JP5514570B2 - Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder - Google Patents

Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder Download PDF

Info

Publication number
JP5514570B2
JP5514570B2 JP2010025013A JP2010025013A JP5514570B2 JP 5514570 B2 JP5514570 B2 JP 5514570B2 JP 2010025013 A JP2010025013 A JP 2010025013A JP 2010025013 A JP2010025013 A JP 2010025013A JP 5514570 B2 JP5514570 B2 JP 5514570B2
Authority
JP
Japan
Prior art keywords
tin
oxide powder
indium oxide
indium
doped indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010025013A
Other languages
Japanese (ja)
Other versions
JP2011162375A (en
Inventor
和良 尼崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2010025013A priority Critical patent/JP5514570B2/en
Publication of JP2011162375A publication Critical patent/JP2011162375A/en
Application granted granted Critical
Publication of JP5514570B2 publication Critical patent/JP5514570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、スズドープ酸化インジウム(Indium Tin Oxide:ITO)粉末の製造方法およびスズドープ酸化インジウム粉末に関する。   The present invention relates to a method for producing tin-doped indium oxide (ITO) powder and tin-doped indium oxide powder.

従来より、スズドープ酸化インジウム(以下本明細書ではITO:Indium Tin Oxideとする)を含む透明導電膜は、可視光に対する高い透光性と、導電性とを示すことから、各種表示デバイスや太陽電池などの透明電極膜として用いられている。この透明導電膜の製膜方法としてはスパッタリング法等の物理蒸着法、ITO粒子の分散液または有機ITO化合物を塗布する塗布法が知られている。   Conventionally, a transparent conductive film containing tin-doped indium oxide (hereinafter referred to as ITO: Indium Tin Oxide) exhibits high translucency for visible light and conductivity, so that various display devices and solar cells are used. It is used as a transparent electrode film. As a method for forming the transparent conductive film, a physical vapor deposition method such as a sputtering method, or a coating method in which a dispersion of ITO particles or an organic ITO compound is applied is known.

上述した製膜方法の中で塗布法により得られるITO膜は、スパッタリング法などの物理的方法により成膜されたITO膜に比べて導電性は多少低いものの、真空装置などの高価な装置を用いることなく大面積や複雑形状の製膜が可能であり、成膜コストを低減できる利点がある。   The ITO film obtained by the coating method among the film forming methods described above uses an expensive device such as a vacuum device, although its conductivity is somewhat lower than that of an ITO film formed by a physical method such as sputtering. Therefore, it is possible to form a film with a large area or a complicated shape without any advantage of reducing the film formation cost.

上記塗布法に使用される塗料の原料であるITO粉末の製造方法としては、たとえばインジウム-スズ塩混合水溶液にアンモニアや水酸化ナトリウム等のアルカリを添加して中和し、インジウム-スズ共沈水酸化物を生成し、これを水洗、乾燥、仮焼することにより作製することができる。   As a method for producing ITO powder, which is a raw material for coating materials used in the above coating method, for example, an indium-tin salt mixed aqueous solution is neutralized by adding an alkali such as ammonia or sodium hydroxide, and indium-tin coprecipitation water oxidation The product can be produced by washing with water, drying and calcining.

透明導電膜塗料は、その用途が電子材料用であることから、不純物、特にハロゲン元素の塩素が含まれることが問題となる。塩素が存在すると、電子機器内に用いられている金属の腐食、溶出が発生しやすくなるとともに、ITO粉末が混合された樹脂においても経時劣化が起き易くなる。   Since the use of the transparent conductive film paint is for electronic materials, there is a problem that impurities, especially halogen element chlorine, is contained. When chlorine is present, corrosion and elution of the metal used in the electronic device is likely to occur, and deterioration with time is also likely to occur in the resin mixed with ITO powder.

そこで、例えば、特許文献1 (特開2001−58822号公報)
には、ITO粉末を製造する過程でインジウム-スズ共沈水酸化物を生成した後、その水酸化物をpH=9〜12のアンモニア水溶液で洗浄し水酸化物の乾燥後の塩素含有量を200質量ppm以下にすることにより最終的に得られるITO粉末において残留する塩素量を低減する製造方法が開示されている。
Therefore, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2001-58822).
In the process of producing ITO powder, indium-tin coprecipitated hydroxide is produced, and then the hydroxide is washed with an aqueous ammonia solution having a pH of 9 to 12, and the chlorine content after the hydroxide is dried is 200. The manufacturing method which reduces the amount of chlorine which remains in the ITO powder finally obtained by making it mass ppm or less is disclosed.

特開2001−58822号公報JP 2001-58822 A

しかし、上記特許文献1ではインジウム-スズ共沈水酸化物を乾燥前にアンモニア水溶液で洗浄する工程において、水酸化物を乾燥前に洗浄しており、結果としてITO粉末中の塩素含有量は50〜100質量ppmと低減できているが、さらに残留塩素量が低減されたITO粉末が求められており、ITO粉末における残留塩素量の低減については、更なる改良の余地があった。   However, in Patent Document 1, in the step of washing the indium-tin coprecipitated hydroxide with an aqueous ammonia solution before drying, the hydroxide is washed before drying. As a result, the chlorine content in the ITO powder is 50 to 50%. Although it can be reduced to 100 ppm by mass, ITO powder with further reduced residual chlorine content has been demanded, and there is room for further improvement in reducing the residual chlorine content in ITO powder.

そこで、本発明は以上の事情に鑑みてなされたものであり、残留塩素量が従来よりさらに低減されたITO粉末の製造方法およびITO粉末を提供することを目的とする。   Then, this invention is made | formed in view of the above situation, and it aims at providing the manufacturing method of ITO powder in which the amount of residual chlorine was further reduced conventionally, and ITO powder.

前記の目的を達成するため、本発明によれば、スズ原料として塩化スズを用いたインジウムとスズの酸性溶液とアルカリ溶液を混合することにより生成したインジウムとスズの共沈水酸化物を洗浄、乾燥し、焼成することによってスズドープ酸化インジウム粉末を製造する方法において、洗浄、乾燥後の前記共沈水酸化物をpH=9〜12のアンモニア水で洗浄したのち水洗、乾燥して加熱処理を行うことを特徴とする、スズドープ酸化インジウム粉末の製造方法が提供される。   In order to achieve the above object, according to the present invention, the co-precipitated hydroxide of indium and tin produced by mixing an acidic solution and an alkaline solution of indium and tin using tin chloride as a tin raw material is washed and dried. In the method for producing tin-doped indium oxide powder by firing, the coprecipitated hydroxide after washing and drying is washed with ammonia water having a pH of 9 to 12, followed by washing and drying. A method for producing a tin-doped indium oxide powder is provided.

上記スズドープ酸化インジウム粉末の製造方法においては、前記共沈水酸化物の洗浄は水洗で行われることが好ましい。前記インジウムとスズの酸性溶液において、インジウム原料として塩化インジウムまたは硝酸インジウムを用いていることが好ましい。前記アルカリ溶液がアンモニア水溶液であることが好ましい。前記加熱処理を還元ガスを含む不活性ガス中で行うことが好ましい。   In the method for producing the tin-doped indium oxide powder, the coprecipitated hydroxide is preferably washed with water. In the acidic solution of indium and tin, indium chloride or indium nitrate is preferably used as an indium raw material. The alkaline solution is preferably an aqueous ammonia solution. The heat treatment is preferably performed in an inert gas containing a reducing gas.

また、別な観点からの本発明によれば、上記記載のスズドープ酸化インジウム粉末の製造方法によって製造され、残留塩素量が20質量ppm以下であることを特徴とする、スズドープ酸化インジウム粉末が提供される。
According to another aspect of the present invention, there is provided a tin-doped indium oxide powder produced by the method for producing a tin-doped indium oxide powder described above, wherein the residual chlorine content is 20 mass ppm or less. The

上記スズドープ酸化インジウム粉末においては、前記共沈水酸化物の洗浄は水洗で行われることが好ましい。前記インジウムとスズの酸性溶液において、インジウム原料として塩化インジウムまたは硝酸インジウムを用いていることが好ましい。前記アルカリ溶液がアンモニア水溶液であることが好ましい。前記加熱処理を還元ガスを含む不活性ガス中で行うことが好ましい。   In the tin-doped indium oxide powder, the coprecipitation hydroxide is preferably washed with water. In the acidic solution of indium and tin, indium chloride or indium nitrate is preferably used as an indium raw material. The alkaline solution is preferably an aqueous ammonia solution. The heat treatment is preferably performed in an inert gas containing a reducing gas.

本発明によれば、残留塩素量が従来よりさらに低減されたITO粉末の製造方法およびITO粉末が提供される。これにより、塩化物を出発原料として使用しているITO粉末の製造方法であっても、残留塩素量が十分に低減されたITO粉末を製造することができるので、電子材料用として好適なITO粉末を提供することができる。   According to the present invention, an ITO powder manufacturing method and an ITO powder in which the amount of residual chlorine is further reduced than before are provided. Thereby, even if it is the manufacturing method of the ITO powder which uses the chloride as a starting material, since the ITO powder with which the residual chlorine amount was fully reduced can be manufactured, the ITO powder suitable for electronic materials Can be provided.

本発明者は、鋭意研究を行った結果、スズ原料として塩化スズを用いたインジウムとスズの酸性溶液と、アルカリ溶液とを混合することにより生成したインジウム-スズ共沈水酸化物を水洗、乾燥後、アンモニア水溶液で洗浄することで焼成処理後のITO粉末において不純物として残留する塩素量が低減されることを見出した。以下、本発明によるITO粉末の製造方法を詳細に説明する。   As a result of earnest research, the present inventor has washed the indium-tin coprecipitated hydroxide produced by mixing an acidic solution of indium and tin using tin chloride as a tin raw material with an alkaline solution, and after drying It was found that the amount of chlorine remaining as an impurity in the ITO powder after the baking treatment is reduced by washing with an aqueous ammonia solution. Hereinafter, the manufacturing method of the ITO powder according to the present invention will be described in detail.

本発明によるITO粉末の製造方法の実施の形態では出発物質として可溶性インジウム化合物と可溶性スズ化合物とを用いる。可溶性スズ化合物としては塩化スズを用いるが、酸素欠損を増大させ、より低抵抗のITO粉末を製造するために塩化第一スズ(SnCl)を用いるのが好ましい。また、可溶性インジウム化合物として塩化物、硫酸塩、硝酸塩などがあるが塩化スズとの混合溶液を作る際には塩化インジウム(InCl)または硝酸インジウム(In(NO)が好ましい。 In the embodiment of the method for producing ITO powder according to the present invention, a soluble indium compound and a soluble tin compound are used as starting materials. As the soluble tin compound, tin chloride is used, but it is preferable to use stannous chloride (SnCl 2 ) in order to increase oxygen deficiency and produce a lower resistance ITO powder. Further, there are chlorides, sulfates, nitrates and the like as soluble indium compounds, but in the case of preparing a mixed solution with tin chloride, indium chloride (InCl 3 ) or indium nitrate (In (NO 3 ) 3 ) is preferable.

上記のような塩化スズと可溶性インジウム化合物との水溶液を、焼成後のITO粉末中のSn含有量がSnO換算で0.1〜30質量%、好ましくは2〜15質量%となるような割合で混合して作成する。ITO粉末のSn含有量をSnO換算で0.1〜30質量%とするのは、この範囲外では良好な導電性粉末が得られないからである。 A ratio in which an aqueous solution of tin chloride and a soluble indium compound as described above is 0.1 to 30% by mass, preferably 2 to 15% by mass in terms of SnO 2 in terms of SnO 2 after firing. Create by mixing with. The reason why the Sn content of the ITO powder is 0.1 to 30% by mass in terms of SnO 2 is that good conductive powder cannot be obtained outside this range.

このようにして得られたインジウム-スズ酸性溶液と、アルカリ溶液とを混合し、撹拌して反応させることによりインジウム-スズ共沈水酸化物が得られる。混合するアルカリ溶液としては、アンモニア水、水酸化ナトリウム、水酸化カリウム、炭酸アンモニウム、重炭酸アンモニウムなどの水溶液または混合溶液を使用することができるが、金属成分が入ると導電性が阻害されることがあるので、アンモニア水、アンモニウム塩、アンモニウム炭酸塩などの水溶液または、これらの混合溶液が好ましい。さらには、洗浄工程で塩素除去においてより効果を発揮させるために他のイオンの影響を少なくできるよう、アンモニア水溶液を使用することがより好ましい。   The indium-tin co-precipitated hydroxide is obtained by mixing the indium-tin acidic solution thus obtained and the alkaline solution and stirring and reacting them. As the alkaline solution to be mixed, an aqueous solution or mixed solution of ammonia water, sodium hydroxide, potassium hydroxide, ammonium carbonate, ammonium bicarbonate or the like can be used, but if the metal component enters, conductivity is inhibited. Therefore, an aqueous solution of ammonia water, ammonium salt, ammonium carbonate or the like or a mixed solution thereof is preferable. Furthermore, it is more preferable to use an aqueous ammonia solution so that the influence of other ions can be reduced in order to exert more effect in removing chlorine in the washing step.

次いで、得られたインジウム-スズ共沈水酸化物を、純水によるデカンテーション等で洗浄した後、脱水し、その後、乾燥する。乾燥は、110℃〜250℃の温度で乾燥することができる。乾燥後のインジウム-スズ共沈水酸化物pH=9〜12程度のアンモニア水により洗浄し、さらに純水により洗浄した後、再度乾燥する。乾燥後の共沈水酸化物をアンモニア水で洗浄するのは、共沈水酸化物中の不純物である塩素をより低減するためである。これにより、乾燥前の共沈水酸化物よりも水分が失われることで共沈水酸化物粒子表面が活性となり、共沈水酸化物粒子の残留塩素分とアンモニウムイオンがより反応しやすくなるために塩素残留量がより低減されるものと推測される。また、アンモニア水のpHは9〜12程度が好ましいが、これはアンモニア水のpHが9未満であると十分な洗浄効果(塩素除去効果)が得られず、pHが12を超えると共沈水酸化物の溶解が起こり、収率の低下のおそれがあるからである。このように、アンモニア水で洗浄することにより、共沈水酸化物に残留している塩素分を塩化アンモニウムとして効率よく除去することができる。また、前記の塩化アンモニウムは純水による洗浄で置換され除去することができる。このようにして、乾燥後の共沈水酸化物をアンモニア水による洗浄することにより、最終的に焼成処理して得られるITO粉末中の残留塩素分を20質量ppm以下に低減することができる。
Next, the obtained indium-tin coprecipitated hydroxide is washed by decantation with pure water, etc., dehydrated, and then dried. Drying can be performed at a temperature of 110 ° C to 250 ° C. The indium-tin coprecipitated hydroxide after drying is washed with ammonia water having a pH of about 9 to 12, further washed with pure water, and then dried again. The reason why the dried coprecipitated hydroxide is washed with ammonia water is to further reduce chlorine, which is an impurity in the coprecipitated hydroxide. As a result, the surface of the coprecipitated hydroxide particles becomes active due to the loss of moisture compared to the coprecipitated hydroxide before drying, and the residual chlorine content of the coprecipitated hydroxide particles and ammonium ions are more likely to react with each other. It is estimated that the amount is further reduced. Further, the pH of the ammonia water is preferably about 9 to 12. However, when the pH of the ammonia water is less than 9, a sufficient cleaning effect (chlorine removal effect) cannot be obtained. This is because dissolution of the product occurs and the yield may be reduced. Thus, by washing with ammonia water, the chlorine content remaining in the coprecipitated hydroxide can be efficiently removed as ammonium chloride. The ammonium chloride can be replaced and removed by washing with pure water. In this way, by washing the coprecipitated hydroxide after drying with aqueous ammonia, the residual chlorine content in the ITO powder finally obtained by the firing treatment can be reduced to 20 ppm by mass or less.

次いで、得られたアンモニア水で洗浄後乾燥した共沈水酸化物を焼成する。焼成は、後述する焼成雰囲気中で、500〜800℃の温度で0.5時間以上保持することにより焼成処理を行う。この焼成処理において、炉内の雰囲気は、不活性ガスと還元ガスの混合ガスを用いる。前記混合ガスに、水分を含有させることができる。不活性ガスとしては窒素(N)、アルゴン、炭酸ガスなどを使用することができるが、特性および費用の面化Nを使用することが好ましい。500℃未満の温度では、雰囲気ガスは、前記の不活性ガスを用いることができる。 Next, the coprecipitated hydroxide that has been washed with the aqueous ammonia and dried is calcined. Baking is performed by holding at a temperature of 500 to 800 ° C. for 0.5 hours or more in a baking atmosphere described later. In this firing process, a mixed gas of an inert gas and a reducing gas is used as the atmosphere in the furnace. The mixed gas can contain moisture. Nitrogen (N 2 ), argon, carbon dioxide, or the like can be used as the inert gas, but it is preferable to use N 2 which has characteristics and costs. At a temperature lower than 500 ° C., the above inert gas can be used as the atmospheric gas.

不活性ガスに還元ガスを含有させることにより炉内を還元性雰囲気とするのは、不活性ガスのみを使用すると、得られるITO粉末に、酸素欠損を生じさせることが十分にできない場合があり、ITO粉末にさらに十分な酸素欠損を生じさせるためである。不活性ガスに含有させる還元ガスとしては、水素(H)、一酸化炭素(CO)、アンモニア(NH)、などが使用できるが、比較的還元力の弱いNHガスを使用するのが好ましい。含有させる還元ガスの量としては、不活性ガス100体積に対して、還元ガス0.005〜5体積を添加するのが好ましく、0.01〜0.4体積がより好ましい。0.005〜5体積の還元ガスが好ましいのは、0.005体積未満では酸素欠損を十分に生じさせることができず、5体積を超えると酸化インジウムやインジウムメタルへの還元が起こりやすく、また部分的に焼結しやすくなるからである。 By making the inside of the furnace into a reducing atmosphere by containing a reducing gas in the inert gas, if only the inert gas is used, the obtained ITO powder may not be able to sufficiently generate oxygen deficiency, This is for causing sufficient oxygen vacancies in the ITO powder. As the reducing gas contained in the inert gas, hydrogen (H 2 ), carbon monoxide (CO), ammonia (NH 3 ), and the like can be used, but NH 3 gas having a relatively low reducing power is used. preferable. As the amount of the reducing gas to be contained, it is preferable to add 0.005 to 5 volumes of reducing gas with respect to 100 volumes of inert gas, and more preferably 0.01 to 0.4 volumes. Reducing gas of 0.005 to 5 volumes is preferable because oxygen vacancies cannot be sufficiently generated if the volume is less than 0.005 volume, and reduction to indium oxide or indium metal tends to occur if the volume exceeds 5 volumes. It is because it becomes easy to sinter partially.

また、不活性ガスに水分を含有させるのは、水酸化物の分解時に発生するHOの影響を低減させ、雰囲気の均一化を図り、酸化物の物性のばらつきを低減させ、良好な透明性と分散性が得られるようにするためである。すなわち、焼成温度が高い場合、焼成中に焼結が進んで凝集が激しくなり、得られたITO粉末を分散させて塗料とする際に分散不良を起こし、塗料中で沈積してしまうという問題があるが、この問題は焼成雰囲気に水分を添加することにより抑制することができる。含有させる水分の量は、たとえば室温における飽和水蒸気圧程度であればよく、不活性ガス100体積に対して0.05〜10体積の水分を添加するのが好ましく、0.5〜5体積の水分を添加するのがより好ましい。このようにNHガスと共に水分が雰囲気内に存在すると、炉内の気流上昇部へのNHの吸着が妨げられ、結果として過剰な焼結部分を低減するとともに、粒子の表面特性が制御されると考えられ、低抵抗かつ分散性が良好なITO粉末を得ることができる。 In addition, the inclusion of moisture in the inert gas reduces the influence of H 2 O generated during the decomposition of the hydroxide, makes the atmosphere uniform, reduces variations in the physical properties of the oxide, and provides good transparency. This is to obtain the properties and dispersibility. That is, when the firing temperature is high, the sintering progresses during firing and the agglomeration becomes intense. When the obtained ITO powder is dispersed to form a paint, a dispersion failure occurs and the problem is that it is deposited in the paint. However, this problem can be suppressed by adding moisture to the firing atmosphere. The amount of water to be contained may be, for example, about the saturated water vapor pressure at room temperature, and it is preferable to add 0.05 to 10 volumes of water to 100 volumes of inert gas, and 0.5 to 5 volumes of water. It is more preferable to add. When moisture is present in the atmosphere together with NH 3 gas in this way, adsorption of NH 3 to the air flow rising portion in the furnace is hindered, and as a result, excessive sintered portions are reduced and the surface characteristics of the particles are controlled. Thus, it is possible to obtain an ITO powder having low resistance and good dispersibility.

焼成温度を500〜800℃の範囲とするのは、共沈水酸化物の脱水が300〜400℃の範囲で起こるが、焼成温度が500℃より低いと焼成が不十分で得られる粉体の抵抗が高くなり、導電性材料としての十分な結晶性が得られず、焼成温度が800℃より高いと焼結と凝集が進み、得られる粉体の分散性が不良になるとともに、焼結により粒径が大きくなり、塗膜にしたときの可視光透過性が得られないからである。 The firing temperature is in the range of 500 to 800 ° C. The depreciation of the coprecipitated hydroxide occurs in the range of 300 to 400 ° C. If the firing temperature is lower than 500 ° C., the resistance of the powder obtained by insufficient firing. When the firing temperature is higher than 800 ° C., the sintering and aggregation progress, and the resulting powder has poor dispersibility, and the particles are not dispersed by sintering. This is because the diameter becomes large and the visible light transparency when formed into a coating film cannot be obtained.

また、焼成工程において通気ガスの流量は、1.0ml/min・g(乾燥共沈水酸化物1gあたりの毎分供給量)以上とするのが好ましい。通気ガスの流量が1.0ml/min・g以上の場合には、雰囲気の均一化が図られ、部分的な焼結を抑制でき、分散性の良好な粉末を得ることができるが、1.0ml/min・g未満の場合には焼成炉内に雰囲気のばらつきが生じ、特性ムラとなり好ましくないからである。   In the firing step, the flow rate of the aeration gas is preferably 1.0 ml / min · g (amount supplied per minute per 1 g of dry coprecipitated hydroxide) or more. When the flow rate of the aeration gas is 1.0 ml / min · g or more, the atmosphere can be made uniform, partial sintering can be suppressed, and powder with good dispersibility can be obtained. This is because if it is less than 0 ml / min · g, variations in atmosphere occur in the firing furnace, resulting in uneven characteristics.

以上説明した工程で作製されるITO粉末においては、残留塩素分を20質量ppm以下に低減することができ、例えば電子材料用として好適に用いることが可能となる。塩素が多く存在するITO粉末を用いた電子材料によって作製される電子機器内では、金属の腐食、溶出が発生しやすくなるとともに、ITO粉末が混合された樹脂においても経時劣化が起き易くなるため、より残留塩素の低減されたITO粉末を電子材料として用いることはこれらの問題点を解消するため に非常に有効となる。   In the ITO powder produced by the process described above, the residual chlorine content can be reduced to 20 ppm by mass or less, and can be suitably used, for example, for electronic materials. In an electronic device manufactured by an electronic material using ITO powder containing a lot of chlorine, corrosion and elution of metal are likely to occur, and deterioration with time is also likely to occur in a resin mixed with ITO powder. The use of ITO powder with reduced residual chlorine as the electronic material is very effective in solving these problems.

以上、本発明の実施の形態の一例を説明したが、本発明は上述した形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

上記実施の形態では、インジウム-スズ酸性溶液と、アルカリ溶液とを混合し、撹拌して反応させることによりインジウム-スズ共沈水酸化物が得られた後、その得られたインジウム-スズ共沈水酸化物を、純水によるデカンテーション等で洗浄した後、脱水し、その後、乾燥する場合を説明したが、インジウム−スズ共沈水酸化物の洗浄は必ずしも純水によるデカンテーション等で行われるものではない。例えば、前記インジウム-スズ共沈水酸化物を水と混合しスラリーを得て、前記スラリーをフィルタープレス等により、固液分離する等、公知の洗浄方法を採用することができる。洗浄に使用する溶媒は水に限定されないが、経済的観点から、水とすることが好ましい。   In the above embodiment, an indium-tin coprecipitation hydroxide is obtained by mixing an indium-tin acidic solution and an alkaline solution, and stirring and reacting, and then the indium-tin coprecipitation hydroxide obtained. The case where the product is washed by decantation with pure water, dehydrated, and then dried has been described. However, washing of the indium-tin coprecipitated hydroxide is not necessarily performed by decantation with pure water. . For example, a known cleaning method such as mixing the indium-tin coprecipitated hydroxide with water to obtain a slurry, and solid-liquid separation of the slurry with a filter press or the like can be employed. The solvent used for washing is not limited to water, but water is preferable from an economical viewpoint.

以下、実施例に基づいて本発明によるITO粉末の製造方法について詳細に説明する。   Hereinafter, based on an Example, the manufacturing method of the ITO powder by this invention is demonstrated in detail.

[実施例1]
インジウムメタル67.5gを塩酸水溶液により加熱溶解して塩化インジウム(InCl)水溶液を作り、この溶液に塩化第一スズ二水和物(SnCl・2HO)13.6g(焼成後のITO粉末中のスズ含有量がSnO換算で10質量%と成る割合)を混合溶解し、純水を加えて1643gのインジウム-スズ混合水溶液を調整した。また、純水2100gにアンモニア水(濃度25質量%)256gを加えてアンモニア水溶液を調整した。次に、上記アンモニア水溶液を50℃で撹拌しながら、45℃に調整した前記インジウム-スズ混合水溶液を150秒かけて添加し反応させ、インジウム-スズ共沈水酸化物を生成した。得られた共沈水酸化物を純水によるデカンテーションで繰り返し洗浄し、ろ過により脱水した後、250℃で乾燥した。次に、乾燥後の共沈水酸化物を0.34mol/Lのアンモニア水溶液4Lの中に投入し撹拌を行った後、ろ過し、純水による水洗をおこない、脱水した後、110℃で乾燥して、アンモニア水で洗浄後乾燥した共沈水酸化物を得た。
[Example 1]
67.5 g of indium metal is heated and dissolved in an aqueous hydrochloric acid solution to form an aqueous solution of indium chloride (InCl 3 ). In this solution, 13.6 g of stannous chloride dihydrate (SnCl 2 .2H 2 O) (ITO after firing) The proportion of the tin content in the powder was 10% by mass in terms of SnO 2 ) was mixed and dissolved, and pure water was added to prepare 1643 g of an indium-tin mixed aqueous solution. Further, an aqueous ammonia solution was prepared by adding 256 g of ammonia water (concentration: 25% by mass) to 2100 g of pure water. Next, while stirring the aqueous ammonia solution at 50 ° C., the indium-tin mixed aqueous solution adjusted to 45 ° C. was added and reacted for 150 seconds to produce indium-tin coprecipitated hydroxide. The obtained coprecipitated hydroxide was washed repeatedly by decantation with pure water, dehydrated by filtration, and dried at 250 ° C. Next, the dried coprecipitated hydroxide was put into 4 L of a 0.34 mol / L aqueous ammonia solution, stirred, filtered, washed with pure water, dehydrated, and dried at 110 ° C. Thus, a coprecipitated hydroxide which was washed with aqueous ammonia and dried was obtained.

得られたアンモニア水で洗浄後乾燥した共沈水酸化物を管状炉に仕込み、Nガスを125ml/min・g(乾燥共沈水酸化物1gあたりの毎分供給量)の流量で流しながら炉内を昇温した。炉内温度が400℃になったときに、炉内に供給するガスをNガス100体積に対して0.05体積のNHガスと、Nガス100体積に対して1.5体積の水蒸気をNガスに添加したガスに変更した。その後さらに昇温させて610℃で2時間保持した後、NHガスと水蒸気の添加を停止して冷却した。このようにして得られたITOの焼成品を卓上ミルで解砕し、ITO粉末を得た。 The obtained coprecipitated hydroxide, which was washed with ammonia water and dried, was charged into a tubular furnace, and N 2 gas was flown at a flow rate of 125 ml / min · g (amount supplied per minute per 1 g of dry coprecipitated hydroxide) in the furnace. The temperature was raised. When the furnace temperature reached 400 ° C., and 0.05 volume of NH 3 gas to the N 2 gas 100 volumes of gas supplied into the furnace, a 1.5 volume relative to N 2 gas 100 volumes Water vapor was changed to a gas added to N 2 gas. Thereafter, the temperature was further raised and maintained at 610 ° C. for 2 hours, and then the addition of NH 3 gas and water vapor was stopped and the system was cooled. The fired ITO product thus obtained was crushed by a table mill to obtain ITO powder.

得られたITO粉末について、残留している塩素含有量を下記に記載の方法(熱加水分解-イオンクロマト法)によって測定した。
環状炉内に、試料であるITO粉末を入れ、環状炉内を酸素ガスで置換し、環状炉内を酸素ガス雰囲気とした。次に、環状炉内を加熱し、試料温度を1100℃とした。その後、酸素ガスを純水中にバブリングして生成した水蒸気含有酸素ガスを環状炉内に30分間流した。環状炉内を通過した水蒸気含有酸素ガスを、水酸化ナトリウム溶液に30分間バブリングした。このバブリング済みの水酸化ナトリウム溶液中の塩素濃度をイオンクロマトグラフ装置(DIONEX社製、IC25)で、測定した。前記塩素濃度と使用した水酸化ナトリウム溶液の量と試料の質量から、試料中の塩素含有量(残留塩素量)を算出した。
この測定によってITO粉末内の残留塩素量は17質量ppmであったので、得られたITO粉末は不純物としての塩素を十分に低減できたことを確認した。
About the obtained ITO powder, the residual chlorine content was measured by the method described below (thermal hydrolysis-ion chromatography method).
An ITO powder as a sample was placed in the annular furnace, the inside of the annular furnace was replaced with oxygen gas, and the inside of the annular furnace was set to an oxygen gas atmosphere. Next, the inside of the annular furnace was heated to set the sample temperature to 1100 ° C. Thereafter, water vapor-containing oxygen gas generated by bubbling oxygen gas into pure water was allowed to flow through the annular furnace for 30 minutes. The steam-containing oxygen gas that passed through the annular furnace was bubbled through the sodium hydroxide solution for 30 minutes. The chlorine concentration in the bubbled sodium hydroxide solution was measured with an ion chromatograph (IC25, manufactured by DIONEX). From the chlorine concentration, the amount of sodium hydroxide solution used and the mass of the sample, the chlorine content (residual chlorine amount) in the sample was calculated.
Since the residual chlorine amount in the ITO powder was 17 ppm by this measurement, it was confirmed that the obtained ITO powder was able to sufficiently reduce chlorine as an impurity.

[実施例2]
インジウムメタルを加熱溶解する際の酸水溶液を塩酸から硝酸に変更した以外は、実施例1と同様の製造方法でITO粉末を得た。得られたITO粉末について熱加水分解-イオンクロマト法で残留塩素量を測定したところ、検出限界の10質量ppm未満であり、得られたITO粉末は不純物としての塩素を十分に低減できたことを確認した。
[Example 2]
An ITO powder was obtained by the same production method as in Example 1 except that the aqueous acid solution used for heating and dissolving indium metal was changed from hydrochloric acid to nitric acid. When the amount of residual chlorine was measured by thermal hydrolysis-ion chromatography on the obtained ITO powder, it was below the detection limit of 10 ppm by mass, and the obtained ITO powder was able to sufficiently reduce chlorine as an impurity. confirmed.

[比較例1]
実施例1においての共沈水酸化物の250℃乾燥後におこなったアンモニア水による洗浄を行わない以外は実施例1と同様方法でITO粉末を得た。得られたITO粉末について熱加水分解-イオンクロマト法で残留塩素量を測定したところ、270質量ppmであった。この結果、実施例1での共沈水酸化物の乾燥後にアンモニア水による洗浄が残留塩素量の低減に大きく効果があることがわかった。
[Comparative Example 1]
An ITO powder was obtained in the same manner as in Example 1 except that the co-precipitated hydroxide in Example 1 was not washed with aqueous ammonia after drying at 250 ° C. When the amount of residual chlorine was measured by the thermal hydrolysis-ion chromatography method about the obtained ITO powder, it was 270 mass ppm. As a result, it was found that cleaning with ammonia water after drying the coprecipitated hydroxide in Example 1 was greatly effective in reducing the amount of residual chlorine.

[比較例2]
共沈水酸化物をアンモニア水による洗浄をおこなう前に、共沈水酸化物を乾燥しなかった以外は実施例1と同様の方法でITO粉末を得た。
[Comparative Example 2]
An ITO powder was obtained in the same manner as in Example 1 except that the coprecipitated hydroxide was not dried before washing the coprecipitated hydroxide with aqueous ammonia.

得られたITO粉末について熱加水分解-イオンクロマト法で残留塩素量を測定したところ、90質量ppmであった。この結果、特許文献1によるITO粉末の製造方法で作成したITO粉末と本願実施例1と比較例1とを比較すると、共沈水酸化物を乾燥前にアンモニア水で洗浄することでも残留塩素量を低減できるが、本発明による製造方法により、ITO粉末の残留塩素量をさらに低減できることがわかった。 When the amount of residual chlorine was measured by the thermal hydrolysis-ion chromatography method about the obtained ITO powder, it was 90 mass ppm. As a result, when the ITO powder prepared by the ITO powder manufacturing method according to Patent Document 1 is compared with Example 1 of the present application and Comparative Example 1, the amount of residual chlorine can be reduced by washing the coprecipitated hydroxide with ammonia water before drying. Although it can be reduced, it has been found that the residual chlorine content of the ITO powder can be further reduced by the production method according to the present invention.

[比較例3]
実施例2においての共沈水酸化物の250℃乾燥後にアンモニア水による洗浄を行わないで、その後焼成については実施例2と同様に行ってITO粉末を得た。得られたITO粉末について熱加水分解-イオンクロマト法で残留塩素量を測定したところ、24質量ppmであった。この結果、実施例2との比較で硝酸インジウム水溶液をインジウムの出発原料とした場合においても、共沈水酸化物の乾燥後にアンモニア水による洗浄を行うことで残留塩素量の低減に効果があることがわかった。
[Comparative Example 3]
After the coprecipitated hydroxide in Example 2 was dried at 250 ° C., it was not washed with aqueous ammonia, and thereafter firing was performed in the same manner as in Example 2 to obtain ITO powder. It was 24 mass ppm when the amount of residual chlorine was measured with the thermal hydrolysis-ion chromatography method about the obtained ITO powder. As a result, even when an indium nitrate aqueous solution is used as a starting material for indium in comparison with Example 2, the amount of residual chlorine can be effectively reduced by washing with aqueous ammonia after drying the coprecipitated hydroxide. all right.

[比較例4]
残留塩素量の低減に効果のある方法として、ITO粉末ではないが酸化インジウムについて公開特許公報の特開2007−331975がある。この方法をITO粉末に適用した場合に残留塩素量がどの程度低減できるかを確認した。
[Comparative Example 4]
As a method effective in reducing the amount of residual chlorine, there is Japanese Patent Application Laid-Open No. 2007-331975, which is not ITO powder but indium oxide. When this method was applied to ITO powder, it was confirmed how much the amount of residual chlorine can be reduced.

比較例2と同様にして、共沈水酸化物を純水によるデカンテーションで繰り返し洗浄し、0.34mol/Lのアンモニア水溶液4Lの中に投入し撹拌を行った後、ろ過、純水による水洗、脱水し、250℃で乾燥することにより得た共沈水酸化物について、0.1mol/Lの硝酸アンモニウム水溶液中に分散させ、撹拌を行った後、ろ過、水洗し110℃で乾燥した。 In the same manner as in Comparative Example 2, the coprecipitated hydroxide was repeatedly washed by decantation with pure water, poured into 4 L of a 0.34 mol / L aqueous ammonia solution, stirred, filtered, washed with pure water, The coprecipitated hydroxide obtained by dehydration and drying at 250 ° C. was dispersed in a 0.1 mol / L ammonium nitrate aqueous solution, stirred, filtered, washed with water, and dried at 110 ° C.

得られた前記硝酸アンモニウム水溶液により洗浄した共沈水酸化物の乾燥品について、焼成については実施例1と同様に行ってITO粉末を得た。得られたITO粉末について熱加水分解-イオンクロマト法で残留塩素量を測定したところ、45質量ppmであった。この結果、特開2007−331975の方法をITO粉末に適用した場合、残留塩素分の低減はできたが、本発明での製造方法と比較して残留塩素濃度低減効果が小さいことがわかった。また、共沈水酸化物の乾燥前にアンモニア水による洗浄工程が入るため本発明よりも工程が増えているので、残留塩素低減効果が少ない以外にも、工程増によるコスト増大してしまい、本発明が優れていることがわかった。 The dried product of the coprecipitated hydroxide washed with the aqueous ammonium nitrate solution obtained was fired in the same manner as in Example 1 to obtain ITO powder. When the amount of residual chlorine was measured by the thermal hydrolysis-ion chromatography method about the obtained ITO powder, it was 45 mass ppm. As a result, it was found that when the method disclosed in Japanese Patent Application Laid-Open No. 2007-3311975 was applied to the ITO powder, the residual chlorine content could be reduced, but the residual chlorine concentration reducing effect was small as compared with the production method of the present invention. In addition, since there is a washing step with aqueous ammonia before drying the coprecipitated hydroxide, the number of steps is increased compared to the present invention. Was found to be excellent.

本発明は、スズドープ酸化インジウム(Indium Tin Oxide:ITO)粉末の製造方法およびスズドープ酸化インジウム粉末に適用できる。   The present invention can be applied to a method for producing tin-doped indium oxide (ITO) powder and tin-doped indium oxide powder.

Claims (6)

スズ原料として塩化スズを用いたインジウムとスズの酸性溶液とアルカリ溶液を混合することにより生成したインジウムとスズの共沈水酸化物を洗浄、乾燥し、焼成することによってスズドープ酸化インジウム粉末を製造する方法において、洗浄、乾燥後の前記共沈水酸化物をpH=9〜12のアンモニア水で洗浄したのち水洗、乾燥して加熱処理を行うことを特徴とする、スズドープ酸化インジウム粉末の製造方法。 Method for producing tin-doped indium oxide powder by washing, drying and firing indium and tin coprecipitated hydroxides produced by mixing indium and tin acidic and alkaline solutions using tin chloride as a tin raw material The method for producing a tin-doped indium oxide powder characterized in that the co-precipitated hydroxide after washing and drying is washed with ammonia water having a pH of 9 to 12, followed by washing with water and drying. 前記共沈水酸化物の洗浄は水洗で行われることを特徴とする、請求項1に記載のスズドープ酸化インジウム粉末の製造方法。 The method for producing a tin-doped indium oxide powder according to claim 1, wherein the coprecipitation hydroxide is washed with water. 前記インジウムとスズの酸性溶液において、インジウム原料として塩化インジウムまたは硝酸インジウムを用いていることを特徴とする、請求項1または2に記載のスズドープ酸化インジウム粉末の製造方法。 The method for producing a tin-doped indium oxide powder according to claim 1 or 2, wherein in the acidic solution of indium and tin, indium chloride or indium nitrate is used as an indium raw material. 前記アルカリ溶液がアンモニア水溶液であることを特徴とする、請求項1〜3のいずれかに記載のスズドープ酸化インジウム粉末の製造方法。 The method for producing a tin-doped indium oxide powder according to claim 1, wherein the alkaline solution is an aqueous ammonia solution. 前記加熱処理を還元ガスを含む不活性ガス中で行うことを特徴とする、請求項1〜4のいずれかに記載のスズドープ酸化インジウム粉末の製造方法。 The method for producing a tin-doped indium oxide powder according to claim 1, wherein the heat treatment is performed in an inert gas containing a reducing gas. 請求項1〜5のいずれかに記載のスズドープ酸化インジウム粉末の製造方法によって製造され、残留塩素量が20質量ppm以下であることを特徴とする、スズドープ酸化インジウム粉末。A tin-doped indium oxide powder produced by the method for producing a tin-doped indium oxide powder according to any one of claims 1 to 5, wherein the residual chlorine content is 20 mass ppm or less.
JP2010025013A 2010-02-08 2010-02-08 Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder Expired - Fee Related JP5514570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025013A JP5514570B2 (en) 2010-02-08 2010-02-08 Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010025013A JP5514570B2 (en) 2010-02-08 2010-02-08 Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder

Publications (2)

Publication Number Publication Date
JP2011162375A JP2011162375A (en) 2011-08-25
JP5514570B2 true JP5514570B2 (en) 2014-06-04

Family

ID=44593509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025013A Expired - Fee Related JP5514570B2 (en) 2010-02-08 2010-02-08 Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder

Country Status (1)

Country Link
JP (1) JP5514570B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651544B2 (en) * 2011-06-22 2015-01-14 株式会社アルバック Method for recovering indium tin oxide and method for producing indium tin oxide target
CN102557115B (en) * 2011-12-31 2013-12-11 西北稀有金属材料研究院 Preparation method of spherical tin-doped indium oxide nanopowder
CN107572580B (en) * 2017-09-29 2019-03-12 广东天高科技有限公司 A kind of superfine tin indium oxide flour producing process
CN114735758B (en) * 2022-04-22 2023-07-07 广东邦普循环科技有限公司 Preparation method and application of tin-doped and coated cobaltosic oxide
HUP2400113A1 (en) * 2022-04-22 2024-06-28 Guangdong Brunp Recycling Tech Co Preparation method for cobaltosic oxide doped and coated with tin and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862385B2 (en) * 1996-11-08 2006-12-27 Dowaホールディングス株式会社 Tin oxide-containing indium oxide powder and method for producing sintered body
JP4253721B2 (en) * 1999-08-20 2009-04-15 Dowaエレクトロニクス株式会社 Tin-doped indium oxide powder and method for producing the same
JP4841029B2 (en) * 2000-08-30 2011-12-21 三井金属鉱業株式会社 Tin oxide-added indium oxide powder and method for producing the same
JP2004123523A (en) * 2002-09-11 2004-04-22 Sumitomo Chem Co Ltd Method for producing indium oxide-tin oxide powder
JP5285412B2 (en) * 2008-03-11 2013-09-11 三井金属鉱業株式会社 Tin-doped indium oxide particles and method for producing the same

Also Published As

Publication number Publication date
JP2011162375A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5514570B2 (en) Method for producing tin-doped indium oxide powder and tin-doped indium oxide powder
JP7021795B2 (en) Method for preparing indium oxide spherical powder with controllable grain shape
CN102936461B (en) Rich cerium rare earth polishing powder and preparation method thereof
CN101367555B (en) Novel methods for preparing cobalt oxide, nickel oxide and copper oxide
CN110759387A (en) Preparation method of manganese-doped basic cobalt carbonate
JP4765051B2 (en) Tin-doped indium oxide powder
JP6159306B2 (en) Nickel oxide powder
JP4253721B2 (en) Tin-doped indium oxide powder and method for producing the same
JP4617506B2 (en) ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film
CN111348683A (en) Method for synthesizing high-crystalline tin niobate by solid phase method
CN111777097A (en) Preparation method of high-purity praseodymium titanate
KR101305903B1 (en) Tin oxide powder and manufacturing method of producing the same
JP4701480B2 (en) Tin oxide powder and method for producing tin oxide powder
JP5790292B2 (en) Method for producing nickel oxide powder
CN114314643A (en) Preparation method and application of calcium stannate
JP3838615B2 (en) Tin-doped indium oxide powder and method for producing the same
KR101605503B1 (en) Manufacturing method of high-purity ITO powder using low-purity Indium metal and Tin metal
CN106185925B (en) The preparation method of cocoanut active charcoal containing rare earth
JPS60186416A (en) Production of sn-doped in2o3 powder having low electrical resistance
CN104843780A (en) Preparation method of anatase black nano titanium oxide powder
KR20150084293A (en) Manufacturing method of transition metal-doped manganese oxide materials for li ion adsorption
CN108796234A (en) The separation method of antimony and arsenic in a kind of antimony arsenic material
CN115636445B (en) Method for preparing high-purity ruthenium trichloride from low-concentration ruthenium-containing waste liquid
JP2014080350A (en) Vanadium oxide particle
KR101277676B1 (en) A manufacturing method of ruthenium oxide used ultrasonic and direct reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees