KR101277676B1 - A manufacturing method of ruthenium oxide used ultrasonic and direct reduction - Google Patents

A manufacturing method of ruthenium oxide used ultrasonic and direct reduction Download PDF

Info

Publication number
KR101277676B1
KR101277676B1 KR1020090025687A KR20090025687A KR101277676B1 KR 101277676 B1 KR101277676 B1 KR 101277676B1 KR 1020090025687 A KR1020090025687 A KR 1020090025687A KR 20090025687 A KR20090025687 A KR 20090025687A KR 101277676 B1 KR101277676 B1 KR 101277676B1
Authority
KR
South Korea
Prior art keywords
ruthenium
ruthenium oxide
solution
present
manufacturing
Prior art date
Application number
KR1020090025687A
Other languages
Korean (ko)
Other versions
KR20100107565A (en
Inventor
안우성
임선권
양승호
윤원규
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Priority to KR1020090025687A priority Critical patent/KR101277676B1/en
Publication of KR20100107565A publication Critical patent/KR20100107565A/en
Application granted granted Critical
Publication of KR101277676B1 publication Critical patent/KR101277676B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 금속산화물 및 착체 등으로서 우수한 촉매활성 작용을 나타내는 합성반응 촉매로 사용되고, 저항 재료, 각종 센서재료, 캐패시터 전극재료 및 전자파 차폐재료 등에 유효한 것으로 자동차나 전자부품 분야에서 주목받고 있으며, 또한 최근 환경적인 측면이 이슈화 되면서 폐수 처리를 위한 전극 재료의 사용이 증가되고 있는 이산화루테늄(RuO2)의 제조 방법에 관한 것으로, 특히 고온 400℃ 이상에서 소성하여 제조함으로서 입자제어의 어려움을 알코올류의 환원에 의해 손쉽게 제어가 가능하게 하고, 대량생산에 적합한 제조방법에 관한 것이다. 본 발명은 출발 재료로써 금속루테늄을 이용하고 루테늄 화합물 제조시 생성되는 불순물의 제어를 이용한 증류 단계와, 초음파를 통한 입자제어단계, 4가 루테늄 화합물로의 환원단계를 포함하는 제조방법을 제공한다.The present invention has been attracting attention in the field of automobiles and electronic components, which is used as a synthetic reaction catalyst having excellent catalytic activity as metal oxides and complexes, and is effective in resistance materials, various sensor materials, capacitor electrode materials and electromagnetic shielding materials. As environmental issues are raised, the use of electrode materials for the treatment of wastewater is increasing. The present invention relates to a method for producing ruthenium dioxide (RuO 2 ). The present invention relates to a manufacturing method that can be easily controlled by the present invention and is suitable for mass production. The present invention uses a metal ruthenium as a starting material and provides a manufacturing method comprising a distillation step using a control of impurities generated during the preparation of a ruthenium compound, a particle control step through ultrasonic waves, and a reduction to a tetravalent ruthenium compound.

산화루테늄, 이산화루테늄, 금속루테늄, 초음파, 직접환원    Ruthenium oxide, ruthenium dioxide, metal ruthenium, ultrasonic wave, direct reduction

Description

초음파 및 직접환원을 이용한 고순도 산화루테늄의 제조 방법 {A manufacturing method of ruthenium oxide used ultrasonic and direct reduction}A manufacturing method of ruthenium oxide used ultrasonic and direct reduction}

본 발명은 이산화루테늄(RuO2)의 제조 방법에 관한 것으로, 특히 고온 400℃이상에서 소성하여 제조함으로서 입자제어의 어려움을 알코올류의 환원에 의해 손쉽게 제어가 가능하게 하고, 대량생산에 적합한 제조방법에 관한 것이다.The present invention relates to a manufacturing method of ruthenium dioxide (RuO 2 ), in particular by making it manufactured by firing at a high temperature of 400 ℃ or more to make it easy to control the difficulty of particle control by the reduction of alcohols, manufacturing method suitable for mass production It is about.

종래 이산화루테늄(RuO2)을 제조하기 위해서는 염화루테늄(RuCl3 xH2O)수용액을 출발물질로, 이것을 암모니아수로 중화하고, 수산화루테늄의 미립자를 형성한 뒤 얻어진 미립자를 세척, 건조하여 이산화루테늄(RuO2)분말을 얻고 있었다. (JP 1990-88432)In order to prepare ruthenium dioxide (RuO 2 ), a solution of ruthenium chloride (RuCl 3 xH 2 O) as a starting material, neutralized it with ammonia water, the fine particles of ruthenium hydroxide were formed, and the obtained fine particles were washed and dried to obtain ruthenium dioxide ( RuO 2 ) was getting powder. (JP 1990-88432)

또, 열분해에 의한 방법으로서 염화루테늄 수용액에 질산을 더하고 증발 건고 시키고, 이것을 350℃ ~ 370℃에서 열분해 한 후 500℃~550℃로 유지하여 이산화루테늄 분말을 얻는 방법이 있었다.(G. C. Bond. etal Proc. Chem. Soc. 1964, 398)      As a method of pyrolysis, nitric acid was added to an aqueous ruthenium chloride solution and evaporated to dryness, and then pyrolyzed at 350 ° C to 370 ° C, and then maintained at 500 ° C to 550 ° C to obtain ruthenium dioxide powder. (GC Bond. Etal Proc. Chem. Soc. 1964, 398)

또한, K2RuO4용액을 출발 물질로 메탄올로 환원하여 수산화루테늄을 얻고, 얻어진 수산화루테늄을 수세하여 불순물을 제거하고, 600℃로 열분해 후 이산화루테늄을 얻는 방법 (JP 59-50032), K2RuO4용액에 메탄올로 환원 후 수산화루테늄을 얻고, 얻어진 수산화루테늄에 K, Na이온을 첨가한 후 800℃소성 후 이산화루테늄을 얻는 방법(JP1996-268722), 헥사클로로루테늄산칼륨(K2RuCl6), 펜타클로로루테늄산칼륨(K4Ru2OCl10H2O), 펜타클로로루테늄산칼륨(K2RuCl5)로부터 800℃에 소성하여 이산화루테늄을 얻는 방법이 있었다(JP 2007-302497). 종래의 방법들은 출발물질의 변화를 통해 이산화루테늄의 합성이 용이함을 설명하고 있으나 수율에 대한 점은 기술하지 않고 있다. 이는 이산화루테늄 형성 과정 중 열에 의해 사산화루테늄 (RuO4) 의 휘발에 의한 것으로 조절이 어렵다. 또한, 불순물의 제거(K, Na)를 위해 수산화루테늄 형성 후 세척을 하는데 이는 미세분말의 세척으로 수율 저하와 불순물 제거의 어려움이 있다. 아울러, 불순물 제거 후 고온 소성을 통하여 이산화루테늄을 얻어 입자의 응집제어가 어려운 문제점이 있다. Further, a method of reducing K 2 RuO 4 solution to methanol as a starting material to obtain ruthenium hydroxide, washing the obtained ruthenium hydroxide to remove impurities, and pyrolyzing at 600 ° C. to obtain ruthenium dioxide (JP 59-50032), K 2 RuO 4 solution and then reduced with methanol to obtain ruthenium hydroxide, obtaining the ruthenium dioxide after 800 ℃ calcination followed by the addition of K, Na ions in the obtained ruthenium hydroxide (JP1996-268722), hexachloro-ruthenate and potassium (K 2 RuCl 6 ), And a method of obtaining ruthenium dioxide by firing at 800 ° C. from potassium pentachlororuthenate (K 4 Ru 2 OCl 10 H 2 O) and potassium pentachlororuthenate (K 2 RuCl 5 ) (JP 2007-302497). Conventional methods describe the easy synthesis of ruthenium dioxide through changes in starting materials, but do not describe yield. This is due to the volatilization of ruthenium tetraoxide (RuO 4 ) by heat during the ruthenium dioxide formation process is difficult to control. In addition, to remove impurities (K, Na) is washed after the formation of ruthenium hydroxide, which is difficult to remove the impurities and yields due to the washing of the fine powder. In addition, there is a problem that it is difficult to control the aggregation of the particles to obtain ruthenium dioxide through high-temperature firing after the removal of impurities.

본 발명은 상기의 문제점에 착안하여 이루어진 것으로, 반응 용액의 온도, 농도 및 염기 투입속도, pH, 알코올의 양, Ultra-sonic 등을 종합적으로 제어하면, 고순도의 미세 이산화루테늄 분말을 높은 수율로 대량 제조할 수 있음을 수많은 실험 및 예의 검토를 통하여 발견하여 본 발명에 이르게 되었다.        SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and when the temperature, concentration and base loading rate of the reaction solution, pH, amount of alcohol, Ultra-sonic, etc. are comprehensively controlled, high purity fine ruthenium dioxide powder can be massed in high yield. It has been found through a number of experiments and examples that it can be produced to reach the present invention.

고순도의 이산화루테늄을 대량 제조하기 위해서는 기존의 세척공정을 제거하 는 방법과 미세분말을 얻기 위한 보다 편리하고 빠른 제조방법을 필요로 한다. 따라서, 기존의 세척 공정을 직접적으로 산화시켜 alcohol과의 반응을 이용하여 증류를 하는 방법으로 변경하였고, 미세 이산화루테늄을 제조하기 위해 필요한 K, Na이온을 첨가하는 방법을 Ultra-sonic을 이용함으로써 첨가 원소로 인한 불순물의 오염을 막을 수 있었으며, 세척공정 또한 제거할 수 있었다. 또한, 고온이 아닌 저온에서 이산화루테늄을 제조할 수 있었다.       Mass production of high purity ruthenium dioxide requires a method of removing the existing washing process and a more convenient and faster manufacturing method to obtain fine powder. Therefore, the existing washing process was directly oxidized and distilled using the reaction with alcohol, and the method of adding K and Na ions needed to prepare fine ruthenium dioxide was added by using Ultra-sonic. Contamination of impurities by elements could be prevented, and the washing process could also be removed. In addition, it was possible to produce ruthenium dioxide at a low temperature rather than a high temperature.

따라서, 본 발명의 고순도, 미세 이산화루테늄분말의 제조 방법은, 질산루테늄을 이용하여 소성을 통해 산화시켜 제조하는 특허 JP1996-3207070호와 핵사클로로루테늄산 칼륨을 이용하여 소성을 통해 산화시켜 제조하는 특허 JP2007-302497호와 사산화루테늄칼륨을 이용하여 메탄올에서 환원 후 수산화루테늄을 세척을 통하여 불순물을 제거하고 소성하여 제조하는 특허 JP1996-268722호와 비교할 때, 직접적으로 오존가스를 이용하여 alcohol과의 직접반응을 통해 순도를 조절하며, 세척공정을 제거하고, Ultra-sonic을 이용하여 분산성을 높였음으로서 짧은 반응시간 동안 적은 비용으로 합성할 수 있다. 즉, 대량생산에 적합하다는 장점을 가지고 있다.      Therefore, the method for producing a high purity, fine ruthenium dioxide powder of the present invention, the patent is prepared by oxidizing through the firing using the patent JP1996-3207070 prepared by oxidizing through the firing using ruthenium nitrate and potassium nucleochloro ruthenate. Compared with JP2007-302497 and patent JP1996-268722, which is made by removing rubbing and rubbing of ruthenium hydroxide after reducing it in methanol using ruthenium potassium tetrachloride and directly by using ozone gas, The reaction can be synthesized at low cost for short reaction time by controlling the purity, eliminating the washing process, and increasing the dispersibility using Ultra-sonic. That is, it has the advantage of being suitable for mass production.

이하 본 발명을 보다 상세하게 설명하면 다음과 같다.      Hereinafter, the present invention will be described in more detail.

상기 기술적 과제를 달성하기 위하여 본 발명은, 금속 루테늄 전구체를 이용하여 차아염소산나트륨에 의해 루테늄 산화물을 형성한 후 이를 정제시키기 위해 사용된 증류 단계를 포함하고, 알코올 용매를 사용하여 이산화루테늄을 합성하고, 진공건조기를 이용하여 알코올 용매를 제거하여 이산화루테늄분말을 제조하는 방법을 포함한다.     In order to achieve the above technical problem, the present invention comprises a distillation step used to form a ruthenium oxide by sodium hypochlorite using a metal ruthenium precursor and then to purify it, synthesizing ruthenium dioxide using an alcohol solvent and And removing the alcohol solvent using a vacuum dryer to prepare a ruthenium dioxide powder.

먼저 금속 루테늄에 pH 조절을 위해 0.2 ~ 10M인 가성소다 및 수산화칼륨 용액(제 1용액)을 첨가하는 단계를 포함한다. 다음으로 상기 제 1용액에 차아염소산나트륨을 금속루테늄의 100~600%의 양으로 0.2~1g/sec의 속도로 첨가하여 반응온도를 0~25℃로 유지하는 단계(반응온도가 0℃이하면 완전용해가 되지 않으며, 25℃이상이면 사산화루테늄이 생성되어 loss가 발생한다)를 포함한다.       First, a caustic soda and potassium hydroxide solution (first solution) of 0.2 to 10 M is added to the metal ruthenium for pH control. Next, sodium hypochlorite is added to the first solution in an amount of 100 to 600% of the metal ruthenium at a rate of 0.2 to 1 g / sec to maintain the reaction temperature at 0 to 25 ° C (when the reaction temperature is 0 ° C or less). It is not completely dissolved, and if it is 25 ° C. or higher, ruthenium tetraoxide is generated.

상기 제 2용액에 1~5L/min 오존과 1~5L/min질산 gas를 20~100ml을 첨가하여 사산화루테늄으로 산화시키는 단계(단, 반응온도는 50~90℃ 유지해야 한다)를 포함한다. 이때, 오존에 의한 산화 및 반응온도를 통해 사산화루테늄의 발생을 최대화 하는 것이 바람직하다.      20 to 100 ml of 1-5 L / min ozone and 1-5 L / min nitric acid gas are added to the second solution to oxidize ruthenium tetraoxide (but the reaction temperature must be maintained at 50-90 ° C.). . At this time, it is desirable to maximize the generation of ruthenium tetraoxide through the oxidation and reaction temperature by ozone.

다음으로 상기에서 생성되어지는 사산화루테늄을 알코올 용매(methanol, ethanol, propanol, iso-propanol, buthanol, pentanol, hexanol, hepthanol 등)를 사용하여 이산화루테늄으로 환원하는 것이 바람직하다. 이때, 반응의 촉매 역활 및 분산성을 높이기 위한 Ultra-sonic을 이용하는데 50~100ft/s를 유지해야 바람직 하다(50ft/s이하는 분산성에 효과가 없으며, 100ft/s이상은 고온이 발생하여 응집이 발생한다).    Next, the ruthenium tetraoxide produced above is preferably reduced to ruthenium dioxide using an alcohol solvent (methanol, ethanol, propanol, iso-propanol, buthanol, pentanol, hexanol, hepthanol, etc.). At this time, it is preferable to maintain 50 to 100 ft / s to use Ultra-sonic to increase the catalytic role and dispersibility of the reaction (less than 50ft / s has no effect on the dispersibility, more than 100ft / s agglomerates due to high temperature) This happens).

또한, 상기 이산화루테늄 용액을 필터로 알코올을 제거하고 남은 이산화루테늄분말을 진공건조기에 50~150℃에서 건조하는 단계(건조 온도가 50℃이하에서는 건조시간이 오래걸리며, 건조 온도가 150℃이상의 경우는 이산화루테늄이 응집되어 진다)를 포함한다.       In addition, the step of drying the remaining ruthenium dioxide powder from the ruthenium dioxide solution filter and the remaining ruthenium dioxide powder in a vacuum dryer at 50 ~ 150 ℃ (drying temperature is longer than 50 ℃ takes a long time, when the drying temperature is 150 ℃ or more Ruthenium dioxide is aggregated).

본 발명에 따르면 반응수율이 높으며, 반응 시간이 짧고, 순도가 우수한 산화루테늄을 대량생산할 수 있는 효과가 있다.       According to the present invention, the reaction yield is high, the reaction time is short, and there is an effect of mass production of ruthenium oxide having excellent purity.

이하에서는 본 발명을 보다 구체적으로 설명하기로 한다.      Hereinafter, the present invention will be described in more detail.

본 발명에 따른 고순도의 염화루테늄을 제조방법에서는, 대량합성을 위하여       In the method for producing high purity ruthenium chloride according to the present invention, for mass synthesis

전구체를 금속루테늄을 사용하였으며, 반응의 농도 및 온도 제어를 통해 loss를 최소화 하여 완전용해를 시켜야 한다. 용해된 액을 오존과 질소의 혼합가스의 반응을 통하여 사산화루테늄으로 산화시킨다. 이때 반응성을 높이기 위해 온도를 50~90℃로 승온한다. 이는 생성되어지는 사산화루테늄의 끓는점이 40℃이기 때문에 승온을 통하여 생성되어지는 사산화루테늄을 기화시킴으로서 반응 수율을 높일 수 있다.Precursor was used as metal ruthenium and must be completely dissolved by minimizing loss through control of reaction concentration and temperature. The dissolved liquid is oxidized to ruthenium tetraoxide through the reaction of a mixed gas of ozone and nitrogen. At this time, the temperature is raised to 50 ~ 90 ℃ to increase the reactivity. Since the boiling point of the ruthenium tetraoxide to be produced is 40 ℃, the reaction yield can be increased by vaporizing the ruthenium tetraoxide produced through the elevated temperature.

상기 기화된 사산화루테늄을 알코올 용매(methanol, ethanol, propanol, iso-propanol, buthanol, pentanol, hexanol, hepthanol 등)에 반응시켜 이산화루테늄을 제조한다. 이때 기상과 액상의 반응이므로 ultra-sonic을 이용하여 기상의 표면적을 넓게 해줌으로써 반응성을 높일 수 있다. 또한, 생성되어진 이산화루테늄의 응집이 제어 가능한 방법이다. 또한, 상기 용액을 여과 후에 이산화루테늄 분말을 진공건조하여 짧은 시간에 많은 양을 처리하는 것을 특징으로 하는 방법이다.      The vaporized ruthenium tetraoxide is reacted with an alcohol solvent (methanol, ethanol, propanol, iso-propanol, buthanol, pentanol, hexanol, hepthanol, etc.) to prepare ruthenium dioxide. In this case, since the reaction between the gas phase and the liquid phase, the surface area of the gas phase can be increased by using ultra-sonic to increase the reactivity. In addition, the aggregation of the produced ruthenium dioxide is a controllable method. In addition, the method is characterized in that the ruthenium dioxide powder is vacuum dried after filtration of the solution to treat a large amount in a short time.

본 발명의 제조 방법을 공정 예로 도 1에 나타내었다.      The manufacturing method of the present invention is shown in FIG. 1 as a process example.

도 1은 본 발명에 따른 이산화루테늄의 제조공정의 흐름도를 나타낸다. 도 1을 참조하면서 제조 방법을 설명한다. 먼저 금속루테늄을 원료로 사용하여 염화루테늄을 제조하는 것을 특징으로 한다. 이에 제 1용액 (가성소다 또는 수산화칼륨을 0.2~10M을 용해)을 제조하여(S1) 금속 루테늄을 투입시키고(S2), 차아염소산 나트륨을 1초당 0.2~1g의 속도로 제 1용액에 가하여 sodium(or potassium) ruthenate를 제조하여 완전 용해시킨다.(S3) 상기 용액의 반응온도를 0~25℃로 유지 되도록 적절히 조절하는 것을 특징으로 한다. 1~7시간 숙성시킨 후 반응 용액을 산화 시킨다.(S4)     1 shows a flowchart of a manufacturing process of ruthenium dioxide according to the present invention. A manufacturing method is demonstrated with reference to FIG. First, ruthenium chloride is prepared by using metal ruthenium as a raw material. A first solution (caustic soda or potassium hydroxide dissolved 0.2-10M) was prepared (S1) and metal ruthenium was added (S2), and sodium hypochlorite was added to the first solution at a rate of 0.2-1 g per second to sodium (or potassium) ruthenate is prepared and completely dissolved. (S3) The reaction temperature of the solution is characterized in that it is properly adjusted to be maintained at 0 ~ 25 ℃. After aging for 1 to 7 hours, the reaction solution is oxidized. (S4)

이때 사용되는 산화제는 오존과 질소의 혼합가스를 사용하는 것이 바람직하다. 이후 생성된 사산화루테늄을 알코올 용매(methanol, ethanol, propanol, iso-propanol, buthanol, pentanol, hexanol, hepthanol 등)와 반응시켜 이산화루테늄용액을 만들어 낸다. 이때 ultra-sonic을 가하여 반응성을 높여 주고, 생성되어지는 분말의 입도를 제어하는 것을 특징으로 한다. 용액 제거 후 이산화루테늄분말을 50~150℃로 진공 건조한다.(S7)      At this time, it is preferable to use an oxidant gas mixture of ozone and nitrogen. The ruthenium tetraoxide is then reacted with an alcohol solvent (methanol, ethanol, propanol, iso-propanol, buthanol, pentanol, hexanol, hepthanol, etc.) to produce a ruthenium dioxide solution. At this time, by adding ultra-sonic to increase the reactivity, it is characterized by controlling the particle size of the powder produced. After the solution is removed, the ruthenium dioxide powder is vacuum dried at 50 to 150 ° C. (S7)

이하 본 발명의 실시 예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시 예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시 예에 의해 한정되는 것은 아니다.      Hereinafter, the embodiment of the present invention will be described in more detail. However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.

[실시예 1]Example 1

먼저 2ℓ반응용기에 용매인 물 40㎖에 가성소다(또는 수산화칼륨) 17g을 (98%, 알드리치사) 용해 시킨 후 금속 루테늄 20g을 넣는다. 상기 용액의 온도를 20℃로 유지 시키고, 차아염소산 나트륨 용액 268g을 4.2㎖/min의 속도로 넣고 교반 하여 상기 금속 루테늄을 용해 시켰다. 루테늄염 상태인 이 용액을 2시간 동안 시효하였다.First, dissolve 17 g of caustic soda (or potassium hydroxide) (98%, Aldrich) in 40 ml of water in a 2 L reaction vessel and add 20 g of metal ruthenium. The temperature of the solution was maintained at 20 ° C, 268 g of sodium hypochlorite solution was added at a rate of 4.2 ml / min, and stirred to dissolve the metal ruthenium. This solution in ruthenium salt was aged for 2 hours.

시효 후 이 용액에 산화제로서 2L/min의 오존과 질소가스를 투입 한 후, 온도를 80℃로 하여 2시간 동안 시효하였다. 상기 산화한 사산화루테늄 가스를 에탄올과 반응시켰다. 이때 ultra-sonic을 80ft/s로 가하여 이산화루테늄을 분산 하였다. 상기 슬러리액을 여과한 후 상부 분말을 80℃로 진공건조하여 이산화루테늄을 26g을 얻었다.      After aging, 2 L / min ozone and nitrogen gas were added to the solution as an oxidizing agent, and then aged at 80 ° C. for 2 hours. The oxidized ruthenium tetraoxide gas was reacted with ethanol. At this time, ultra-sonic was added at 80ft / s to disperse ruthenium dioxide. After filtering the slurry solution, the upper powder was vacuum dried at 80 deg. C to obtain 26 g of ruthenium dioxide.

[실시예 2][Example 2]

10ℓ비이커에 용매인 물 200㎖에 가성소다(또는 수산화칼륨) 85g을 (98%, 알드리치사) 용해 시킨 후 금속루테늄 100g을 넣는다. 상기 용액의 온도를 20℃로 유지시키고, 차아염소산 나트륨 용액 1340g을 4.2㎖/min의 속도로 넣고 교반하여 상기 금속 루테늄을 용해 시켰다. 루테늄염 상태인 이 용액을 2시간 동안 시효 하였다. 시효 후 이 용액에 산화제로서 2L/min의 오존과 질소가스를 투입한 후, 온도를 80℃로 하여 2시간 동안 시효하였다. 상기 산화한 사산화루테늄 가스를 에탄올과 반응시켰다. 이때 ultra-sonic을 80ft/s로 가하여 이산화루테늄을 분산하였다. 상기 슬러리액을 여과한 후 상부 분말을 80℃로 진공건조 하여 이 산화루테늄을 130g을 얻었다.      Dissolve 85 g (98%, Aldrich) of caustic soda (or potassium hydroxide) in 200 ml of water in a 10 L beaker and add 100 g of metal ruthenium. The temperature of the solution was maintained at 20 ° C., 1340 g of sodium hypochlorite solution was added at a rate of 4.2 ml / min, and stirred to dissolve the metal ruthenium. This solution in ruthenium salt state was aged for 2 hours. After aging, 2L / min ozone and nitrogen gas were added to the solution as an oxidizing agent, and then aged at 80 ° C for 2 hours. The oxidized ruthenium tetraoxide gas was reacted with ethanol. At this time, ultra-sonic was added at 80 ft / s to disperse ruthenium dioxide. After filtering the slurry liquid, the upper powder was vacuum dried at 80 deg. C to obtain 130 g of this ruthenium oxide.

[비교예 1]Comparative Example 1

K2RuO4용액을 메탄올로 환원하고 환원된 산화루테늄 수화물을 여과,세척하여 불순물을 제거한 뒤, 600℃로 2시간 소성하여 이산화루테늄분말을 얻었다.The K 2 RuO 4 solution was reduced with methanol, the reduced ruthenium oxide hydrate was filtered and washed to remove impurities, and then calcined at 600 ° C. for 2 hours to obtain a ruthenium dioxide powder.

[비교예 2]Comparative Example 2

헥사 클로로 루테늄산 칼륨(K2RuCl6)과 펜타 클로로 루테늄산 칼륨(K4Ru2OCl10H2O)의 혼합물인 루테늄의 농도가 17wt%의 염화루테늄산 칼륨(Aldrich)을 출발원료로서 이용했다.Potassium ruthenate chloride (Aldrich) with a concentration of 17 wt% of ruthenium, a mixture of potassium hexachlorothenate (K 2 RuCl 6 ) and pentachloro ruthenate (K 4 Ru 2 OCl 10 H 2 O), was used as a starting material. did.

상기 염화루테늄산 칼륨 10g을 알루미나 용기에 넣고 관상로에서 소성하였다. 이 소성 조건은 소성온도가 800℃로 승온 속도가 20℃/min, 유지시간을 1시간으로 하고, 유지 종료후는 가열을 정지하고 로내에서 냉각했다. 또 소성 분위기로서는 승온 개시로부터 냉각 종료까지 공기를 15L/min의 유량으로 흘리고 산화성 분위기를 형성 시켰다.10 g of the potassium ruthenate chloride was placed in an alumina container and calcined in a tubular furnace. In this firing condition, the firing temperature was 800 ° C., the temperature increase rate was 20 ° C./min, and the holding time was 1 hour. As the firing atmosphere, air was flowed at a flow rate of 15 L / min from the start of the temperature rise to the end of the cooling to form an oxidizing atmosphere.

소성하여 얻어진 물질을 순수 300ml에 투입하고 초음파 세척기로 10분간 교반하고 여과하였다. 순수한 물 투입, 교반 및 여과의 과정을 2회 반복한 뒤, 열풍건조기로 90℃에서 10시간 건조하였다.        The calcined material was poured into 300 ml of pure water, stirred for 10 minutes with an ultrasonic cleaner and filtered. Pure water was added, stirred and filtered twice, and then dried at 90 ° C. for 10 hours using a hot air dryer.

scalescale Ultra-sonicUltra-sonic 입도Granularity 반응시간Reaction time 수율yield 순도water 실시 예1Example 1 Ru 20gRu 20g 80ft/s80 ft / s 20nm20 nm 6시간6 hours 99%99% 99.99%99.99% 실시 예2Example 2 Ru 100gRu 100g 80ft/s80 ft / s 20nm20 nm 8시간8 hours 99%99% 99.99%99.99% 비교 예1Comparative Example 1 Ru 10gRu 10g 0ft/s0 ft / s 45nm45nm 33시간33 hours 99%99% 99.9%99.9% 비교 예2Comparative Example 2 Ru 1.7gRu 1.7g 80ft/s80 ft / s 77nm77 nm 33시간33 hours 73%73% 99.9%99.9%

도 1 은 본 발명의 직접환원 및 초음파에 따른 산화루테늄물의 제조공정의 흐름도를 나타낸다.       Figure 1 shows a flow chart of the manufacturing process of ruthenium oxide water according to the direct reduction and ultrasonic waves of the present invention.

Claims (4)

고순도 산화루테늄 화합물을 제조하는 방법에 있어서,       In the method for producing a high purity ruthenium oxide compound, 가성소다 또는 수산화 칼륨이 용해된 제 1용액에 금속루테늄을 투입하는 단계;      Injecting metal ruthenium into a first solution in which caustic soda or potassium hydroxide is dissolved; 상기 제 1용액에 차아염소산나트륨을 첨가하여 산화루테늄염을 생성하여 제 2용액을 생성하는 단계;       Adding sodium hypochlorite to the first solution to generate a ruthenium oxide salt to generate a second solution; 온도는 50~90 ℃를 유지한 채 상기 제 2용액에 1~5 L/mim로 오존과 1~5 L/min로 질소가스를 넣어 사산화루테늄으로 산화시키는 단계;      Maintaining the temperature at 50 ° C. to 90 ° C., oxidizing the second solution with 1 to 5 L / mim of ozone and 1 to 5 L / min of nitrogen gas to oxidize ruthenium tetraoxide; 상기 사산화루테늄에 알코올 용매를 가하고, 50~100ft/s의 초음파를 이용하여 응집을 제어하면서 산화루테늄으로 환원시키는 단계;      Adding an alcohol solvent to the ruthenium tetraoxide and reducing the ruthenium oxide while controlling the aggregation using ultrasonic waves of 50-100 ft / s; 상기 산화루테늄 용액을 여과하여 산화루테늄분말을 얻는 단계;       Filtering the ruthenium oxide solution to obtain ruthenium oxide powder; 상기 산화루테늄분말을 진공건조하는 단계; 를 포함하는 것을 특징으로 하는 고순도 산화 루테늄 화합물의 제조방법.      Vacuum drying the ruthenium oxide powder; Method for producing a high purity ruthenium oxide compound comprising a. 제 1항에 있어서,       The method of claim 1, 상기 가성소다 또는 수산화 칼륨은 1~10M 용해된 것을 특징으로 하는 고순도 산화 루테늄 화합물의 제조방법.       The caustic soda or potassium hydroxide is a method for producing a high purity ruthenium oxide compound, characterized in that 1 ~ 10M dissolved. 제 2항에 있어서,        3. The method of claim 2, 상기 차아염소산나트륨은 상기 금속루테늄의 300~600%의 양으로, 0.2~1g/sec의 속도로 첨가되며, 반응온도는 0~25℃로 유지하는 것을 특징으로 하는 고순도 산화 루테늄 화합물의 제조방법.      The sodium hypochlorite is added in an amount of 300 to 600% of the metal ruthenium, at a rate of 0.2 to 1 g / sec, and a reaction temperature is maintained at 0 to 25 ° C. A method for producing a high purity ruthenium oxide compound. 삭제delete
KR1020090025687A 2009-03-26 2009-03-26 A manufacturing method of ruthenium oxide used ultrasonic and direct reduction KR101277676B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090025687A KR101277676B1 (en) 2009-03-26 2009-03-26 A manufacturing method of ruthenium oxide used ultrasonic and direct reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090025687A KR101277676B1 (en) 2009-03-26 2009-03-26 A manufacturing method of ruthenium oxide used ultrasonic and direct reduction

Publications (2)

Publication Number Publication Date
KR20100107565A KR20100107565A (en) 2010-10-06
KR101277676B1 true KR101277676B1 (en) 2013-06-21

Family

ID=43129244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090025687A KR101277676B1 (en) 2009-03-26 2009-03-26 A manufacturing method of ruthenium oxide used ultrasonic and direct reduction

Country Status (1)

Country Link
KR (1) KR101277676B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102230597B1 (en) * 2019-04-29 2021-03-22 강릉원주대학교산학협력단 Ruthenium dioxide and method for preparing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294541A (en) * 1988-05-20 1989-11-28 Tanaka Kikinzoku Kogyo Kk Production of fine powder of ruthenium oxide
US5248496A (en) * 1989-10-27 1993-09-28 Basf Aktiengesellschaft Method of obtaining ruthenium tetroxide by oxidation of an aqueous alkali metal ruthenate solution
JP2008174431A (en) * 2007-01-22 2008-07-31 Shinshu Univ Ruthenic acid nanosheet and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294541A (en) * 1988-05-20 1989-11-28 Tanaka Kikinzoku Kogyo Kk Production of fine powder of ruthenium oxide
US5248496A (en) * 1989-10-27 1993-09-28 Basf Aktiengesellschaft Method of obtaining ruthenium tetroxide by oxidation of an aqueous alkali metal ruthenate solution
JP2008174431A (en) * 2007-01-22 2008-07-31 Shinshu Univ Ruthenic acid nanosheet and its producing method

Also Published As

Publication number Publication date
KR20100107565A (en) 2010-10-06

Similar Documents

Publication Publication Date Title
Eda et al. Low temperature-synthesis of BiVO4 nanorods using polyethylene glycol as a soft template and the visible-light-activity for copper acetylacetonate decomposition
Lopez et al. Characterization of iron-doped titania sol–gel materials
KR101178397B1 (en) Low soda boehmite and preparation method thereof using hydrothermal synthesis
CN101214441B (en) Preparation method of titanium barium ferrum series photocatalyst
CN102452684B (en) Method for one-step synthesis of mono-dispersed barium titanate nanocrystalline by self-regulating solvent thermal
Kiatkittipong et al. Photocatalysis of heat treated sodium-and hydrogen-titanate nanoribbons for water splitting, H2/O2 generation and oxalic acid oxidation
JP5369864B2 (en) Nickel powder and method for producing the same
CN100395018C (en) Method for preparing visible light excited TiO2 photocatalyst utilizing industrial metatitanic acid
CN111348683B (en) Method for synthesizing high-crystalline tin niobate by solid phase method
KR100753055B1 (en) Preparation of anatase titanium dioxide using ionic liquid by modified sol-gel method and its catalysis applications
KR101277676B1 (en) A manufacturing method of ruthenium oxide used ultrasonic and direct reduction
CN108262051B (en) Method for synthesizing cerium dioxide-bismuthyl carbonate nano composite by mechanical ball milling heat treatment two-step method
JP5514570B2 (en) Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder
CN105722790B (en) The manufacture method of barium carbonate powder
EP3321249B1 (en) Method for producing acrylic acid
JP3091219B2 (en) Method for producing acid-resistant catalyst for direct hydrogenation to produce alcohol from carboxylic acid
KR100873955B1 (en) A manufacturing method of high purity ruthenium complex using extraction
Huaman et al. Large-scale synthesis of ITO nanoparticles in an alcohol system assisted by acids
JP2008179528A (en) Manufacture method of titanium oxide
WO2013018742A1 (en) Barium titanate, strontium titanate, and manufacturing method for alkaline earth metal carbonate
KR101644474B1 (en) Manufacturing method of manganese dioxide catalyst with C2-C5 alcohol as reducing agent
CN113953526A (en) Preparation method of superfine palladium powder
CN113788494A (en) Preparation method of barium dititanate
KR100914136B1 (en) Electrode for electric double-layer capacitor and the method thereof
Anh et al. Small band gap ferric pseudobrookite as a new photo-Fenton catalyst for degradation of phenolic acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160405

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 7