KR101305454B1 - Carbon adsorbent codoped nitrogen, oxygen, fluorine for carbon dioxide adsorption and manufacturing method thereof - Google Patents

Carbon adsorbent codoped nitrogen, oxygen, fluorine for carbon dioxide adsorption and manufacturing method thereof Download PDF

Info

Publication number
KR101305454B1
KR101305454B1 KR1020120021208A KR20120021208A KR101305454B1 KR 101305454 B1 KR101305454 B1 KR 101305454B1 KR 1020120021208 A KR1020120021208 A KR 1020120021208A KR 20120021208 A KR20120021208 A KR 20120021208A KR 101305454 B1 KR101305454 B1 KR 101305454B1
Authority
KR
South Korea
Prior art keywords
carbon
carbon dioxide
fluorine
dioxide adsorption
oxygen
Prior art date
Application number
KR1020120021208A
Other languages
Korean (ko)
Inventor
이영석
유혜련
조세호
배병철
정민정
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020120021208A priority Critical patent/KR101305454B1/en
Application granted granted Critical
Publication of KR101305454B1 publication Critical patent/KR101305454B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE: A carbon absorbent for adsorbing carbon dioxide and a manufacturing method thereof improve the ionic attraction between the carbon absorbent and carbon dioxide to enhance the carbon dioxide adsorption ability, and nitrogen, oxygen and fluorine are introduced to carbon materials of the carbon absorbent by using a weather-liquid simultaneous reaction, presenting excellent economic feasibility and efficiency. CONSTITUTION: A manufacturing method of a carbon absorbent for adsorbing carbon dioxide comprises the steps of: dissolving a compound containing nitrogen and oxygen in a solvent to produce a solution; inserting the solution of the previous step and carbon materials in a reactor; and injecting fluorine gas or gas mixture of fluorine gas and inert gas in a bubble injection way to introduce nitrogen, oxygen and fluorine to the carbon materials at the same time. [Reference numerals] (AA) Example 1; (B1) Comparative example 1; (B2) Comparative example 2; (B3) Comparative example 3

Description

질소, 산소, 불소가 동시에 도입된 이산화탄소 흡착용 탄소흡착제 및 그 제조방법{Carbon adsorbent codoped nitrogen, oxygen, fluorine for Carbon dioxide adsorption and manufacturing method thereof}Carbon adsorbent codoped nitrogen, oxygen, fluorine for Carbon dioxide adsorption and manufacturing method

본 발명은 이산화탄소 흡착용 탄소흡착제 및 그 제조방법에 관한 것으로서, 보다 상세하게는 탄소재료에 질소, 산소 및 불소를 기상-액상 동시반응으로 도입하여 탄소재료의 이산화탄소 흡착능을 향상시킨 이산화탄소 흡착용 탄소흡착제 및 그 제조방법에 관한 것이다.
The present invention relates to a carbon adsorbent for carbon dioxide adsorption and a method for manufacturing the same, and more particularly, carbon adsorbent for carbon dioxide adsorption which improves the carbon dioxide adsorption capacity of carbon materials by introducing nitrogen, oxygen, and fluorine into the carbon material in a gas-liquid phase reaction. And to a method for producing the same.

이산화탄소로 인한 지구온난화 문제의 해결, 신재생에너지-특히 바이오매스(Bio-Mass)-의 효율적인 이용 등의 관점에서 현재 이산화탄소를 포집하는 다양한 방법이 연구되고 있다. Various methods of capturing carbon dioxide are currently being studied in view of solving the global warming problem caused by carbon dioxide and the efficient use of renewable energy, especially bio-mass.

현재까지 알려진 이산화탄소의 포집기술을 살펴보면, 아민계 흡수제를 이용한 이산화탄소 흡수법과 활성탄, 제올라이트, 알칼리금속 또는 알칼리금속 산화물과 같은 고형 흡착제를 이용하여 이산화탄소를 회수하는 방법, 그리고 이산화탄소 분리막을 사용하여 이산화탄소를 분리하는 방법 등이 있다.The carbon dioxide capture technology known to date includes carbon dioxide absorption using an amine-based absorbent, carbon dioxide recovery using a solid adsorbent such as activated carbon, zeolite, alkali metal or alkali metal oxide, and carbon dioxide separation using a carbon dioxide separator. How to do it.

아민계 흡수제를 이용한 이산화탄소 흡수법은 분리과정에서 많은 양의 에너지가 필요하며, 사용된 아민의 정제과정이 필수적으로 요구된다. 따라서 공정이 매우 복잡하여지고, 설비비가 알려진 이산화탄소의 분리방법 중에 가장 높다는 문제점이 있다. Carbon dioxide absorption using the amine-based absorbent requires a large amount of energy in the separation process, and the purification process of the amine used is essential. Therefore, the process is very complicated, there is a problem that the equipment cost is the highest among known methods of separation of carbon dioxide.

고형 흡착제를 사용하는 방법의 경우 이산화탄소와 고형 흡착제의 분리공정에서 고농도의 이산화탄소를 직접 얻을 수 있다는 장점이 있으나, 고형 흡착제의 마모에 의한 손실이 큰 단점을 지니고 있다. The method of using a solid adsorbent has the advantage of directly obtaining a high concentration of carbon dioxide in a separation process of carbon dioxide and a solid adsorbent, but has a disadvantage in that loss due to wear of the solid adsorbent is large.

이산화탄소 분리막의 경우 현재 제조 및 판매되고 있는 분리막의 가격이 매우 높으며, 연소가스의 정제를 위한 전처리장치가 필요하고, 분리막의 오염에 의한 교체 비용이 매우 크다. In the case of the carbon dioxide separator, the price of the separator currently manufactured and sold is very high, a pretreatment device for purifying combustion gas is required, and the replacement cost due to contamination of the separator is very high.

최근에는 열적, 화학적 안정성이 우수한 탄소흡착제에 관한 연구가 많이 진행되고 있으나, 현재까지 알려진 탄소흡착제의 이산화탄소 흡착량은 상용화 기준에서 아직 부족한 상태이다. 또한 탄소재료의 이산화탄소 흡착량을 증가시키기 위하여 행하여지고 있는 현재의 방법은 여전히 전통적인 방법인 기공특성과 단순 표면처리법에 주로 국한되며, 그 방법 또한 매우 복잡하고 비용이 많이 든다는 문제점이 있다.
Recently, many studies on carbon adsorbents having excellent thermal and chemical stability have been conducted, but the carbon dioxide adsorption amount of carbon adsorbents known to date is still insufficient in commercialization standards. In addition, the current method, which is performed to increase the carbon dioxide adsorption amount of the carbon material, is still mainly limited to the pore characteristics and simple surface treatment methods, which are traditional methods, and the method is also very complicated and expensive.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 마이크로와 메조 기공을 갖는 탄소재료의 고유 특성을 유지하면서 탄소흡착제 표면에 질소, 산소 및 불소를 기상 및 액상의 동시반응으로 도입하여 이산화탄소 흡착능을 향상시킨 이산화탄소 흡착용 탄소흡착제 및 그 제조방법을 제공하는 것을 목적으로 한다.
The present invention has been made to solve the above problems, while maintaining the inherent properties of the carbon material having micro and meso pores, by introducing nitrogen, oxygen and fluorine on the surface of the carbon adsorbent by the simultaneous reaction of the gas phase and liquid phase to improve the carbon dioxide adsorption capacity An object of the present invention is to provide an improved carbon adsorbent for carbon dioxide adsorption and a method of manufacturing the same.

상기 목적을 달성하기 위하여 본 발명은 이산화탄소 흡착용 탄소흡착제의 제조방법을 제공하는데, 본 발명의 일례에 따른 이산화탄소 흡착용 탄소흡착제의 제조방법은,In order to achieve the above object, the present invention provides a method for producing a carbon adsorbent for carbon dioxide adsorption, the method for producing a carbon adsorbent for carbon dioxide adsorption according to an example of the present invention,

(1) 질소와 산소를 포함하는 화합물을 용매에 용해시켜 용액을 제조하는 제1단계;(1) a first step of preparing a solution by dissolving a compound containing nitrogen and oxygen in a solvent;

(2) 반응기에 상기 제1단계에서 얻어진 용액과 탄소재료를 투입하는 제2단계; 및(2) a second step of injecting the solution and carbon material obtained in the first step into the reactor; And

(3) 상기 반응기에 불소가스 또는 불소가스와 비활성가스의 혼합가스를 버블(bubble) 주입식으로 주입시켜 탄소재료에 질소, 산소 및 불소를 동시에 도입하는 제3단계를 포함하여 이루어진다.(3) a third step of introducing nitrogen, oxygen, and fluorine simultaneously into the carbon material by injecting fluorine gas or a mixed gas of fluorine gas and inert gas into the reactor by bubble injection.

상기 제1단계의 질소와 산소를 포함하는 화합물은 질산(HNO3), 질산나트륨(NaNO3), 질산칼륨(KNO3), 질산암모늄(NH4NO3), 질산칼슘(Ca(NO3)2), 질산바륨(Ba(NO3)2) 및 이들의 혼합물로 이루어지는 군으로부터 선택될 수 있다.Compounds containing nitrogen and oxygen of the first step are nitric acid (HNO 3 ), sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), ammonium nitrate (NH 4 NO 3 ), calcium nitrate (Ca (NO 3 ) 2 ), barium nitrate (Ba (NO 3 ) 2 ) and mixtures thereof.

상기 제1단계의 과정을 통하여 얻어지는 용액의 농도는 0.5 내지 5M인 것이 바람직하다.The concentration of the solution obtained through the process of the first step is preferably 0.5 to 5M.

상기 제2단계에서 반응기에 투입되는 용액과 탄소재료의 비율은 상기 용액 100 중량부를 기준으로 탄소재료 5 내지 30 중량부인 것이 바람직하다.Preferably, the ratio of the solution and the carbon material introduced into the reactor in the second step is 5 to 30 parts by weight of the carbon material based on 100 parts by weight of the solution.

상기 제3단계에서 버블 주입식으로 반응기에 주입되는 불소가스는 불소(F2), 삼화불화질소(NF3), 사불화탄소(CF4), 삼불화탄소(CHF3), 팔불화삼탄소(C3F8), 팔불화사탄소(C4F8) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.In the third step, the fluorine gas injected into the reactor by bubble injection is fluorine (F 2 ), nitrogen trifluoride (NF 3 ), carbon tetrafluoride (CF 4 ), carbon trifluoride (CHF 3 ), trifluorooctafluorocarbon (C 3) F 8 ), tetrafluorocarbons (C 4 F 8 ) and mixtures thereof.

상기 제3단계에서 버블 주입식으로 반응기에 주입되는 불소가스는 반응기 내의 용액과 탄소재료의 부피 100을 기준으로 분당 1 내지 100의 부피로 주입되는 것이 바람직하다.In the third step, the fluorine gas injected into the reactor by bubble injection is preferably injected in a volume of 1 to 100 per minute based on the volume of the solution and the carbon material in the reactor.

상기 제3단계는 40 내지 100℃의 온도조건에서 0.2 내지 2시간 동안 이루어지는 것이 바람직하다.The third step is preferably made for 0.2 to 2 hours at a temperature of 40 to 100 ℃.

또한 본 발명은 상술한 제조방법에 의하여 제조되는 이산화탄소 흡착용 탄소흡착제를 제공한다.
In another aspect, the present invention provides a carbon adsorbent for carbon dioxide adsorption produced by the above-described manufacturing method.

상술한 바와 같은 본 발명에 의할 경우, 탄소재료에 질소, 산소 및 불소가 도입됨으로 인해 이산화탄소와 탄소흡착제 간의 이온성 인력이 향상되어 이산화탄소 흡착능이 향상된다.According to the present invention as described above, due to the introduction of nitrogen, oxygen and fluorine in the carbon material, the ionic attraction between the carbon dioxide and the carbon adsorbent is improved to improve the carbon dioxide adsorption capacity.

또한 본 발명은 복잡한 공정과 많은 비용이 소요되었던 종래와 달리 기상-액상의 동시반응을 이용하여 탄소재료에 질소, 산소 및 불소를 도입하는 것에 의해 탄소흡착제의 이산화탄소 흡착능을 향상시킬 수 있어 경제성 및 효율 측면에서 매우 우수하다.
In addition, the present invention can improve the carbon dioxide adsorption capacity of the carbon adsorbent by introducing nitrogen, oxygen and fluorine to the carbon material by using the simultaneous reaction of the gas phase-liquid phase compared to the complicated process and costly conventional, economical and efficiency Very good in terms of

도 1은 본 발명의 실시예 및 비교예에 의하여 제조된 탄소흡착제의 XPS 분석 결과이다.
도 2는 본 발명의 실시예 및 비교예에 의하여 제조된 탄소흡착제의 이산화탄소 흡착량을 측정하여 나타낸 그래프이다.
1 is an XPS analysis result of the carbon adsorbent prepared according to the Examples and Comparative Examples of the present invention.
Figure 2 is a graph showing the measurement of the carbon dioxide adsorption amount of the carbon adsorbent prepared by Examples and Comparative Examples of the present invention.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

먼저 본 발명은 이산화탄소 흡착용 탄소흡착제의 제조방법을 제공하는데, 본 발명의 일례에 따른 이산화탄소 흡착용 탄소흡착제의 제조방법은,First, the present invention provides a method for preparing a carbon adsorbent for carbon dioxide adsorption, the method for preparing a carbon adsorbent for carbon dioxide adsorption according to an example of the present invention,

(1) 질소와 산소를 포함하는 화합물을 용매에 용해시켜 용액을 제조하는 제1단계;(1) a first step of preparing a solution by dissolving a compound containing nitrogen and oxygen in a solvent;

(2) 반응기에 상기 제1단계에서 얻어진 용액과 탄소재료를 투입하는 제2단계; 및(2) a second step of injecting the solution and carbon material obtained in the first step into the reactor; And

(3) 상기 반응기에 불소가스 또는 불소가스와 비활성가스의 혼합가스를 버블(bubble) 주입식으로 주입시켜 탄소재료에 질소, 산소 및 불소를 동시에 도입하는 제3단계를 포함하여 이루어진다.(3) a third step of introducing nitrogen, oxygen, and fluorine simultaneously into the carbon material by injecting fluorine gas or a mixed gas of fluorine gas and inert gas into the reactor by bubble injection.

상기 질소와 산소를 포함하는 화합물은 질소와 산소를 포함하고 있는 것이라면 어느 것을 사용하여도 무방하며, 예를 들어, 질산(HNO3), 질산나트륨(NaNO3), 질산칼륨(KNO3), 질산암모늄(NH4NO3), 질산칼슘(Ca(NO3)2), 질산바륨(Ba(NO3)2) 및 이들의 혼합물로 이루어지는 군으로부터 선택될 수 있으나 이에 한정되는 것은 아니다.The compound containing nitrogen and oxygen may be used as long as it contains nitrogen and oxygen. For example, nitric acid (HNO 3 ), sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), and nitric acid It may be selected from the group consisting of ammonium (NH 4 NO 3 ), calcium nitrate (Ca (NO 3 ) 2 ), barium nitrate (Ba (NO 3 ) 2 ) and mixtures thereof, but is not limited thereto.

상기 용매는 질소와 불소를 포함하는 화합물을 용해시킬 수 있는 것이라면, 어느 것을 사용하여도 무방하며, 이의 예를 들어보면, 디메틸포름아미드, 클로로포름, N-메틸피롤리돈테트라하이로퓨란 등의 유기용매, 산/염기 용매, 증류수 및 이들의 혼합물에서 선택될 수 있다.The solvent may be used as long as it can dissolve a compound containing nitrogen and fluorine. Examples thereof include organic solvents such as dimethylformamide, chloroform and N-methylpyrrolidone tetrahydrofuran. , Acid / base solvents, distilled water and mixtures thereof.

상기 제1단계의 과정을 통하여 얻어지는 용액의 농도는 0.5 내지 5M인 것이 바람직한데, 상기 용액의 농도가 하한치 미만일 경우에는 반응속도가 느려져 탄소재료에 질소와 산소가 충분히 도입되지 못할 우려가 있고, 용액의 농도가 상한치를 초과하는 경우에는 반응이 격렬하게 일어나 탄소재료가 과도하게 개질이 될 우려와 더불어 탄소재료의 기공구조가 무너져 제조되는 탄소흡착제의 이산화탄소 흡착능이 저하될 우려가 있어 바람직하지 않다.It is preferable that the concentration of the solution obtained through the process of the first step is 0.5 to 5M. When the concentration of the solution is less than the lower limit, the reaction rate is slowed, and nitrogen and oxygen may not be sufficiently introduced into the carbon material. If the concentration exceeds the upper limit, the reaction may occur violently and the carbon material may be excessively modified, and the pore structure of the carbon material may collapse, which may lower the carbon adsorption capacity of the carbon adsorbent.

상기 제2단계에서 반응기에 투입되는 탄소재료는 탄소흡착제로 사용이 가능하다고 알려진 어떠한 것을 사용하여도 무방하다. 또한 구형상, 섬유상, 분말상, 펠렛형상 등 어떠한 형태의 것을 사용하여도 무방하다.The carbon material introduced into the reactor in the second step may use any known material that can be used as a carbon adsorbent. Moreover, you may use what kind of form, such as spherical form, fibrous form, powder form, and pellet form.

또한 본 발명은 상기 제2단계 이전에 상기 제2단계를 통하여 반응기에 투입되는 탄소재료의 고유수분을 제거하는 단계를 추가로 포함할 수 있다. 고유수분의 제거는 예를 들어 100 내지 200℃의 온도에서 1 내지 10시간 동안 수행될 수 있다.In another aspect, the present invention may further comprise the step of removing the intrinsic moisture of the carbon material introduced into the reactor through the second step before the second step. Removal of the intrinsic moisture can be carried out for 1 to 10 hours at a temperature of 100 to 200 ° C, for example.

상기 제2단계에서 반응기에 투입되는 용액과 탄소재료의 비율은 상기 용액 100 중량부를 기준으로 탄소재료 5 내지 30 중량부인 것이 바람직한데, 탄소재료의 혼합비가 상기 하한치 미만일 경우에는 탄소재료가 하한치인 경우와 별반 차이가 없어, 용액 및 에너지의 낭비를 초래할 뿐이며, 탄소재료의 혼합비가 상한치를 초과할 경우에는 반응과정에서 탄소재료가 용액과 충분히 접촉하지 못할 우려가 있어 바람직하지 않다.The ratio of the solution and the carbon material introduced into the reactor in the second step is preferably 5 to 30 parts by weight of the carbon material based on 100 parts by weight of the solution, when the carbon material is a lower limit when the mixing ratio of the carbon material is less than the lower limit. There is no difference, and only waste of solution and energy. If the mixing ratio of the carbon material exceeds the upper limit, the carbon material may not be sufficiently in contact with the solution during the reaction, which is not preferable.

상기 제2단계에서 용액과 탄소재료가 투입되는 상기 반응기는 기체-액체 반응이 가능한 반응기 예를 들어 버블(bubble) 반응기가 이용된다. 버블(bubble) 반응기란 반응기 내부에 액체를 수용하고, 반응기 내의 액체와 접촉시 버블(bubble)이 형성되도록 주입구를 통하여 기체를 주입하는 것으로서 이러한 반응기 자체는 공지의 기술이므로 이의 상세한 설명은 생략한다.In the second step, the reactor into which the solution and the carbonaceous material are introduced may be a reactor capable of gas-liquid reaction, for example, a bubble reactor. The bubble (bubble) reactor is to receive a liquid inside the reactor, and injects gas through the inlet to form a bubble (bubble) in contact with the liquid in the reactor as the reactor itself is a known technique, so its detailed description is omitted.

상기 제3단계에서 버블 주입식으로 반응기에 주입되는 가스는 불소가스 단독 또는 불소가스와 비활성가스의 혼합가스가 이용될 수 있다. 상기 불소가스는 불소(F2), 삼화불화질소(NF3), 사불화탄소(CF4), 삼불화탄소(CHF3), 팔불화삼탄소(C3F8), 팔불화사탄소(C4F8) 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나 반드시 이에 한정되는 것은 아니다.In the third step, the gas injected into the reactor by the bubble injection method may use fluorine gas alone or a mixed gas of fluorine gas and inert gas. The fluorine gas is fluorine (F 2 ), nitrogen trifluoride (NF 3 ), carbon tetrafluoride (CF 4 ), carbon trifluoride (CHF 3 ), trifluorofluorocarbons (C 3 F 8 ), tetrafluorocarbons (C 4 F 8 ) and mixtures thereof, but is not necessarily limited thereto.

상기 제3단계에서 버블 주입식으로 반응기에 주입되는 불소가스는 반응기 내의 용액과 탄소재료의 부피 100을 기준으로 분당 1 내지 100의 부피로 주입되는 것이 바람직하다. 불소가스가 상기 하한치 미만으로 주입되면 반응효율이 떨어질 우려, 즉 탄소재료에 질소, 산소 및 불소가 충분히 도입되지 못할 우려가 있어 바람직하지 않으며, 불소가스가 상기 상한치를 초과하여 주입되는 경우에는 과도한 불소가스의 주입으로 반응이 격렬하게 일어나 탄소재료가 과도하게 개질이 될 우려와 더불어 탄소재료의 기공구조가 무너져 제조되는 탄소흡착제의 이산화탄소 흡착능이 저하될 우려가 있어 바람직하지 않다. 불소가스와 비활성가스의 혼합가스를 사용하는 경우에도 주입되는 불소가스의 비율은 상기와 같은 것이 바람직하다.In the third step, the fluorine gas injected into the reactor by bubble injection is preferably injected in a volume of 1 to 100 per minute based on the volume of the solution and the carbon material in the reactor. If the fluorine gas is injected below the lower limit, the reaction efficiency may be lowered, that is, nitrogen, oxygen, and fluorine may not be sufficiently introduced into the carbon material, which is not preferable. When the fluorine gas is injected above the upper limit, excessive fluorine is introduced. The reaction is violent due to the injection of gas, and the carbon material may be excessively modified, and the pore structure of the carbon material may collapse, which may lower the carbon dioxide adsorption capacity of the carbon adsorbent. In the case where a mixed gas of fluorine gas and inert gas is used, the proportion of fluorine gas to be injected is preferably as described above.

또한 상기 제3단계는 40 내지 100℃의 온도조건에서 0.2 내지 2시간 동안 이루어지는 것이 바람직한데, 반응온도와 반응시간이 상기 하한치 미만일 경우에는 목적하는 만큼의 질소, 산소 및 불소가 도입되지 못할 우려가 있어 바람직하지 않으며, 반응시간이 상한치를 초과하는 경우에는 상한치의 경우와 별반 차이가 없어 실익이 없고, 반응온도가 상한치를 초과하는 경우에는 증발되는 수분과 함께 질소, 산소 및 불소가 빠르게 용액에서 이탈하여 탄소재료에 질소, 산소 및 불소가 충분히 도입되지 못할 우려가 있어 바람직하지 않다.In addition, the third step is preferably performed for 0.2 to 2 hours at a temperature condition of 40 to 100 ℃, when the reaction temperature and the reaction time is less than the lower limit there is a fear that the desired amount of nitrogen, oxygen and fluorine is not introduced. If the reaction time exceeds the upper limit, there is no difference between the upper limit and no profit. If the reaction temperature exceeds the upper limit, nitrogen, oxygen, and fluorine quickly escape from the solution together with the evaporated water. Therefore, nitrogen, oxygen and fluorine may not be sufficiently introduced into the carbon material, which is not preferable.

또한 본 발명은 상술한 제조방법에 의하여 제조되는 이산화탄소 흡착용 탄소흡착제를 제공한다.
In another aspect, the present invention provides a carbon adsorbent for carbon dioxide adsorption produced by the above-described manufacturing method.

이하 실시예 및 시험예를 통하여 본 발명을 더욱 상세하게 설명한다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples.

실시예Example : 질소, 산소 및 불소가 동시에 도입된 이산화탄소 흡착용 탄소흡착제의 제조 : Preparation of Carbon Adsorbent for Adsorbing Carbon Dioxide Adopted Nitrogen, Oxygen and Fluorine Simultaneously

탄소재료로 활성탄소(CMS FB610, Carbo Tech AC GmbH, Germany),질소와 산소를 포함하는 화합물로 질산(HNO3), 용매로 증류수를 선정하였다. Activated carbon (CMS FB610, Carbo Tech AC GmbH, Germany) as a carbon material, nitric acid (HNO 3 ) as a compound containing nitrogen and oxygen, and distilled water as a solvent were selected.

먼저 증류수를 용매로 하여 1M의 질산 용액을 제조하였다.First, 1M nitric acid solution was prepared using distilled water as a solvent.

다음으로 가스의 주입이 가능한 버블식 반응기 내부로 상기 용액 1000㎖와 150g의 활성탄소를 넣고 불소(F2)를 100cc/min의 속도로 버블이 발생하게끔 공급하였다. 반응온도는 50℃를 유지하였으며, 반응은 30분 동안 수행하였다.Next, 1000 ml of the solution and 150 g of activated carbon were put into a bubble reactor capable of injecting gas, and fluorine (F 2 ) was supplied to generate bubbles at a rate of 100 cc / min. The reaction temperature was maintained at 50 ℃, the reaction was carried out for 30 minutes.

최종적으로 반응이 완료된 활성탄소를 분리하여 질소, 산소 및 불소가 동시에 도입된 이산화탄소 흡착용 탄소흡착제를 제조하 였다.
Finally, the activated carbon was separated to prepare a carbon adsorbent for adsorption of carbon dioxide into which nitrogen, oxygen and fluorine were simultaneously introduced.

비교예Comparative example

상기 실시예와의 비교를 위하여 비교예를 선정하였다.A comparative example was selected for comparison with the above example.

아무 처리도 하지 않은 활성탄소(CMS FB610, Carbo Tech AC GmbH, Germany) 자체를 비교예 1로 하였고, 불소가스와의 반응을 제외하고는 상기 실시예와 동일한 과정을 통하여 제조한 탄소흡착제를 비교예 2로, 질산 용액 대신 증류수를 사용한 것을 제외하고는 상기 실시예와 동일한 과정을 통하여 제조한 탄소흡착제를 비교예 3으로 선정하였다.
Activated carbon (CMS FB610, Carbo Tech AC GmbH, Germany) without any treatment itself as Comparative Example 1, except for the reaction with a fluorine gas carbon adsorbent prepared through the same process as in Example 2, except that distilled water was used instead of nitric acid solution, the carbon adsorbent prepared through the same process as in Example was selected as Comparative Example 3.

조성Furtherance

상기 실시예 및 비교예 1, 2, 3 의 과정을 통하여 제조된 탄소흡착제의 화학조성 및 결합구조를 확인하기 위하여 광전자분광기(X-ray Photoelectron Spectroscopy, XPS, MultiLab 2000 spectrometer, Thermo electron corporation, England)를 이용하여 분석하였고, 이의 결과를 표 1과 도 1에 나타내었다.
Photoelectron spectroscopy (X-ray Photoelectron Spectroscopy, XPS, MultiLab 2000 spectrometer, Thermo electron corporation, England) to confirm the chemical composition and bonding structure of the carbon adsorbent prepared through the above Examples and Comparative Examples 1, 2, 3 It was analyzed using, the results are shown in Table 1 and FIG.

Figure 112012016951380-pat00001
Figure 112012016951380-pat00001

상기 표 1 및 도 1의 결과에서 알 수 있듯이 본 발명의 실시예에 의한 탄소흡착제의 경우 탄소재료에 질소, 산소 및 불소가 도입된 것을 확인할 수 있었다. 반면 아무런 처리를 하지 않은 비교예 1의 경우에는 질소와 불소의 피크가 나타나지 않았으며, 비교예 2의 경우에는 불소가 비교예 3의 경우에는 질소의 피크가 나타나지 않음을 확인할 수 있었다.
As can be seen from the results of Table 1 and FIG. 1, it was confirmed that nitrogen, oxygen, and fluorine were introduced into the carbon material in the carbon adsorbent according to the embodiment of the present invention. On the other hand, in the case of Comparative Example 1, which did not undergo any treatment, the peaks of nitrogen and fluorine did not appear, and in the case of Comparative Example 2, the peaks of nitrogen did not appear in the case of Comparative Example 3.

이산화탄소 흡착량 평가Carbon dioxide adsorption amount evaluation

상기 실시예 및 비교예 1, 2, 3 의 과정을 통하여 제조된 이산화탄소 흡착용 탄소흡착제의 이산화탄소 흡착능을 평가하기 위해서 비표면적 측정기(ASAP2020, Micromeritics)를 이용하여 상온(25℃)에서 이산화탄소 흡착능 평가를 실시하였고, 그 결과를 도 2와 하기 표 2에 나타내었다.
In order to evaluate the carbon dioxide adsorption capacity of the carbon adsorbent for carbon dioxide adsorption prepared by the above Examples and Comparative Examples 1, 2, and 3, the carbon dioxide adsorption capacity was evaluated at room temperature (25 ° C.) using a specific surface area meter (ASAP2020, Micromeritics). It carried out, and the results are shown in Figure 2 and Table 2 below.

Figure 112012016951380-pat00002
Figure 112012016951380-pat00002

상기 표 2 및 도 2의 결과로부터 알 수 있듯이 이산화탄소 흡착능은 실시예 비교예 2, 비교예 3, 비교예 1의 순서로 우수함을 알 수 있었다.As can be seen from the results of Table 2 and Figure 2, the carbon dioxide adsorption capacity was found to be excellent in the order of Examples Comparative Example 2, Comparative Example 3, Comparative Example 1.

즉, 본 발명의 실시예에 의하여 제조된 이산화탄소 흡착용 탄소흡착제는 충분한 질소, 산소와 불소가 도입됨으로 인하여 이산화탄소와 탄소흡착제 간의 이온성 인력이 향상되어 이산화탄소 흡착능이 향상되었음을 알 수 있었다. 이러한 결과는 질소와 불소가 도입되지 않은 비교예 1에 비하여 질소와 불소가 일부 도입된 비교예 2 및 비교예 3의 이산화탄소 흡착능이 향상된 것으로부터도 확인할 수 있었다.
That is, the carbon adsorbent for carbon dioxide adsorption prepared according to the embodiment of the present invention was found to have sufficient nitrogen, oxygen, and fluorine introduced to improve the ionic attraction between carbon dioxide and the carbon adsorbent, thereby improving carbon dioxide adsorption capacity. This result was also confirmed from the improved carbon dioxide adsorption capacity of Comparative Example 2 and Comparative Example 3 in which nitrogen and fluorine were partially introduced compared to Comparative Example 1 in which nitrogen and fluorine were not introduced.

본 발명은 상기한 실시예를 참조하여 설명되었지만, 본 발명의 개념 및 범위 내에서 상이한 실시예를 구성할 수도 있다. 따라서 본 발명의 범위는 첨부된 청구범위 및 이와 균등한 것들에 의해 정해지며, 본 명세서에 기재된 특정 실시예에 의해 한정되지는 않는다.Although the present invention has been described with reference to the above-described embodiments, different embodiments may be configured within the spirit and scope of the present invention. Therefore, the scope of the present invention is defined by the appended claims and equivalents thereof, and is not limited by the specific embodiments described herein.

Claims (8)

(1) 질소와 산소를 포함하는 화합물을 용매에 용해시켜 용액을 제조하는 제1단계;
(2) 반응기에 상기 제1단계에서 얻어진 용액과 탄소재료를 투입하는 제2단계; 및
(3) 상기 반응기에 불소가스 또는 불소가스와 비활성가스의 혼합가스를 버블(bubble) 주입식으로 주입시켜 탄소재료에 질소, 산소 및 불소를 동시에 도입하는 제3단계를 포함하여 이루어지는 이산화탄소 흡착용 탄소흡착제의 제조방법.
(1) a first step of preparing a solution by dissolving a compound containing nitrogen and oxygen in a solvent;
(2) a second step of injecting the solution and carbon material obtained in the first step into the reactor; And
(3) a carbon adsorbent for carbon dioxide adsorption comprising a third step of introducing nitrogen, oxygen, and fluorine simultaneously into a carbon material by injecting fluorine gas or a mixed gas of fluorine gas and an inert gas into the reactor by bubble injection; Manufacturing method.
제1항에 있어서,
상기 제1단계의 질소와 산소를 포함하는 화합물은 질산(HNO3), 질산나트륨(NaNO3), 질산칼륨(KNO3), 질산암모늄(NH4NO3), 질산칼슘(Ca(NO3)2), 질산바륨(Ba(NO3)2) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 이산화탄소 흡착용 탄소흡착제의 제조방법.
The method of claim 1,
Compounds containing nitrogen and oxygen of the first step are nitric acid (HNO 3 ), sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), ammonium nitrate (NH 4 NO 3 ), calcium nitrate (Ca (NO 3 ) 2 ), barium nitrate (Ba (NO 3 ) 2 ) and a method for producing a carbon adsorbent for carbon dioxide adsorption, characterized in that it is selected from the group consisting of these.
제1항에 있어서,
상기 제1단계의 과정을 통하여 얻어지는 용액의 농도는 0.5 내지 5M인 것을 특징으로 하는 이산화탄소 흡착용 탄소흡착제의 제조방법.
The method of claim 1,
Method for producing a carbon adsorbent for carbon dioxide adsorption, characterized in that the concentration of the solution obtained through the process of the first step is 0.5 to 5M.
제1항에 있어서,
상기 제2단계에서 반응기에 투입되는 용액과 탄소재료의 비율은 상기 용액 100 중량부를 기준으로 탄소재료 5 내지 30 중량부인 것을 특징으로 하는 이산화탄소 흡착용 탄소흡착제의 제조방법.
The method of claim 1,
The ratio of the solution and the carbon material introduced into the reactor in the second step is a carbon adsorbent for carbon dioxide adsorption, characterized in that 5 to 30 parts by weight of the carbon material based on 100 parts by weight of the solution.
제1항에 있어서,
상기 제3단계에서 버블 주입식으로 반응기에 주입되는 불소가스는 불소(F2), 삼화불화질소(NF3), 사불화탄소(CF4), 삼불화탄소(CHF3), 팔불화삼탄소(C3F8), 팔불화사탄소(C4F8) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 이산화탄소 흡착용 탄소흡착제의 제조방법.
The method of claim 1,
In the third step, the fluorine gas injected into the reactor by bubble injection is fluorine (F 2 ), nitrogen trifluoride (NF 3 ), carbon tetrafluoride (CF 4 ), carbon trifluoride (CHF 3 ), trifluorooctafluorocarbon (C 3) F 8 ), carbon tetrafluorocarbon (C 4 F 8 ) and a mixture thereof, the method for producing a carbon adsorbent for carbon dioxide adsorption.
제1항에 있어서,
상기 제3단계에서 버블 주입식으로 반응기에 주입되는 불소가스는 반응기 내의 용액과 탄소재료의 부피 100을 기준으로 분당 1 내지 100의 부피로 주입되는 것을 특징으로 하는 이산화탄소 흡착용 탄소흡착제의 제조방법.
The method of claim 1,
The fluorine gas injected into the reactor by the bubble injection in the third step is a carbon adsorbent for carbon dioxide adsorption, characterized in that the injection of a volume of 1 to 100 per minute based on the volume 100 of the solution and the carbon material in the reactor.
제1항에 있어서
상기 제3단계는 40 내지 100℃의 온도조건에서 0.2 내지 2시간 동안 이루어지는 것을 특징으로 하는 이산화탄소 흡착용 탄소흡착제의 제조방법.
The method of claim 1, wherein
The third step is a method for producing a carbon adsorbent for carbon dioxide adsorption, characterized in that made for 0.2 to 2 hours at a temperature condition of 40 to 100 ℃.
제1항 내지 제7항 중에서 선택된 어느 한 항의 제조방법에 의하여 제조되는 것을 특징으로 하는 이산화탄소 흡착용 탄소흡착제.Carbon adsorbent for carbon dioxide adsorption, characterized in that produced by the method of any one selected from claims 1 to 7.
KR1020120021208A 2012-02-29 2012-02-29 Carbon adsorbent codoped nitrogen, oxygen, fluorine for carbon dioxide adsorption and manufacturing method thereof KR101305454B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120021208A KR101305454B1 (en) 2012-02-29 2012-02-29 Carbon adsorbent codoped nitrogen, oxygen, fluorine for carbon dioxide adsorption and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120021208A KR101305454B1 (en) 2012-02-29 2012-02-29 Carbon adsorbent codoped nitrogen, oxygen, fluorine for carbon dioxide adsorption and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR101305454B1 true KR101305454B1 (en) 2013-09-06

Family

ID=49455422

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120021208A KR101305454B1 (en) 2012-02-29 2012-02-29 Carbon adsorbent codoped nitrogen, oxygen, fluorine for carbon dioxide adsorption and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101305454B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101554168B1 (en) * 2014-01-09 2015-09-21 한국산업기술시험원 Apparatus for testing performance of carbon dioxide sorbent
KR20180000604A (en) * 2016-06-23 2018-01-03 한양대학교 에리카산학협력단 Carbon dioxide adsorbent and method for manufacturing the same
KR102032387B1 (en) * 2019-04-05 2019-10-15 한국과학기술연구원 A catalyst for regenerating a carbon dioxide absorbent containing a modified activated carbon, a method for producing the same, and a method for capturing carbon dioxide using the catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224958A (en) 2000-02-14 2001-08-21 Isuzu Ceramics Res Inst Co Ltd Co2 adsorbent
KR20050028624A (en) * 2003-09-19 2005-03-23 한국전력공사 Adsorbent for carbon dioxide fixation and method for preparing the same
KR20110127851A (en) * 2010-05-20 2011-11-28 충남대학교산학협력단 High sensitivity gas sensor using fluorinated carbon materials and manufacturing method thereof
KR20120112922A (en) * 2011-04-04 2012-10-12 충남대학교산학협력단 Porous carbon materials for high energy and power electric double layer capacitor and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224958A (en) 2000-02-14 2001-08-21 Isuzu Ceramics Res Inst Co Ltd Co2 adsorbent
KR20050028624A (en) * 2003-09-19 2005-03-23 한국전력공사 Adsorbent for carbon dioxide fixation and method for preparing the same
KR20110127851A (en) * 2010-05-20 2011-11-28 충남대학교산학협력단 High sensitivity gas sensor using fluorinated carbon materials and manufacturing method thereof
KR20120112922A (en) * 2011-04-04 2012-10-12 충남대학교산학협력단 Porous carbon materials for high energy and power electric double layer capacitor and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101554168B1 (en) * 2014-01-09 2015-09-21 한국산업기술시험원 Apparatus for testing performance of carbon dioxide sorbent
KR20180000604A (en) * 2016-06-23 2018-01-03 한양대학교 에리카산학협력단 Carbon dioxide adsorbent and method for manufacturing the same
KR102022152B1 (en) * 2016-06-23 2019-09-17 한양대학교 에리카산학협력단 Carbon dioxide adsorbent and method for manufacturing the same
KR102032387B1 (en) * 2019-04-05 2019-10-15 한국과학기술연구원 A catalyst for regenerating a carbon dioxide absorbent containing a modified activated carbon, a method for producing the same, and a method for capturing carbon dioxide using the catalyst

Similar Documents

Publication Publication Date Title
Rao et al. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance
CN110451509B (en) Method for preparing nitrogen-doped porous carbon material by using zinc nitrate as activating agent
CN109201007B (en) Carbon dioxide adsorbent and preparation method and application thereof
Rodríguez et al. Low-cost hierarchical micro/macroporous carbon foams as efficient sorbents for CO2 capture
Cheung et al. Characteristics of chemical modified activated carbons from bamboo scaffolding
Sun et al. Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture
CN110734049B (en) Method for preparing nitrogen-doped carbon material with high specific surface area by using potassium phthalimide
CN105854801A (en) Nitrogen-doped porous carbon material and preparation method and application thereof
CN105233802A (en) Copper-based metal organic framework material doped with L-arginine and preparation method of copper-based metal organic framework material
CN101816925B (en) Organic-inorganic hybrid material for CO2 adsorption and preparation method thereof
Díez et al. N-enriched ACF from coal-based pitch blended with urea-based resin for CO2 capture
KR101305454B1 (en) Carbon adsorbent codoped nitrogen, oxygen, fluorine for carbon dioxide adsorption and manufacturing method thereof
CN103193228A (en) Preparation method of melon seed shell based activated carbon capable of adsorbing CO2 in high efficiency
Puccini et al. Removal of CO2 from flue gas at high temperature using novel porous solids
CN108067181B (en) High-selectivity carbon monoxide absorbent and preparation method thereof
Cao et al. Design of biomass-based N, S co-doped porous carbon via a straightforward post-treatment strategy for enhanced CO2 capture performance
CN105903458A (en) Preparation method and application of calcium-based adsorbent
CN102728320B (en) Preparation method for modified porous bamboo charcoal materials used for separating carbon dioxide and methane
Liping et al. Effect of rare earth addition on Cu-Fe/AC adsorbents for phosphine adsorption from yellow phosphorous tail gas
KR101341129B1 (en) Carbon adsorbent for CO₂ adsorption and manufacturing method thereof
CN114275758B (en) Preparation method and application of microporous carbon material
KR101216020B1 (en) Surface Treatment Method of Activated Carbon
CN114768479A (en) Eutectic solvent for efficiently absorbing carbon dioxide gas and preparation method and application thereof
CN104310396A (en) Preparation method of activated carbon with capability of efficiently adsorbing CO2
CN114073936A (en) Adsorbent for enriching nitrosamine in air and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160825

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 6