KR101296809B1 - Conductivity enhanced carbon nanotube films by graphene oxide nanosheets - Google Patents

Conductivity enhanced carbon nanotube films by graphene oxide nanosheets Download PDF

Info

Publication number
KR101296809B1
KR101296809B1 KR1020110120302A KR20110120302A KR101296809B1 KR 101296809 B1 KR101296809 B1 KR 101296809B1 KR 1020110120302 A KR1020110120302 A KR 1020110120302A KR 20110120302 A KR20110120302 A KR 20110120302A KR 101296809 B1 KR101296809 B1 KR 101296809B1
Authority
KR
South Korea
Prior art keywords
graphene oxide
carbon nanotube
transparent conductive
film
carbon nanotubes
Prior art date
Application number
KR1020110120302A
Other languages
Korean (ko)
Other versions
KR20130054734A (en
Inventor
한중탁
이건웅
김준석
정승열
정희진
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020110120302A priority Critical patent/KR101296809B1/en
Publication of KR20130054734A publication Critical patent/KR20130054734A/en
Application granted granted Critical
Publication of KR101296809B1 publication Critical patent/KR101296809B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

본 발명은 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름에 관한 것으로, 기판과; 상기 기판 상면에 도포되어 형성된 탄소나노튜브 투명전도층과; 표면 및 가장자리에 기능기가 형성되고, 상기 탄소나노튜브 투명전도층 상면에 도포되어 상기 탄소나노튜브의 네트워크 구조를 치밀화시키는 산화그래핀층;을 포함하여 구성되는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름을 기술적 요지로 한다. 이에 따라, 크기가 작은 산화그래핀을 탄소나노튜브 네트워크 필름 상층부에 도포하여 탄소나노튜브의 네트워크 구조를 치밀화 시킴에 의해 탄소나노튜브 투명전도성 필름의 전도성, 표면조도, 젖음성 등의 특성을 향상시키는 이점이 있다.The present invention relates to a carbon nanotube film having improved conductivity by graphene oxide, and a substrate; A carbon nanotube transparent conductive layer formed on the upper surface of the substrate; The functional group is formed on the surface and the edge, the graphene oxide layer is applied to the upper surface of the carbon nanotube transparent conductive layer to densify the network structure of the carbon nanotubes; Make film the technical point. Accordingly, the small size graphene oxide is applied to the upper portion of the carbon nanotube network film to densify the network structure of the carbon nanotube, thereby improving the conductivity, surface roughness, and wettability of the carbon nanotube transparent conductive film. There is this.

Description

산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름{Conductivity enhanced carbon nanotube films by graphene oxide nanosheets}Conductivity enhanced carbon nanotube films by graphene oxide nanosheets}

본 발명은 탄소나노튜브 필름에 관한 것으로, 크기가 작은 산화그래핀을 탄소나노튜브 네트워크 필름 상층부에 도포함에 의해 투명전도성 필름의 전도성, 표면조도, 젖음성 등의 특성을 향상시키는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름에 관한 것이다. The present invention relates to a carbon nanotube film, by applying a small size graphene oxide on the upper layer of the carbon nanotube network film conductive properties by the graphene oxide to improve the characteristics such as conductivity, surface roughness, wettability of the transparent conductive film This improved carbon nanotube film.

일반적으로 투명전도성 필름은 플라스마 디스플레이 패널(PDP), 액정 디스플레이(LCD) 소자, 발광다이오드소자(LED), 유기전자발광소자(OLED), 터치패널 또는 태양전지 등에 사용된다.In general, the transparent conductive film is used in a plasma display panel (PDP), a liquid crystal display (LCD) device, a light emitting diode device (LED), an organic electroluminescent device (OLED), a touch panel or a solar cell.

이러한 투명전도성 필름은 높은 도전성(예를 들면, 1x103Ω/sq 이하의 면저항)과 가시영역에서 높은 투과율을 가지기 때문에 태양전지, 액정표시소자, 플라즈마 디스플레이 패널, 스마트 윈도우 그 이외의 각종 수광소자와 발광소자의 전극으로 이용되는 것 이외에 자동차 창유리나 건축물의 창유리 등에 쓰이는 대전 방지막, 전자파 차폐막 등의 투명전자파 차폐체 및 열선 반사막, 냉동쇼케이스 등의 투명 발열체로 사용되고 있다. Since the transparent conductive film has high conductivity (for example, sheet resistance of 1 × 10 3 Ω / sq or less) and high transmittance in the visible region, various light-receiving elements other than solar cells, liquid crystal display devices, plasma display panels, smart windows, and the like In addition to being used as an electrode of a light emitting device, it is used as a transparent electromagnetic shielding body such as an antistatic film and an electromagnetic shielding film used in automobile window glass or building window glass, and a transparent heating element such as a heat ray reflecting film and a freezing showcase.

투명전도성 필름으로는 안티몬이나 불소가 도핑된 산화주석(SnO2)막 알루미늄이나 칼륨이 도핑된 산화아연(ZnO)막, 주석이 도핑된 산화인듐(In2O3)막 등이 광범위하게 이용되고 있다.As the transparent conductive film, tin oxide (SnO 2 ) film doped with antimony or fluorine, zinc oxide (ZnO) film doped with aluminum or potassium, indium oxide (In 2 O 3 ) doped with tin, etc. are widely used. have.

특히 주석이 도핑된 산화 인듐막, 즉 In2O3-Sn계의 막은 ITO(Indium tin oxide)막이라고 불리워지고, 저 저항의 막을 쉽게 얻을 수 있기 때문에 많이 이용되고 있다. ITO의 경우 제반 물성이 우수하고 현재까지 공정 투입의 경험이 많은 장점을 가지고 있지만, 산화인듐(In2O3)은 아연(Zn) 광산 등에서 부산물로 생산되기 때문에 수급이 불안정한 문제점이 있다. 또한, ITO막은 유연성이 없기 때문에 폴리머기질 등의 플렉시블한 재질에는 사용하지 못하는 단점이 있으며, 고온, 고압 환경하에서 제조가 가능하므로 생산단가가 높아지는 문제점이 있다.In particular, an indium oxide film doped with tin, that is, an In 2 O 3 -Sn-based film, is called an indium tin oxide (ITO) film and is widely used because a low-resistance film can be easily obtained. In the case of ITO, the physical properties are excellent and the experience of process input to date has many advantages. However, indium oxide (In 2 O 3 ) is produced as a by-product from zinc (Zn) mines, so supply and demand is unstable. In addition, the ITO membrane has a disadvantage in that it cannot be used in a flexible material such as a polymer substrate because it is inflexible, and there is a problem in that the production cost increases because it can be manufactured under a high temperature and high pressure environment.

또한, 플렉시블한 터치패널이나 디스플레이 등을 얻기 위해 전도성 고분자를 이용하여 폴리머 기질 상면에 코팅시킬 수도 있으나, 이러한 필름은 외부 환경에 노출 시 전기전도도가 떨어지거나 투명하지 않은 문제점이 있어, 그 용도가 제한적이게 된다.In addition, the conductive polymer may be coated on the upper surface of the polymer substrate in order to obtain a flexible touch panel or display, but such a film has a problem in that electrical conductivity drops or is not transparent when exposed to the external environment, and its use is limited. This will be.

이러한 문제점을 해결하기 위해 최근에는 여러 종류의 기질 상면에 탄소나노튜브를 코팅하는 기술이 널리 연구되고 있다. 상기 탄소나노튜브는 전기저항이 10-4Ωcm로 금속에 버금가는 전기 전도도를 가지고 있으며, 표면적이 벌크 재료에 비해 1000배 이상 높고, 외경에 비해 길이가 수천배 정도로 길기 때문에 전도성 구현에 있어 이상적인 재료이며, 표면기능화를 통해 기질에의 결합력을 향상시킬 수 있는 장점이 있다. 특히, 플렉시블한 기질에의 사용이 가능하여 그 용도가 무한할 것으로 기대되고 있다.Recently, techniques for coating carbon nanotubes on top of various substrates have been widely studied in order to solve these problems. The carbon nanotubes have electrical conductivity comparable to that of metals with an electrical resistance of 10 -4 Ωcm, and the surface area is more than 1000 times higher than that of the bulk material and is thousands of times longer than the outer diameter, making it an ideal material for implementing conductivity. And, there is an advantage that can improve the binding force to the substrate through the surface functionalization. In particular, it is expected that the use of the flexible substrate can be infinite.

종래의 이러한 탄소나노튜브를 이용한 기술로써, "탄소나노튜브를 함유하는 코팅막"(대한민국특허청 공개특허공보 공개번호 10-2004-0030553호)이 있다. 상기 종래 기술은 탄소나노튜브의 분산성 및 전기전도성을 고려하여 외경이 3.5nm인 탄소나노튜브만을 사용할 수 있어, 재료의 사용이 제한적인 문제점이 있으며, 코팅막 제조시 탄소나노튜브의 분산성 및 접착성이 떨어져 그 특성이 시간이 지날수록 저하되는 문제점이 있다.As a conventional technique using such carbon nanotubes, there is a "coating film containing carbon nanotubes" (Korean Patent Publication No. 10-2004-0030553). The prior art can use only carbon nanotubes having an outer diameter of 3.5 nm in consideration of the dispersibility and electrical conductivity of the carbon nanotubes, there is a problem that the use of the material is limited, dispersibility and adhesion of the carbon nanotubes in the coating film production There is a problem that the property is deteriorated and deteriorates with time.

다른 종래기술로는 대한민국특허청 등록특허공보 10-869163에는 본 출원인이 특허출원등록한 "탄소나노튜브와 바인더를 함유하는 투명전도성 필름의 제조방법 및 이에 의해 제조된 투명전도성 필름"이 소개되어 있다. As another prior art, Korean Patent Office Patent Publication No. 10-869163 introduces a patent application filed by the present applicant "a method for producing a transparent conductive film containing a carbon nanotube and a binder and a transparent conductive film produced thereby."

상기 종래기술은 외경 15nm 미만의 산처리된 탄소나노튜브와 바인더를 혼합하되, 상기 바인더를 상기 탄소나노튜브와 바인더 100 중량부에 대해 15 내지 80 중량부로 첨가하여 형성된 탄소나노튜브 바인더 혼합코팅액을 기질 상면에 코팅하여 투명 전도성 필름을 형성시키는 구성입니다. The prior art is a mixture of acid-treated carbon nanotubes having an outer diameter of less than 15nm and a binder, the carbon nanotube binder mixed coating liquid formed by adding the binder in an amount of 15 to 80 parts by weight based on 100 parts by weight of the carbon nanotubes and a binder substrate It is a composition that forms a transparent conductive film by coating on the upper surface.

상기 종래기술은 탄소나노튜브 네트워크의 패킹밀도(packing density)가 크지 않아 접합저항의 증가에 의해 전도성이 감소할 우려가 있고, 탄소나노튜브는 소수성을 지니고 있어 그 위에 친수성 물질을 도포하는데 어려움이 있다. The prior art has a fear that the conductivity of the carbon nanotube network is not large and the conductivity decreases due to an increase in the bonding resistance, and the carbon nanotube has a hydrophobic property, making it difficult to apply a hydrophilic material thereon. .

또한 탄소나노튜브인 경우 표면에 기공이 있어 표면이 거칠게 됨에 의해 광전자소자로의 이용에 제약이 있다는 문제점이 있다.In addition, in the case of carbon nanotubes, there is a problem in that the use of the optoelectronic device is limited due to the rough surface of the pores.

따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 크기가 작은 산화그래핀을 탄소나노튜브 네트워크 필름 상층부에 도포함에 의해 투명전도성 필름의 전도성 등의 특성을 향상시키는 산화그래핀에 의해 전도성, 표면조도, 젖음성 등이 향상된 탄소나노튜브 필름을 제공하는 것을 목적으로 한다. Accordingly, the present invention has been made to solve the above problems of the prior art, by applying a small size graphene oxide to the upper portion of the carbon nanotube network film graphene oxide to improve the characteristics such as conductivity of the transparent conductive film It is an object of the present invention to provide a carbon nanotube film with improved conductivity, surface roughness, wettability, and the like.

상기한 목적을 달성하기 위한 본 발명은, 기판과; 상기 기판 상면에 도포되어 형성된 탄소나노튜브 투명전도층과; 표면 및 가장자리에 기능기가 형성되고, 상기 탄소나노튜브 투명전도층 상면에 도포되어 상기 탄소나노튜브의 네트워크 구조를 치밀화시키는 산화그래핀층;을 포함하여 구성되는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름을 기술적 요지로 한다. The present invention for achieving the above object, a substrate; A carbon nanotube transparent conductive layer formed on the upper surface of the substrate; The functional group is formed on the surface and the edge, the graphene oxide layer is applied to the upper surface of the carbon nanotube transparent conductive layer to densify the network structure of the carbon nanotubes; Make film the technical point.

여기서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택된 1종으로 이루어진 것이 바람직하다. Here, the carbon nanotubes are preferably made of one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof.

그리고, 상기 산화그래핀의 크기는 10㎚~5㎛ 사이즈가 되고, 상기 산화그래핀은 순수흑연을 산처리를 통해 제조된 산화흑연을 박리함으로써 형성되는 것이 바람직하다. 여기서 상기 산처리는 스타우덴마이어법(L. Staudenmaier, Ber. Dtsch. Chem. Ges., 31, 1481-1499, 1898), 험머스법(W. Hummers 외 1명, J. Am. Chem. Soc., 80, 1339, 1958), 브로디법(B. C. Brodie, Ann. Chim. Phys., 59, 466-472, 1860)과 보다 효과적인 흑연의 산화와 박리를 위해 수정된 방법들이 알려져 있고 인용에 의해 본 발명 또한 상기 방법들을 이용한다.In addition, the graphene oxide may have a size of 10 nm to 5 μm, and the graphene oxide may be formed by peeling graphite oxide prepared through acid treatment of pure graphite. Wherein the acid treatment is performed by the Staudenmaier method (L. Staudenmaier, Ber. Dtsch. Chem. Ges., 31, 1481-1499, 1898), the Hummus method (W. Hummers et al., J. Am. Chem. Soc. , 80, 1339, 1958), Brody (BC Brodie, Ann. Chim. Phys., 59, 466-472, 1860) and modified methods for more effective oxidation and exfoliation of graphite are known and are referred to by the present invention. It also uses the above methods.

또한, 상기 기판은 유리, 수정, 글래스웨이퍼, 실리콘웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어지고, 상기 도포는 스프레이(spray), 디핑(dipping), 스핀코팅(spin coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing), 패드 프린팅, 나이프 코팅, 키스 코팅, 그라비아 코팅 중에서 선택된 하나의 방법을 이용하는 것이 바람직하다.In addition, the substrate is made of one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, plastics, and the coating is spray, dipping, spin coating, screen printing ( It is preferable to use one method selected from screen printing, inkjet printing, pad printing, knife coating, kiss coating and gravure coating.

한편, 상기 탄소나노튜브 필름은 유연태양전지의 전극용으로 사용되는 것이 바람직하다. On the other hand, the carbon nanotube film is preferably used for the electrode of the flexible solar cell.

이에 따라, 크기가 작은 산화그래핀을 탄소나노튜브 네트워크 필름 상층부에 도포함에 의해 투명전도성 필름의 전도성, 표면조도, 젖음성 등의 특성이 향상되는 이점이 있다. Accordingly, by applying the graphene oxide having a small size to the upper layer of the carbon nanotube network film, there is an advantage in that the characteristics such as conductivity, surface roughness and wettability of the transparent conductive film are improved.

상기 방법에 의해 형성된 산화그래핀에 의한 전도성이 향상된 탄소나노튜브 필름은 터치패널, 유기태양전지, 염료감응형태양전지, 액정 디스플레이(LCD) 소자, 발광다이오드소자(LED), 유기발광소자 (organic light emitting diode) 등의 투명전극으로 활용이 가능하다.The carbon nanotube film having improved conductivity by graphene oxide formed by the above method is a touch panel, an organic solar cell, a dye-sensitized positive cell, a liquid crystal display (LCD) device, a light emitting diode device (LED), and an organic light emitting device (organic light emitting device). It can be used as a transparent electrode such as a light emitting diode).

상기의 구성에 의한 본 발명은, 크기가 작은 산화그래핀을 탄소나노튜브 네트워크 필름 상층부에 도포하여 탄소나노튜브의 네트워크 구조를 치밀화 시킴에 의해 탄소나노튜브 투명전도성 필름의 전도성, 표면조도, 젖음성 등의 특성을 향상시키는 효과가 있다. According to the present invention according to the above configuration, by applying a small size graphene oxide on the upper layer of the carbon nanotube network film to densify the network structure of the carbon nanotube, the conductivity, surface roughness, wettability, etc. of the carbon nanotube transparent conductive film It is effective to improve the characteristics of the.

도 1은 본 발명에 따른 탄소나노튜브 투명전도층의 주사전자현미경 이미지를 나타낸 도이고,
도 2는 본 발명에 따른 탄소나노튜브 투명전도층 상면에 산화그래핀을 적용하는 예를 나타내는 도이고,
도 3은 본 발명에 따라 제조된 산화그래핀의 물성을 나타낸 도이고,
도 4는 본 발명에 따른 핵자기공명스펙트럼을 나타낸 도이고,
도 5는 본 발명에 따른 산화그래핀을 도포전과 도포후의 투과도 대비 면저항 수치를 나타내는 도이고,
도 6은 산화그래핀 코팅에 따른 탄소나노튜브 투명전도막의 표면 모폴로지에 대한 주사전자현미경 이미지를 나타낸 도이고,
도 7은 본 발명에 따른 (S1) 과정을 거친 산화 그래핀이 도포된 경우의 그 표면에서의 물접촉각과 산화그래핀이 도포되지 않은 경우의 그 표면에서의 물접촉각을 나타낸 도이고,
도 8은 산화그래핀 코팅에 따른 탄소나노튜브의 라만분광 스펙트럼을 나타내는 도이고,
도 9는 코팅된 산화그래핀의 사이즈에 따른 탄소나노튜브 네트워크에서의 형태를 나타낸 모식도이고,
도 10 산화그래핀을 이용해 전도성이 제어된 탄소나노튜브 투명전도막을 전극으로 사용하여 제작된 유기태양전지(a)와 그 특성(b)을 나타내는 도이다.
1 is a view showing a scanning electron microscope image of a carbon nanotube transparent conductive layer according to the present invention,
2 is a view showing an example of applying graphene oxide to the upper surface of the carbon nanotube transparent conductive layer according to the present invention,
3 is a view showing the physical properties of the graphene oxide prepared according to the present invention,
4 is a diagram showing a nuclear magnetic resonance spectrum according to the present invention,
5 is a view showing the sheet resistance value of the transmittance before and after the application of graphene oxide according to the present invention,
6 is a view showing a scanning electron microscope image of the surface morphology of the carbon nanotube transparent conductive film according to the graphene oxide coating,
7 is a view showing the water contact angle on the surface of the graphene oxide coated with the (S1) process in accordance with the present invention and the surface of the water contact angle when the graphene oxide is not applied,
8 is a view showing Raman spectroscopic spectrum of carbon nanotubes according to the graphene oxide coating,
9 is a schematic diagram showing the shape of the carbon nanotube network according to the size of the coated graphene oxide,
10 is a diagram illustrating an organic solar cell (a) and its characteristics (b) fabricated using a carbon nanotube transparent conductive film whose conductivity is controlled using graphene oxide as an electrode.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도시된 바와 같이, 본 발명에 따른 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름은 크게 기판과; 탄소나노튜브 투명전도층과; 산화그래핀층으로 구성된다. As shown, the carbon nanotube film having improved conductivity by graphene oxide according to the present invention is largely the substrate; A carbon nanotube transparent conductive layer; It consists of a graphene oxide layer.

먼저 상기 기판은 플라스틱 기판을 사용하였으며 플라스틱 기판 중에서 폴리에틸렌테레프탈레이트(polyethylene terephthalate) 기판을 사용하였다. First, the substrate was a plastic substrate, and a polyethylene terephthalate substrate was used among the plastic substrates.

상기 기판 상면에 탄소나노튜브 투명전도층의 형성에 대해 설명한다. The formation of the carbon nanotube transparent conductive layer on the upper surface of the substrate will be described.

먼저, 단일벽 탄소나노튜브 3㎎을 계면활성제용액(1%농도) 100㎖에 첨가하고 초음파 분산기(sonicator)를 이용해 1시간 동안 탄소나노튜브를 분산시킨 후, 원심분리기를 이용하여 1000rpm으로 30분 처리하여 상층액을 분리하여 탄소나노튜브 용액을 제조한다. First, 3 mg of single-walled carbon nanotubes were added to 100 ml of a surfactant solution (1% concentration), and the carbon nanotubes were dispersed for 1 hour using an ultrasonic sonicator, followed by 30 minutes at 1000 rpm using a centrifuge. Treatment to separate the supernatant to prepare a carbon nanotube solution.

그런 다음, 상기 제조된 탄소나노튜브 용액을 스프레이 코터를 이용해 섭씨 70℃로 가열된 폴리에틸렌테레프탈레이트(polyethylene terephthalate) 기판에 도포 시킨다. Then, the prepared carbon nanotube solution is applied to a polyethylene terephthalate substrate heated to 70 ℃ by using a spray coater.

상기의 과정에 의해 상기 기판에는 탄소나노튜브 투명전도층이 형성되는바, 상기 투명전도층에는 계면활성제가 잔류하게 되는바, 증류수를 이용해 상기 계면활성제를 제거하여 최종적으로 도 1과 같이 탄소나노튜브 투명전도층이 형성된다. The carbon nanotube transparent conductive layer is formed on the substrate by the above process, and the surfactant remains on the transparent conductive layer. The surfactant is removed using distilled water to finally remove the carbon nanotube as shown in FIG. 1. A transparent conductive layer is formed.

도 1에 도시된 바와 같이 기판상에 탄소나노튜브 투명전도층이 양호하게 형성되어 있음을 알 수 있다. As shown in FIG. 1, it can be seen that the carbon nanotube transparent conductive layer is satisfactorily formed on the substrate.

상기의 탄소나노튜브 투명전도층 상면에는 산화그래핀층이 형성되는바 이에 대해 설명한다. The graphene oxide layer is formed on the upper surface of the carbon nanotube transparent conductive layer.

도 2는 본 발명에 따른 탄소나노튜브 투명전도층 상면에 산화그래핀을 적용하는 예를 나타내는 도로써, PET 상면에 형성된 탄소나노튜브 투명전도층 상면에 카르복실기, 히드록시기 등의 다양한 관능기를 가지는 산화그래핀층이 형성되는 형상을 나타내는 모식도이다. 2 is a diagram showing an example of applying graphene oxide to the upper surface of the carbon nanotube transparent conductive layer according to the present invention, graphene oxide having various functional groups such as carboxyl group, hydroxyl group on the upper surface of the carbon nanotube transparent conductive layer formed on the PET It is a schematic diagram which shows the shape in which a pin layer is formed.

본 발명의 실시예에 따른 산화그래핀은 순수흑연을 황산과 KMnO4로 1일 처리하고 과산화수소와 염산으로 정제하여 제조된 산화흑연을 초음파 분산기를 이용하여 박리함으로써 제조하였다. Graphene oxide according to an embodiment of the present invention was prepared by peeling graphite oxide prepared by treating pure graphite with sulfuric acid and KMnO 4 for one day and purifying with hydrogen peroxide and hydrochloric acid using an ultrasonic disperser.

제조된 산화그래핀은 원심분리법에 의해 도 3과 같이 크기별로 분리하였다. The prepared graphene oxide was separated by size as shown in Figure 3 by centrifugation.

도 3에서, 10000rpm에서 30분 동한 1회처리한 후 상층액(S1)의 산화그래핀은 그 크기가 1마이크로미터 이하임을 확인하였으며, 침전물을 다시 분산하여 2회 원심분리후 상층액(S2)의 산화그래핀의 크기가 증가하였다. 3회(S3), 4회(S4)에 걸쳐 원심분리한 경우 점차적으로 산화그래핀의 크기가 증가하였다. 즉, 산화 그래핀의 크기는 (S1)<(S2)<(S3)<(S4) 과정을 거친 산화 그래핀 순으로 형성되었다. 3, the graphene oxide of the supernatant (S1) after the treatment once for 30 minutes at 10000rpm was confirmed that the size is less than 1 micrometer, the precipitate was dispersed again and the supernatant (S2) after two centrifugation The graphene oxide increased in size. When centrifuged three times (S3), four times (S4) gradually increased the size of the graphene oxide. In other words, the graphene oxide was formed in the order of (S1) <(S2) <(S3) <(S4) in order of graphene oxide.

도 3(a)는 원심분리한 액 (S1),(S2),(S3),(S4)에 의해 형성된 산화그래핀의 원심분리후의 상층액 사진을 나타낸 것이고, 도 3(b)는 (S1),(S2),(S3),(S4) 과정에 의해 형성된 산화그래핀의 입자크기를 나타내기 위한 주사전자현미경(SEM) 이미지를 나타내었고, 도 3(c)는 (S1),(S2),(S3),(S4)의 과정에 의해 형성된 산화그래핀의 입자크기 분포를 나타내었다. FIG. 3 (a) shows a supernatant photograph after centrifugation of graphene oxide formed by centrifuged solutions (S1), (S2), (S3) and (S4), and FIG. 3 (b) shows (S1). Scanning electron microscope (SEM) images for the particle size of the graphene oxide formed by the (S2), (S3) and (S4) process are shown, and FIG. 3 (c) shows (S1) and (S2). The particle size distribution of graphene oxide formed by the process of (S3) and (S4) is shown.

도 3에서, 10000rpm에서 30분 동한 1회 처리한 후 상층액(S1)의 산화그래핀은 그 크기가 1마이크로미터 이하이었으며, (S1),(S2),(S3),(S4)의 과정에 의해 형성된 산화그래핀은 단일층으로 이루어진 것임을 알 수 있다. In FIG. 3, the graphene oxide of the supernatant (S1) after the treatment once for 30 minutes at 10000rpm was less than 1 micrometer in size, the process of (S1), (S2), (S3), (S4) It can be seen that the graphene oxide formed by a single layer.

상기 도 3의 상층액 (S1),(S4)의 과정에 의해 형성된 산화그래핀 을 이용하여 물성측정을 하였는바, 제조된 산화그래핀을 핵자기공명법으로 분석한 결과 도 4와 같이 산화물형태의 그래핀임을 확인하였다. 나머지 (S2),(S3)의 과정에 의해 형성된 산화그래핀도 동일한 결과를 도출하였다. The physical properties were measured using the graphene oxide formed by the process of the supernatant (S1), (S4) of Figure 3, the result of analyzing the graphene oxide prepared by nuclear magnetic resonance method as shown in Figure 4 It was confirmed that the graphene. The same result was obtained for the graphene oxide formed by the rest of the processes (S2) and (S3).

상기에서 제조된 산화그래핀을 탄소나노튜브 투명전도층 상면에 스프레이 코터를 이용하여 도포하여 산화그래핀층을 형성하였다.The graphene oxide prepared above was applied to the upper surface of the carbon nanotube transparent conductive layer using a spray coater to form a graphene oxide layer.

도 5는 (S1),(S2),(S3),(S4)의 과정에 의해 형성된 산화그래핀을 도포전과 도포후의 투과도 대비 면저항 수치를 나타내는 도이다.FIG. 5 is a diagram showing sheet resistance values of the graphene oxide formed by the processes of (S1), (S2), (S3) and (S4) before and after coating.

도 5에 나타난 바와 같이, 산화그래핀을 코팅한 경우에는 동일 투과도에서 처리전에 비해 면저항이 감소하였다. 특히, 사이즈가 1㎛ 이하인 (S1) 과정의 산화그래핀의 경우 가장 면저항이 크게 감소 하였음을 알 수 있다. As shown in FIG. 5, in the case of coating the graphene oxide, the sheet resistance was decreased at the same permeability as compared to before the treatment. In particular, it can be seen that the sheet resistance of the graphene oxide (S1) having a size of 1 μm or less was greatly decreased.

도 6은 산화그래핀 코팅에 따른 탄소나노튜브 투명전도막의 표면모폴로지에 대한 주사전자현미경 사진을 나타낸 도로써 도 6(a)는 (S1)과정의 산화그래핀이 도포된 경우이고, 도 6(b)는 (S4)과정의 산화그래핀이 도포된 경우로써, 산화그래핀의 크기가 작을수록 탄소나노튜브 네트워크 속으로 침투하여 네트워크를 더 치밀하게 만들어줌을 알 수 있다. 6 is a scanning electron micrograph of the surface morphology of the carbon nanotube transparent conductive film according to the graphene oxide coating, Figure 6 (a) is a case of applying the graphene oxide (S1) process, Figure 6 ( b) is a case where the graphene oxide (S4) is applied, the smaller the size of the graphene oxide penetrates into the carbon nanotube network to make the network more dense.

도 7은 본 발명에 따른 (S1) 과정을 거친 산화 그래핀이 도포된 경우의 그 표면에서의 물접촉각과 산화그래핀이 도포되지 않은 경우의 그 표면에서의 물접촉각을 나타낸 도로써, 산화그래핀 코팅전 물접촉각이 113.6도에서 산화그래핀을 코팅함에 따라 물접촉각이 27.9도까지 감소함으로써 물에 대한 젖음성이 향상됨을 확인하였다. 7 is a view showing the water contact angle on the surface of the graphene oxide coated with the (S1) process according to the present invention and the water contact angle on the surface of the graphene oxide is not applied, As the water contact angle before the pin coating coated the graphene oxide at 113.6 degrees, it was confirmed that the water contact angle was reduced to 27.9 degrees to improve the wettability of water.

도 8은 산화그래핀 코팅에 따른 탄소나노튜브의 라만분광 스펙트럼을 나타내는 도로써, 탄소나노튜브의 라만스펙트럼에서 G 모드 밴드의 변화를 통해 탄소나노튜브의 변형을 관찰할 수 있다. FIG. 8 is a diagram illustrating Raman spectroscopic spectra of carbon nanotubes according to graphene oxide coating, and the deformation of carbon nanotubes can be observed through the change of the G mode band in the Raman spectrum of carbon nanotubes.

도 8에 나타난 바와 같이, 산화그래핀을 코팅함에 따라 G-모드의 피크가 오른쪽으로 이동하는 것을 확인하였다. 이러한 사실은 산화그래핀이 탄소나노튜브위에 도포되면서 탄소나노튜브 네트워크를 더 치밀하게 만들고 산화그래핀의 관능기에 의해 탄소나노튜브로부터 전자를 당겨 홀 캐리어가 증가하는 p형 도핑이 이루어졌다는 근거가 된다. 특히, (S1) 과정을 거친 산화 그래핀이 도포된 경우가 (S4) 과정을 거친 산화 그래핀이 도포된 경우 보다 G-모드의 피크 이동이 많음을 알 수 있는바, 사이즈가 작은 산화그래핀 일수록 그 변화가 크게 나타났다. As shown in FIG. 8, it was confirmed that the peak of the G-mode shifted to the right side as the graphene oxide was coated. This fact is based on the fact that as the graphene oxide was applied on the carbon nanotubes, the p-type doping was performed, which made the carbon nanotube network more dense and pulled electrons from the carbon nanotubes by the graphene oxide functional groups to increase the hole carriers. . In particular, it can be seen that the graphene oxide applied through the (S1) process has a higher peak shift in the G-mode than the graphene oxide applied through the (S4) process. The more the change appeared.

상기에서와 같이, 제조된 탄소나노튜브 투명전도막에 산화그래핀을 스프레이코터를 이용해 코팅한바, 산화그래핀을 코팅하기 전에 비해 코팅 후, 도 9에 모식으로 나타낸 바와 같이, 산화그래핀의 사이즈가 작을수록 탄소나노튜브 네트워크가 더 치밀해지고 산화그래핀과 탄소나노튜브와의 접촉면적이 넓어져 도핑효과가 더 크게 나타남으로써 탄소나노튜브 투명전도막의 면저항이 감소에 더 효과적인 것으로 예측된다. As described above, bar graphene oxide coated on the prepared carbon nanotube transparent conductive film using a spray coater, after coating compared with before coating the graphene oxide, as shown schematically in Figure 9, the size of the graphene oxide The smaller the density, the denser the carbon nanotube network and the larger the contact area between graphene oxide and carbon nanotube, resulting in greater doping effect, which is expected to be more effective in reducing the sheet resistance of the carbon nanotube transparent conductive film.

상기 산화그래핀을 이용해 전도성이 제어된 탄소나노튜브 투명전도막을 이용하여 유기태양전지를 제조하여 그 특성을 평가 하였는바, 도 10은 산화그래핀을 이용해 전도성이 제어된 탄소나노튜브 투명전도막을 전극으로 사용하여 제작된 유기태양전지(a)와 그 특성(b)을 나타내는 도이다.The organic solar cell was manufactured by using the carbon nanotube transparent conductive film whose conductivity was controlled using the graphene oxide, and the characteristics thereof were evaluated. FIG. 10 shows the carbon nanotube transparent conductive film whose conductivity was controlled using graphene oxide. Fig. 1 shows an organic solar cell (a) fabricated and used therein and its characteristics (b).

도 10에 나타난 바와 같이 탄소나노튜브 투명전도막을 전극으로 이용하여 유연한 유연태양전지(a)를 제작하였으며, 도 10(b)와 같이 산화그래핀을 코팅하지 않은 탄소나노튜브 투명전도막을 사용한 경우 광전효율이 0.43%에 불과하지만, (S4)과정의 산화그래핀을 코팅하여 전도성과 젖음성이 향상된 탄소나노튜브 투명전도막을 전극으로 사용한 경우 광전효율이 2.0이고, (S1)과정의 산화그래핀을 코팅하여 전도성과 젖음성이 향상된 탄소나노튜브 투명전도막을 전극으로 사용한 경우 광전효율이 2.7%로 크게 증가 하였다. As shown in FIG. 10, a flexible flexible solar cell (a) was fabricated using the carbon nanotube transparent conductive film as an electrode. In the case of using the carbon nanotube transparent conductive film not coated with graphene oxide as shown in FIG. Although the efficiency is only 0.43%, when the carbon nanotube transparent conductive film having improved conductivity and wettability is coated as an electrode by coating graphene oxide of (S4) process, the photoelectric efficiency is 2.0 and the graphene oxide of (S1) process is coated. When the carbon nanotube transparent conductive film with improved conductivity and wettability was used as an electrode, the photoelectric efficiency was greatly increased to 2.7%.

이상에서와 같이 본 발명에 따른 탄소나노튜브 투명전도층 상면에 산화그래핀층을 형성하는 경우, 탄소나노튜브 필름의 전도성이 향상되는 것을 알 수 있다.As described above, when the graphene oxide layer is formed on the upper surface of the carbon nanotube transparent conductive layer according to the present invention, it can be seen that the conductivity of the carbon nanotube film is improved.

100 : 기판 200 : 탄소나노튜브 투명전도층
300 : 산화그래핀층
100: substrate 200: carbon nanotube transparent conductive layer
300: graphene oxide layer

Claims (7)

기판과;
상기 기판 상면에 도포되어 형성된 탄소나노튜브 투명전도층과;
표면 및 가장자리에 기능기가 형성되고, 상기 탄소나노튜브 투명전도층 상면에 도포되어 상기 탄소나노튜브의 네트워크 구조를 치밀화시키는 산화그래핀층;을 포함하여 구성되되,
상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택된 1종으로 이루어진 것을 특징으로 하는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름.
Claims [1]
A carbon nanotube transparent conductive layer formed on the upper surface of the substrate;
The functional group is formed on the surface and the edge, the graphene oxide layer is applied to the upper surface of the carbon nanotube transparent conductive layer to densify the network structure of the carbon nanotubes;
The carbon nanotubes are carbon nanotube films having improved conductivity by graphene oxide, characterized in that consisting of one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes and mixtures thereof.
삭제delete 제1항에 있어서, 상기 산화그래핀의 크기는 10㎚~5㎛ 사이즈가 됨을 특징으로 하는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름.The carbon nanotube film having improved conductivity by graphene oxide according to claim 1, wherein the graphene oxide has a size of 10 nm to 5 μm. 제3항에 있어서, 상기 산화그래핀은 순수흑연을 산처리를 통해 제조된 산화흑연을 박리함으로써 형성됨을 특징으로 하는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름.The carbon nanotube film having improved conductivity by graphene oxide according to claim 3, wherein the graphene oxide is formed by peeling graphite oxide prepared through acid treatment of pure graphite. 제1항에 있어서, 상기 기판은 유리, 수정, 글래스웨이퍼, 실리콘웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어진 것을 특징으로 하는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름.According to claim 1, wherein the substrate is carbon nanotube film with improved conductivity by graphene oxide, characterized in that consisting of one kind selected from the group consisting of glass, quartz, glass wafer, silicon wafer, plastic. 제1항에 있어서, 상기 도포는 스프레이(spray), 디핑(dipping), 스핀코팅(spin coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing), 패드 프린팅, 나이프 코팅, 키스 코팅, 그라비아 코팅 중에서 선택된 하나의 방법을 이용함을 특징으로 하는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름.The method of claim 1, wherein the application is spraying, dipping, spin coating, screen printing, inkjet printing, pad printing, knife coating, kiss coating, gravure. Carbon nanotube film with improved conductivity by graphene oxide, characterized in that using one method selected from the coating. 제1항, 제3항 내지 제 6항 중 어느 하나의 항에 있어서, 상기 탄소나노튜브 필름은 유연태양전지의 전극용으로 사용됨을 특징으로 하는 산화그래핀에 의해 전도성이 향상된 탄소나노튜브 필름.The carbon nanotube film according to claim 1, wherein the carbon nanotube film is used for an electrode of a flexible solar cell.
KR1020110120302A 2011-11-17 2011-11-17 Conductivity enhanced carbon nanotube films by graphene oxide nanosheets KR101296809B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110120302A KR101296809B1 (en) 2011-11-17 2011-11-17 Conductivity enhanced carbon nanotube films by graphene oxide nanosheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110120302A KR101296809B1 (en) 2011-11-17 2011-11-17 Conductivity enhanced carbon nanotube films by graphene oxide nanosheets

Publications (2)

Publication Number Publication Date
KR20130054734A KR20130054734A (en) 2013-05-27
KR101296809B1 true KR101296809B1 (en) 2013-08-14

Family

ID=48663468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110120302A KR101296809B1 (en) 2011-11-17 2011-11-17 Conductivity enhanced carbon nanotube films by graphene oxide nanosheets

Country Status (1)

Country Link
KR (1) KR101296809B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299217A1 (en) * 2012-05-14 2013-11-14 The Hong Kong University Of Science And Technology Electrical and thermal conductive thin film with double layer structure provided as a one-dimensional nanomaterial network with graphene/graphene oxide coating
WO2018143602A1 (en) * 2017-02-03 2018-08-09 주식회사 엘지화학 Method for producing carbon nanotube fiber and carbon nanotube fiber produced thereby

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105197874B (en) * 2014-06-17 2017-01-25 清华大学 Method for preparing carbon nano tube recombination line
KR20210085240A (en) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 Perovskite optoelectronic device and method of fabricating the same
CN111640526B (en) * 2020-06-08 2021-09-14 淮北市吉耐新材料科技有限公司 Composite carbon nanotube conductive slurry and preparation process thereof
KR102679846B1 (en) * 2022-07-15 2024-07-02 성균관대학교산학협력단 Silicon solar cells containing carbon nanotubes doped with natural acids and their manufacturing methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116398A (en) * 2009-04-22 2010-11-01 한국세라믹기술원 Post treatment method of carbon nanotube film
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100116398A (en) * 2009-04-22 2010-11-01 한국세라믹기술원 Post treatment method of carbon nanotube film
KR20110016287A (en) * 2009-08-11 2011-02-17 고양미 Coating method with colloidal graphine oxides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299217A1 (en) * 2012-05-14 2013-11-14 The Hong Kong University Of Science And Technology Electrical and thermal conductive thin film with double layer structure provided as a one-dimensional nanomaterial network with graphene/graphene oxide coating
US9237646B2 (en) * 2012-05-14 2016-01-12 The Hong Kong University Of Science And Technology Electrical and thermal conductive thin film with double layer structure provided as a one-dimensional nanomaterial network with graphene/graphene oxide coating
WO2018143602A1 (en) * 2017-02-03 2018-08-09 주식회사 엘지화학 Method for producing carbon nanotube fiber and carbon nanotube fiber produced thereby
JP2019532193A (en) * 2017-02-03 2019-11-07 エルジー・ケム・リミテッド Carbon nanotube fiber manufacturing method and carbon nanotube fiber manufactured thereby
US11136711B2 (en) 2017-02-03 2021-10-05 Lg Chem, Ltd. Method for preparing carbon nanotube fiber and carbon nanotube fiber prepared thereby

Also Published As

Publication number Publication date
KR20130054734A (en) 2013-05-27

Similar Documents

Publication Publication Date Title
JP5995976B2 (en) One-dimensional conductive nanomaterial-based conductive film with improved conductivity by two-dimensional nanomaterial
KR101296809B1 (en) Conductivity enhanced carbon nanotube films by graphene oxide nanosheets
Lee et al. Flexible and stretchable optoelectronic devices using silver nanowires and graphene
US8885135B2 (en) Nanostructure-film LCD devices
KR101349357B1 (en) Transparent conductive graphene films modified by metal oxides
Zhou et al. Copper mesh templated by breath-figure polymer films as flexible transparent electrodes for organic photovoltaic devices
CN103068573B (en) The base material of nesa coating, band nesa coating and use its organic electroluminescent device
CN102543270B (en) Grapheme-based composite film and preparation method therefor, conductive electrode and preparation method therefor
US9123914B2 (en) Electronic device and method of fabricating the same
CN106941019A (en) Electric conductor, its manufacture method and the electronic installation including it
JP2009211978A (en) Transparent conductive film, and optical device using the same
KR20130137197A (en) Hybrid conductive composite
Hao et al. Novel transparent TiO2/AgNW–Si (NH2)/PET hybrid films for flexible smart windows
Lee et al. Highly conductive, transparent and metal-free electrodes with a PEDOT: PSS/SWNT bilayer for high-performance organic thin film transistors
Zhou et al. Foldable and highly flexible transparent conductive electrode based on PDMS/Ag NWs/PEDOT: PSS
KR20120001684A (en) Transparent conducting film, preparing method for the same, and transparent electrode and devices using the same
KardanMoghaddam et al. Graphene-reinforced polymeric nanocomposites in computer and electronics industries
Cao et al. Effect of organic solvents on the properties of DWCNT/PEDOT: PSS transparent conductive films
Li et al. Highly-flexible, ultra-thin, and transparent single-layer graphene/silver composite electrodes for organic light emitting diodes
CN104979038B (en) Topological insulator/graphene composite and flexible transparent conductive film and preparation method and application
KR101264357B1 (en) Transparent conductive graphene films modified by graphene oxide nanosheets
Thirugnanasambandan et al. Insights and potentials of two-dimensional black phosphorous-based solar cells
Lin et al. Hybrid silver nanowires/nanogold particles film for a Cu (In, Ga) Se2 thin film solar cell
KR20160133610A (en) Hybrid transparent electrode and display device comprising the same
Kinner Flexible transparent electrodes for optoelectronic devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180802

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190806

Year of fee payment: 7