KR101290794B1 - 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법 - Google Patents

파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법 Download PDF

Info

Publication number
KR101290794B1
KR101290794B1 KR1020120033323A KR20120033323A KR101290794B1 KR 101290794 B1 KR101290794 B1 KR 101290794B1 KR 1020120033323 A KR1020120033323 A KR 1020120033323A KR 20120033323 A KR20120033323 A KR 20120033323A KR 101290794 B1 KR101290794 B1 KR 101290794B1
Authority
KR
South Korea
Prior art keywords
pipeline
inspection
module
autonomous mobile
mobile module
Prior art date
Application number
KR1020120033323A
Other languages
English (en)
Inventor
배성준
김병수
김태훈
박진형
정희용
최용호
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to KR1020120033323A priority Critical patent/KR101290794B1/ko
Application granted granted Critical
Publication of KR101290794B1 publication Critical patent/KR101290794B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/48Means for searching for underwater objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/12Laying or reclaiming pipes on or under water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Ocean & Marine Engineering (AREA)
  • Manipulator (AREA)

Abstract

파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법이 제공된다. 본 발명의 일 실시예에 따른 파이프라인 검사용 로봇장치는, 수중에 설치된 파이프라인을 따라 이동하며 파이프라인을 검사하는 파이프라인 검사용 로봇장치로서, 파이프라인을 따라 소정 간격으로 배치된 복수의 도킹 터미널; 복수의 도킹 터미널에 안착가능하며, 파이프라인을 따라 복수의 도킹 터미널 각각으로 이동하는 자율이동모듈; 자율이동모듈에 탑재되어 복수의 도킹 터미널 각각으로 이동가능하며, 자율이동모듈이 복수의 도킹 터미널 중 어느 하나에 안착되면 자율이동모듈에서 분리되어 파이프라인을 검사하는 검사모듈; 및 자율이동모듈과 검사모듈의 작동을 제어하는 제어부를 포함한다.

Description

파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법{ROBOTIC DEVICE FOR PIPELINE INSPECTION AND METHOD OF INSPECTING PIPELINE USING THE SAME}
본 발명은 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법에 관한 것이다.
산업화에 따라 각종 자원의 사용량이 급격하게 증가하고 있는바, 그 중에서 원유나 천연가스와 같은 자원의 소비는 기하급수적으로 늘고 있다. 이에 따라 이러한 자원의 개발은 매우 중요한 문제로 대두되고 있다. 특히, 최근에는 해저 깊이 존재하는 원유나 천연가스를 시추하기 위해 각종 탐사 및 시추를 위한 장비를 탑재한 특수선박이 개발되어 해저로부터 원유나 천연가스의 생산을 위한 탐사와 시추 작업 등을 수행하고 있다.
이러한 시추를 통해 생산된 원유나 천연가스를 생산지에서 다른 곳으로 수송하고자 할 때 유체 수송을 위해 특별히 만든 파이프라인(또는 송유관)을 통해 수송할 수 있다. 이러한 파이프라인은 그 용도에 따라 원유 또는 천연가스의 하역선(荷役線), 각 갱정에서 집유(集油) 또는 집가스(集gas) 장소까지의 자분선(自噴線), 유전에서 정유소까지 수송하는 송유선, 천연가스를 소비지까지 수송하는 배급선, 석유제품의 수송배급선 등 다양하게 분류된다.
이러한 파이프라인은 유체의 누수시 거대한 환경재앙을 유발할 수 있기 때문에 정기적인 점검 및 보수가 필요하다. 그러나, 이러한 파이프라인이 육상이 아닌 해저면에 설치된 경우, 특히 사람이 접근하기 곤란한 심해저에 설치된 경우에는 파이프라인의 점검 및 보수가 용이하지 않은 경우가 많다.
종래에는 해저에 설치된 파이프라인을 점검 보수하기 위해, 해저 파이프라인에 인접하는 해상에 위치한 작업지원선과 상기 작업지원선과 케이블로 연결된 수중 로봇을 이용하여 해저 파이프라인을 점검 보수하고 있다.
그러나, 이런 방식은 풍랑이나 조류 등 해상의 외부 조건에 따라 작업지원선의 작업이 불가능한 경우가 많으며, 이로 인해 파이프라인의 검사기간이 예상보다 길어져 시간과 비용적 측면에서 불리한 점이 많다.
일본공개특허공보 특개평9-127252호
본 발명의 실시예들은 해상조건에 상관없이 해저 파이프라인을 검사할 수 있는 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법을 제공하는 것이다.
본 발명의 일 측면에 따르면, 수중에 설치된 파이프라인을 따라 이동하며 상기 파이프라인을 검사하는 파이프라인 검사용 로봇장치로서, 상기 파이프라인을 따라 소정 간격으로 배치된 복수의 도킹 터미널; 상기 복수의 도킹 터미널에 안착가능하며, 상기 파이프라인을 따라 상기 복수의 도킹 터미널 각각으로 이동하는 자율이동모듈; 상기 자율이동모듈에 탑재되어 상기 복수의 도킹 터미널 각각으로 이동가능하며, 상기 자율이동모듈이 상기 복수의 도킹 터미널 중 어느 하나에 안착되면 상기 자율이동모듈에서 분리되어 상기 파이프라인을 검사하는 검사모듈; 및 상기 자율이동모듈과 상기 검사모듈의 작동을 제어하는 제어부를 포함하는 파이프라인 검사용 로봇장치가 제공된다.
상기 복수의 도킹 터미널은 전력공급 케이블에 의해 서로 연결될 수 있으며, 상기 전력공급 케이블을 통해 전원 및 제어신호가 공급될 수 있다.
상기 자율이동모듈은 상기 복수의 도킹 터미널 각각과 음파 또는 초음파를 통해 수중무선데이터를 상호 교환할 수 있다.
상기 검사모듈은, 테더 케이블(tether cable)을 통해 상기 자율이동모듈에 연결될 수 있으며, 상기 테더 케이블을 통해 상기 자율이동모듈로부터 전원과 제어신호를 공급받을 수 있다.
본 발명의 다른 측면에 따르면, 수중에 설치된 파이프라인을 따라 이동하며 상기 파이프라인을 검사하는 파이프라인 검사용 로봇장치를 이용하여 상기 파이프라인을 검사하는 방법으로서, 상기 파이프라인을 따라 소정 간격으로 배치된 복수의 도킹 터미널 중 어느 하나에 안착된 자율이동모듈에 동작신호를 인가하여 상기 자율이동모듈을 상기 파이프라인을 따라 이동시키는 단계; 상기 자율이동모듈을 상기 복수의 도킹 터미널 중 다른 하나에 안착시키는 단계; 상기 자율이동모듈에 탑재된 검사모듈을 이용하여 상기 자율이동모듈이 안착한 도킹 터미널에 인접한 상기 파이프라인의 소정 구간을 검사하는 단계; 검사가 완료되면 상기 검사모듈을 상기 자율이동모듈로 회수하는 단계; 및 상기 자율이동모듈을 상기 복수의 도킹 터미널 중 다음 도킹 터미널로 이동시키는 단계를 포함하는 파이프라인 검사용 로봇장치를 이용한 파이프라인 검사방법이 제공된다.
상기 자율이동모듈을 상기 파이프라인을 따라 이동시키는 단계와, 상기 자율이동모듈을 안착시키는 단계와, 상기 파이프라인의 소정 구간을 검사하는 단계와, 상기 검사모듈을 상기 자율이동모듈로 회수하는 단계와, 상기 자율이동모듈을 다음 도킹 터미널로 이동시키는 단계는, 검사가 완료될 때까지 순차적으로 반복될 수 있다.
본 발명의 실시예들에 따르면, 해상조건에 상관없이 해저 파이프라인을 검사할 수 있음에 따라 검사기간의 단축 및 비용을 절감할 수 있으며, 검사장비가 해저 파이프라인에 근접하여 검사함으로써 검사장비의 조작용이성과 작업의 정밀도를 높일 수 있다.
도 1 내지 도 4는 본 발명의 일 실시예에 따른 파이프라인 검사용 로봇장치를 작동과정을 순차적으로 나타낸 사시도.
도 5는 본 발명의 일 실시예에 따른 파이프라인 검사용 로봇장치의 자율이동모듈과 검사모듈을 개략적으로 나타낸 사시도.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 본 발명에 따른 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1 내지 도 4는 본 발명의 일 실시예에 따른 파이프라인 검사용 로봇장치를 작동과정을 순차적으로 나타낸 사시도이며, 도 5는 본 발명의 일 실시예에 따른 파이프라인 검사용 로봇장치의 자율이동모듈과 검사모듈의 작동과정을 개략적으로 나타낸 사시도이다.
도 1 내지 도 5를 참조하면, 본 실시예에 따른 파이프라인 검사용 로봇장치(100)은 수중에 설치된 파이프라인(10)을 따라 이동하며 상기 파이프라인(10)을 검사하는 파이프라인 검사용 로봇장치로서, 파이프라인(10)을 따라 소정 간격으로 배치된 복수의 도킹 터미널(docking terminal, 110)과, 복수의 도킹 터미널(110) 사이를 이동하는 자율이동모듈(120)과, 자율이동모듈(120)에 탑재되어 이동하며 파이프라인(10)의 소정 검사 구역을 검사하는 검사모듈(130)과, 이러한 자율이동모듈(120)과 검사모듈(130)의 작동을 제어하는 제어부(미도시)를 포함한다.
이와 같은 본 실시예에 따르면, 해상날씨와 같은 외부조건이 나쁠 경우 검사작업을 할 수 없는 종래기술과 달리, 해상조건에 상관없이 해저 파이프라인을 상시 검사할 수 있음에 따라 검사기간의 단축 및 비용을 절감할 수 있다.
특히, 작업지원선에서 해저 파이프라인의 소정 검사 구역까지 수중 로봇을 이동시킴에 따라 이들을 연결하는 케이블이 조류와 같은 외부 환경에 따라 이동하거나 꼬이던 종래기술과 달리, 검사모듈(130)과 연결된 자율이동모듈(120)을 검사 구역에 근접시킬 수 있음에 따라(이로 인해, 테더 케이블이 꼬이는 문제를 방지함에 따라) 검사모듈(130)과 같은 검사장비의 조작성을 높일 수 있으며 이에 따라 작업의 정밀도를 높일 수 있다.
또한, 검사모듈(130)을 탑재한 자율이동모듈(120)이 해저에 상시 대기한 상태에서 이러한 검사모듈(130)과 자율이동모듈(120)이 해저에 설치된 파이프라인(10)을 따라 소정 간격으로 배치된 복수의 도킹 터미널(110)을 이동하면서 파이프라인(10)의 소정 구간별로 검사를 수행함으로써, 종래기술과 같이 해상조건의 악화로 작업지원선을 투입하지 못하여 검사작업이 취소되는 일이 없으며, 검사작업 지연이나 취소에 따른 시간적 경제적 손실을 최소화할 수 있다.
이하, 도 1 내지 도 5를 참조하여, 본 실시예에 따른 파이프라인 검사용 로봇장치(100)의 각 구성에 대하여 보다 구체적으로 설명하도록 한다.
도킹 터미널(110)은 도 1에 도시된 바와 같이 해저면에 설치된 파이프라인(10)을 따라 일정한 간격으로 복수개가 이격되어 설치될 수 있다. 이러한 복수개의 도킹 터미널(110)은 전력공급 케이블(114)에 의해 서로 전기적으로 연결될 수 있다.
이러한 전력공급 케이블(114)는 육상으로부터 전원 및 제어신호를 각각의 도킹 터미널(110)로 공급할 수 있다.
또한, 이러한 도킹 터미널(110)의 상부에는 후술할 자율이동모듈(120)이 안착될 수 있도록 도킹부가 형성될 수 있다.
본 실시예에서는, 도킹부가 자율이동모듈(120)의 하부와 도킹될 수 있는 도킹면(112) 형태로 이루어질 수 있다. 이 경우, 도킹면(112)에는 클램핑장치(미도시)가 구비될 수 있으며, 이러한 클램핑장치는 자율이동모듈(120)이 도킹면(112)에 안착될 때 자율이동모듈(120)의 하부를 도킹면(112)에 고정시킬 수 있다.
이러한 클램핑장치는 예를 들어 모터의 구동에 따라 회전축을 중심으로 회전하는 링 모양의 클램핑장치로 이루어질 수 있다. 그러나, 이러한 클램핑장치의 형태는 이에 한정되지 않으며, 자율이동모듈(120)을 도킹면(112)에 고정시킬 수 있는 다양한 형태를 포함할 수 있다.
도킹 터미널(110)은 후술할 자율이동모듈(120)을 검사하고자 하는 파이프라인(10)의 검사 구역에 안정적으로 위치시킬 수 있다. 즉, 자율이동모듈(120)이 복수의 도킹 터미널(110) 중 어느 하나의 상부에 안착되면, 도킹 터미널(110)은 자율이동모듈(120)이 이동하지 못하도록 안정적으로 지지함으로써 자율이동모듈(120)의 검사모듈(130)이 검사작업을 수행하는 동안 자율이동모듈(120)이 해저의 조류나 기타 외부 환경 등에 의해 진동하거나 다른 곳으로 움직이는 것을 방지할 수 있다.
또한, 도킹 터미널(110)은 자율이동모듈(120)의 작동과 제어를 위한 전원 및 제어신호를 전력공급 케이블(114)을 통해 육상으로부터 안정적으로 공급받을 수 있기 때문에 종래와 같은 작업지원선의 도움이 전혀 필요 없다. 특히, 종래의 경우 해상 날씨가 나빠지면 작업지원선의 해상투입이 불가능하였고 이로 인해 파이프라인의 검사기간이 예정보다 길어져 많은 시간과 비용이 소모되었다.
또한, 종래기술의 경우, 작업지원선과 검사작업을 위한 수중 로봇 간을 케이블로 연결하게 되는데, 수심이 깊으면 수심에 상응하여 길어진 케이블이 조류 등에 의해 꼬이거나 이동하는 문제로 인해, 검사장비인 수중 로봇의 조작성이 저하되며 검사작업의 정밀도도 떨어질 수 있다.
그러나, 본 실시예에 따르면, 해저에 미리 설치된 도킹 터미널(110)을 통해 자율이동모듈(120)과 검사모듈(130)의 작업을 안정적으로 지원할 수 있음으로 종래와 같은 작업지원선의 도움이 필요하지 않으며 해상날씨 등으로 인해 검사작업이 지연되는 일도 방지할 수 있다. 또한, 이러한 작업지원선을 대여할 필요도 없기 때문에 비용도 절감할 수 있다.
또한, 검사모듈(130)과 자율이동모듈(120)을 검사 구역에 근접시킬 수 있음에 따라, 이들을 연결하는 테더 케이블(132)의 길이도 짧게 유지할 수 있으며, 결국 테더 케이블(132)이 꼬이는 문제를 최소화할 수 있다. 따라서, 본 실시예에 따르면, 검사모듈(130)과 같은 검사장비의 조작성을 현저히 높일 수 있으며 이에 따라 작업의 정밀도도 향상시킬 수 있다.
한편, 자율이동모듈(120)은 이러한 도킹 터미널(110)의 도킹면(112)에 안착(도킹)할 수 있으며 파이프라인(10)을 따라 소정 간격으로 배치된 복수의 도킹 터미널(110) 각각으로 자율적으로 이동할 수 있다. 즉, 자율이동모듈(120)은 하나의 도킹 터미널(110)에서 다른 하나의 도킹 터미널(110)로 수중무선제어신호에 따라 이동할 수 있다. 이때, 수중무선제어신호는 각각의 도킹 터미널(110)에 구비된 무선송신부(116)에서 송신될 수 있다.
본 실시예에서는, 전력공급 케이블(114)을 통해 제공되는 제어신호를 각각의 도킹 터미널(110)에 구비된 무선송신부(116)를 통해 자율이동모듈(120)로 전송할 수 있다. 이 경우, 도킹 터미널(110)의 무선송신부(116)와 자율이동모듈(120)의 무선수신부(126) 간의 무선데이터 전송은 예를 들어 음파나 초음파를 이용한 수중 무선통신(underwater wireless communication) 방식이 사용될 수 있으며, 이러한 방식에 대한 상세한 설명은 여기서 생략하기로 한다.
또한, 자율이동모듈(120)은 자체적으로 물 속을 이동할 수 있도록 추진구동부(122)를 포함할 수 있다. 이러한 추진구동부(122)로는 예를 들어 아지무스 스러스터나 포드형 스러스터와 같은 추진기가 사용될 수 있다.
이러한 추진구동부(122)는 도 5에 도시된 바와 같이 자율이동모듈(120)의 양측면에 각각 한 쌍씩 구비될 수 있으며, 이러한 추진구동부(122)의 구동에 의해 자율이동모듈(120)의 상하좌우 이동 및 위치 제어를 용이하게 할 수 있다.
본 실시예에서는, 이러한 자율이동모듈(120)로서 지능형 자율무인잠수정(Autonomous Unmanned underwater Vehicle, or AUV)이 사용될 수 있다.
이러한 자율이동모듈(120)은 후술할 검사모듈(130)을 탑재할 수 있다. 이를 위해, 자율이동모듈(120)의 상부에는 검사모듈(130)이 탑재될 수 있는 검사모듈 적재공간(124)이 형성될 수 있다. 본 실시예에서는, 한 쌍의 검사모듈(130)이 검사모듈 적재공간(124)에 탑재된 것을 예를 들어 도시하고 있으나, 본 발명은 이에 한정되지 않으며, 자율이동모듈(120)에 탑재되는 검사모듈(130)의 개수와 배치 형태는 이외에도 다양한 형태로 구현될 수 있다.
검사모듈(130)은 앞서 상술한 바와 같이 각각의 도킹 터미널(110) 사이를 이동하는 자율이동모듈(120)에 탑재되어 복수의 도킹 터미널(110) 중 어느 하나에서 다른 하나로 이동 가능하다. 또한, 자율이동모듈(120)이 복수의 도킹 터미널(110) 중 어느 하나에 안착되면, 검사모듈(130)은 자율이동모듈(120)에서 분리되어 파이프라인(10)의 소정 구간을 검사할 수 있다.
이를 위해, 검사모듈(130)에는 예를 들어 영상을 촬영할 수 있는 카메라부와 카메라부의 영상을 중앙제어실로 보내는 영상전송부와 전송된 영상에 따라 원격제어되는 로봇팔 등이 구비될 수 있으며, 보수가 필요시 이를 보수할 수 있는 다양한 장비들이 구비될 수 있으며, 여기서는 그 상세한 설명을 생략하기로 한다.
이러한 검사모듈(130)은 테더 케이블(tether cable, 132)을 통해 자율이동모듈(120)에 전기적으로 연결될 수 있으며 테더 케이블(132)을 통해 자율이동모듈(120)로부터 작동에 필요한 전원과 제어신호를 공급받을 수 있다. 즉, 검사모듈(130)은 테더 케이블(132)을 통해 전력도 공급받을 수 있으며, 검사모듈(130)이 검사작업을 수행시 상황에 맞게 작동할 수 있도록 제어부(미도시)의 제어신호도 공급받을 수 있다.
이러한 검사모듈(130)로는 예를 들어 원격제어잠수정(Remotely Operated underwater Vehicle, or ROV)이 사용될 수 있다.
제어부(미도시)는 이러한 자율이동모듈(120)과 검사모듈(130)의 작동을 제어한다. 이러한 제어부는 육상의 중앙제어실에 배치될 수 있으며, 이러한 제어부로부터 인가된 동작신호가 자율이동모듈(120)과 검사모듈(130)의 작동을 제어할 수 있다. 본 실시예에서는 제어부가 중앙제어실에 배치된 중앙제어장치를 예로 들어 설명하고 있으나, 본 발명은 이에 한정되지 않으며, 이러한 제어부의 배치와 형태는 다양하게 형성될 수 있다.
이상에서는 본 발명의 일 실시예에 따른 파이프라인 검사용 로봇장치(100)에 대해 설명하였으며, 이하에서는 도 1 내지 도 4를 참조하여 전술한 파이프라인 검사용 로봇장치(100)를 이용한 파이프라인 검사방법에 대해 설명하기로 한다.
본 실시예의 경우, 파이프라인 검사용 로봇장치(100)에 대한 구성 및 작용은 전술한 실시예와 동일 또는 상응하므로 중복되는 설명은 생략하기로 한다.
본 실시예에 따른 파이프라인 검사방법은, 수중에 설치된 파이프라인(10)을 따라 이동하며 상기 파이프라인(10)을 검사하는 파이프라인 검사용 로봇장치(100)를 이용하여 상기 파이프라인(10)을 검사하는 방법으로서, 자율이동모듈(120)을 파이프라인(10)을 따라 이동시키는 단계(S10)와, 자율이동모듈(120)을 도킹 터미널(110)에 안착시키는 단계(S20)와, 검사모듈(130)을 이용하여 파이프라인(10)의 소정 구간을 검사하는 단계(S30)와, 검사모듈(130)을 자율이동모듈(120)로 다시 회수하는 단계(S40)와, 자율이동모듈(120)을 다음 도킹 터미널(110)로 이동시키는 단계(S50)를 포함한다.
먼저, 도 1 및 도 2에 도시된 바와 같이, 파이프라인(10)을 따라 소정 간격으로 배치된 복수의 도킹 터미널(110) 중 어느 하나에 안착된 자율이동모듈(120)에 동작신호를 인가하여 자율이동모듈(120)을 파이프라인(10)을 따라 이동시킬 수 있다(S10).
이러한 동작신호는 전력공급 케이블(114)를 통해 육상으로부터 각각의 도킹 터미널(110)에 구비된 무선송신부(116)로 전송될 수 있으며, 이러한 무선송신부(116)는 상기 동작신호를 자율이동모듈(120)로 송신할 수 있다. 이때, 자율이동모듈(120)는 무선수신부(126)를 통해 이러한 동작신호를 수신할 수 있다.
다음으로, 도 3에 도시된 바와 같이, 자율이동모듈(120)은 복수의 도킹 터미널(110) 중 다른 하나에 안착될 수 있다(S20).
이때, 자율이동모듈(120)의 하부는 도킹면(112)에 안착될 수 있으며, 도킹면(112)에 구비된 클램핑장치(미도시)가 자율이동모듈(120)의 하부를 도킹면(112)에 고정시킬 수 있다.
다음으로, 도 4에 도시된 바와 같이, 자율이동모듈(120)에 탑재된 검사모듈(130)을 이용하여 자율이동모듈(120)이 안착한 도킹 터미널(110)에 인접한 파이프라인(10)의 소정 구간을 검사할 수 있다(S30).
이와 같이, 자율이동모듈(120)이 복수의 도킹 터미널(110) 중 어느 하나에 안착되면, 검사모듈(130)은 도 5에 도시된 바와 같이 자율이동모듈(120)에서 분리되어 파이프라인(10)의 소정 구간을 검사할 수 있다.
다음으로, 검사모듈(130)이 파이프라인(10)의 소정 검사 구간에 대한 검사를 완료하면, 검사모듈(130)은 자율이동모듈(120)로 다시 회수될 수 있다(S40). 이 경우, 검사모듈(130)은 자율이동모듈(120)과 마찬가지로 자체적으로 추진할 수 있는 추진장치를 구비할 수 있으며, 이러한 추진장치를 이용하여 원래 위치로 복귀할 수 있다.
다음으로, 다시 도 1에 도시된 바와 같이, 검사모듈(130)을 회수한 자율이동모듈(120)은 복수의 도킹 터미널(110) 중 다음 도킹 터미널(110)로 이동할 수 있다(S50).
이러한 상술한 검사 단계들(S10 내지 S50)은, 파이프라인(10)의 검사하고자 하는 소정 검사 구간에 대한 검사가 모두 완료될 때까지 순차적으로 반복될 수 있다.
이와 같이 본 실시예에 따르면, 파이프라인(10)을 따라 소정 간격으로 배치된 다수의 도킹 터미널(110) 사이를 이동할 수 있는 자율이동모듈(120)에 검사모듈(130)을 탑재함으로써, 해상날씨와 같은 외부조건이 나쁠 경우 검사작업을 할 수 없는 종래기술과 달리, 해상조건에 상관없이 수중 속 파이프라인을 상시 검사할 수 있으며, 결과적으로 종래기술에 비해 검사기간의 단축 및 비용을 절감할 수 있다.
이상에서 본 발명의 실시예들에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
10: 파이프라인 100: 파이프라인 검사용 로봇장치
110: 도킹 터미널 112: 도킹면
114: 전력공급 케이블 116: 무선송신부
120: 자율이동모듈 122: 추진구동부
124: 검사모듈 적재공간 126: 무선수신부
130: 검사모듈 132: 테더 케이블

Claims (6)

  1. 수중에 설치된 파이프라인을 따라 이동하며 상기 파이프라인을 검사하는 파이프라인 검사용 로봇장치로서,
    상기 파이프라인을 따라 소정 간격으로 배치된 복수의 도킹 터미널;
    상기 복수의 도킹 터미널에 안착가능하며, 상기 파이프라인을 따라 상기 복수의 도킹 터미널 각각으로 이동하는 자율이동모듈;
    상기 자율이동모듈에 탑재되어 상기 복수의 도킹 터미널 각각으로 이동가능하며, 상기 자율이동모듈이 상기 복수의 도킹 터미널 중 어느 하나에 안착되면 상기 자율이동모듈에서 분리되어 상기 파이프라인을 검사하는 검사모듈; 및
    상기 자율이동모듈과 상기 검사모듈의 작동을 제어하는 제어부를 포함하는 파이프라인 검사용 로봇장치.
  2. 제1항에 있어서,
    상기 복수의 도킹 터미널은 전력공급 케이블에 의해 서로 연결되며,
    상기 전력공급 케이블을 통해 전원 및 제어신호가 공급되는 파이프라인 검사용 로봇장치.
  3. 제1항에 있어서,
    상기 자율이동모듈은 상기 복수의 도킹 터미널 각각과 음파 또는 초음파를 통해 수중무선데이터를 상호 교환하는 파이프라인 검사용 로봇장치.
  4. 제1항에 있어서,
    상기 검사모듈은 테더 케이블(tether cable)을 통해 상기 자율이동모듈에 연결되며,
    상기 테더 케이블을 통해 상기 자율이동모듈로부터 전원과 제어신호를 공급받는 파이프라인 검사용 로봇장치.
  5. 수중에 설치된 파이프라인을 따라 이동하며 상기 파이프라인을 검사하는 파이프라인 검사용 로봇장치를 이용하여 상기 파이프라인을 검사하는 방법으로서,
    상기 파이프라인을 따라 소정 간격으로 배치된 복수의 도킹 터미널 중 어느 하나에 안착된 자율이동모듈에 동작신호를 인가하여 상기 자율이동모듈을 상기 파이프라인을 따라 이동시키는 단계;
    상기 자율이동모듈을 상기 복수의 도킹 터미널 중 다른 하나에 안착시키는 단계;
    상기 자율이동모듈에 탑재된 검사모듈을 이용하여 상기 자율이동모듈이 안착한 도킹 터미널에 인접한 상기 파이프라인의 소정 구간을 검사하는 단계;
    검사가 완료되면 상기 검사모듈을 상기 자율이동모듈로 회수하는 단계; 및
    상기 자율이동모듈을 상기 복수의 도킹 터미널 중 다음 도킹 터미널로 이동시키는 단계를 포함하는 파이프라인 검사용 로봇장치를 이용한 파이프라인 검사방법.
  6. 제5항에 있어서,
    상기 자율이동모듈을 상기 파이프라인을 따라 이동시키는 단계와, 상기 자율이동모듈을 안착시키는 단계와, 상기 파이프라인의 소정 구간을 검사하는 단계와, 상기 검사모듈을 상기 자율이동모듈로 회수하는 단계와, 상기 자율이동모듈을 다음 도킹 터미널로 이동시키는 단계는, 검사가 완료될 때까지 순차적으로 반복되는 파이프라인 검사용 로봇장치를 이용한 파이프라인 검사방법.
KR1020120033323A 2012-03-30 2012-03-30 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법 KR101290794B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120033323A KR101290794B1 (ko) 2012-03-30 2012-03-30 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120033323A KR101290794B1 (ko) 2012-03-30 2012-03-30 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법

Publications (1)

Publication Number Publication Date
KR101290794B1 true KR101290794B1 (ko) 2013-07-30

Family

ID=48998230

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120033323A KR101290794B1 (ko) 2012-03-30 2012-03-30 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법

Country Status (1)

Country Link
KR (1) KR101290794B1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2572616A1 (es) * 2014-12-01 2016-06-01 Daniel MARCPHERSON SNYDER Sistema de inspección de líneas y tuberías de superficie y subacuáticas
CN107672769A (zh) * 2017-08-30 2018-02-09 国网辽宁省电力有限公司葫芦岛供电公司 海底电缆无人检修舱
US20200175667A1 (en) * 2018-12-03 2020-06-04 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
US10890505B2 (en) 2018-12-03 2021-01-12 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
US11143599B2 (en) 2018-12-03 2021-10-12 Mistras Group, Inc. Systems and methods for inspecting pipelines using a pipeline inspection robot
KR20230042943A (ko) 2021-09-23 2023-03-30 청주대학교 산학협력단 파이프 탐사 가이드 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258020A (ja) * 1993-03-02 1994-09-16 Sumitomo Electric Ind Ltd 水中ロボット
JPH09127252A (ja) * 1995-10-26 1997-05-16 Kokusai Denshin Denwa Co Ltd <Kdd> 海底ケーブル探査システム
JP2005134338A (ja) * 2003-10-31 2005-05-26 Shimizu Corp 海底観測システム
JP2011203046A (ja) * 2010-03-25 2011-10-13 Mitsui Eng & Shipbuild Co Ltd 水中検査システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258020A (ja) * 1993-03-02 1994-09-16 Sumitomo Electric Ind Ltd 水中ロボット
JPH09127252A (ja) * 1995-10-26 1997-05-16 Kokusai Denshin Denwa Co Ltd <Kdd> 海底ケーブル探査システム
JP2005134338A (ja) * 2003-10-31 2005-05-26 Shimizu Corp 海底観測システム
JP2011203046A (ja) * 2010-03-25 2011-10-13 Mitsui Eng & Shipbuild Co Ltd 水中検査システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2572616A1 (es) * 2014-12-01 2016-06-01 Daniel MARCPHERSON SNYDER Sistema de inspección de líneas y tuberías de superficie y subacuáticas
WO2016087691A1 (es) * 2014-12-01 2016-06-09 Macpherson Snyder Daniel Sistema de inspección de líneas y tuberías de superficie y subacuáticas
CN107672769A (zh) * 2017-08-30 2018-02-09 国网辽宁省电力有限公司葫芦岛供电公司 海底电缆无人检修舱
US10929968B2 (en) * 2018-12-03 2021-02-23 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
US10783623B2 (en) * 2018-12-03 2020-09-22 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
US10890505B2 (en) 2018-12-03 2021-01-12 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
US20200175667A1 (en) * 2018-12-03 2020-06-04 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
US11143599B2 (en) 2018-12-03 2021-10-12 Mistras Group, Inc. Systems and methods for inspecting pipelines using a pipeline inspection robot
US11587217B2 (en) 2018-12-03 2023-02-21 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
US11635391B2 (en) 2018-12-03 2023-04-25 Mistras Group, Inc. Systems and methods for inspecting pipelines using a pipeline inspection robot
US11887291B2 (en) 2018-12-03 2024-01-30 Mistras Group, Inc. Systems and methods for inspecting pipelines using a robotic imaging system
US11946882B2 (en) 2018-12-03 2024-04-02 Mistras Group, Inc. Systems and methods for inspecting pipelines using a pipeline inspection robot
KR20230042943A (ko) 2021-09-23 2023-03-30 청주대학교 산학협력단 파이프 탐사 가이드 장치

Similar Documents

Publication Publication Date Title
KR101290794B1 (ko) 파이프라인 검사용 로봇장치 및 이를 이용한 파이프라인 검사방법
US10124494B2 (en) Coordinated water environment mobile robots
Liljebäck et al. Eelume: A flexible and subsea resident IMR vehicle
CN109715491B (zh) 水下交通工具和检查方法
EP4005917B1 (en) Underwater mobile inspection apparatus and underwater inspection equipment
WO2009061562A8 (en) Subsea operations support system
Manley et al. Aquanaut: A new tool for subsea inspection and intervention
EP3110690A1 (en) Subsea hosting of unmanned underwater vehicles
KR20130113767A (ko) 수중 로봇 운용 장치
WO2013157977A1 (en) An underwater self-propelled robotic system
Zagatti et al. FlatFish resident AUV: leading the autonomy era for subsea oil and gas operations
KR20150052617A (ko) 파이프 라인 검사 장치
RU2468960C1 (ru) Универсальная самоходная спускаемая система обследования и ремонта объектов гидротехнической инфраструктуры
Mattioli et al. Unlocking Resident Underwater Inspection drones or AUV for subsea autonomous inspection: value creation between technical requirements and technological development
KR101422699B1 (ko) 수중 스테이션 및 수중 운동체 운용 시스템
US11292563B2 (en) Methods for subsea vehicles supervised control
Newell et al. An autonomous underwater vehicle with remote piloting using 4G technology
KR101411940B1 (ko) 수중 스테이션 및 수중 운동체 운용 방법
Kimball et al. Mooring chain climbing robot for NDT inspection applications
US20160003011A1 (en) Equipment transport assembly for drilling operations and method of transporting equipment
KR101762654B1 (ko) 무어링체인의 모니터링 로봇
Dalhatu et al. Recent developments of remotely operated vehicle in the oil and gas industry
US20170284806A1 (en) Subsea navigation systems and methods
KR101499163B1 (ko) 비파괴 검사 장치 및 그의 제어 시스템
KR20160072308A (ko) 해저 작업 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant