한 분포로 인해 피스톤의 내충격성 및 강도에 부정적인 영향이 발생할 수 있기 때문에, 본 발명에서 사용되는 Al-Si 합금의 Si 성분은 11 ~ 13wt% 범위에서 설정되는 것이 바람직하다.In other words, when the Si component is added below 11wt%, the initial Si production rate is lowered, which may reduce the abrasion resistance of the piston.In contrast, when the Si component is added above 13wt%, the impact resistance and strength of the piston due to the nonuniform distribution of primary Si may be reduced. Since negative effects may occur, the Si component of the Al-Si alloy used in the present invention is preferably set in the range of 11 to 13 wt%.

그리고 상기 Al-Si 합금 잉곳을 용해시키기 위한 온도 범위는, 820℃ ~ 950℃의 범위에서 설정되는 것이 바람직하다. 상기 Al-Si 합금 잉곳의 용해 온도가 820℃ 미만이면, 바나듐의 첨가 효율이 떨어져서 합금의 고온 강도 및 내열피로 특성의 향상 효과가 미미해진다. 또한 상기 Al-Si 합금 잉곳의 용해 온도가 950℃를 초과하게 되면, 합금 용탕 표면의 빠른 산화와 용탕 내부의 수소 고용도 증가 등의 문제가 야기될 수 있다. 따라서 바나듐을 첨가하기 위한 Al-Si 합금 잉곳의 적절한 용해 온도는 820℃ ~ 950℃ 범위에서 설정되는 것이 바람직하다.And it is preferable that the temperature range for melt | dissolving the said Al-Si alloy ingot is set in the range of 820 degreeC-950 degreeC. When the melting temperature of the Al-Si alloy ingot is less than 820 ° C, the addition efficiency of vanadium is inferior, and the effect of improving the high temperature strength and the fatigue resistance of the alloy is insignificant. In addition, when the melting temperature of the Al-Si alloy ingot exceeds 950 ℃, problems such as rapid oxidation of the surface of the molten alloy and increase of the hydrogen solubility in the molten metal may be caused. Therefore, the appropriate dissolution temperature of the Al-Si alloy ingot for adding vanadium is preferably set in the range of 820 ℃ to 950 ℃.

한편, 상기 Al-Si 합금 잉곳의 용해 온도가 820 ~ 850℃ 사이에서 바나듐의 수율이 가장 높게 나타나므로, 상기 Al-Si 합금 잉곳의 용해 온도는 820℃ ~ 850℃ 범위에서 설정되는 것이 더욱 바람직하다.
On the other hand, since the yield of vanadium is the highest in the melting temperature of the Al-Si alloy ingot between 820 ~ 850 ℃, it is more preferable that the melting temperature of the Al-Si alloy ingot is set in the range of 820 ℃ to 850 ℃. .

이하에서는 본 발명에 따른 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금의 제조방법에 대한 이해를 돕기 위한 실험예를 설명한다.Hereinafter will be described an experimental example to help understand the manufacturing method of the Al-Si alloy for vanadium-added automobile piston according to the present invention.

도 1에는 본 실험에서 사용한 피스톤용 Al-Si 합금(DM104)의 주요 조성이 기재되어 있다.Figure 1 shows the main composition of the Al-Si alloy (DM104) for the piston used in this experiment.

도 1을 참조하면, 본 실험에서 사용된 피스톤용 Al-Si 합금(DM104)의 주요 성분은, Si 12wt%, Cu 3wt%, Ni 2wt%, Mg 1wt% 및 잔부 Al으로 이루어진다.Referring to Figure 1, the main components of the Al-Si alloy (DM104) for the piston used in this experiment consists of Si 12wt%, Cu 3wt%, Ni 2wt%, Mg 1wt% and the balance Al.

그리고 상기 피스톤용 Al-Si 합금의 용탕 온도를 700℃ ~ 820℃ 범위에서 40℃ 간격으로 변화시켜가면서 바나듐을 첨가하고, 10분간 용탕을 진정 및 유지하여 최적의 수율을 나타내는 조건을 도출하였다.And while changing the molten metal temperature of the Al-Si alloy for piston at the interval of 40 ℃ in the range of 700 ℃ ~ 820 ℃, vanadium was added, and the condition for showing the optimum yield by depressing and maintaining the melt for 10 minutes.

이러한 본 실험을 통해, Al-Si 합금의 용탕 온도가 820℃ 미만에서는 바나듐의 첨가효율이 저하되는 것을 확인하였으며, 용탕 온도 950℃이상에서는 Al-Si합금 용탕 표면의 빠른 산화와 용탕 내부의 수소 고용도 증가 등 문제가 야기되었다.Through this experiment, it was confirmed that the addition efficiency of vanadium is lowered when the molten metal temperature of the Al-Si alloy is lower than 820 ° C, and the rapid oxidation of the surface of the Al-Si alloy molten metal and the hydrogen solubility inside the molten metal are performed at the molten metal temperature of 950 ° C or higher. Problems such as increasing the degree were caused.

그리고 본 실험에서 Al-Si 합금의 용탕에 첨가되는 바나듐의 양을 0.13wt%가 되도록 측량하여 첨가하였다. 이후, 본 실험을 통해 주조된 시편은 분광분석장비(Spectrometer)를 이용하여 각각의 화학성분 조성을 분석하였으며, 바나듐의 수율에 따른 화학성분 변화량을 측정하여 그 결과를 도 2에 도시 하였다.In this experiment, the amount of vanadium added to the molten Al-Si alloy was measured and added to 0.13 wt%. Subsequently, the specimens cast through the present experiment were analyzed for chemical composition by using a spectrometer (Spectrometer), the change in chemical composition according to the yield of vanadium is shown in Figure 2 the results.

그리고 도 3에 도시된 바와 같이, 본 실험에서 검출된 피스톤용 Al-Si 합금의 화학 성분 조성 변화를 살펴보면, 바나듐의 수율 평균값이 0.129wt%로 본 실험에서 용탕에 첨가된 바나듐의 양 0.13wt%와 유사함을 확인할 수 있다.As shown in FIG. 3, when the chemical composition of the Al-Si alloy for pistons detected in this experiment was examined, the yield average value of vanadium was 0.129 wt%, and the amount of vanadium added to the molten metal in this experiment was 0.13 wt%. You can see that it is similar to.

이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.
While the invention has been shown and described in connection with specific embodiments thereof, it is well known in the art that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the claims. Anyone who owns it can easily find out.

Claims (8)

Al-Si 합금 잉곳이 용해된 용탕에 바나듐이 첨가되고,
상기 Al-Si 합금의 용해 온도 범위가 820℃ ~ 850℃의 범위에서 이루어지는 것을 특징으로 하는 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금의 제조방법.
Vanadium is added to the molten metal in which the Al-Si alloy ingot is dissolved,
Method for producing a vanadium-added Al-Si alloy for automobile piston, characterized in that the melting temperature range of the Al-Si alloy is in the range of 820 ℃ ~ 850 ℃.
제1항에 있어서,
상기 Al-Si 합금은 Al을 기지 금속으로 하고, Si 성분이 12 wt% 이상으로 이루어지는 과공정 Al-Si 합금인 것을 특징으로 하는 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금의 제조방법.
The method of claim 1,
Said Al-Si alloy is a eutectic Al-Si alloy which uses Al as a base metal and whose Si component is 12 wt% or more, The manufacturing method of the Al-Si alloy for automobile pistons with the vanadium added.
제1항에 있어서,
상기 Al-Si 합금은 Al을 기지 금속으로 하고, Si 성분이 11 wt% ~ 13 wt% 범위로 이루어지는 것을 특징으로 하는 바나듐이 첨가된 자동차 피스톤용 Al-Si 합금의 제조방법.
The method of claim 1,
The Al-Si alloy is Al as a known metal, the Si component is a manufacturing method of Al-Si alloy for vanadium-added automotive piston, characterized in that the range of 11 wt% to 13 wt%.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020100060252A 2010-06-24 2010-06-24 Al-Si alloy for piston of car added vanadium and manufacturing method of the same KR101309720B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100060252A KR101309720B1 (en) 2010-06-24 2010-06-24 Al-Si alloy for piston of car added vanadium and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100060252A KR101309720B1 (en) 2010-06-24 2010-06-24 Al-Si alloy for piston of car added vanadium and manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20110140061A KR20110140061A (en) 2011-12-30
KR101309720B1 true KR101309720B1 (en) 2013-09-25

Family

ID=45505343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100060252A KR101309720B1 (en) 2010-06-24 2010-06-24 Al-Si alloy for piston of car added vanadium and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR101309720B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112674A (en) * 1997-06-30 1999-01-19 Aisin Seiki Co Ltd Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy
JP2000054053A (en) 1998-08-03 2000-02-22 Toyota Motor Corp Aluminum-base alloy excellent in heat resistance, and its production
JP2002249840A (en) * 2001-02-21 2002-09-06 Toyota Central Res & Dev Lab Inc Aluminum cast alloy for piston and production method of piston
KR20090046868A (en) * 2006-08-01 2009-05-11 쇼와 덴코 가부시키가이샤 Process for production of aluminum alloy formings, aluminum alloy formings and production system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112674A (en) * 1997-06-30 1999-01-19 Aisin Seiki Co Ltd Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy
JP2000054053A (en) 1998-08-03 2000-02-22 Toyota Motor Corp Aluminum-base alloy excellent in heat resistance, and its production
JP2002249840A (en) * 2001-02-21 2002-09-06 Toyota Central Res & Dev Lab Inc Aluminum cast alloy for piston and production method of piston
KR20090046868A (en) * 2006-08-01 2009-05-11 쇼와 덴코 가부시키가이샤 Process for production of aluminum alloy formings, aluminum alloy formings and production system

Also Published As

Publication number Publication date
KR20110140061A (en) 2011-12-30

Similar Documents

Publication Publication Date Title
CN107881378B (en) Aluminum alloy composition, aluminum alloy element, communication product and preparation method of aluminum alloy element
CN105063438B (en) A kind of preparation method of high copper silicon magnesium system POWDER METALLURGY ALUMINIUM ALLOYS
CN102676887B (en) Aluminum alloy for compression casting and casting of aluminum alloy
US8122941B2 (en) Aluminum alloy for vehicle cylinder liner and method of manufacturing vehicle cylinder liner using the same
JP6131322B2 (en) Manufacturing method of high strength and high damping capacity cast iron
JP4290024B2 (en) Compressor impeller made of cast aluminum alloy for turbochargers with excellent heat resistance
JP2011058056A (en) Aluminum alloy casting member and method for producing the same
JPWO2014061329A1 (en) Die-cast products and vehicle parts
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
JP2018114556A (en) Method for manufacturing engine component, engine component, and use of aluminium alloy
JP4328321B2 (en) Piston for internal combustion engine
CN102205409B (en) Method for manufacturing compound piston blank used for internal combustion engine
US11926887B2 (en) Magnesium alloy, a piston manufactured by said magnesium alloy and a method for manufacturing said piston
JP2017078213A (en) Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JP6743155B2 (en) High-strength aluminum alloy, internal combustion engine piston made of the alloy, and method for manufacturing internal combustion engine piston
CN103898376A (en) Die-cast aluminum alloy for automobile engine
CN105401005A (en) Al-Si alloy material and production method thereof
KR101277456B1 (en) Aluminium-based alloy and moulded part consisting of said alloy
JP4648559B2 (en) Heat-resistant aluminum die-cast product
KR101309720B1 (en) Al-Si alloy for piston of car added vanadium and manufacturing method of the same
CN112313356A (en) Aluminium alloy, method for producing an engine component, engine component and use of an aluminium alloy for producing an engine component
KR20120116101A (en) Aluminum alloy having high elastic modulus
KR20120134680A (en) Aluminum alloy of air compressor
JP2019026859A (en) Aluminum alloy forging article for high speed moving component, and manufacturing method therefor
CN104726751B (en) Aluminium alloy and use its vehicle part

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160728

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 7