KR101349357B1 - Transparent conductive graphene films modified by metal oxides - Google Patents

Transparent conductive graphene films modified by metal oxides Download PDF

Info

Publication number
KR101349357B1
KR101349357B1 KR1020120034455A KR20120034455A KR101349357B1 KR 101349357 B1 KR101349357 B1 KR 101349357B1 KR 1020120034455 A KR1020120034455 A KR 1020120034455A KR 20120034455 A KR20120034455 A KR 20120034455A KR 101349357 B1 KR101349357 B1 KR 101349357B1
Authority
KR
South Korea
Prior art keywords
graphene
metal oxide
transparent conductive
conductive film
graphene transparent
Prior art date
Application number
KR1020120034455A
Other languages
Korean (ko)
Other versions
KR20130112228A (en
Inventor
정희진
이건웅
정승열
한중탁
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020120034455A priority Critical patent/KR101349357B1/en
Publication of KR20130112228A publication Critical patent/KR20130112228A/en
Application granted granted Critical
Publication of KR101349357B1 publication Critical patent/KR101349357B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

본 발명은 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름에 관한 것으로, 기판과; 상기 기판 상면에 도포 되어 형성된 그래핀 투명전도층과; 상기 그래핀 투명전도층 상면에 금속산화물 졸 용액을 도포하고 이를 고화시켜 형성되어, 상기 금속산화물에 의한 도핑효과에 의해 상기 그래핀 투명전도층의 전도성을 향상시키는 금속산화물층;을 포함하여 구성되는 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름을 기술적 요지로 한다. 이에 따라, 투명전극으로 사용되어 지는 그래핀 투명전도성 필름 상층부에 금속산화물을 도포시킴에 의해 금속산화물 전구체와 그래핀 표면과의 소수성 상호작용에 의해 금속산화물이 균일하게 코팅되며, 상기 금속산화물에 의한 도핑효과에 전기전도도가 그래핀의 일함수를 조절할 수 있어 태양전지 및 유기발광다이오드, 터치패널의 전극으로 활용이 가능하다는 이점이 있다. 또한, 금속산화물층이 그래핀 상층부에 위치함에 따라 외부의 자극 및 화학물질로부터 그래핀을 보호하는 효과가 발생하여 내열성, 고온 내습성, 내구성이 향상되어 그래핀 전극의 신뢰성이 증가하는 이점이 있다.The present invention relates to a graphene transparent conductive film having improved conductivity by a metal oxide, comprising: a substrate; A graphene transparent conductive layer formed on the upper surface of the substrate; It is formed by applying a metal oxide sol solution on the graphene transparent conductive layer and solidified it, a metal oxide layer to improve the conductivity of the graphene transparent conductive layer by the doping effect of the metal oxide; A graphene transparent conductive film having improved conductivity by a metal oxide is a technical subject. Accordingly, the metal oxide is uniformly coated by the hydrophobic interaction between the metal oxide precursor and the graphene surface by applying the metal oxide to the upper layer of the graphene transparent conductive film used as the transparent electrode. Electric conductivity in the doping effect can control the work function of graphene has the advantage that it can be used as electrodes of solar cells, organic light emitting diodes, and touch panels. In addition, since the metal oxide layer is located on the graphene upper layer, an effect of protecting graphene from external stimuli and chemicals is generated, thereby improving heat resistance, high temperature moisture resistance, and durability, thereby increasing reliability of the graphene electrode. .

Figure R1020120034455
Figure R1020120034455

Description

금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름{Transparent conductive graphene films modified by metal oxides}Transparent conductive graphene films modified by metal oxides

본 발명은 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름에 관한 것으로, 더욱 상세하게는, 투명전극으로 사용되어 지는 그래핀 투명전도성 필름 상층부에 금속산화물을 도포시킴에 의해 금속산화물 전구체와 그래핀 표면과의 소수성 상호작용에 의해 금속산화물이 균일하게 코팅되며, 상기 금속산화물에 의한 도핑효과에 전기전도도가 증가하여 태양전지, 유기발광다이오드 또는 터치패널의 전극으로 활용이 가능한 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름에 관한 것이다.The present invention relates to a graphene transparent conductive film having improved conductivity by a metal oxide, and more particularly, to a metal oxide precursor and graphene by coating a metal oxide on an upper layer of a graphene transparent conductive film used as a transparent electrode. The metal oxide is uniformly coated by the hydrophobic interaction with the surface, and the conductivity is increased by the metal oxide which can be used as an electrode of a solar cell, an organic light emitting diode, or a touch panel due to the increase in electric conductivity in the doping effect of the metal oxide. An improved graphene transparent conductive film.

일반적으로 투명전도성 필름은 플라스마 디스플레이 패널(PDP), 액정 디스플레이(LCD) 소자, 발광다이오드소자(LED), 유기전자발광소자(OLED), 터치패널 또는 태양전지 등에 사용된다.In general, the transparent conductive film is used in a plasma display panel (PDP), a liquid crystal display (LCD) device, a light emitting diode device (LED), an organic electroluminescent device (OLED), a touch panel or a solar cell.

이러한 투명전도성 필름은 높은 도전성(예를 들면, 1x103Ω/sq 이하의 면저항)과 가시영역에서 높은 투과율을 가지기 때문에 태양전지, 액정표시소자, 플라즈마 디스플레이 패널, 스마트 윈도우 그 이외의 각종 수광소자와 발광소자의 전극으로 이용되는 것 이외에 자동차 창유리나 건축물의 창유리 등에 쓰이는 대전 방지막, 전자파 차폐막 등의 투명전자파 차폐체 및 열선 반사막, 냉동쇼케이스 등의 투명 발열체로 사용되고 있다. Since the transparent conductive film has high conductivity (for example, sheet resistance of 1 × 10 3 Ω / sq or less) and high transmittance in the visible region, various light-receiving elements other than solar cells, liquid crystal display devices, plasma display panels, smart windows, and the like In addition to being used as an electrode of a light emitting device, it is used as a transparent electromagnetic shielding body such as an antistatic film and an electromagnetic shielding film used in automobile window glass or building window glass, and a transparent heating element such as a heat ray reflecting film and a freezing showcase.

투명전도성 필름으로는 안티몬이나 불소가 도핑된 산화주석(SnO2)막 알루미늄이나 칼륨이 도핑된 산화아연(ZnO)막, 주석이 도핑된 산화인듐(In2O3)막 등이 광범위하게 이용되고 있다.As the transparent conductive film, tin oxide (SnO 2 ) film doped with antimony or fluorine, zinc oxide (ZnO) film doped with aluminum or potassium, indium oxide (In 2 O 3 ) doped with tin, etc. are widely used. have.

특히 주석이 도핑된 산화 인듐막, 즉 In2O3-Sn계의 막은 ITO(Indium tin oxide)막이라고 불리워지고, 저 저항의 막을 쉽게 얻을 수 있기 때문에 많이 이용되고 있다. ITO의 경우 제반 물성이 우수하고 현재까지 공정 투입의 경험이 많은 장점을 가지고 있지만, 산화인듐(In2O3)은 아연(Zn) 광산 등에서 부산물로 생산되기 때문에 수급이 불안정한 문제점이 있다. 또한, ITO막은 유연성이 없기 때문에 폴리머기질 등의 플렉시블한 재질에는 사용하지 못하는 단점이 있으며, 고온, 고압 환경하에서 제조가 가능하므로 생산단가가 높아지는 문제점이 있다.In particular, an indium oxide film doped with tin, that is, an In 2 O 3 -Sn-based film, is called an indium tin oxide (ITO) film and is widely used because a low-resistance film can be easily obtained. In the case of ITO, the physical properties are excellent and the experience of process input to date has many advantages. However, indium oxide (In 2 O 3 ) is produced as a by-product from zinc (Zn) mines, so supply and demand is unstable. In addition, the ITO membrane has a disadvantage in that it cannot be used in a flexible material such as a polymer substrate because it is inflexible, and there is a problem in that the production cost increases because it can be manufactured under a high temperature and high pressure environment.

또한, 플렉시블한 터치패널이나 디스플레이 등을 얻기 위해 전도성 고분자를 이용하여 폴리머 기질 상면에 코팅시킬 수도 있으나, 이러한 필름은 외부 환경에 노출 시 전기전도도가 떨어지거나 투명하지 않은 문제점이 있어, 그 용도가 제한적이게 된다.In addition, the conductive polymer may be coated on the upper surface of the polymer substrate in order to obtain a flexible touch panel or display, but such a film has a problem in that electrical conductivity drops or is not transparent when exposed to the external environment, and its use is limited. This will be.

이러한 문제점을 해결하기 위해 최근에는 여러 종류의 기질 상면에 그래핀을 코팅하는 기술이 연구되고 있다. In order to solve this problem, a technique of coating graphene on various kinds of substrates has been studied in recent years.

그래핀은 탄소원자들이 2차원 상에서 sp2 결합에 의한 벌집모양의 배열을 이루면서 원자 한층의 두께를 가지는 반금속성 나노 물질로 구조적, 화학적으로 매우 안정할 뿐만 아니라, 전기 및 열전도도가 우수하고 일함수가 낮은 특징을 갖고 있어서 전자, 디스플레이, 에너지 소자의 전극재료로 각광을 받고 있다. Graphene is a semimetallic nanomaterial with carbon atoms in a honeycomb-like arrangement by sp 2 bonds in two dimensions. It is not only structurally and chemically stable but also has excellent electrical and thermal conductivity and a work function. Has a low feature, and has attracted much attention as an electrode material for electronics, displays, and energy devices.

상기 그래핀을 합성하기 위한 방법으로 스카치 테이프를 이용하여 흑연 플레이크로부터 그래핀을 분리하는 미세 기계적(micromechanical) 방법(Novoselov 외 7명, Science, 306, 666, 2004), SiC 단결정을 고온 열처리를 통해 에피텍셜한 방법으로 그래핀을 합성하는 열분해 방법(Berger 외 12명, Science, 312, 1191, 2006), 고온에서 탄소가 포함된 가스를 촉매 박막을 이용하여 분해하고 그래핀을 합성하는 화학기상증착법(대한민국특허청 공개특허 공보 공개번호: 10-2007-0132682) 및 습식 공정법인 휴머스법(W. Hummers 외 1명, J. Am. Chem. Soc., 80, 1339, 1958), 브로디법(B. C. Brodie, Ann. Chim. Phys., 59, 466-472, 1860), 스타우덴마이어법(L. Staudenmaier, Ber. Dtsch. Chem. Ges., 31, 1481-1499, 1898) 등을 이용하여 그래파이트 결정을 화학/기계적으로 처리하여 얻는 흑연박리법 등이 있다. 이 중 스카치 테이프법과 에피텍셜법은 수율이 낮아 상업적으로 적용하기가 힘들고, 흑연박리법으로 제조된 그래핀의 경우는 많은 연구를 통해 전기전도도의 개선이 이루어지고 있지만 아직까지 상기 여타의 방법으로 합성된 그래핀에 비해 상대적으로 불순물 및 결함이 많이 포함되어 전기적 특성이 떨어지는 문제점이 있다. Micromechanical method of separating graphene from graphite flakes using Scotch tape as a method for synthesizing graphene (Novoselov et al., Science, 306, 666, 2004), SiC single crystal through high temperature heat treatment Pyrolysis method to synthesize graphene by epitaxial method (Berger et al., 12, Science, 312, 1191, 2006), chemical vapor deposition method to decompose gas containing carbon at high temperature using a catalyst thin film and synthesize graphene (Korean Patent Office Publication No. 10-2007-0132682) and the wet method, the human method (W. Hummers et al., J. Am. Chem. Soc., 80, 1339, 1958), brody method (BC Brodie, Ann. Chim. Phys., 59, 466-472, 1860), graphite crystals using L. Staudenmaier, Ber. Dtsch. Chem. Ges., 31, 1481-1499, 1898, etc. Graphite peeling method obtained by chemically / mechanically treating the same. Among them, the Scotch tape method and epitaxial method are difficult to apply commercially due to the low yield. Graphene manufactured by graphite peeling method has been improved in electrical conductivity through many studies. Compared with the graphene, there are a lot of impurities and defects that are relatively poor electrical characteristics.

상대적으로 흑연박리법으로 합성된 그래핀에 비해 전기적 특성이 우수한 화학기상증착법 그래핀의 경우, 상업적인 응용이 가능할 수준의 대면적 합성 및 균일도에 의문이 있었지만 2010년 30인치의 균일한 대면적 그래핀을 합성하는 기술(Nature Nanotech. 5, 574 (2010))이 소개되면서 많은 연구가 집중되고 있다. Chemical vapor deposition graphene, which has superior electrical properties compared to graphene synthesized by graphite peeling, has been questioned for the large-area synthesis and uniformity that can be used for commercial applications. As a technique for synthesizing (Nature Nanotech. 5, 574 (2010)) is introduced, a lot of research has been concentrated.

이러한 많은 연구에도 불구하고, 아직까지 화학기상증착법 그래핀의 면저항이 ~500ohm/square인데 이는 일반적으로 디스플레이의 전극으로 사용되는 인듐주석산화물의 면저항인 ~100 ohm/square에 비해 상대적으로 높은 값을 보이고 있다. Despite many studies, the surface resistivity of chemical vapor deposition graphene is ~ 500 ohm / square, which is relatively higher than the surface resistance of ~ 100 ohm / square, which is generally used as the electrode of display. have.

그래핀의 면저항을 낮추기 위해 가장 활발히 연구되고 있는 방법은 도핑인데 주로 금속(Au, Ag, Pt, Al, 등) 전구체를 이용하여 이온 상태로 도핑하는 방법이나 그래핀의 상층부나 하층부에 유기도펀트를 도포하는 방법, 그래핀 합성 시 질소나 붕소를 함유한 가스 혹은 고체소스를 사용하여 직접 도핑된 그래핀을 합성하는 방법이 있다. The most actively researched method to reduce the sheet resistance of graphene is doping in the ionic state using a metal (Au, Ag, Pt, Al, etc.) precursor, or organic dopant in the upper or lower layer of graphene There is a method of coating, a method of synthesizing graphene directly doped using a gas or a solid source containing nitrogen or boron in the graphene synthesis.

상기의 방법으로 도핑된 그래핀은 공기 중이나 습기에 노출되었을 경우, 산소나 물분자와 결합하여 그래핀의 전도도를 감소시키는 역할을 하므로 이를 해결해야 하는 문제가 있다. When the graphene doped in the above method is exposed to air or moisture, there is a problem to be solved because it combines with oxygen or water molecules to reduce the conductivity of graphene.

따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 투명전극으로 사용되어 지는 그래핀 투명전도성 필름 상층부에 금속산화물을 도포시킴에 의해 금속산화물 전구체와 그래핀 표면과의 소수성 상호작용에 의해 금속산화물이 균일하게 코팅되게 되며, 전기전도도가 증가하고, 기질 접착성, 내열성, 고온 내습성, 내구성을 향상시키며 금속산화물의 종류에 따라 그래핀의 일함수를 변화시킬 수 있어 태양전지, 유기발광다이오드 또는 터치패널의 전극으로 활용이 가능한 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름을 제공하는 것을 목적으로 한다.Therefore, the present invention has been made to solve the above problems of the prior art, by applying a metal oxide on the upper layer of the graphene transparent conductive film used as a transparent electrode by the hydrophobic interaction between the metal oxide precursor and the graphene surface Metal oxide is uniformly coated by the action, electrical conductivity is increased, substrate adhesion, heat resistance, high temperature moisture resistance, durability is improved, and the work function of graphene can be changed according to the type of metal oxide solar cell It is an object of the present invention to provide a graphene transparent conductive film having improved conductivity by a metal oxide that can be used as an electrode of an organic light emitting diode or a touch panel.

상기한 목적을 달성하기 위한 본 발명은, 기판과; 상기 기판 상면에 도포 되어 형성된 그래핀 투명전도층과; 상기 그래핀 투명전도층 상면에 금속산화물 졸 용액을 도포하고 이를 고화시켜 형성되어, 상기 금속산화물에 의한 도핑효과에 의해 상기 그래핀 투명전도층의 전도성을 향상시키는 금속산화물층;을 포함하여 구성되는 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름을 기술적 요지로 한다.The present invention for achieving the above object, a substrate; A graphene transparent conductive layer formed on the upper surface of the substrate; It is formed by applying a metal oxide sol solution on the graphene transparent conductive layer and solidified it, a metal oxide layer to improve the conductivity of the graphene transparent conductive layer by the doping effect of the metal oxide; A graphene transparent conductive film having improved conductivity by a metal oxide is a technical subject.

상기 그래핀 투명전도층은 금속표면에서 열화학기상증착법에 의해 제조된 그래핀으로 형성되는 것이 바람직하다.The graphene transparent conductive layer is preferably formed of graphene prepared by a thermochemical vapor deposition method on the metal surface.

상기 금속산화물은 그래핀 표면과 소수성 상호작용에 의해 결합하는 것이 바람직하다.The metal oxide is preferably bonded by hydrophobic interaction with the graphene surface.

상기 기판은 유리, 수정, 글래스웨이퍼, 실리콘웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어진 것이 바람직하다.The substrate is preferably made of one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, and plastics.

상기 도포는 스프레이(spray), 디핑(dipping), 스핀코팅(spin coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing), 패드 프린팅, 나이프 코팅, 키스 코팅, 그라비아 코팅 중에서 선택된 하나의 방법을 이용하는 것이 바람직하다.The application is one selected from spray, dipping, spin coating, screen printing, inkjet printing, inkjet printing, pad printing, knife coating, kiss coating and gravure coating. It is preferable to use.

상기 금속산화물은 TiO2, SnO2, ZnO, MgO, V2O5, ZrO2, B2O3, Al2O3, Fe3O4, Fe2O3, BaTiO3, WO3, Co3O4, MnO2, SiO2, NiO, RuO2, Cu2O 중 하나 이상이 사용되는 것이 바람직하다.The metal oxide is TiO 2 , SnO 2 , ZnO, MgO, V 2 O 5 , ZrO 2 , B 2 O 3 , Al 2 O 3 , Fe 3 O 4 , Fe 2 O 3 , BaTiO 3 , WO 3 , Co 3 It is preferred that at least one of O 4 , MnO 2 , SiO 2 , NiO, RuO 2 , Cu 2 O be used.

상기 그래핀 투명 전도성 필름은 태양전지, 유기발광다이오드 또는 터치패널 뿐만 아니라 에너지저장 소자의 전극용으로 사용되는 것이 바람직하다.The graphene transparent conductive film is preferably used for electrodes of energy storage devices as well as solar cells, organic light emitting diodes or touch panels.

이에 따라, 투명전극으로 사용되어 지는 그래핀 투명전도성 필름 상층부에 금속산화물을 도포시킴에 의해 금속산화물 전구체와 그래핀 표면과의 소수성 상호작용에 의해 금속산화물이 균일하게 코팅되며, 상기 금속산화물에 의한 도핑효과에 의해 전기전도도가 증가하고 그래핀의 일함수를 조절할 수 있어 태양전지 및 유기발광다이오드, 터치패널의 전극으로 활용이 가능하다는 이점이 있다. 또한, 금속산화물층이 그래핀 상층부에 위치함에 따라 외부의 자극 및 화학물질로부터 그래핀을 보호하는 효과가 발생하여 내열성, 고온 내습성, 내구성이 향상되어 그래핀 전극의 신뢰성이 증가하는 이점이 있다. Accordingly, the metal oxide is uniformly coated by the hydrophobic interaction between the metal oxide precursor and the graphene surface by applying the metal oxide to the upper layer of the graphene transparent conductive film used as the transparent electrode. The electrical conductivity is increased by the doping effect, and the work function of graphene can be adjusted, so it can be used as an electrode of a solar cell, an organic light emitting diode, and a touch panel. In addition, since the metal oxide layer is located on the graphene upper layer, an effect of protecting graphene from external stimuli and chemicals is generated, thereby improving heat resistance, high temperature moisture resistance, and durability, thereby increasing reliability of the graphene electrode. .

상기의 구성에 의한 본 발명은, 투명전극으로 사용되어 지는 그래핀 투명전도성 필름 상층부에 금속산화물을 도포시킴에 의해 금속산화물 전구체와 그래핀 표면과의 소수성 상호작용에 의해 금속산화물이 균일하게 코팅되며, 상기 금속산화물에 의한 도핑효과에 전기전도도가 증가하여 그래핀의 일함수를 조절할 수 있어 태양전지 및 유기발광다이오드, 터치패널의 전극으로 활용이 가능하다는 효과가 있다. 또한, 금속산화물층이 그래핀 상층부에 위치함에 따라 외부의 자극 및 화학물질로부터 그래핀을 보호하는 효과가 발생하여 내열성, 고온 내습성, 내구성이 향상되어 그래핀 전극의 신뢰성이 증가하는 효과가 있다. According to the present invention, the metal oxide is uniformly coated by the hydrophobic interaction between the metal oxide precursor and the graphene surface by applying the metal oxide to the upper layer of the graphene transparent conductive film used as the transparent electrode. In addition, the electrical conductivity is increased in the doping effect by the metal oxide, so that the work function of graphene can be adjusted, so that the solar cell, the organic light emitting diode, and the electrode of the touch panel can be used. In addition, as the metal oxide layer is located on the graphene upper layer, an effect of protecting graphene from external stimuli and chemicals is generated, thereby improving heat resistance, high temperature moisture resistance, and durability, thereby increasing reliability of the graphene electrode. .

도 1은 본 발명에 따른 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름의 제조공정을 나타낸 공정도이고,
도 2는 본 발명의 제1실시예에 따른 산화티타늄/그래핀의 원자힘현미경(AFM) 사진을 나타낸 도이고,
도 3은 본 발명의 제1실시예에 따른 산화티타늄/그래핀의 라만분광 스펙트럼을 나타낸 도이고,
도 4는 본 발명의 제1실시예에 따른 산화티타늄/그래핀의 X선 광전자 분광 스펙트럼을 나타낸 도이고,
도 5는 본 발명의 제2실시예에 따른 산화아연/그래핀의 원자힘현미경(AFM) 사진을 나타낸 도이고,
도 6은 본 발명의 제2실시예에 따른 산화아연/그래핀의 라만분광 스펙트럼을 나타낸 도이고,
도 7은 비교예에 따라 제조된 그래핀의 광학현미경 사진을 나타낸 도이고,
도 8은 비교예에 따라 제조된 그래핀의 라만분광 스펙트럼을 나타낸 도이고,
도 9는 본 발명의 실시예와 비교예에 따라 제조된 그래핀의 (a)자외선 전자분광 스펙트럼과 (b)이에 의해 계산된 일함수를 나타낸 도이고,
도 10은 본 발명의 실시예에 따른 금속산화물 졸의 코팅횟수에 따른 금속산화물/그래핀 투명전도성필름의 면저항변화를 나타낸 도이고,
도 11은 본 발명이 실시예 및 비교예에 따른 그래핀 투명전도성필름의 고온고습하에서의 면저항변화를 나타낸 도이다.
1 is a process chart showing a manufacturing process of the graphene transparent conductive film with improved conductivity by a metal oxide according to the present invention,
2 is a view showing an atomic force microscope (AFM) photograph of titanium oxide / graphene according to the first embodiment of the present invention,
3 is a diagram showing a Raman spectroscopy spectrum of titanium oxide / graphene according to a first embodiment of the present invention,
4 is a diagram showing an X-ray photoelectron spectroscopy spectrum of titanium oxide / graphene according to a first embodiment of the present invention,
5 is a view showing an atomic force microscope (AFM) photograph of zinc oxide / graphene according to a second embodiment of the present invention,
6 is a view showing Raman spectroscopy spectrum of zinc oxide / graphene according to a second embodiment of the present invention,
7 is a view showing an optical microscope photograph of graphene prepared according to a comparative example,
8 is a view showing a Raman spectroscopic spectrum of graphene prepared according to a comparative example,
9 is a diagram showing (a) ultraviolet electron spectroscopy spectra of graphene prepared according to Examples and Comparative Examples of the present invention and (b) the work function calculated by
10 is a view showing the sheet resistance change of the metal oxide / graphene transparent conductive film according to the coating frequency of the metal oxide sol according to an embodiment of the present invention,
11 is a view showing a sheet resistance change at high temperature and high humidity of the graphene transparent conductive film according to the embodiment and the comparative example of the present invention.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름의 제조공정을 나타낸 공정도이고, 도 2는 본 발명의 제1실시예에 따른 산화티타늄/그래핀의 원자힘현미경(AFM) 사진을 나타낸 도이고, 도 3은 본 발명의 제1실시예에 따른 산화티타늄/그래핀의 라만분광 스펙트럼을 나타낸 도이고, 도 4는 본 발명의 제1실시예에 따른 산화티타늄/그래핀의 X선 광전자 분광 스펙트럼을 나타낸 도이고, 도 5는 본 발명의 제2실시예에 따른 산화아연/그래핀의 원자힘현미경(AFM) 사진을 나타낸 도이고, 도 6은 본 발명의 제2실시예에 따른 산화아연/그래핀의 라만분광 스펙트럼을 나타낸 도이고, 도 7은 비교예에 따라 제조된 그래핀의 광학현미경 사진을 나타낸 도이고, 도 8은 비교예에 따라 제조된 그래핀의 라만분광 스펙트럼을 나타낸 도이고, 도 9는 본 발명의 실시예와 비교예에 따라 제조된 그래핀의 (a)자외선 전자분광 스펙트럼과 (b)이에 의해 계산된 일함수를 나타낸 도이고, 도 10은 본 발명의 실시예에 따른 금속산화물 졸의 코팅횟수에 따른 금속산화물/그래핀 투명 전도성필름의 면저항변화를 나타낸 도이고, 도 11은 본 발명이 실시예 및 비교예에 따른 그래핀 투명전도성필름의 고온고습하에서의 면저항변화를 나타낸 도이다.1 is a process chart illustrating a manufacturing process of a graphene transparent conductive film having improved conductivity by a metal oxide according to the present invention, and FIG. 2 is an atomic force microscope (AFM) of titanium oxide / graphene according to a first embodiment of the present invention. 3 shows a Raman spectroscopic spectrum of titanium oxide / graphene according to the first embodiment of the present invention, and FIG. 4 shows titanium oxide / graphene according to the first embodiment of the present invention. Fig. 5 shows an X-ray photoelectron spectroscopy spectrum, Fig. 5 shows an atomic force microscope (AFM) photograph of zinc oxide / graphene, and Fig. 6 shows a second embodiment of the present invention. Raman spectroscopy spectrum of zinc oxide / graphene according to the example, Figure 7 is a view showing an optical micrograph of the graphene prepared according to the comparative example, Figure 8 is a Raman of graphene prepared according to the comparative example Doi showing the spectral spectrum 9 is a diagram showing (a) ultraviolet electron spectroscopy spectra of graphene prepared according to Examples and Comparative Examples of the present invention and (b) a work function calculated by them, and FIG. 10 is an embodiment of the present invention. The sheet resistance of the metal oxide / graphene transparent conductive film according to the number of coating of the metal oxide sol according to the present invention, Figure 11 is a change in the sheet resistance of the graphene transparent conductive film according to the embodiment and comparative example under high temperature and high humidity The figure shown.

도시된 바와 같이 본 발명에 따른 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름은 기판과; 상기 기판 상면에 도포 되어 형성된 그래핀 투명전도층과; 상기 그래핀 투명전도층 상면에 금속산화물 졸 용액을 도포하고 이를 고화시켜 형성되어, 상기 금속산화물에 의한 도핑효과에 의해 상기 그래핀 투명전도층의 전도성을 향상시키는 금속산화물층;으로 구성된다.
As shown, the graphene transparent conductive film having improved conductivity by the metal oxide according to the present invention includes a substrate; A graphene transparent conductive layer formed on the upper surface of the substrate; It is formed by applying a metal oxide sol solution on the upper surface of the graphene transparent conductive layer and solidified it, thereby improving the conductivity of the graphene transparent conductive layer by the doping effect of the metal oxide;

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조로 상세히 설명하기로 한다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

< 제1실시예 >&Lt; Embodiment 1 >

도시된 바와 같이, 본 발명에서는 그래핀 투명전도층을 형성하기 위해 먼저 그래핀을 제조하여야 한다.
As shown, in the present invention, in order to form a graphene transparent conductive layer, graphene must first be prepared.

1-1. 구리호일을 이용한 그래핀의 제조1-1. Preparation of Graphene Using Copper Foil

먼저 25㎛ 두께의 구리호일(Alfa aesar, 99.8%)인 금속판(100)위에 열화학기상증착방법(thermal chemical vapor deposition)을 통해 그래핀(200)을 제조한다. 챔버(chamber) 내에 구리호일을 넣고, 1000℃로 2시간 30분에 걸쳐 승온시킨다. First, graphene 200 is manufactured by thermal chemical vapor deposition on a metal plate 100 of 25 μm thick copper foil (Alfa aesar, 99.8%). The copper foil was placed in a chamber and heated to 1000 ° C. over 2 hours and 30 minutes.

1000℃, 수소 90sccm, 압력 180 mTorr의 조건에서 30분의 열처리 과정을 거친 후 메탄가스 200sccm을 넣고 30분간 성장 후, 가스의 조건은 그대로 유지시킨 채 2시간에 걸쳐 온도를 내려주어 그래핀을 제조한다.
After 30 minutes of heat treatment at 1000 ℃, hydrogen 90sccm, pressure 180 mTorr, methane gas 200sccm was added and grown for 30 minutes, the graphene was prepared by lowering the temperature over 2 hours while maintaining the gas conditions as it is do.

1-2. 산화티타늄 졸 제조1-2. Titanium Oxide Sol

에탄올 100㎖에 전구체인 티타늄 이소프로폭사이드 50㎎과 안정제인 아세틸아세톤 30㎎을 첨가하여 1시간 동안 교반 후 졸을 형성하였다.
50 mg of titanium isopropoxide as a precursor and 30 mg of acetylacetone as a stabilizer were added to 100 ml of ethanol, followed by stirring for 1 hour to form a sol.

1-3. 산화티타늄이 형성된 그래핀 제조1-3. Manufacture of graphene with titanium oxide

상기 1-1에서 제조된 그래핀/구리호일 위에 상기 1-2에서 제조된 금속산화물 졸을 스핀코팅을 이용하여 도포한 후, 열경화를 통해 금속산화물층(500)인 산화티타늄층이 그래핀 상층부에 형성되도록 하였다.
After coating the metal oxide sol prepared in 1-2 using spin coating on the graphene / copper foil prepared in 1-1, the titanium oxide layer 500, which is the metal oxide layer 500, is thermally cured. It was to be formed in the upper layer.

1-4. 산화티타늄이 형성된 그래핀의 전사(Transfer)1-4. Transfer of graphene with titanium oxide

1-3에서 제조된 산화티타늄 상층부에 폴리메틸메타크릴레이트(PMMA)(600) 용액을 떨어뜨린 후, 1000rpm의 속도로 30초간 스핀코팅(spin coating)하여 얇은 고분자막을 형성시켰다. 그 후 구리호일은 에쳔트를 이용해 제거하고, 기판(300)인 투명 폴리에틸렌테레프탈레이트 위로 전사한 후 아세톤으로 PMMA(600)를 제거한다. After dropping the polymethyl methacrylate (PMMA) (600) solution on the upper layer of titanium oxide prepared in 1-3, by spin coating at a speed of 1000rpm for 30 seconds to form a thin polymer film. The copper foil is then removed using an etchant, transferred onto a transparent polyethylene terephthalate, which is the substrate 300, and then the PMMA 600 is removed with acetone.

300㎚ SiO2 층의 실리콘(Si) 웨이퍼 기판(300)에 전사할 경우 도2와 도4와 같이 산화티타늄으로 형성된 금속산화물층(500)이 그래핀으로 형성된 그래핀 투명전도층(400) 상층부에 형성됨을 확인할 수 있으며, 도3과 같이 라만분광법을 통해 2D 피크가 큰 고결정성의 그래핀이 성장되었음을 확인하였다.
When transferring to a 300 nm SiO 2 layer silicon (Si) wafer substrate 300, the upper layer of the graphene transparent conductive layer 400 formed of graphene is a metal oxide layer 500 formed of titanium oxide as shown in Figures 2 and 4 It can be confirmed that it is formed in, and as shown in Figure 3 through the Raman spectroscopy it was confirmed that the high crystallinity of graphene having a large 2D peak.

< 제2실시예 >&Lt; Embodiment 2 >

본 발명의 제1실시예에서는 금속산화물을 산화티타늄을 이용하였으나, 본 발명의 제2실시예에서는 금속산화물을 산화아연을 이용하여 기판 상면에 그래핀 투명전도층을 형성시키고, 그 상면에 금속산화물층을 형성시키는 형태로 그래핀 투명전도성 필름을 형성시켰는바 이하 이에 대해 설명한다.
In the first embodiment of the present invention, the metal oxide is titanium oxide, but in the second embodiment of the present invention, a graphene transparent conductive layer is formed on the upper surface of the substrate using zinc oxide, and the metal oxide is formed on the upper surface of the metal oxide. The graphene transparent conductive film was formed in the form of forming a layer, which will be described below.

2-1. 구리호일을 이용한 그래핀의 제조2-1. Preparation of Graphene Using Copper Foil

상기 제1실시예의 1-1과 동일하게 그래핀을 제조한다.
Graphene is manufactured in the same manner as in 1-1 of the first embodiment.

2-2. 산화아연 졸 제조2-2. Zinc oxide sol manufacture

실시예 1-2의 산화티타늄 대신 산화아연 졸을 다음과 같이 제조하였다. A zinc oxide sol was prepared in place of the titanium oxide of Example 1-2 as follows.

이소프로필알코올 30㎖에 전구체인 징크 아세테이트 다이하이드레이트(Zinc acetate dihydrate) 6.6g과 안정제인 다이에탄올아민(diethanolamine) 3.15g을 혼합하여 1시간동안 교반 후 졸을 형성하였다.
30 ml of isopropyl alcohol was mixed with 6.6 g of zinc acetate dihydrate as a precursor and 3.15 g of diethanolamine as a stabilizer, followed by stirring for 1 hour to form a sol.

2-3. 산화아연이 형성된 그래핀 제조2-3. Manufacture of graphene with zinc oxide

상기 2-1에서 제조된 그래핀/구리호일 위에 상기 2-2에서 제조된 금속산화물 졸을 스핀코팅을 이용하여 도포한 후, 열경화를 통해 산화아연층이 그래핀 상층부에 형성되도록 하였다.
After coating the metal oxide sol prepared in 2-2 using spin coating on the graphene / copper foil prepared in 2-1, the zinc oxide layer was formed on the graphene upper layer through thermal curing.

2-4. 산화아연이 형성된 그래핀의 전사(Transfer)2-4. Transfer of graphene with zinc oxide

2-3에서 제조된 산화아연 상층부에 폴리메틸메타크릴레이트(PMMA) 용액을 떨어뜨린 후, 1000rpm의 속도로 30초간 스핀코팅(spin coating)하여 얇은 고분자막을 형성시켰다. 그 후 구리호일은 에쳔트를 이용해 제거하고, 기판인 투명 폴리에틸렌테레프탈레이트 위로 전사한 후 아세톤으로 PMMA를 제거한다. After dropping the polymethyl methacrylate (PMMA) solution on the zinc oxide upper layer prepared in 2-3, by spin coating at a speed of 1000rpm for 30 seconds to form a thin polymer film. The copper foil is then removed using an etchant, transferred onto a transparent polyethylene terephthalate, which is the substrate, and then the PMMA is removed with acetone.

300㎚ SiO2 층의 실리콘(Si) 웨이퍼 기판에 전사할 경우 도5와 같이 산화아연으로 형성된 금속산화물층이 그래핀으로 형성된 그래핀 투명전도층 상층부에 형성됨을 확인할 수 있으며, 도6과 같이 라만분광법을 통해 2D 피크가 큰 고결정성의 그래핀이 성장되었음을 확인하였다.
When transferring to a 300 nm SiO 2 layer silicon (Si) wafer substrate it can be seen that the metal oxide layer formed of zinc oxide is formed on the graphene transparent conductive layer formed of graphene as shown in Figure 5, Raman as shown in Figure 6 Spectroscopy confirmed that the highly crystalline graphene with a large 2D peak was grown.

다음은 비교예로써, 기판위에 그래핀 투명전도층만을 형성시킨 경우에 대해 살펴보기로 한다.
Next, as a comparative example, a case in which only a graphene transparent conductive layer is formed on a substrate will be described.

< 비교예 ><Comparative Example>

3-1. 구리호일을 이용한 그래핀의 제조3-1. Preparation of Graphene Using Copper Foil

먼저 25㎛ 두께의 구리호일(Alfa aesar, 99.8%)위에 열화학기상증착방법 (thermal chemical vapor deposition)을 통해 그래핀을 제조한다. 챔버(chamber) 내에 구리호일을 넣고, 1000℃로 2시간 30분에 걸쳐 승온시킨다. First, graphene is prepared by thermal chemical vapor deposition on a 25 μm thick copper foil (Alfa aesar, 99.8%). The copper foil was placed in a chamber and heated to 1000 ° C. over 2 hours and 30 minutes.

1000℃, 수소 90sccm, 압력 180 mTorr의 조건에서 30분의 열처리 과정을 거친 후 메탄가스 200sccm을 넣고 30분간 성장 후, 가스의 조건은 그대로 유지시킨 채 2시간에 걸쳐 온도를 내려주어 그래핀을 제조한다.
After 30 minutes of heat treatment at 1000 ℃, hydrogen 90sccm, pressure 180 mTorr, methane gas 200sccm was added and grown for 30 minutes, the graphene was prepared by lowering the temperature over 2 hours while maintaining the gas conditions as it is do.

3-2. 그래핀의 전사(Transfer)3-2. Transfer of Graphene

3-1에서 제조된 그래핀 상층부에 폴리메틸메타크릴레이트(PMMA) 용액을 떨어뜨린 후, 1000rpm의 속도로 30초간 스핀코팅(spin coating)하여 얇은 고분자막을 형성시켰다. 그 후 구리호일은 에쳔트를 이용해 제거하고, 기판인 투명 폴리에틸렌테레프탈레이트 위로 전사한 후 아세톤으로 PMMA를 제거한다. After dropping the polymethyl methacrylate (PMMA) solution on the graphene upper layer prepared in 3-1, by spin coating at a speed of 1000rpm for 30 seconds to form a thin polymer film. The copper foil is then removed using an etchant, transferred onto a transparent polyethylene terephthalate, which is the substrate, and then the PMMA is removed with acetone.

300㎚ SiO2 층의 실리콘(Si) 웨이퍼 기판에 전사할 경우 도7과 같이 균일한 그래핀으로 형성된 그래핀 투명전도층이 합성됨을 확인할 수 있으며, 도8과 같이 라만분광법을 통해 2D 피크가 큰 고결정성의 그래핀이 성장되었음을 확인하였다.
When transferring to a 300 nm SiO 2 layer silicon (Si) wafer substrate it can be seen that the graphene transparent conductive layer formed of a uniform graphene as shown in Figure 7 is synthesized, as shown in Figure 8 the large 2D peak through Raman spectroscopy It was confirmed that graphene of high crystallinity was grown.

이상의 제1실시예 및 제2실시예에 따라 그래핀 투명전도성 필름을 제조함과 동시에 비교예에 따른 그래핀 투명전도성 필름을 제조하여 이에 대한 물성조사를 하였는바, 이하 이에 대해 살펴보기로 한다.
The graphene transparent conductive film was prepared according to the first embodiment and the second embodiment, and at the same time, the graphene transparent conductive film was prepared according to the comparative example and the physical properties of the graphene transparent conductive film were examined.

도9는 본 발명의 실시예와 비교예에 따라 제조된 그래핀의 (a)자외선 전자분광 스펙트럼과 (b)이에 의해 계산된 일함수를 나타낸 도인바, 도9에서 알 수 있듯이, 그래핀이 단독으로 형성된 경우에 비해 산화티타늄/그래핀은 일함수가 증가하였고, 산화아연/그래핀은 감소하였다. Figure 9 is a diagram showing the (a) ultraviolet electron spectroscopy spectrum of the graphene prepared according to the Examples and Comparative Examples of the present invention and (b) the work function calculated by it, as can be seen in Figure 9, Titanium oxide / graphene increased work function and zinc oxide / graphene decreased compared with the case formed alone.

이는 도핑 메커니즘으로 설명할 수 있는데 산화티타늄/그래핀의 경우, 그래핀이 산화티타늄에 전자를 내어줌으로써 페르미준위가 낮아지고 이로 인해 일함수가 증가하였으며, 산화아연/그래핀의 경우, 그래핀이 산화아연으로부터 전자를 받아 페르미준위가 높아지고 이로 인해 일함수가 감소하였기 때문이다.This can be explained by the doping mechanism: in the case of titanium oxide / graphene, the fermi level is lowered by the graphene giving electrons to the titanium oxide, thereby increasing the work function, and in the case of zinc oxide / graphene, This is because the Fermi level is increased by receiving electrons from zinc oxide, which decreases the work function.

일반적으로 높은 절연특성을 갖는 금속산화물임에도 불구하고 도10에서 보는 바와 같이, 그래핀 상층부에 금속산화물이 형성되었을 때, 면저항이 감소되는 현상이 발생하였는데 단독의 그래핀에서 발생하는 로칼라이즈드 스테이트(localized state)에 의한 전하의 갇힘현상이 금속산화물에 의해 해소되기 때문이다. Although it is generally a metal oxide having a high insulating property, as shown in Figure 10, when the metal oxide is formed on the upper layer of the graphene, a phenomenon occurs that the sheet resistance is reduced, the localized state that occurs in the graphene alone ( This is because the trapping of the charge due to localized state is solved by the metal oxide.

금속산화물 종류에 따라 면저항 감소율이 다른 이유는 도9에서 보여진 것처럼, 금속산화물의 종류에 따라 그래핀의 도핑이 달라지게 되며 이로 인해 전도도에 영향을 받기 때문이다.The reason why the sheet resistance reduction rate is different depending on the type of metal oxide is that as shown in FIG. 9, the doping of graphene varies according to the type of metal oxide, and thus the conductivity is affected.

도11은 금속산화물/그래핀과 그래핀 투명전도성 필름의 환경신뢰성 실험 결과로서, 섭씨 80℃, 절대습도 90%의 환경하에서 시간에 따른 면저항의 변화를 보여주는 데이터이다. 11 is a result of environmental reliability test results of the metal oxide / graphene and graphene transparent conductive film, it is a data showing the change of the sheet resistance with time in an environment of 80 ℃ Celsius, 90% absolute humidity.

비교예인 기판 위에 그래핀 투명전도층으로만 구성된 그래핀의 경우 시간이 증가함에 따라 산소나 물분자와 결합하여 면저항이 증가하는 반면, 본 발명의 실시예에 따른 금속산화물/그래핀의 경우 금속산화물층이 산소나 물분자와 그래핀의 흡착을 억제하는 베리어층 역할을 수행하므로 그래핀의 면저항의 증가율이 최대 10% 증가에 머무르게 된다. In the case of the graphene composed only of the graphene transparent conductive layer on the substrate as a comparative example, the sheet resistance is increased by combining with oxygen or water molecules as time increases, whereas the metal oxide / graphene according to the embodiment of the present invention is a metal oxide. Since the layer acts as a barrier layer that inhibits the adsorption of oxygen or water molecules and graphene, the rate of increase of the sheet resistance of graphene remains at a maximum of 10%.

100 : 금속판 200 : 그래핀
300 : 기판 400 : 그래핀투명전도층
500 : 금속산화물층 600 : PMMA
100: metal plate 200: graphene
300 substrate 400 graphene transparent conductive layer
500: metal oxide layer 600: PMMA

Claims (7)

기판과;
상기 기판 상면에 도포 되어 형성된 그래핀 투명전도층과;
상기 그래핀 투명전도층 상면에 금속산화물 전구체를 이용하여 형성된 금속산화물 졸 용액을 도포하고 이를 열경화시켜 형성되어, 상기 금속산화물에 의한 도핑효과에 의해 상기 그래핀 투명전도층의 전도성을 향상시키는 금속산화물층;을 포함하여 구성되되,
상기 금속산화물은 그래핀 표면과 소수성 상호작용에 의해 결합하는 것을 특징으로 하는 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름.
Claims [1]
A graphene transparent conductive layer formed on the upper surface of the substrate;
A metal oxide sol solution formed by using a metal oxide precursor on the upper surface of the graphene transparent conductive layer is formed by thermal curing, and the metal improves the conductivity of the graphene transparent conductive layer by the doping effect of the metal oxide. It comprises an oxide layer;
The metal oxide is graphene transparent conductive film with improved conductivity by the metal oxide, characterized in that for coupling by the hydrophobic interaction with the graphene surface.
제1항에 있어서, 상기 그래핀 투명전도층은 금속표면에서 열화학기상증착법에 의해 제조된 그래핀으로 형성되는 것을 특징으로 하는 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름.The graphene transparent conductive film of claim 1, wherein the graphene transparent conductive layer is formed of graphene prepared by thermochemical vapor deposition on a metal surface. 삭제delete 제1항에 있어서, 상기 기판은 유리, 수정, 글래스웨이퍼, 실리콘웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어진 것을 특징으로 하는 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름.The graphene transparent conductive film of claim 1, wherein the substrate is one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, and plastics. 제1항에 있어서, 상기 도포는 스프레이(spray), 디핑(dipping), 스핀코팅(spin coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing), 패드 프린팅, 나이프 코팅, 키스 코팅, 그라비아 코팅 중에서 선택된 하나의 방법을 이용하는 것을 특징으로 하는 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름.The method of claim 1, wherein the application is spraying, dipping, spin coating, screen printing, inkjet printing, pad printing, knife coating, kiss coating, gravure. Graphene transparent conductive film with improved conductivity by a metal oxide, characterized in that using one method selected from the coating. 제1항, 제2항, 제4항, 제 5항 중 어느 하나의 항에 있어서, 상기 금속산화물은 TiO2, SnO2, ZnO, MgO, V2O5, ZrO2, B2O3, Al2O3, Fe3O4, Fe2O3, BaTiO3, WO3, Co3O4, MnO2, SiO2, NiO, RuO2, Cu2O 중 하나 이상이 사용되는 것을 특징으로 하는 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름.The metal oxide of any one of claims 1, 2, 4, and 5, wherein the metal oxide is TiO 2 , SnO 2 , ZnO, MgO, V 2 O 5 , ZrO 2 , B 2 O 3 , At least one of Al 2 O 3 , Fe 3 O 4 , Fe 2 O 3 , BaTiO 3 , WO 3 , Co 3 O 4 , MnO 2 , SiO 2 , NiO, RuO 2 , Cu 2 O Graphene transparent conductive film with improved conductivity by metal oxide. 제6항에 있어서, 상기 그래핀 투명 전도성 필름은 태양전지, 유기발광다이오드 또는 터치패널의 전극용으로 사용됨을 특징으로 하는 금속산화물에 의해 전도성이 향상된 그래핀 투명 전도성 필름.The graphene transparent conductive film of claim 6, wherein the graphene transparent conductive film is used for an electrode of a solar cell, an organic light emitting diode, or a touch panel.
KR1020120034455A 2012-04-03 2012-04-03 Transparent conductive graphene films modified by metal oxides KR101349357B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120034455A KR101349357B1 (en) 2012-04-03 2012-04-03 Transparent conductive graphene films modified by metal oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120034455A KR101349357B1 (en) 2012-04-03 2012-04-03 Transparent conductive graphene films modified by metal oxides

Publications (2)

Publication Number Publication Date
KR20130112228A KR20130112228A (en) 2013-10-14
KR101349357B1 true KR101349357B1 (en) 2014-01-16

Family

ID=49633264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120034455A KR101349357B1 (en) 2012-04-03 2012-04-03 Transparent conductive graphene films modified by metal oxides

Country Status (1)

Country Link
KR (1) KR101349357B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172481B1 (en) * 2014-01-29 2020-11-02 한국과학기술원 Semiconductor having Graphene Barristor for to Tuning Work Function
CN106462281B (en) 2014-05-20 2019-11-05 工业大学合作基础汉阳大学 Graphene touch sensor, its operation method and its manufacturing method
WO2015190739A1 (en) * 2014-06-09 2015-12-17 한양대학교 산학협력단 Single crystal metal film containing hydrogen atoms or hydrogen ions and method for manufacturing same
US20200108584A1 (en) * 2018-10-04 2020-04-09 Hanwha Aerospace Co.,Ltd Graphene-based laminate, method of preparing the same, and transparent electrode and electronic device each including the graphene-based laminate
CN110167216B (en) * 2019-04-22 2021-05-28 杭州电子科技大学 Cobalt-doped manganese oxide nanoparticle-loaded graphene electric heating film and preparation method thereof
KR102308536B1 (en) 2019-11-05 2021-10-05 덕산하이메탈(주) Conductive Carbon Paste composition and Electrode using the same
KR102417812B1 (en) * 2020-08-14 2022-07-05 충남대학교산학협력단 Stretchable N-doped graphene TFT and method for preparing the same
CN112117054B (en) * 2020-08-28 2022-03-15 中国航发北京航空材料研究院 Preparation method of damp-heat resistant low-temperature reinforced transparent conductive composite film
KR20230068524A (en) 2021-11-11 2023-05-18 임재영 A Flexible Graphene Lightening Film
KR20230068523A (en) 2021-11-11 2023-05-18 임재영 A Flexible Graphene Eelectrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139236A1 (en) * 2010-05-05 2011-11-10 National University Of Singapore Hole doping of graphene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139236A1 (en) * 2010-05-05 2011-11-10 National University Of Singapore Hole doping of graphene

Also Published As

Publication number Publication date
KR20130112228A (en) 2013-10-14

Similar Documents

Publication Publication Date Title
KR101349357B1 (en) Transparent conductive graphene films modified by metal oxides
Ke et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices
Celle et al. Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: Application to transparent film heaters
Koo et al. Improvement of transparent conducting performance on oxygen-activated fluorine-doped tin oxide electrodes formed by horizontal ultrasonic spray pyrolysis deposition
KR101251020B1 (en) Method for manufacturing graphene, transparent electrode, active layer comprising thereof, display, electronic device, optoelectronic device, solar cell and dye-sensitized solar cell including the electrode or active layer
KR101335683B1 (en) One-dimensional conductive nanomaterial-based conductive films with enhanced conductivities by coating with two-dimensional nanomaterials
Geng et al. Influence of Al doping on the properties of ZnO thin films grown by atomic layer deposition
Shen et al. Preparation and properties of AZO thin films on different substrates
Murugesan et al. Properties of Al-doped zinc oxide and In-doped zinc oxide bilayer transparent conducting oxides for solar cell applications
Peng et al. Structure, binding energy and optoelectrical properties of p-type CuI thin films: The effects of thickness
SA110310637B1 (en) Large Area Deposition of Graphene Via Hetero-Epitaxial Growth, and Products Including the Same
CN108101381B (en) Bismuth-based halide perovskite nanosheet and preparation method thereof
Pan et al. Investigation of optical and electronic properties in Al–Sn co-doped ZnO thin films
Chu et al. Effect of annealing temperature and atmosphere on aluminum-doped ZnO/Au/aluminum-doped ZnO thin film properties
US10395845B2 (en) Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
Koo et al. Structural, electrical, and optical properties of Sb-doped SnO2 transparent conductive oxides fabricated using an electrospray technique
KR101296809B1 (en) Conductivity enhanced carbon nanotube films by graphene oxide nanosheets
Joo et al. BCl3/Ar plasma etching for the performance enhancement of Al-doped ZnO thin films
Huang et al. Influence of annealing temperature on formation and photoelectric properties of AZO nanosheet-coated FTO-based films
Wen et al. Room temperature deposition of very thin and flexible crystalline ITO thin film using 3-D facing-magnetron sputtering plasma source
CN104979038B (en) Topological insulator/graphene composite and flexible transparent conductive film and preparation method and application
Abideen et al. Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles
KR101264357B1 (en) Transparent conductive graphene films modified by graphene oxide nanosheets
KR20150047840A (en) Electrode element comprising control-layer of work function
Han et al. Indium-free Cu/fluorine doped ZnO composite transparent conductive electrodes with stretchable and flexible performance on poly (ethylene terephthalate) substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 7