KR101273343B1 - Process for preparing aromatics using shape selective catalyst - Google Patents
Process for preparing aromatics using shape selective catalyst Download PDFInfo
- Publication number
- KR101273343B1 KR101273343B1 KR1020100140194A KR20100140194A KR101273343B1 KR 101273343 B1 KR101273343 B1 KR 101273343B1 KR 1020100140194 A KR1020100140194 A KR 1020100140194A KR 20100140194 A KR20100140194 A KR 20100140194A KR 101273343 B1 KR101273343 B1 KR 101273343B1
- Authority
- KR
- South Korea
- Prior art keywords
- hydrodesulfurization
- reaction
- denitrification
- aromatic
- zeolite
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/04—Purification; Separation; Use of additives by distillation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/06—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/30—Aromatics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
본 발명은 콜타르를 전이금속 황화물 촉매 존재 하에서 수첨 탈황/탈질 증류하여 잔유와 유출유로 분리하는 단계(a); 및 상기 유출유를 접촉분해 반응을 통해 벤젠, 톨루엔 및 자일렌 중에서 선택된 1종 이상을 포함하는 방향족 제품으로 전환시키는 단계(b);를 포함하는 방향족 제품의 제조방법에 관한 것으로서, 콜타르의 증류 분리 공정과 수첨 탈황/탈질 반응 공정을 하나의 통합공정인 수첨 탈황/탈질 증류 공정으로 대체하며 경제적이며 효율적인 방향족 제품의 제조방법을 제공할 수 있다.The present invention comprises the steps of (a) separating the coal tar into residual oil and effluent oil by hydrodesulfurization / denitrification distillation in the presence of a transition metal sulfide catalyst; And converting the effluent oil into an aromatic product including at least one selected from benzene, toluene and xylene through a catalytic cracking reaction. The method of manufacturing an aromatic product comprising distillative separation of coal tar The process and the hydrodesulfurization / desorption reaction process can be replaced by the hydrodesulfurization / desorption distillation process, which is an integrated process, and can provide an economical and efficient method for producing aromatic products.
Description
본원은 방향족 제품의 제조방법에 관한 것으로서, 더욱 상세하게는 형상 선택성 촉매를 이용한 방향족 제품의 제조방법에 관한 것이다.The present application relates to a method for producing an aromatic product, and more particularly, to a method for producing an aromatic product using a shape selective catalyst.
제철공정 중 야금용 코크스 제조 공정에서 원료탄을 종래의 코크스 오븐에서 건류하는 경우, 코크스 오븐의 탄화실에서는 고상의 코크스가 얻어지는 반면, 부산물로서는 액상의 콜타르와 기상의 코크스 오븐 가스(Coke Oven Gas:COG)가 얻어진다.When the raw coal is carbonized in a conventional coke oven during the metallurgical coke manufacturing process during the steelmaking process, solid coke is obtained in the carbonization chamber of the coke oven, whereas as a by-product, liquid coal tar and gaseous coke oven gas (COG) are used. ) Is obtained.
콜타르는, 코크스 제조용 원료탄의 조성과 코크스 제조의 조건에 따라 조금씩 차이는 있으나, 통상 벤젠환이 2개 또는 3개 이상인 다양한 방향족 탄소화합물과 소량의 황 또는 질소 화합물의 혼합물이다.Coal tar is a mixture of various aromatic carbon compounds having two or three or more benzene rings and a small amount of sulfur or nitrogen compounds, although there are little differences depending on the composition of the raw coal for producing coke and the conditions for producing coke.
제철공정 부생가스 중 가장 큰 열량을 갖는 코크오븐가스(COG)는 대부분 제철공정 가열을 위한 1차 에너지원으로 재활용되는 관계로 부가가치가 낮게 이용되고 있으며, COG의 10wt%에 이르는 콜타르 재생공정의 경우에는 1,200K 이상의 고온을 요하는 에너지 집약 열분해공정을 통하여 카본블랙, 나프탈렌, 피치 등으로 전환하여 각각 타이어, 시멘트 혼화제, 알루미늄정련 등의 저부가 가치의 원료로 사용되고 있어서 철강산업에서 발생하는 콜타르를 보다 효율적으로 사용하기 위해서 이를 고부가 화학제품인 벤젠, 톨루엔 또는 자일렌 등의 방향족 제품의 제조에 활용할 것이 요구된다. Coke oven gas (COG), which has the largest calorific value among the by-products of the steelmaking process, is recycled as a primary energy source for heating the steelmaking process, and therefore has low added value.In the case of coal tar regeneration process, which reaches 10wt% of COG, Is converted to carbon black, naphthalene, pitch, etc. through energy-intensive pyrolysis process that requires high temperature of 1,200K or more, and is used as low-value raw materials such as tire, cement admixture, aluminum refining, etc. In order to use it, it is required to utilize it in the manufacture of aromatic products such as benzene, toluene or xylene which are high value-added chemicals.
그러나 제철공정 부산물로 발생하는 콜타르는 다량의 질소화합물과 황화합물을 포함하고 있어서 분해와 분리가 용이하지 않고 고부가 화학제품의 제조에 사용되지 못하는 문제점이 있었으며, 기체상의 코크오븐가스(COG)도 고부가 화학제품의 제조에 사용하지 못하는 문제점이 있었다.However, coal tar generated as a by-product of the steelmaking process contains a large amount of nitrogen compounds and sulfur compounds, which are not easy to decompose and separate, and thus cannot be used for the production of high value-added chemicals, and gaseous coke oven gas (COG) is also a high value chemical. There was a problem that cannot be used in the manufacture of the product.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 수첨 탈황/탈질 공정과 접촉 분해반응 공정을 하나의 통합공정인 수첨 탈황/탈질 분해반응 공정(수첨 처리 복합 반응공정)으로 대체할 수 있는 저유황, 저질소, 저공해의 고부가가치의 방향족 제품의 제조방법을 제공하고자 하는 것이다.Accordingly, the present invention has been made to solve the problems of the prior art as described above and the technical problem that has been requested from the past, the object of the present invention is the hydrodesulfurization desulfurization / denitrification process and the catalytic cracking reaction process is one integrated process To provide a low sulfur, low nitrogen, low pollution high value-added aromatic product that can be replaced by a denitrification decomposition reaction process (hydrogenation complex reaction process).
본 발명은 또한 콜타르를 원료로 사용하고 형상 선택성 촉매를 사용할 수 있는 방향족 제품의 제조방법을 제공하고자 하는 것이다.The present invention also aims to provide a method for producing an aromatic product which can use coal tar as a raw material and can use a shape selective catalyst.
본 발명은 또한 수첨 탈황/탈질 및 분해반응 효율이 뛰어난 방향족 제품의 제조방법을 제공하고자 하는 것이다.The present invention also aims to provide a method for producing an aromatic product having excellent hydrodesulfurization / denitrification and decomposition reaction efficiency.
본 발명은 또한 코크오븐가스를 수소 공급원으로 사용할 수 있는 방향족 제품의 제조방법을 제공하고자 하는 것이다.The present invention also seeks to provide a process for producing aromatic products which can use coke oven gas as a hydrogen source.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제1 측면은, 콜타르를 증류 분리하여 잔유와 유출유로 분리하는 단계(a); 및 상기 유출유를 형상 선택성 촉매의 존재 하에서 수첨 탈황/탈질 접촉 분해반응을 통해 황 화합물 및 질소 화합물 중에서 선택된 1종 이상을 제거하고 벤젠, 톨루엔 및 자일렌 중에서 선택된 1종 이상을 포함하는 방향족 제품으로 전환시키는 단계(b);를 포함하는 방향족 제품의 제조방법을 제공하는 것이다.As a technical means for achieving the above-described technical problem, the first aspect of the present invention, the step of distilling coal tar to separate the remaining oil and effluent oil (a); And removing the at least one selected from sulfur compounds and nitrogen compounds through hydrogenation desulfurization / denitrification catalytic decomposition in the presence of a shape-selective catalyst and to at least one selected from benzene, toluene and xylene. It provides a method of producing an aromatic product comprising the step (b) of the conversion.
본 발명의 일 실시예에 따르면, 상기 단계(a)의 형상 선택성 촉매는 주기율표의 6족, 8족 내지 10족 금속 중에서 선택된 1종 이상의 금속을 포함할 수 있다.According to one embodiment of the invention, the shape-selective catalyst of step (a) may comprise at least one metal selected from Group 6, Group 8 to Group 10 metals of the periodic table.
본 발명의 일 실시예에 따르면, 상기 단계(a)의 형상 선택성 촉매는 Ni2P, Co2P, Fe2P, MoP, WP, MoS2, Ni-MoS2, Ni-WS2 및 Co-MoS2 중에서 선택된 1종 이상을 포함할 수 있다.According to one embodiment of the invention, the shape-selective catalyst of step (a) is Ni 2 P, Co 2 P, Fe 2 P, MoP, WP, MoS 2 , Ni-MoS 2 , Ni-WS 2 and Co- It may include one or more selected from MoS 2 .
본 발명의 또 다른 일 실시예에 따르면, 상기 단계(a)의 형상 선택성 촉매는 Ni2P, Co2P, Fe2P, MoP, WP, MoS2, Ni-MoS2, Ni-WS2 및 Co-MoS2 중에서 선택된 1종 이상을 제올라이트, ZSM-5, 베타제올라이트(Beta Zeolite), Y-제올라이트, USY 제올라이트 및 모데나이트(Mordenite) 중에서 선택된 1종 이상의 형상 선택성 담체에 담지한 것일 수 있다.According to another embodiment of the present invention, the shape-selective catalyst of step (a) is Ni 2 P, Co 2 P, Fe 2 P, MoP, WP, MoS 2 , Ni-MoS 2 , Ni-WS 2 and At least one selected from Co-MoS 2 may be supported on at least one shape-selective carrier selected from zeolite, ZSM-5, beta zeolite, Y-zeolite, USY zeolite and mordenite.
본 발명의 또 다른 일 실시예에 따르면, 상기 단계(a)의 수첨 탈황/탈질 접촉 분해반응 공정은 200 내지 1,000℃의 온도와 10 내지 200기압의 압력에서 운전될 수 있다.According to another embodiment of the present invention, the hydrodesulfurization / denitrification catalytic decomposition process of step (a) may be operated at a temperature of 200 to 1,000 ℃ and a pressure of 10 to 200 atm.
본 발명의 또 다른 일 실시예에 따르면, 상기 단계(a)의 수첨 탈황/탈질 접촉 분해반응 공정은 상기 수첨 탈황/탈질 접촉 분해반응 공정의 수소 공급원으로서 코크오븐가스(coke oven gas)를 사용할 수 있다.According to another embodiment of the present invention, the hydrodesulfurization / denitrification catalytic cracking process of step (a) may use a coke oven gas as a hydrogen source of the hydrodesulfurization / denitrification catalytic cracking process. have.
본 발명의 또 다른 일 실시예에 따르면, 상기 수첨 탈황/탈질 접촉 분해반응은 탈황반응, 탈질소반응, 열분해 반응, 탈알킬화 반응, 이성질체화 반응, 트랜스알킬화 반응 및 알킬화 반응 중에서 선택된 1종 이상의 반응이 수행되는 것을 특징으로 한다.According to another embodiment of the present invention, the hydrodesulfurization / denitrification catalytic cracking reaction is one or more reactions selected from desulfurization, denitrification, pyrolysis, dealkylation, isomerization, transalkylation and alkylation. This is characterized in that it is performed.
본 발명의 또 다른 일 실시예에 따르면, 상기 방향족 제품의 제조방법은 회분식 반응기, 연속식 고정층 반응기 또는 연속식 유동층 반응기에서 수행될 수 있다.According to another embodiment of the invention, the method for producing the aromatic product may be carried out in a batch reactor, a continuous fixed bed reactor or a continuous fluidized bed reactor.
본 발명의 다른 일 측면은 상기 방향족 제품의 제조방법에 따라 제조된 방향족 제품을 제공할 수 있다.Another aspect of the present invention can provide an aromatic product prepared according to the method for producing an aromatic product.
본 발명에 따르면 콜타르를 원료로 사용하여 고부가 가치의 방향족 화합물을 제품으로 생산할 수 있는 방향족 제품의 제조방법을 제공할 수 있다.According to the present invention can provide a method for producing an aromatic product that can produce a high value-added aromatic compound as a product using coal tar as a raw material.
또한 본 발명에 따르면 수첨 탈황/탈질 반응공정과 접촉분해 반응공정을 하나의 통합공정인 수첨 탈황/탈질 분해반응 공정으로 대체할 수 있으며 경제적이며 효율적인 방향족 제품의 제조방법을 제공할 수 있다.According to the present invention, the hydrodesulfurization / denitrification reaction process and the catalytic decomposition process can be replaced by the hydrodesulfurization / desulfurization reaction process, which is an integrated process, and can provide an economical and efficient method for producing aromatic products.
또한 본 발명은 코크오븐가스를 수소 공급원으로 사용할 수 있는 방향족 제품의 제조방법을 제공할 수 있다.In another aspect, the present invention can provide a method for producing an aromatic product that can use the coke oven gas as a hydrogen source.
아울러 본 발명은 수첨 탈황/탈질 및 분해반응 효과가 뛰어난 저유황, 저질소, 저공해의 고부가가치의 방향족 제품의 제조방법을 제공할 수 있다.In addition, the present invention can provide a low sulfur, low nitrogen, low pollution high value-added aromatic product excellent in hydrogenation desulfurization / denitrification and decomposition reaction effect.
도 1은 본 발명에 따른 일 실시예를 나타내는 공정 개략도이다.1 is a process schematic showing one embodiment according to the present invention.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예 및 실시예를 상세히 설명한다. DETAILED DESCRIPTION Hereinafter, embodiments and embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following description is not intended to limit the present invention to specific embodiments, and it should be understood that the present invention covers all the transformations, equivalents, and substitutes included in the spirit and scope of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제1 측면은, 콜타르를 증류 분리하여 잔유와 유출유로 분리하는 단계(a); 및 상기 유출유를 형상 선택성 촉매의 존재 하에서 수첨 탈황/탈질 접촉 분해반응을 통해 황 화합물 및 질소 화합물 중에서 선택된 1종 이상을 제거하고 벤젠, 톨루엔 및 자일렌 중에서 선택된 1종 이상을 포함하는 방향족 제품으로 전환시키는 단계(b);를 포함하는 방향족 제품의 제조방법을 제공할 수 있다.As a technical means for achieving the above-described technical problem, the first aspect of the present invention, the step of distilling coal tar to separate the remaining oil and effluent oil (a); And removing the at least one selected from sulfur compounds and nitrogen compounds through hydrogenation desulfurization / denitrification catalytic decomposition in the presence of a shape-selective catalyst and to at least one selected from benzene, toluene and xylene. It can provide a method for producing an aromatic product comprising the step (b) of the conversion.
본 발명의 증류 분리 공정은 원료로 사용되는 콜타르를 비점 범위에 따라 분리하여 경질 유분은 벤젠, 톨루엔 및 자일렌 등의 방향족 제품을 생산하는 데에 사용하기 위한 것으로서, 콜타르 유분은 증류 분리 공정으로 유입되어 황 화합물, 질소 화합물 및 벤젠고리를 1개 또는 2개 갖는 방향족 화합물을 포함하는 유분인 유출유로 분리되고, 벤젠고리를 3개 이상 갖는 방향족 화합물을 포함하는 유분인 잔유로 분리된다.The distillation separation process of the present invention is to separate the coal tar used as a raw material according to the boiling point range and to use the light fraction to produce aromatic products such as benzene, toluene and xylene, the coal tar fraction is introduced into the distillation separation process The oil is separated into effluent oil, which is an oil containing a sulfur compound, a nitrogen compound, and an aromatic compound having one or two benzene rings, and separated into a residual oil, which is an oil containing an aromatic compound having three or more benzene rings.
본 발명의 수첨 탈황/탈질 분해반응 공정은 SOx 및 NOx의 발생이 매우 적은 저공해 방향족 제품을 생산하기 위하여 유분 중에 포함된 불순물인 황 화합물 및 질소 화합물을 제거하며, 벤젠고리를 1개 또는 2개 갖는 방향족 화합물을 접촉 분해반응하기 위한 단계로서, 수첨반응을 위한 상기 형상선택성 촉매의 존재 하에 상기 유출유와 수소를 반응시킴으로써 진행된다.Hydrogenation desulfurization / denitrification decomposition process of the present invention removes sulfur compounds and nitrogen compounds which are impurities contained in the oil to produce low pollution aromatic products with very low generation of SOx and NOx, and has one or two benzene rings. As a step for catalytic decomposition of an aromatic compound, it proceeds by reacting the effluent oil and hydrogen in the presence of the shape-selective catalyst for hydrogenation.
본 발명의 일 실시예에 따르면, 상기 수첨 탈황/탈질 분해반응 공정 단계의 형상 선택성 촉매는 주기율표의 6족, 8족 내지 10족 금속 중에서 선택된 1종 이상의 금속을 포함할 수 있고, 보다 바람직하게는 Ni2P, Co2P, Fe2P, MoP, WP, MoS2, Ni-MoS2, Ni-WS2 및 Co-MoS2 중에서 선택된 1종 이상을 포함할 수 있으며, 보다 더욱 바람직하게는 Ni2P, Co2P, Fe2P, MoP, WP, MoS2, Ni-MoS2, Ni-WS2 및 Co-MoS2 중에서 선택된 1종 이상을 제올라이트, ZSM-5, Y-제올라이트, USY 제올라이트, 베타제올라이트(Beta Zeolite) 및 모데나이트(Mordenite) 중에서 선택된 1종 이상의 형상 선택성 담체에 담지한 것일 수 있다.According to one embodiment of the invention, the shape selective catalyst of the hydrodesulfurization / denitrification decomposition process step may include at least one metal selected from Group 6, Group 8 to Group 10 metals of the periodic table, more preferably Ni 2 P, Co 2 P, Fe 2 P, MoP, WP, MoS 2 , Ni-MoS 2 It may include one or more selected from Ni-WS 2 and Co-MoS 2 , even more preferably Ni One or more selected from 2 P, Co 2 P, Fe 2 P, MoP, WP, MoS 2 , Ni-MoS 2 , Ni-WS 2 and Co-MoS 2 may be zeolite, ZSM-5, Y-zeolite, USY zeolite It may be supported on at least one shape-selective carrier selected from beta zeolite and mordenite.
또한 본 발명의 수첨 탈황/탈질 분해반응 공정은 10~200 기압의 수소 분압, 50~400 Nm3/kl의 수소량, 0.1~10 h-1의 공간속도(LHSV), 200~1,000℃의 온도의 조건 하에서 진행되는 것이 바람직하다. 이들 조건은 상기 황 화합물, 질소 화합물 및 벤젠고리를 1개 또는 2개 갖는 방향족 화합물을 수소화 처리하여 황이나 질소 등의 불순물을 제거하고 또한 접촉 분해반응을 수행하기에 적합하다. In addition, the hydrogenation desulfurization / denitrification decomposition process of the present invention is hydrogen partial pressure of 10 to 200 atm, hydrogen content of 50 to 400 Nm 3 / kl, space velocity (LHSV) of 0.1 ~ 10 h -1 , temperature of 200 ~ 1,000 ℃ It is preferable to proceed under the conditions of. These conditions are suitable for hydrotreating an aromatic compound having one or two sulfur compounds, nitrogen compounds, and benzene rings to remove impurities such as sulfur and nitrogen, and to carry out catalytic decomposition.
본 발명에 따르면, 상기 수첨 탈황/탈질 분해반응의 수소 공급원으로서 코크오븐가스(coke oven gas)를 사용할 수 있다.According to the present invention, coke oven gas may be used as a hydrogen source for the hydrodesulfurization / denitrification decomposition reaction.
본 발명의 수첨 탈황/탈질 분해반응 공정은 촉매의 존재 하에 수소와 반응시킴으로써 방향족 제품을 얻기 위한 공정으로서 벤젠고리를 1개 갖는 방향족 화합물을 포함하는 유분을 유출유로 분리하고, 황 화합물, 질소 화합물 및 벤젠고리를 2개 갖는 방향족 화합물을 포함하는 유분을 잔유로 분리한다.Hydrogenation desulfurization / denitrification decomposition process of the present invention is a process for obtaining an aromatic product by reacting with hydrogen in the presence of a catalyst to separate the oil containing an aromatic compound having one benzene ring with effluent oil, sulfur compounds, nitrogen compounds and The oil containing the aromatic compound having two benzene rings is separated with the residual oil.
상기 수첨 탈황/탈질 분해반응기 내에서는 방향족 성분의 탈황반응, 탈질소 반응, 열분해 반응, 탈알킬화 반응, 트랜스 알킬화 반응, 알킬화 반응, 및 이성칠체화 반응이 이루어지며, 이러한 반응 공정을 통하여 벤젠, 톨루엔, 자일렌과 같은 방향족 성분이 얻어진다.In the hydrodesulfurization / denitrification decomposition reactor, desulfurization reaction, denitrification reaction, pyrolysis reaction, dealkylation reaction, transalkylation reaction, alkylation reaction, and isomerization reaction of aromatic components are carried out, and through this reaction process, benzene, toluene, An aromatic component such as xylene is obtained.
본 발명의 또 다른 일 실시예에 따르면, 상기 방향족 제품의 제조방법은 회분식 반응기, 연속식 고정층 반응기 또는 연속식 유동층 반응기에서 수행될 수 있다.According to another embodiment of the invention, the method for producing the aromatic product may be carried out in a batch reactor, a continuous fixed bed reactor or a continuous fluidized bed reactor.
본 발명의 다른 일 측면은 상기 방향족 제품의 제조방법에 따라 제조된 방향족 제품을 제공할 수 있다.Another aspect of the present invention can provide an aromatic product prepared according to the method for producing an aromatic product.
도 1은 본 발명의 일 실시예에 따라 콜타르로부터 방향족 제품을 제조하는 구체적인 예를 개략적으로 나타낸 공정도이다.1 is a process diagram schematically showing a specific example of producing an aromatic product from coal tar according to an embodiment of the present invention.
도 1을 참조하면, 제철공정 중 야금용 코크스 제조 공정에서 생산되는 콜타르 유분(S1)은 황화합물, 질소화합물, 벤젠 고리를 1개 갖는 방향족 화합물, 벤젠고리를 2개 갖는 방향족 화합물 및 벤젠고리를 3개 이상 갖는 방향족 화합물을 조성성분으로 포함하는데, 상기 콜타르 유분(S1)은 증류 분리 공정(U1)으로 유입되어 황 화합물, 질소 화합물, 및 벤젠고리를 1개 또는 2개 갖는 방향족 화합물을 포함하는 유분인 유출유(S2)로 분리되고, 벤젠고리를 3개 이상 갖는 방향족 화합물을 포함하는 유분인 잔유(S3)로 분리된다.Referring to Figure 1, coal tar oil (S1) produced in the metallurgical coke manufacturing process of the steelmaking process is sulfur compound, nitrogen compound, aromatic compound having one benzene ring, aromatic compound having two benzene rings and benzene ring 3 It contains an aromatic compound having at least two as a component, the coal tar fraction (S1) is introduced into the distillation separation process (U1) oil fraction containing a sulfur compound, a nitrogen compound, and an aromatic compound having one or two benzene rings It is separated into phosphorus effluent oil (S2), and it is separated into residual oil (S3) which is an oil containing aromatic compound which has three or more benzene rings.
상기 유출유(S2)는 수첨 탈황/탈질 접촉 분해반응 공정(U2)에서 수소(S4)와 촉매 존재 하에서 반응하여 촉매 피독 성분인 황 화합물과 질소 화합물이 분리되고, 또한 촉매 존재 하에서 수소(S4)와 반응하여 벤젠, 톨루엔, 자일렌을 포함하는 방향족 제품(S5) 및 미전환 유분(S6)으로 전환 및 분리된다. 여기서 미전환 유분(S6)은 주로 황 화합물, 질소 화합물 및 벤젠고리를 2개 이상 갖는 방향족 화합물을 포함하는 유분이다.The effluent oil (S2) is reacted with hydrogen (S4) in the presence of a catalyst in a hydrodesulfurization / denitrification catalytic cracking process (U2) to separate a sulfur compound and a nitrogen compound, which are catalyst poisoning components, and hydrogen (S4) in the presence of a catalyst. And are converted and separated into aromatic products (S5) and unconverted fraction (S6), including benzene, toluene, xylene. The unconverted fraction (S6) is an oil mainly comprising an aromatic compound having two or more sulfur compounds, nitrogen compounds and benzene rings.
이하 본 발명의 구성을 아래의 실시예를 통해 보다 구체적으로 설명하지만, 본 발명에 이에 제한되는 것은 아니다.Hereinafter, the configuration of the present invention will be described in more detail with reference to the following examples, but is not limited thereto.
[[ 실시예Example ]]
제조예Manufacturing example 1. One. NiMoS2NiMoS2 /Of ZSMZSM -5 촉매의 합성Synthesis of -5 Catalyst
수첨 기능성 활성촉매인 NiMoS2를 제올라이트 ZSM-5에 담지한 촉매인 NiMoS2/ZSM-5 촉매를 다음과 같이 제조하였다. NiMoS 2 / ZSM-5 catalyst, which is a catalyst in which NiMoS 2 is a hydrogenated functional active catalyst supported on zeolite ZSM-5, was prepared as follows.
형상 선택성촉매 제조를 위한 담체는 상용 제올라이트(ZSM-5, zeolyst사)를 이용하였다. NiMoS2 촉매 담지를 위하여 제올라이트 담체상에 8wt%의 Mo 성분과 3wt% Ni 성분을 함침법으로 담지하였다. 이를 위하여, (NH4)6Mo7O244H2O 수용액과 Ni(NO3)26H2O (all Aldrich) 수용액을 순차적으로 함침하였다. 각각의 경우 함침 후에 상온에서 4시간, 120℃에서 12시간 동안의 건조를 수행하였다. 이후 500℃에서 4시간 소성하여 NiMoS2/ZSM-5 촉매를 합성하였다. As a carrier for the preparation of the shape-selective catalyst, a commercial zeolite (ZSM-5, zeolyst) was used. In order to support the NiMoS 2 catalyst, 8 wt% Mo and 3 wt% Ni were supported on the zeolite carrier by impregnation. To this end, (NH 4 ) 6 Mo 7 O 24 4H 2 O aqueous solution and Ni (NO 3 ) 2 6H 2 O (all Aldrich) aqueous solution was impregnated sequentially. In each case, drying was performed for 4 hours at room temperature and 12 hours at 120 ° C after impregnation. After firing at 500 ℃ for 4 hours to synthesize a NiMoS 2 / ZSM-5 catalyst.
반응 평가적용 시 황화처리를 위하여 400℃ 하에서 10% H2S/H2 (50 ml/min) 조건으로 4시간 동안 전처리를 수행하였다. When the reaction evaluation was applied, the pretreatment was performed for 4 hours under a condition of 10% H 2 S / H 2 (50 ml / min) at 400 ° C. for sulfidation.
제조예Manufacturing example 2. 2. NiNi 22 PP /Of ZSMZSM -5의 합성Synthesis of -5
수첨 기능성 활성촉매인 Ni2P를 제올라이트 ZSM-5에 담지시킨 형상 선택성촉매인 Ni2P/ZSM-5를 다음과 같이 제조하였다. Hydrogenated functionality to an active catalyst in which the shape-selective catalyst, Ni 2 P / ZSM-5 supported on the Ni 2 P zeolite ZSM-5 was prepared as follows.
니켈 아세틸아세테이트 0.38 g(1.5 mmol Ni loading), 계면활성제 및 인화환원제로 사용된 트라이옥틸포스핀(trioctylphosphine, TOP) 7mL를 70℃에서 10분 혼합하여 이를 300℃에서 교반 중인 트라이옥틸포스핀옥사이드(trioctylphosphine oxide, TOPO) 5g 용액에 빠르게 주입하고 300℃에서 2시간 유지한다. 반응 후 용액에 메탄올 50mL를 주입하여 침전물을 형성시키고 원심분리기로 분리한다. 침전물을 아세톤으로 3번 세척 및 원심분리기를 사용하여 잔여 TOP와 TOPO를 없앤다. 최종 침전물을 아세톤으로 분산시키고 분산시킨 용액을 제올라이트 ZSM-5 지지체 1g에 함침시킨 후 상온에서 건조시켜 촉매 Ni2P/ZSM-5를 제조하였다.0.38 g (1.5 mmol Ni loading) of nickel acetylacetate, 7 mL of trioctylphosphine (TOP) used as a surfactant and a phosphorus reducing agent, was mixed at 70 ° C. for 10 minutes, and then trioctylphosphine oxide was stirred at 300 ° C. ( Rapid injection into 5 g solution of trioctylphosphine oxide (TOPO) and maintained at 300 ° C for 2 hours. After the reaction, 50 mL of methanol was added to the solution to form a precipitate, which was separated by centrifugation. The precipitate is washed three times with acetone and centrifuged to remove residual TOP and TOPO. The final precipitate was dispersed in acetone and the dispersed solution was impregnated into 1 g of a zeolite ZSM-5 support, followed by drying at room temperature to prepare a catalyst Ni 2 P / ZSM-5.
반응 평가적용 시 추가적인 황화처리를 위하여 400℃ 하에서 10% H2S/H2 (50 ml/min) 조건으로 4시간 동안 전처리를 수행하였다. When the reaction evaluation was applied, pretreatment was performed for 4 hours under 400% of 10% H 2 S / H 2 (50 ml / min) for further sulfidation.
실시예Example 1 One
본 발명의 방법에 따라 하기 표 1에 나타난 바와 같이 콜타르를 원료로, 이를 상압 조건에서 단증류 분리하여 비점이 250℃까지의 범위에 속하는 유분을 분리하여 2환 방향족까지 얻은 후 반응에 적용하였다. According to the method of the present invention, as shown in Table 1, coal tar was used as a raw material, and this was subjected to monodistillation under atmospheric pressure to separate an oil having a boiling point up to 250 ° C. to obtain a bicyclic aromatic, and then applied to the reaction.
실시예Example 2 2
상기 실시예 1에서 얻은 단증류 결과물을 수첨 탈황/탈질 접촉 분해반응 (수첨 처리 복합반응)을 통해 방향족 제품을 제조하였다.The aromatic distillate obtained in Example 1 was prepared through hydrodesulfurization / denitrification catalytic decomposition (hydrogenation complex reaction).
수첨 탈황/탈질 접촉 분해반응은 제조예 1에서 제조한 촉매를 사용하고, 고정 층 반응 장치를 사용하여 반응실험(370℃, 30 kg/cm2, H2/HC 5.3, LHSV 1.0 hr-1)을 수행하였고, 대표적인 수율 구조는 하기 표 2와 같다.Hydrodesulfurization / denitrification catalytic cracking reaction using the catalyst prepared in Preparation Example 1, using a fixed bed reaction apparatus (370 ℃, 30 kg / cm 2 , H 2 / HC 5.3, LHSV 1.0 hr -1 ) It was carried out, the typical yield structure is shown in Table 2 below.
실시예Example 3 3
상기 실시예 1에서 얻은 단증류 결과물을 수첨 탈황/탈질 접촉 분해반응 (수첨 처리 복합반응)을 통해 방향족 제품을 제조하였다.The aromatic distillate obtained in Example 1 was prepared through hydrodesulfurization / denitrification catalytic decomposition (hydrogenation complex reaction).
수첨 탈황/탈질 접촉 분해반응은 제조예 2에서 제조한 촉매를 사용하고, 고정 층 반응 장치를 사용하여 반응실험(370℃, 30 kg/cm2, H2/HC 5.3, LHSV 1.0 hr-1)을 수행하였고, 대표적인 수율 구조는 하기 표 3과 같다.Hydrodesulfurization / denitrification catalytic cracking reaction using the catalyst prepared in Preparation Example 2, using a fixed bed reaction apparatus (370 ℃, 30 kg / cm 2 , H 2 / HC 5.3, LHSV 1.0 hr -1 ) It was carried out, the typical yield structure is shown in Table 3 below.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. For example, each component described as a single entity may be distributed and implemented, and components described as being distributed may also be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
U1: 증류 분리 공정
U2: 수첨 탈황/탈질 접촉 분해반응 공정(수첨 처리 복합 반응공정)U1: Distillation Separation Process
U2: Hydrodesulfurization / Denitrification Catalytic Decomposition Process (Hydraulic Treatment Complex Reaction Process)
Claims (9)
상기 유출유를 형상 선택성 촉매의 존재 하에서 수첨 탈황/탈질 접촉 분해반응을 통해 황 화합물 및 질소 화합물 중에서 선택된 1종 이상을 제거하고 벤젠, 톨루엔 및 자일렌 중에서 선택된 1종 이상을 포함하는 방향족 제품으로 전환시키는 단계(b);를 포함하며,
상기 형상 선택성 촉매는 Ni2P, Co2P, Fe2P, MoP, WP, MoS2, Ni-MoS2, Ni-WS2 및 Co-MoS2 중에서 선택된 1종 이상을 제올라이트, ZSM-5, 베타제올라이트(Beta Zeolite), Y-제올라이트, USY 제올라이트 및 모데나이트(Mordenite) 중에서 선택된 1종 이상의 형상 선택성 담체에 담지한 것인, 방향족 제품의 제조방법.Distilling coal tar to separate the remaining oil and the effluent oil (a); And
The effluent oil is removed in the presence of a shape-selective catalyst to remove at least one selected from sulfur compounds and nitrogen compounds through hydrogenation desulfurization / denitrification catalytic decomposition to an aromatic product containing at least one selected from benzene, toluene and xylene. (B);
The shape-selective catalyst is at least one selected from Ni 2 P, Co 2 P, Fe 2 P, MoP, WP, MoS 2 , Ni-MoS 2 , Ni-WS 2 and Co-MoS 2 zeolite, ZSM-5, A method for producing an aromatic product, which is supported on at least one shape-selective carrier selected from beta zeolite, Y-zeolite, USY zeolite and mordenite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100140194A KR101273343B1 (en) | 2010-12-31 | 2010-12-31 | Process for preparing aromatics using shape selective catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100140194A KR101273343B1 (en) | 2010-12-31 | 2010-12-31 | Process for preparing aromatics using shape selective catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120078032A KR20120078032A (en) | 2012-07-10 |
KR101273343B1 true KR101273343B1 (en) | 2013-06-11 |
Family
ID=46711436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100140194A KR101273343B1 (en) | 2010-12-31 | 2010-12-31 | Process for preparing aromatics using shape selective catalyst |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101273343B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101452893B1 (en) * | 2012-12-21 | 2014-10-23 | 주식회사 포스코 | Catalyst for preparation of btx, preparing method of catalyst and preparing method of btx |
CN105879898A (en) * | 2016-02-06 | 2016-08-24 | 温州大学 | Ni2P/zeolite catalyst and preparation and application thereof |
KR20190088252A (en) * | 2018-01-18 | 2019-07-26 | 에쓰대시오일 주식회사 | Selective hydrotreating method for preparing light aromatic hydrocarbons from polycyclic aromatic hydrocarbons with high nitrogen content |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101297107B1 (en) * | 2011-12-27 | 2013-08-21 | 주식회사 포스코 | Transalkylation Catalyst for Producing Mixed Xylene from Aromatic Compounds Containing Sulfur Impurity |
US9073805B2 (en) | 2013-11-19 | 2015-07-07 | Uop Llc | Hydrocracking process for a hydrocarbon stream |
US9067853B2 (en) | 2013-11-19 | 2015-06-30 | Uop Llc | Process for selectively dealkylating aromatic compounds |
US9162955B2 (en) | 2013-11-19 | 2015-10-20 | Uop Llc | Process for pyrolysis of a coal feed |
CN106582742B (en) * | 2015-10-15 | 2019-11-08 | 中国石油化工股份有限公司 | Polycyclic aromatic hydrocarbon hydrocatalyst for saturating and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900004493B1 (en) * | 1984-06-22 | 1990-06-28 | 신니쓰데스 가가꾸 가부시끼가이샤 | A process for the treatment of coaltar pitch hydrogenation |
WO2005023416A1 (en) | 2003-04-07 | 2005-03-17 | Board Of Regents, The University Of Texas System | Molybdenum sulfide/carbide catalysts |
KR20090020776A (en) * | 2007-08-24 | 2009-02-27 | 에스케이에너지 주식회사 | Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed |
-
2010
- 2010-12-31 KR KR1020100140194A patent/KR101273343B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900004493B1 (en) * | 1984-06-22 | 1990-06-28 | 신니쓰데스 가가꾸 가부시끼가이샤 | A process for the treatment of coaltar pitch hydrogenation |
WO2005023416A1 (en) | 2003-04-07 | 2005-03-17 | Board Of Regents, The University Of Texas System | Molybdenum sulfide/carbide catalysts |
KR20090020776A (en) * | 2007-08-24 | 2009-02-27 | 에스케이에너지 주식회사 | Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101452893B1 (en) * | 2012-12-21 | 2014-10-23 | 주식회사 포스코 | Catalyst for preparation of btx, preparing method of catalyst and preparing method of btx |
CN105879898A (en) * | 2016-02-06 | 2016-08-24 | 温州大学 | Ni2P/zeolite catalyst and preparation and application thereof |
KR20190088252A (en) * | 2018-01-18 | 2019-07-26 | 에쓰대시오일 주식회사 | Selective hydrotreating method for preparing light aromatic hydrocarbons from polycyclic aromatic hydrocarbons with high nitrogen content |
KR102063798B1 (en) | 2018-01-18 | 2020-01-08 | 에쓰대시오일 주식회사 | Selective hydrotreating method for preparing light aromatic hydrocarbons from polycyclic aromatic hydrocarbons with high nitrogen content |
Also Published As
Publication number | Publication date |
---|---|
KR20120078032A (en) | 2012-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101273343B1 (en) | Process for preparing aromatics using shape selective catalyst | |
KR101791051B1 (en) | Method of the convrsion of polycyclic aromatic hydrocarbons into btx-rich monocyclic aromatic hydrocarbons | |
KR100557558B1 (en) | Process for Producing Aromatic Hydrocarbons and Liquefied Petroleum Gas from Hydrocarbon Mixture | |
KR101234448B1 (en) | Process for The Preparation of Aromatic Hydrocarbons and Liquefied Petroleum Gas from Hydrocarbon Mixture | |
JP5820890B2 (en) | Method for producing high-value-added aromatic and olefin products from fractions containing aromatic compounds | |
KR101503069B1 (en) | Production of valuable aromatics and olefins from FCC light cycle oil | |
CN101172250B (en) | Light hydrocarbon aromatization catalyst and its preparing process | |
KR101743293B1 (en) | Hydrocracking catalyst for preparing valuable light aromatic hydrocarbons from polycyclic aromatic hydrocarbons | |
KR101753664B1 (en) | Method for the conversion of polycyclic aromatic hydrocarbons into BTX-rich mono-aromatic hydrocarbons using meso-porous zeolite | |
KR20120042687A (en) | The method for producing valuable aromatics and light paraffins from hydrocarbonaceous oils derived from oil, coal or wood | |
KR20120029143A (en) | The method for producing valuable aromatics and olefins from hydrocarbonaceous oils derived from coal or wood | |
KR20120078006A (en) | Process for preparing aromatics using transition metal sulphide catalyst | |
KR101336981B1 (en) | The method of aromatic compounds production using tungsten oxide titania catalyst for hydrodeoxygenation of Guaiacol | |
KR20140045927A (en) | Method for producing single-ring aromatic hydrocarbons | |
CN101428235A (en) | Regeneration method of molecular sieve catalysts | |
JP2023545175A (en) | Method and system for processing hydrocarbon-containing mixtures | |
KR101241080B1 (en) | Process for producing aromatics using transition metal phosphide catalyst | |
JP5180449B2 (en) | Process for producing lower olefins from methanol or dimethyl ether | |
KR101173345B1 (en) | The method for producing valuable aromatics and olefin from hydrocarbonaceous oils comprising aromatic compounds | |
KR20200055472A (en) | Method for Benzene, Toluene and Xylene from pyrolysis fuel oil | |
KR20150076313A (en) | Method for Producing Valuable Aromatic From Hydrocarbons | |
US10851313B2 (en) | Method of producing lower olefin and monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and device for producing lower olefin and monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms | |
CN1978411B (en) | Combined technological low-molecular olefins | |
CN108273546B (en) | Preparation method of catalyst for preparing propylene by catalytic cracking of naphtha | |
KR101133369B1 (en) | Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160325 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180411 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190408 Year of fee payment: 7 |