US20160003011A1 - Equipment transport assembly for drilling operations and method of transporting equipment - Google Patents
Equipment transport assembly for drilling operations and method of transporting equipment Download PDFInfo
- Publication number
- US20160003011A1 US20160003011A1 US14/731,512 US201514731512A US2016003011A1 US 20160003011 A1 US20160003011 A1 US 20160003011A1 US 201514731512 A US201514731512 A US 201514731512A US 2016003011 A1 US2016003011 A1 US 2016003011A1
- Authority
- US
- United States
- Prior art keywords
- drilling
- module structure
- site
- drilling operation
- underwater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 183
- 238000000034 method Methods 0.000 title claims description 18
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000012530 fluid Substances 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000000429 assembly Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/12—Underwater drilling
- E21B7/124—Underwater drilling with underwater tool drive prime mover, e.g. portable drilling rigs for use on underwater floors
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
- E21B43/013—Connecting a production flow line to an underwater well head
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B15/00—Supports for the drilling machine, e.g. derricks or masts
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B15/00—Supports for the drilling machine, e.g. derricks or masts
- E21B15/02—Supports for the drilling machine, e.g. derricks or masts specially adapted for underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/002—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0007—Equipment or details not covered by groups E21B15/00 - E21B40/00 for underwater installations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
- E21B43/0107—Connecting of flow lines to offshore structures
Definitions
- This invention relates generally to onshore or offshore drilling systems and, more particularly, to equipment transport assembly for drilling operations, as well as a method of transporting equipment with the assembly from a location to a remote drilling site.
- Drilling for hydrocarbons involves unique challenges and numerous components and sub-assemblies to effectively carry out drilling and extraction operations. While onshore and offshore drilling operations share a few common challenges, they also involve distinct issues associated with operations. In either event, inspection, assembly and testing of many components involved with the drilling process often occur on site. There are various disadvantages to performing certain tasks on site, particularly for offshore applications that are commonly subject to harsh environmental conditions. Often, operations must be interrupted during extreme weather conditions, which involve hazardous tasks and high costs.
- hydrocarbons e.g., oil and gas
- a method of transporting equipment for drilling operations includes loading at least one drilling operation component into a module structure.
- the method also includes transporting the module structure from a location to a remote drilling site.
- the method further includes detecting a size and a position of the module structure and the at least one drilling operation component with at least one laser located proximate the remote drilling site and module structure with component location.
- the method yet further includes maneuvering the at least one drilling operation component with a robot from the module structure into operative coupling with a drilling rig.
- an equipment transport assembly for drilling operations includes at least one drilling operation component. Also included is a module structure including an interior region dimensioned to receive the at least one drilling operation component therein, wherein the module structure is configured to be loaded with the at least one drilling operation component at location for transport to a remote underwater drilling site. Further included is at least one laser located proximate the underwater drilling site and configured to detect the size and position of the module structure and the at least one drilling operation component. Yet further included is a robot located at the underwater drilling site and configured to unload the at least one drilling operation component from the module structure and maneuver the at least one drilling operation component to be operatively coupled to an underwater drilling rig.
- an equipment transport assembly for drilling operations includes a plurality of drilling operation components. Also included is a module structure having a plurality of compartments, each of the plurality of compartments sized to receive one of the plurality of drilling operation components, wherein the module structure is configured to be loaded with the plurality of drilling operation components at a location for transport to a remote drilling site. Further included is at least one locking element disposed in each of the plurality of compartments to secure the plurality of drilling operation components in a fixed position within the plurality of compartments during transport from the remote location to the drilling site.
- FIG. 1 is a top plan view of an equipment transport assembly for drilling operations
- FIG. 2 is an end view of the equipment transport assembly of FIG. 1 ;
- FIG. 3 is a schematic illustration of an underwater drilling rig assembly located on a seabed
- FIG. 4 is a schematic top plan view of the underwater drilling rig assembly
- FIG. 5 is a schematic illustration of the underwater drilling rig assembly with a mast raised for drilling into the seabed;
- FIG. 6 is a schematic illustration of the equipment transport assembly of FIG. 1 used in conjunction with the underwater drilling rig assembly.
- FIG. 7 is a top plan view of the equipment transport assembly of FIG. 1 loaded onto a surface of the underwater drilling rig assembly.
- the equipment transport assembly 100 is employed to transport drilling equipment (e.g., hardware, tools, casings, etc.) in a stored arrangement from a remote location to a drilling site.
- the remote location may be any location where drilling equipment is prepared for running and drilling a well. This advantageously allows for inspection, assembly and testing onshore in a convenient location where the environment can be controlled, rather than on-site preparation, assembly and testing of numerous components, which can include challenges if the drilling site is subject to harsh environmental conditions in an onshore or offshore application. In addition to harsh environmental conditions for offshore drilling sites, challenges relating to preparing, assembling and testing on a vessel are often present.
- FIGS. 3-7 Due to unique challenges associated with offshore drilling sites, the description below is directed toward an offshore application, specifically an underwater drilling rig assembly 10 ( FIGS. 3-7 ), but it is to be understood that the equipment transport assembly 100 may be used in conjunction with any onshore drilling application and alternative offshore drilling applications.
- the equipment transport assembly 100 is configured to store, transport and deliver various equipment modules from the remote location to the drilling site.
- the equipment transport assembly 100 includes a module structure 102 having at least one, but typically a plurality of compartments 104 .
- Each of the compartments 104 is configured to receive at least one component 106 to be transported to the drilling site.
- the at least one component 106 may be numerous contemplated components, such as a drilling assembly that includes components related to specific drilling operations. For example, drilling tubular segments, drill pipes, drill bits, a subsea wellhead, casing equipment, etc., may be loaded into the compartments 104 of the module structure 102 .
- the preceding list of examples is merely illustrative and is not intended to be limiting.
- the module structure 102 includes at least one locking element to securely fix the position of the at least one component 106 stored within the compartment 104 .
- a plurality of side locking elements 108 are included to fix the position of the at least one component 106 in a first direction 110 .
- At least one top locking element 112 is included to fix the position of the at least one component 106 in a second direction 114 .
- the plurality of side locking elements 108 and/or the at least one top locking element 112 are adjustable to accommodate components of different sizes that are to be loaded into the compartments 104 of the module structure 102 .
- the compartments 104 may be defined by a plurality of panels that may be adjustable to customize the size and/or dimensions of each compartment 104 .
- the equipment transport assembly 100 is employed to deliver drilling equipment to the underwater drilling rig assembly 10 .
- the underwater drilling rig assembly 10 is depicted in a submarine environment.
- This environment which may be referred to as “undersea” or “subsea,” can be any underwater environment in which is there is a sea floor 12 and a water surface 14 .
- Such environments include freshwater seas and lakes, as well as offshore oceanic environments.
- the underwater drilling rig assembly 10 may be employed at a deepwater drilling location or in a relatively shallow body of water.
- the underwater drilling rig assembly 10 is particularly beneficial in bodies of water that are prone to ice formation therein and bodies of water that are commonly subjected to harsh environment conditions at the water surface 14 .
- the harsh environment conditions may include severe weather, including the presence of high wind, large waves, precipitation and/or bodies of ice, any of which would pose challenges to a first surface vessel 16 .
- the underwater drilling rig assembly 10 can be transported to the drilling site by towing or by transport on a lift vessel. Typically, the underwater drilling rig assembly 10 is transported in a fully assembled form; however, transport as a plurality of components with on-site assembly is contemplated. Irrespective of the form of transport, the underwater drilling rig assembly 10 is installed on the sea floor 12 and configured to carry out drilling operations on the sea floor 12 , thereby overcoming the issues associated with surface vessel or platform drilling operations in harsh environment conditions.
- the underwater drilling rig assembly 10 includes a hull 18 that is buoyant and configured to float at the water surface 14 , if desired. Ultimately, the underwater drilling rig assembly 10 is lowered from the water surface 14 in a controlled descent to a location proximate the sea floor 12 with any suitable mechanism.
- the underwater drilling rig assembly 10 includes a moonpool 19 that extends through the hull 18 and is positioned over a desired drilling location on the sea floor 12 . It is to be appreciated that all aspects of the transport, installation, and operation of the underwater drilling rig assembly 10 may be monitored with an underwater remote operated vehicle (ROV) 20 .
- the ROV 20 typically provides a video feed to a human operator that visually monitors the process.
- the underwater drilling rig assembly 10 also includes a rig assembly 22 operatively coupled to, and disposed on, the hull 18 .
- the rig assembly 22 includes a number of components and structures that are typically associated with drilling operations.
- the underwater drilling rig assembly 10 is similar to a jack-up structure, but the entire assembly is configured to be submerged and placed on the sea floor 12 , as described in detail herein.
- the hull 18 is configured to be ballasted proximate the sea floor 12 . Extending from the hull is at least one, but typically a plurality of legs 24 extending from the hull 18 toward the sea floor 12 . In one embodiment, three such legs are included to provide desired stability, but more or less are contemplated.
- the legs 24 are lowered to engage the sea floor 12 and the load of the underwater drilling rig assembly 10 is transferred to the legs 24 .
- the plurality of legs 24 bear the overall load of the underwater drilling rig assembly, specifically the hull 18 and the rig assembly 22 . This is in contrast to a wellhead supporting a drilling assembly.
- the legs 24 can be adjusted to compensate for a sea floor region that is not level. The adjustment, if needed, provides an overall leveling of the hull 18 , and therefore the underwater drilling rig assembly 10 overall.
- a plurality of spud cans 26 are installed proximate ends of the plurality of legs 24 to provide further anchoring and self-leveling of the underwater drilling rig assembly 10 , however, this may not be required in certain applications.
- the rig assembly 22 includes a mast and pipe lifting arm module 28 .
- a mast 30 of the mast and pipe lifting arm module 28 is raised from the illustrated horizontal position ( FIG. 3 ) to a substantially vertical position ( FIG. 5 ) to facilitate various lifting and drilling operations performed by the underwater drilling rig assembly 10 .
- the mast 30 is maneuverable between substantially horizontal and vertical orientations. Such a feature may be particularly beneficial in bodies of water having an ice keel that protrudes to depths of the body of water that may interfere with the underwater drilling rig assembly 10 .
- the mast 30 is simply maneuvered to a substantially horizontal position.
- a pipe handling unit 34 of the mast and pipe lifting arm module 28 is configured to be pivoted from the horizontal position ( FIG. 3 ) to facilitate maneuvering of a drill pipe (not shown) to be operatively coupled to the mast 30 .
- a drill bit assembly (not shown) is lowered into a desired position and operatively coupled to the mast 30 .
- a control unit 42 is installed at a location proximate the sea floor 12 and the rig assembly 22 .
- the control unit 42 is integrated with the rig assembly 22 on the hull 18 .
- the control unit 42 may be placed directly on the sea floor 12 .
- the control unit 42 includes a plurality of components configured to carry out various tasks associated with overall operation of the underwater drilling rig assembly 10 .
- the specific tasks are numerous and the following are merely illustrative of the contemplated tasks.
- the control unit 42 includes various lines, such as at least one return line 44 operatively coupled to the surface vessel 16 and the control unit 42 .
- the return line 44 is configured to return fluids, such as drilling fluid and waste fluid to the surface vessel 16 from the underwater drilling rig assembly 10 .
- At least one supply line 46 is operatively coupled to the surface vessel 16 , as well as one or more components of the rig assembly 22 , including the control unit 42 .
- the supply line(s) 46 comprise a flow line to provide drilling fluid and an electrical line to provide power to the underwater drilling rig assembly 10 .
- the control unit 42 includes a pump configured to direct the fluid in a desired direction.
- the control unit 42 further includes a plurality of cables (not shown) extending from the control unit 42 , each of the cables connected to components of the underwater drilling rig assembly 10 . Such a connection between the surface vessel 16 , the control unit 42 , and various components of the underwater drilling rig assembly 10 allows remote control of various functions of the underwater drilling rig assembly 10 .
- the configuration of the lines extending between the control unit 42 and the surface vessel 16 is such that the surface vessel 16 does not need to remain directly over the underwater drilling rig assembly 10 .
- a wireless connection may be present between the control unit 42 and the surface vessel 16 and/or the components of the underwater drilling rig assembly 10 .
- a wireless connection may be present between the control unit 42 and the surface vessel 16 and/or the components of the underwater drilling rig assembly 10 .
- remotely controlling the underwater drilling rig assembly 10 with the surface vessel 16 it is not necessary to have human operators in direct physical contact with the underwater drilling rig assembly 10 .
- numerous aspects of operation of the underwater drilling rig assembly 10 may be automated, as is the case with onshore drilling assemblies.
- an automated drilling mode is enabled with the underwater drilling rig assembly 10 .
- the drill bit assembly initiates drilling into the sea floor 12 .
- a casing may be installed within the hole and a blowout preventer (BOP) may be run and installed proximate a wellhead of the hole.
- BOP blowout preventer
- the equipment transport assembly 100 is illustrated in use with the underwater drilling rig assembly 10 . Illustrated are the first surface vessel 16 and a second surface vessel 17 .
- the first surface vessel 16 is used to remotely control and interact with the underwater drilling rig assembly 10 , as described in detail above.
- the second surface vessel 17 is a heavy lift vessel configured to transport the equipment transport assembly 100 . More specifically, the second surface vessel 17 is used to transport one or more module structures 102 loaded with drilling components. In addition to transporting and delivering the module structures 102 , the second surface vessel 17 may be configured to be a standby support vessel for the first surface vessel 16 .
- the second surface vessel 17 includes a moonpool (not shown) that is formed in the base of the hull to provide access to the body of water.
- the moon pool provides an entry and exit location for deployment and recovery of the module structures 102 at the drilling site.
- each module structure 102 is deployed in a controlled descent that is facilitated by one or more buoyancy modules 116 .
- the module structure 102 is rotated, as needed, to align with landing seats (not shown) on the rig.
- a top view of the underwater drilling rig assembly 10 is shown with the equipment transport assembly 10 illustrated in a position on the landing location 118 .
- size and positional data of the module structure 102 and the components 106 loaded therein is obtained with a laser configured to map the structures.
- the laser generating structure is integrated with the underwater drilling rig assembly 10 and is configured to transmit the obtained size and positional data to a robot 120 via a wired or wireless connection.
- Specific lifting and placement instructions are generated and provided to the robot 120 based on the size and positional data.
- the robot 120 then is actuated to carry out the instructions and is configured to place the equipment in various places depending on the particular component.
- the robot 120 places the component 106 in position for pick-up by the pipe handling unit 34 of the underwater drilling rig assembly 10 .
- the pipe handling unit 34 then maneuvers the component 106 as needed and as described in detail above.
- the module structure 102 is sent back to the second surface vessel 17 . In some cases, the module structure 102 may be loaded again and sent back to the second surface vessel 17 .
- the equipment transport assembly 100 further facilitates automation of the underwater drilling rig assembly 10 , thereby enabling the assembly to be remotely operated by as little as one human operator.
- the hull 18 and therefore the entire underwater drilling rig assembly 10 , rests on the sea floor 12 , thereby allowing loading of the other components to be on the base, rather than on the well itself.
- the surface vessel(s) supporting the assembly are not required to be positioned directly over the assembly and the well. This is particularly advantageous in harsh weather conditions, including those where ice formation is present at the water surface 14 of the body of water.
- Conducting the drilling operations on the sea floor 12 overcomes several obstacles with drilling in such environments. In deepwater drilling locations, the above-described embodiments obviate the need for the long length of a drilling riser that would normally extend from the first surface vessel 16 to the sea floor 12 .
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
Abstract
An equipment transport assembly for drilling operations includes at least one drilling operation component. Also included is a module structure including an interior region dimensioned to receive the at least one drilling operation component therein, wherein the module structure is configured to be loaded with the at least one drilling operation component at a location for transport to a remote underwater drilling site. Further included is at least one laser located proximate the underwater drilling site and configured to detect the size and position of the module structure and the at least one drilling operation component. Yet further included is a robot located at the underwater drilling site and configured to unload the at least one drilling operation component from the module structure and maneuver the at least one drilling operation component to be operatively coupled to an underwater drilling rig.
Description
- This application is a non-provisional application which claims benefit under 35 USC §119(e) to U.S. Provisional Applications Ser. No. 62/019,621 filed Jul. 1, 2014, entitled “EQUIPMENT TRANSPORT ASSEMBLY FOR DRILLING OPERATIONS AND METHOD OF TRANSPORTING EQUIPMENT” which is incorporated herein in their entirety.
- This invention relates generally to onshore or offshore drilling systems and, more particularly, to equipment transport assembly for drilling operations, as well as a method of transporting equipment with the assembly from a location to a remote drilling site.
- Drilling for hydrocarbons (e.g., oil and gas) involves unique challenges and numerous components and sub-assemblies to effectively carry out drilling and extraction operations. While onshore and offshore drilling operations share a few common challenges, they also involve distinct issues associated with operations. In either event, inspection, assembly and testing of many components involved with the drilling process often occur on site. There are various disadvantages to performing certain tasks on site, particularly for offshore applications that are commonly subject to harsh environmental conditions. Often, operations must be interrupted during extreme weather conditions, which involve hazardous tasks and high costs.
- In view of the foregoing challenges, efforts have been made to overcome the challenges by using a seabed rig that is partially or fully submerged. The prior efforts use large structures that are typically supported by the well and often require a surface vessel to be positioned directly over the seabed rig. Additionally, certain tasks related to inspection, assembly and testing of equipment may be difficult to perform on a vessel. Delivery of equipment to the underwater seabed rig is also challenging when conducted on a vessel.
- In one embodiment, a method of transporting equipment for drilling operations is provided. The method includes loading at least one drilling operation component into a module structure. The method also includes transporting the module structure from a location to a remote drilling site. The method further includes detecting a size and a position of the module structure and the at least one drilling operation component with at least one laser located proximate the remote drilling site and module structure with component location. The method yet further includes maneuvering the at least one drilling operation component with a robot from the module structure into operative coupling with a drilling rig.
- In another embodiment, an equipment transport assembly for drilling operations includes at least one drilling operation component. Also included is a module structure including an interior region dimensioned to receive the at least one drilling operation component therein, wherein the module structure is configured to be loaded with the at least one drilling operation component at location for transport to a remote underwater drilling site. Further included is at least one laser located proximate the underwater drilling site and configured to detect the size and position of the module structure and the at least one drilling operation component. Yet further included is a robot located at the underwater drilling site and configured to unload the at least one drilling operation component from the module structure and maneuver the at least one drilling operation component to be operatively coupled to an underwater drilling rig.
- In yet another embodiment, an equipment transport assembly for drilling operations includes a plurality of drilling operation components. Also included is a module structure having a plurality of compartments, each of the plurality of compartments sized to receive one of the plurality of drilling operation components, wherein the module structure is configured to be loaded with the plurality of drilling operation components at a location for transport to a remote drilling site. Further included is at least one locking element disposed in each of the plurality of compartments to secure the plurality of drilling operation components in a fixed position within the plurality of compartments during transport from the remote location to the drilling site.
- The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying figures by way of example and not by way of limitation, in which:
-
FIG. 1 is a top plan view of an equipment transport assembly for drilling operations; -
FIG. 2 is an end view of the equipment transport assembly ofFIG. 1 ; -
FIG. 3 is a schematic illustration of an underwater drilling rig assembly located on a seabed; -
FIG. 4 is a schematic top plan view of the underwater drilling rig assembly; -
FIG. 5 is a schematic illustration of the underwater drilling rig assembly with a mast raised for drilling into the seabed; -
FIG. 6 is a schematic illustration of the equipment transport assembly ofFIG. 1 used in conjunction with the underwater drilling rig assembly; and -
FIG. 7 is a top plan view of the equipment transport assembly ofFIG. 1 loaded onto a surface of the underwater drilling rig assembly. - Reference will now be made in detail to embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the invention, not as a limitation of the invention. It will be apparent to those skilled in the art that various modifications and variation can be made in the invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the invention cover such modifications and variations that come within the scope of the appended claims and their equivalents.
- Referring to
FIGS. 1 and 2 , anequipment transport assembly 100 is illustrated. Theequipment transport assembly 100 is employed to transport drilling equipment (e.g., hardware, tools, casings, etc.) in a stored arrangement from a remote location to a drilling site. The remote location may be any location where drilling equipment is prepared for running and drilling a well. This advantageously allows for inspection, assembly and testing onshore in a convenient location where the environment can be controlled, rather than on-site preparation, assembly and testing of numerous components, which can include challenges if the drilling site is subject to harsh environmental conditions in an onshore or offshore application. In addition to harsh environmental conditions for offshore drilling sites, challenges relating to preparing, assembling and testing on a vessel are often present. Due to unique challenges associated with offshore drilling sites, the description below is directed toward an offshore application, specifically an underwater drilling rig assembly 10 (FIGS. 3-7 ), but it is to be understood that theequipment transport assembly 100 may be used in conjunction with any onshore drilling application and alternative offshore drilling applications. - The
equipment transport assembly 100 is configured to store, transport and deliver various equipment modules from the remote location to the drilling site. Theequipment transport assembly 100 includes amodule structure 102 having at least one, but typically a plurality ofcompartments 104. Each of thecompartments 104 is configured to receive at least onecomponent 106 to be transported to the drilling site. The at least onecomponent 106 may be numerous contemplated components, such as a drilling assembly that includes components related to specific drilling operations. For example, drilling tubular segments, drill pipes, drill bits, a subsea wellhead, casing equipment, etc., may be loaded into thecompartments 104 of themodule structure 102. The preceding list of examples is merely illustrative and is not intended to be limiting. - The
module structure 102 includes at least one locking element to securely fix the position of the at least onecomponent 106 stored within thecompartment 104. In the illustrated embodiment, a plurality ofside locking elements 108 are included to fix the position of the at least onecomponent 106 in afirst direction 110. At least onetop locking element 112 is included to fix the position of the at least onecomponent 106 in asecond direction 114. In one embodiment, the plurality ofside locking elements 108 and/or the at least onetop locking element 112 are adjustable to accommodate components of different sizes that are to be loaded into thecompartments 104 of themodule structure 102. As shown, thecompartments 104 may be defined by a plurality of panels that may be adjustable to customize the size and/or dimensions of eachcompartment 104. - Referring to
FIGS. 3 and 4 , as described above, in one embodiment theequipment transport assembly 100 is employed to deliver drilling equipment to the underwaterdrilling rig assembly 10. The underwaterdrilling rig assembly 10 is depicted in a submarine environment. This environment, which may be referred to as “undersea” or “subsea,” can be any underwater environment in which is there is asea floor 12 and awater surface 14. Such environments include freshwater seas and lakes, as well as offshore oceanic environments. The underwaterdrilling rig assembly 10 may be employed at a deepwater drilling location or in a relatively shallow body of water. The underwaterdrilling rig assembly 10 is particularly beneficial in bodies of water that are prone to ice formation therein and bodies of water that are commonly subjected to harsh environment conditions at thewater surface 14. The harsh environment conditions may include severe weather, including the presence of high wind, large waves, precipitation and/or bodies of ice, any of which would pose challenges to afirst surface vessel 16. - The underwater
drilling rig assembly 10 can be transported to the drilling site by towing or by transport on a lift vessel. Typically, the underwaterdrilling rig assembly 10 is transported in a fully assembled form; however, transport as a plurality of components with on-site assembly is contemplated. Irrespective of the form of transport, the underwaterdrilling rig assembly 10 is installed on thesea floor 12 and configured to carry out drilling operations on thesea floor 12, thereby overcoming the issues associated with surface vessel or platform drilling operations in harsh environment conditions. - The following description pertains to a structure and method to transport, install, and operate the underwater
drilling rig assembly 10. The underwaterdrilling rig assembly 10 includes ahull 18 that is buoyant and configured to float at thewater surface 14, if desired. Ultimately, the underwaterdrilling rig assembly 10 is lowered from thewater surface 14 in a controlled descent to a location proximate thesea floor 12 with any suitable mechanism. The underwaterdrilling rig assembly 10 includes amoonpool 19 that extends through thehull 18 and is positioned over a desired drilling location on thesea floor 12. It is to be appreciated that all aspects of the transport, installation, and operation of the underwaterdrilling rig assembly 10 may be monitored with an underwater remote operated vehicle (ROV) 20. TheROV 20 typically provides a video feed to a human operator that visually monitors the process. - The underwater
drilling rig assembly 10 also includes arig assembly 22 operatively coupled to, and disposed on, thehull 18. Therig assembly 22 includes a number of components and structures that are typically associated with drilling operations. In one embodiment, the underwaterdrilling rig assembly 10 is similar to a jack-up structure, but the entire assembly is configured to be submerged and placed on thesea floor 12, as described in detail herein. Thehull 18 is configured to be ballasted proximate thesea floor 12. Extending from the hull is at least one, but typically a plurality oflegs 24 extending from thehull 18 toward thesea floor 12. In one embodiment, three such legs are included to provide desired stability, but more or less are contemplated. Thelegs 24 are lowered to engage thesea floor 12 and the load of the underwaterdrilling rig assembly 10 is transferred to thelegs 24. It is to be appreciated that the plurality oflegs 24 bear the overall load of the underwater drilling rig assembly, specifically thehull 18 and therig assembly 22. This is in contrast to a wellhead supporting a drilling assembly. Thelegs 24 can be adjusted to compensate for a sea floor region that is not level. The adjustment, if needed, provides an overall leveling of thehull 18, and therefore the underwaterdrilling rig assembly 10 overall. In one embodiment, a plurality ofspud cans 26 are installed proximate ends of the plurality oflegs 24 to provide further anchoring and self-leveling of the underwaterdrilling rig assembly 10, however, this may not be required in certain applications. - Referring now to
FIG. 5 , with continued reference toFIGS. 3 and 4 , therig assembly 22 includes a mast and pipe liftingarm module 28. Upon proper securement of the underwaterdrilling rig assembly 10 to thesea floor 12, amast 30 of the mast and pipe liftingarm module 28 is raised from the illustrated horizontal position (FIG. 3 ) to a substantially vertical position (FIG. 5 ) to facilitate various lifting and drilling operations performed by the underwaterdrilling rig assembly 10. As shown, themast 30 is maneuverable between substantially horizontal and vertical orientations. Such a feature may be particularly beneficial in bodies of water having an ice keel that protrudes to depths of the body of water that may interfere with the underwaterdrilling rig assembly 10. If such a condition is detected, themast 30 is simply maneuvered to a substantially horizontal position. Apipe handling unit 34 of the mast and pipe liftingarm module 28 is configured to be pivoted from the horizontal position (FIG. 3 ) to facilitate maneuvering of a drill pipe (not shown) to be operatively coupled to themast 30. A drill bit assembly (not shown) is lowered into a desired position and operatively coupled to themast 30. - A
control unit 42 is installed at a location proximate thesea floor 12 and therig assembly 22. In the illustrated embodiment, thecontrol unit 42 is integrated with therig assembly 22 on thehull 18. Alternatively, thecontrol unit 42 may be placed directly on thesea floor 12. Thecontrol unit 42 includes a plurality of components configured to carry out various tasks associated with overall operation of the underwaterdrilling rig assembly 10. The specific tasks are numerous and the following are merely illustrative of the contemplated tasks. Thecontrol unit 42 includes various lines, such as at least onereturn line 44 operatively coupled to thesurface vessel 16 and thecontrol unit 42. Thereturn line 44 is configured to return fluids, such as drilling fluid and waste fluid to thesurface vessel 16 from the underwaterdrilling rig assembly 10. Additionally, at least onesupply line 46 is operatively coupled to thesurface vessel 16, as well as one or more components of therig assembly 22, including thecontrol unit 42. The supply line(s) 46 comprise a flow line to provide drilling fluid and an electrical line to provide power to the underwaterdrilling rig assembly 10. To facilitate routing of fluid, thecontrol unit 42 includes a pump configured to direct the fluid in a desired direction. Thecontrol unit 42 further includes a plurality of cables (not shown) extending from thecontrol unit 42, each of the cables connected to components of the underwaterdrilling rig assembly 10. Such a connection between thesurface vessel 16, thecontrol unit 42, and various components of the underwaterdrilling rig assembly 10 allows remote control of various functions of the underwaterdrilling rig assembly 10. The configuration of the lines extending between thecontrol unit 42 and thesurface vessel 16 is such that thesurface vessel 16 does not need to remain directly over the underwaterdrilling rig assembly 10. By providing flexibility regarding the positioning of thesurface vessel 16, challenges associated with maintaining precise position of thesurface vessel 16 are avoided. This is particularly advantageous in severe weather environments. - In addition to a physical connection with the above-described lines and cables, a wireless connection may be present between the
control unit 42 and thesurface vessel 16 and/or the components of the underwaterdrilling rig assembly 10. By remotely controlling the underwaterdrilling rig assembly 10 with thesurface vessel 16, it is not necessary to have human operators in direct physical contact with the underwaterdrilling rig assembly 10. In addition to remote control of the assembly, numerous aspects of operation of the underwaterdrilling rig assembly 10 may be automated, as is the case with onshore drilling assemblies. In particular, an automated drilling mode is enabled with the underwaterdrilling rig assembly 10. Once the underwaterdrilling rig assembly 10 is fully installed and operational, the drill bit assembly initiates drilling into thesea floor 12. After reaching a sufficient depth with the drill bit assembly, a casing may be installed within the hole and a blowout preventer (BOP) may be run and installed proximate a wellhead of the hole. - Referring now to
FIG. 6 , theequipment transport assembly 100 is illustrated in use with the underwaterdrilling rig assembly 10. Illustrated are thefirst surface vessel 16 and asecond surface vessel 17. Thefirst surface vessel 16 is used to remotely control and interact with the underwaterdrilling rig assembly 10, as described in detail above. Thesecond surface vessel 17 is a heavy lift vessel configured to transport theequipment transport assembly 100. More specifically, thesecond surface vessel 17 is used to transport one ormore module structures 102 loaded with drilling components. In addition to transporting and delivering themodule structures 102, thesecond surface vessel 17 may be configured to be a standby support vessel for thefirst surface vessel 16. - The
second surface vessel 17 includes a moonpool (not shown) that is formed in the base of the hull to provide access to the body of water. The moon pool provides an entry and exit location for deployment and recovery of themodule structures 102 at the drilling site. As shown, eachmodule structure 102 is deployed in a controlled descent that is facilitated by one ormore buoyancy modules 116. Once themodule structure 102 has descended to a depth proximate alanding location 118 of the underwaterdrilling rig assembly 10, themodule structure 102 is rotated, as needed, to align with landing seats (not shown) on the rig. - Referring to
FIG. 7 , a top view of the underwaterdrilling rig assembly 10 is shown with theequipment transport assembly 10 illustrated in a position on thelanding location 118. Once in position, size and positional data of themodule structure 102 and thecomponents 106 loaded therein is obtained with a laser configured to map the structures. The laser generating structure is integrated with the underwaterdrilling rig assembly 10 and is configured to transmit the obtained size and positional data to arobot 120 via a wired or wireless connection. Specific lifting and placement instructions are generated and provided to therobot 120 based on the size and positional data. Therobot 120 then is actuated to carry out the instructions and is configured to place the equipment in various places depending on the particular component. Typically, therobot 120 places thecomponent 106 in position for pick-up by thepipe handling unit 34 of the underwaterdrilling rig assembly 10. Thepipe handling unit 34 then maneuvers thecomponent 106 as needed and as described in detail above. - Once all operations related to the particular module structure located on the
landing location 118 have concluded, themodule structure 102 is sent back to thesecond surface vessel 17. In some cases, themodule structure 102 may be loaded again and sent back to thesecond surface vessel 17. - Advantageously, the
equipment transport assembly 100 further facilitates automation of the underwaterdrilling rig assembly 10, thereby enabling the assembly to be remotely operated by as little as one human operator. Thehull 18, and therefore the entire underwaterdrilling rig assembly 10, rests on thesea floor 12, thereby allowing loading of the other components to be on the base, rather than on the well itself. Furthermore, based on the remote control of the underwaterdrilling rig assembly 10, the surface vessel(s) supporting the assembly are not required to be positioned directly over the assembly and the well. This is particularly advantageous in harsh weather conditions, including those where ice formation is present at thewater surface 14 of the body of water. Conducting the drilling operations on thesea floor 12 overcomes several obstacles with drilling in such environments. In deepwater drilling locations, the above-described embodiments obviate the need for the long length of a drilling riser that would normally extend from thefirst surface vessel 16 to thesea floor 12. - While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Claims (20)
1. A method of transporting equipment for drilling operations comprising:
loading at least one drilling operation component into a module structure;
transporting the module structure from a location to a remote drilling site;
detecting a size and a position of the module structure and the at least one drilling operation component with at least one laser located proximate the remote drilling site; and
maneuvering the at least one drilling operation component with a robot from the module structure into operative coupling with a drilling rig.
2. The method of claim 1 , wherein loading the at least one drilling operation component comprises loading a plurality of components into a plurality of compartments of the module structure.
3. The method of claim 1 , further comprising locking the at least one drilling operation component with a locking element to restrain movement of the at least one drilling operation component within the module structure during transport.
4. The method of claim 1 , wherein the at least one drilling operation component comprises tubular components to be used within a hole at the remote drilling site.
5. The method of claim 1 , wherein the remote drilling site is an underwater drilling rig assembly.
6. The method of claim 1 , wherein the remote drilling site is an onshore drilling site.
7. The method of claim 1 , further comprising transmitting size a positional data detected with the laser to the robot.
8. An equipment transport assembly for drilling operations comprising:
at least one drilling operation component;
a module structure including an interior region dimensioned to receive the at least one drilling operation component therein, wherein the module structure is configured to be loaded with the at least one drilling operation component at a remote location for transport to an underwater drilling site;
at least one laser located proximate the underwater drilling site and configured to detect the size and position of the module structure and the at least one drilling operation component; and
a robot located at the underwater drilling site and configured to unload the at least one drilling operation component from the module structure and maneuver the at least one drilling operation component to be operatively coupled to an underwater drilling rig.
9. The equipment transport assembly of claim 8 , wherein the at least one drilling operation component comprises a plurality of components and the module structure comprises a plurality of compartments configured to receive at least one of the plurality of components.
10. The equipment transport assembly of claim 9 , wherein the plurality of components comprises equipment to be used within a hole at the underwater drilling site.
11. The equipment transport assembly of claim 8 , further comprising at least one locking element configured to secure the at least one drilling operation component in a fixed position within the interior region of the module structure during transport from the remote location to the underwater drilling site.
12. The equipment transport assembly of claim 8 , wherein the at least one laser is in operative communication with the robot.
13. The equipment transport assembly of claim 12 , wherein the robot is configured to receive size and positional data for the module structure and the at least one drilling component.
14. An equipment transport assembly for drilling operations comprising:
a plurality of drilling operation components;
a module structure having a plurality of compartments, each of the plurality of compartments sized to receive one of the plurality of drilling operation components, wherein the module structure is configured to be loaded with the plurality of drilling operation components at a remote location for transport to a drilling site; and
at least one locking element disposed in each of the plurality of compartments to secure the plurality of drilling operation components in a fixed position within the plurality of compartments during transport from the remote location to the drilling site.
15. The equipment transport assembly of claim 14 , wherein the drilling site is an underwater drilling site comprising an underwater drilling rig.
16. The equipment transport assembly of claim 14 , wherein the drilling site is an onshore drilling site.
17. The equipment transport assembly of claim 14 , wherein the plurality of drilling operation components comprises equipment to be used within a hole at the drilling site.
18. The equipment transport assembly of claim 14 , further comprising:
at least one laser located proximate the drilling site and configured to detect the size and position of the module structure and the plurality of drilling operation components; and
a robot located at the drilling site and configured to unload the plurality of drilling operation components from the module structure and maneuver the plurality of drilling operation components to be operatively coupled to a drilling rig.
19. The equipment transport assembly of claim 18 , wherein the at least one laser is in operative communication with the robot.
20. The equipment transport assembly of claim 19 , wherein the robot is configured to receive size and positional data for the module structure and the plurality of drilling components.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/034340 WO2016003600A1 (en) | 2014-07-01 | 2015-06-05 | Equipment transport assembly for drilling operations and method of transporting equipment |
US14/731,512 US20160003011A1 (en) | 2014-07-01 | 2015-06-05 | Equipment transport assembly for drilling operations and method of transporting equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462019621P | 2014-07-01 | 2014-07-01 | |
US14/731,512 US20160003011A1 (en) | 2014-07-01 | 2015-06-05 | Equipment transport assembly for drilling operations and method of transporting equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160003011A1 true US20160003011A1 (en) | 2016-01-07 |
Family
ID=55016665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/731,512 Abandoned US20160003011A1 (en) | 2014-07-01 | 2015-06-05 | Equipment transport assembly for drilling operations and method of transporting equipment |
Country Status (2)
Country | Link |
---|---|
US (1) | US20160003011A1 (en) |
WO (1) | WO2016003600A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112621709A (en) * | 2020-11-27 | 2021-04-09 | 中石化石油机械股份有限公司研究院 | Multifunctional walking track mechanism |
US11524734B2 (en) * | 2018-09-14 | 2022-12-13 | Korea Institute Of Science And Technology | Personal modular trunk and modular trunk system employing the same |
US11530575B2 (en) * | 2015-08-31 | 2022-12-20 | Ihc Marine And Mineral Projects (Proprietary) Limited | Vibration generator for an drilling installation, underwater drilling installation and underwater drilling system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604724A (en) * | 1983-02-22 | 1986-08-05 | Gomelskoe Spetsialnoe Konstruktorsko-Tekhnologicheskoe Bjuro Seismicheskoi Tekhniki S Opytnym Proizvodstvom | Automated apparatus for handling elongated well elements such as pipes |
US20080035327A1 (en) * | 2006-08-10 | 2008-02-14 | Subsea 7 Limited | Method and frame |
US20130340355A1 (en) * | 2012-06-21 | 2013-12-26 | Complete Production Services, Inc. | Mast and guy wire systems for use with long lateral completion systems and method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2610400B1 (en) * | 1987-02-04 | 1989-04-28 | Paramythioti Michel | THREE-DIMENSIONAL LIFTING METHOD AND DEVICE |
CA2067697C (en) * | 1992-04-30 | 2005-12-20 | Ronald S. Sorokan | Tubular handling system |
KR100199476B1 (en) * | 1996-12-07 | 1999-06-15 | 윤종용 | Method and device for measuring the size of paper |
-
2015
- 2015-06-05 US US14/731,512 patent/US20160003011A1/en not_active Abandoned
- 2015-06-05 WO PCT/US2015/034340 patent/WO2016003600A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604724A (en) * | 1983-02-22 | 1986-08-05 | Gomelskoe Spetsialnoe Konstruktorsko-Tekhnologicheskoe Bjuro Seismicheskoi Tekhniki S Opytnym Proizvodstvom | Automated apparatus for handling elongated well elements such as pipes |
US20080035327A1 (en) * | 2006-08-10 | 2008-02-14 | Subsea 7 Limited | Method and frame |
US20130340355A1 (en) * | 2012-06-21 | 2013-12-26 | Complete Production Services, Inc. | Mast and guy wire systems for use with long lateral completion systems and method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11530575B2 (en) * | 2015-08-31 | 2022-12-20 | Ihc Marine And Mineral Projects (Proprietary) Limited | Vibration generator for an drilling installation, underwater drilling installation and underwater drilling system |
US11524734B2 (en) * | 2018-09-14 | 2022-12-13 | Korea Institute Of Science And Technology | Personal modular trunk and modular trunk system employing the same |
CN112621709A (en) * | 2020-11-27 | 2021-04-09 | 中石化石油机械股份有限公司研究院 | Multifunctional walking track mechanism |
Also Published As
Publication number | Publication date |
---|---|
WO2016003600A1 (en) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9254894B2 (en) | Flotable subsea platform (FSP) | |
US6148759A (en) | Remote ROV launch and recovery apparatus | |
US10766577B2 (en) | System and method of operating a subsea module | |
US6364021B1 (en) | Well management system and method of operation | |
CN101939215B (en) | Docking and drilling stations for running self-standing risers | |
US9725138B2 (en) | Offset installation systems | |
US20180252065A1 (en) | Wireless control system for subsea devices | |
CN102562009B (en) | Efficient open water riser deployment | |
US20150197989A1 (en) | Underwater drilling rig assembly and method of operating the underwater drilling rig assembly | |
US20160003011A1 (en) | Equipment transport assembly for drilling operations and method of transporting equipment | |
AU2011215983B2 (en) | Rigless intervention | |
KR20150004571A (en) | BOP Test Apparatus and Method | |
KR20150097964A (en) | Test Apparatus and Method for Drilling Equipment | |
KR101652105B1 (en) | Installation of bend stiffener connector unit underwater chain stopper | |
KR20150000167A (en) | BOP Test Apparatus and Method | |
KR20140129588A (en) | Test Apparatus and Method for Drilling Equipment | |
KR101686231B1 (en) | Method for mounting sub-structure of drillship | |
KR20140122163A (en) | Test Apparatus and Method for Drilling Equipment | |
KR20150000168A (en) | BOP Test Apparatus and Method | |
KR20140129586A (en) | Test Apparatus and Method for Drilling Equipment | |
KR20150108549A (en) | Test Apparatus and Method for Drilling Equipment | |
KR20130059952A (en) | Lifting type hydrophone apparatus for drillship | |
KR20150108548A (en) | Supply Barge for Installing BOP Test Apparatus | |
Carter et al. | Intervention For Maintenance | |
KR20160032903A (en) | Conductor pipe laying apparatus and method for seabe drilling pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CONOCOPHILLIPS COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHAFER, RANDALL SCOTT;REEL/FRAME:035792/0605 Effective date: 20150604 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |