KR20200055472A - Method for Benzene, Toluene and Xylene from pyrolysis fuel oil - Google Patents

Method for Benzene, Toluene and Xylene from pyrolysis fuel oil Download PDF

Info

Publication number
KR20200055472A
KR20200055472A KR1020180139163A KR20180139163A KR20200055472A KR 20200055472 A KR20200055472 A KR 20200055472A KR 1020180139163 A KR1020180139163 A KR 1020180139163A KR 20180139163 A KR20180139163 A KR 20180139163A KR 20200055472 A KR20200055472 A KR 20200055472A
Authority
KR
South Korea
Prior art keywords
reaction
toluene
xylene
zeolite
fuel oil
Prior art date
Application number
KR1020180139163A
Other languages
Korean (ko)
Other versions
KR102295333B1 (en
Inventor
이진석
최현철
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020180139163A priority Critical patent/KR102295333B1/en
Publication of KR20200055472A publication Critical patent/KR20200055472A/en
Application granted granted Critical
Publication of KR102295333B1 publication Critical patent/KR102295333B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/68Aromatisation of hydrocarbon oil fractions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a method for manufacturing benzene, toluene, and xylene, comprising: a first step of performing a selective hydrogenation reaction with the entire amount of pyrolyzed fuel oil, which is a by-product generated in a naphtha cracking center, as a raw material; and a second step of performing a hydrocracking reaction of the entire amount of reactants in the first step. According to the present invention, it is possible to solve the high heat of reaction generated during the hydrogenation reaction, suppress the rapid deactivation of a catalyst generated during the hydrocracking reaction with aromatic compounds with at least three rings, and secure an economic effect of not having to add a distillation process separately in order to reduce polycyclic aromatic compounds.

Description

열분해 연료유를 이용한 벤젠, 톨루엔, 자일렌 제조방법{Method for Benzene, Toluene and Xylene from pyrolysis fuel oil}Method for producing benzene, toluene, and xylene using pyrolysis fuel oil {Method for Benzene, Toluene and Xylene from pyrolysis fuel oil}

본 발명은 나프타 분해 센터(NCC, Naphtha cracking center)의 부산물로 생성되는 열분해 연료유(PFO, Pyrolysis fuel oil)로부터 고부가가치를 가진 벤젠, 톨루엔, 자일렌(BTX) 제조방법에 관한 것으로, 더욱 구체적으로는 다환 방향족 화합물을 포함하는 열분해 연료유를 원료로 활용하여 순차적으로 선택적 수소첨가반응 및 수소첨가분해반응을 통하는 것을 특징으로 하는 벤젠, 톨루엔, 자일렌 제조방법에 관한 것이다.The present invention relates to a method for producing benzene, toluene, and xylene (BTX) having high added value from pyrolysis fuel oil (PFO) generated as a by-product of a naphtha cracking center (NCC), more specifically As a raw material, a method for producing benzene, toluene, and xylene, which is characterized in that it sequentially undergoes a selective hydrogenation reaction and a hydrolysis reaction by utilizing a pyrolysis fuel oil containing a polycyclic aromatic compound as a raw material.

나프타는 석유화학공업에서 매우 중요한 위치를 차지하는데, 이 나프타를 원료로 에틸렌, 프로필렌, 부타디엔, 벤젠, 톨루엔, 자일렌 등의 석유화학 기초원료뿐만 아니라 합성수지, 염료, 의약품 등 광범위한 분야의 석유화학 제품을 만들기 때문이다. 이러한 나프타의 수요는 꾸준히 증가하였지만, 이러한 나프타를 통한 제조 기술들은 원유의 상압 증류단계에서 생산되는 좁은 비점범위의 유분인 나프타만을 이용하는 한계가 있었고, 원유 가격의 상승 등으로 세계시장의 나프타 수요증가에 대응할 수 없는 문제가 있었다. Naphtha occupies a very important position in the petrochemical industry. The naphtha is a raw material for petrochemicals such as ethylene, propylene, butadiene, benzene, toluene, and xylene, as well as petrochemical products in a wide range of fields including synthetic resins, dyes, and pharmaceuticals. Because it makes. Although the demand for naphtha has steadily increased, manufacturing techniques using naphtha have limited use of only naphtha, a fraction of a narrow boiling range produced in the atmospheric distillation stage of crude oil, and increase in naphtha demand in the global market due to an increase in crude oil prices. There was an unresponsive problem.

이에 대응하여, 나프타를 원료로 800℃이상의 고온 열분해하는 분해공정인 나프타 분해시설의 공정 시 생기는 부산물을 이용하여 다양한 방향족 제품생산을 위한 원료로 적용하는 연구가 수행되고 있으며, 특히, 나프타 분해 센터 시 가솔린 정유탑의 탑저부위에서 필수적으로 발생하게 되는 부산물로서 가격이 저렴한 열분해 연료유를 이용하려는 연구가 진행되고 있다. In response to this, research has been conducted to apply naphtha as a raw material for the production of various aromatic products using by-products generated during the process of decomposition of a naphtha decomposition facility, which is a high-temperature pyrolysis process of 800 ° C or more as a raw material. Research is being conducted to use low-cost pyrolysis fuel oil as a by-product that is essentially generated at the bottom of the gasoline refinery tower.

예를 들어, 제올라이트 베타 및 제올라이트 ZSM-5의 복합 제올라이트 담체에 VIII족 및 VIB족 금속을 담지한 촉매를 이용하여 상기의 열분해 연료유에 포함된 다환 방향족 탄화수소로부터 벤젠, 톨루엔, 자일렌 함량이 증가된 경방향족 탄화수소를 제조하는 방법이 개발되었다. For example, the benzene, toluene, and xylene contents are increased from the polycyclic aromatic hydrocarbons contained in the pyrolysis fuel oil by using catalysts carrying Group VIII and VIB metals on the composite zeolite support of zeolite beta and zeolite ZSM-5. A method for producing light aromatic hydrocarbons has been developed.

또한, 아연 및 란탄이 합침된 나노크기 결정의 제올라이트 촉매를 이용하는 방법이나, 2환식 이상의 방향족 화합물을 다량 포함하는 유분을 증류로 분리한 유출유를 형상 선택성 촉매의 존재하에서 수소첨가 탈황/탈질 수소첨가분해반응으로 황 또는 질소 화합물 중 1종을 제거하고 벤젠, 톨루엔 및 자일렌 중 1종 이상의 방향족 제품으로 전환시켜 제조하는 방법도 연구되었다.In addition, a method using a nano-sized zeolite catalyst in which zinc and lanthanum are impregnated, or a effluent oil obtained by distilling off oil containing a large amount of a bicyclic aromatic compound by distillation is hydrogenated and desulfurized / denitrified hydrogenated in the presence of a shape-selective catalyst. A method of manufacturing by removing one of the sulfur or nitrogen compounds in a decomposition reaction and converting it to one or more aromatic products of benzene, toluene and xylene was also studied.

그러나 이러한 제올라이트를 지지체로 활용한 기술들은 제올라이트의 표면산점의 세기가 강하여 수소첨가분해 반응 시 코크가 다량 생성되어 산점을 막음으로써 촉매 활성을 떨어 뜨리는 문제가 있었고, 특히 고리가 3개 이상인 방향족 화합물과의 반응 시 촉매의 반응이 급격히 비활성화 되는 문제점을 가지고 있었다.However, the techniques using such a zeolite as a support have a problem in that the strength of the surface acid point of the zeolite is strong, so that a large amount of coke is generated during the hydrocracking reaction to block the acid point, thereby reducing the catalytic activity. The reaction of the catalyst had a problem in that the reaction was rapidly deactivated.

이에, 본 발명에서는 원료로서 나프타 분해 센터의 부산물인 열분해 연료유에 별다른 추가 공정없이 전량을 이용하여, 선택적 수소첨가반응을 통해 단일환 방향족 화합물로 전환한 뒤, 상기의 반응 생성물에 수소첨가분해반응을 통해 고부가가치를 지닌 벤젠, 톨루엔 및 자일렌을 생성하는 제조방법으로 촉매의 비활성화를 억제하면서 고리가 3개 이상인 다환 방향족 화합물을 저감할 필요없이 공정의 경제성을 개선할 수 있는 벤젠, 톨루엔, 자일렌 제조방법을 제공하는데 있다.Thus, in the present invention, the whole product is used as a raw material in the pyrolysis fuel oil, which is a by-product of the naphtha cracking center, and the whole product is converted into a monocyclic aromatic compound through a selective hydrogenation reaction without any additional process, and then the hydrolysis reaction is performed on the reaction product. It is a manufacturing method that produces high value-added benzene, toluene, and xylene. While suppressing catalyst deactivation, benzene, toluene, and xylene that can improve the economic efficiency of the process without reducing polycyclic aromatic compounds having three or more rings It is to provide a manufacturing method.

대한민국 등록특허공보 제10-1815056호(2017.12.28)Republic of Korea Registered Patent Publication No. 10-1815056 (Dec. 28, 2017) 대한민국 공개특허공보 제10-2018-0045594호(2018.05.04)Republic of Korea Patent Publication No. 10-2018-0045594 (2018.05.04) 대한민국 공개특허공보 제10-2014-0068598호(2014.06.09)Republic of Korea Patent Publication No. 10-2014-0068598 (2014.06.09)

본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 고안된 것으로, 본 발명의 목적은 나프타 분해 센터의 부산물인 열분해 연료유의 전량을 원료로 이용하여 선택적 수소첨가반응 시키는 1단계 및 상기 단계의 반응 생성물의 전량을 원료로 이용하여 수소첨가분해반응 시키는 2단계를 통하여, 열분해 연료유에 포함된 다환 방향족 화합물을 저감하고 추가 증류 공정 없이, 수소첨가분해반응에서 발생하는 높은 반응열 문제를 해소하며, 촉매의 급격한 비활성화를 억제할 수 있는 벤젠, 톨루엔, 자일렌 제조방법을 제공하는데 있다.The present invention was designed to solve the problems of the prior art described above, and the object of the present invention is to perform the selective hydrogenation reaction using the entire amount of pyrolysis fuel oil, which is a by-product of the naphtha cracking center, as a raw material, and of the reaction products of the above steps. Through the two steps of hydrogenation and decomposition reaction using the whole amount as a raw material, the polycyclic aromatic compound contained in the pyrolysis fuel oil is reduced and the high reaction heat problem arising from the hydrolysis reaction is solved without additional distillation process, and the catalyst is rapidly deactivated. It is to provide a method for producing benzene, toluene, and xylene that can suppress.

본 발명은, 상기 목적을 달성하기 위하여, 나프타 분해 센터에서 생성된 부산물인 열분해 연료유를 원료로 이용하여, 상기의 원료 전량을 선택적 수소첨가반응 시키는 제1단계, 상기의 제1단계의 반응물 전량을 수소첨가분해반응 시키는 제2단계를 포함하는 벤젠, 톨루엔, 자일렌 제조방법을 제공한다.In order to achieve the above object, the present invention uses the pyrolysis fuel oil, which is a by-product generated in the naphtha cracking center, as a raw material, and performs the first step of selectively hydrogenating the whole raw material, and the reactant amount of the first step. It provides a benzene, toluene, xylene production method comprising a second step of the hydrocracking reaction.

여기서, 상기의 열분해 연료유는 나프타 분해 센터에서 생선된 부산물로서, 별도의 분리단계 없이 상기의 열분해 연료유 전량을 사용하여도 본 발명이 이루고자 하는 효과를 얻을 수 있으며, 상기 열분해 연료유는 2환 이상의 방향족 화합물이 50% 이상을 포함하는 것이 바람직하다.Here, the pyrolysis fuel oil is a by-product that is fished at the naphtha cracking center, and the effect of the present invention can be achieved even when the total amount of the pyrolysis fuel oil is used without a separate separation step. It is preferable that the above aromatic compound contains 50% or more.

상기 제1단계의 선택적 수소첨가반응은 NiMo/Al2O3 또는 CoMo/Al2O3 촉매를 사용하고, 상기 제2단계 수소첨가분해반응은 NiMo/제올라이트 또는 CoMo/제올라이트 촉매를 사용하고, 본 발명의 상기 제1단계 및 상기 제2단계는 고정층 반응기에서 수행된다.The selective hydrogenation of the first step uses NiMo / Al 2 O 3 or CoMo / Al 2 O 3 catalyst, and the second step of the hydrocracking reaction uses NiMo / zeolite or CoMo / zeolite catalyst. The first step and the second step of the invention are carried out in a fixed bed reactor.

본 발명은, 상기 제1단계의 NiMo/Al2O3 또는 CoMo/Al2O3 촉매를 열분해 연료유에 첨가하여 선택적 수소첨가반응을 진행할 수 있으며, 상기의 반응을 통하여 고리가 3개 이상인 다환 방향족 화합물을 1환 또는 2환 방향족 화합물로 전환한다. In the present invention, the NiMo / Al 2 O 3 or CoMo / Al 2 O 3 catalyst of the first step can be added to the pyrolysis fuel oil to perform a selective hydrogenation reaction, and polycyclic aromatics having three or more rings through the above reaction The compound is converted to a monocyclic or bicyclic aromatic compound.

제1단계 공정 : PFO + H2 → 1환 또는 2환 방향족 화합물First step process: PFO + H 2 → monocyclic or bicyclic aromatic compounds

본 발명은, 상기 제2단계의 NiMo/제올라이트 또는 CoMo/제올라이트 촉매를 제1단계 반응 생성물 전량에 첨가하여 수소첨가분해반응을 진행할 수 있으며, 상기의 반응을 통하여 벤젠, 톨루엔, 자일렌을 포함한 단일환 방향족 화합물을 제조할 수 있다.In the present invention, the hydrolysis and decomposition reaction may be performed by adding the NiMo / zeolite or CoMo / zeolite catalyst of the second step to the entire amount of the first step reaction product, and the steps including benzene, toluene, and xylene may be performed through the reaction. Monocyclic aromatic compounds can be prepared.

제2단계 공정 : 1환 또는 2환 방향족 화합물 + H2 → BTX(벤젠, 톨루엔, 자일렌)Second step process: monocyclic or bicyclic aromatic compounds + H 2 → BTX (benzene, toluene, xylene)

상기의 제2단계에서의 제올라이트는 ZSM-5 제올라이트, 베타 제올라이트, 모데나이트 제올라이트, Y 제올라이트 중에서 어느 하나를 사용한다.The zeolite in the second step uses any one of ZSM-5 zeolite, beta zeolite, mordenite zeolite, and Y zeolite.

상기의 제2단계 공정에서 수소첨가분해반응 시 미전환 된 탄소수 10개 이상의 방향족 화합물은 수소첨가분해 반응으로 재순환시켜 벤젠, 톨루엔, 자일렌으로 전환시키는 단계를 포함한다.In the second step process, the aromatic compound having 10 or more unconverted carbon atoms during the hydrocracking reaction is recycled to the hydrocracking reaction to convert to benzene, toluene, and xylene.

상술한 바와 같이, 본 발명의 벤젠, 톨루엔, 자일렌 제조방법은, 열분해 연료유에 포함된 다량의 다환 방향족 화합물을 선택적 수소화 반응을 통해 1환 또는 2환 방향족 화합물로 전환 후 수소첨가분해반응 시 촉매의 비활성화 없이 고부가가치를 지닌 벤젠, 톨루엔, 자일렌을 제조하는 방법에 관한 것으로, 수소화 반응시 발생하는 높은 반응열의 열폭주(thermal runaway) 문제를 해소하였고, 특히 3환 이상의 방향족 화합물과의 수소첨가분해반응 시 촉매의 급격한 비활성화를 억제하였으며, 이로 인해 3환 이상의 다환 방향족 화합물의 저감을 위해 별도로 증류공정을 추가하지 않아도 되어 공정 설비의 투자비용 및 운전 비용 등의 절감으로 경제적인 효과를 가지는 벤젠, 톨루엔, 자일렌 제조방법을 제공할 수 있다.As described above, the method for producing benzene, toluene, and xylene of the present invention converts a large amount of polycyclic aromatic compounds contained in a pyrolysis fuel oil into a monocyclic or bicyclic aromatic compound through a selective hydrogenation reaction, and then catalyzes the hydrolysis reaction It relates to a method for producing benzene, toluene, and xylene having high added value without deactivation, and solves the problem of thermal runaway of high reaction heat generated during the hydrogenation reaction, and in particular, hydrogenation with 3 or more aromatic compounds During the decomposition reaction, the rapid deactivation of the catalyst was suppressed, and as a result, there was no need to add a distillation process separately to reduce the polycyclic aromatic compound of three or more rings. Toluene and xylene production methods can be provided.

도 1은 PFO의 선택적 수소첨가반응 후, 수소첨가분해반응시킨 본 발명의 실시예 1의 전환효율을 나타내는 그래프이다.
도 2는 PFO 전량을 직접 수소첨가분해반응시킨 본 발명의 비교예 1의 전환효율을 나타내는 그래프이다.
도 3은 3환 방향족이 5.2%인 PFO 전량을 직접 수소첨가분해반응시킨 본 발명의 비교예 2의 전환효율을 나타내는 그래프이다.
도 4는 3환 방향족이 1.9%인 PFO 전량을 직접 수소첨가분해반응시킨 본 발명의 비교예 3의 전환효율을 나타내는 그래프이다.
1 is a graph showing the conversion efficiency of Example 1 of the present invention after the selective hydrogenation reaction of the PFO, followed by a hydrocracking reaction.
2 is a graph showing the conversion efficiency of Comparative Example 1 of the present invention in which the total amount of PFO is directly hydrolyzed.
3 is a graph showing the conversion efficiency of Comparative Example 2 of the present invention in which the total amount of PFO having a tricyclic aromatic of 5.2% is directly hydrolyzed.
4 is a graph showing the conversion efficiency of Comparative Example 3 of the present invention in which the total amount of PFO having tricyclic aromatics is 1.9% is directly hydrocracking.

이하, 본 발명의 바람직한 실시예를 상세히 설명하기로 하지만, 본 발명의 범위가 하기 실시예들에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail, but the scope of the present invention is not limited to the following embodiments.

본 발명은, 나프타 분해 센터에서 생성된 부산물인 열분해 연료유를 원료로 이용하여, 상기의 원료 전량을 선택적 수소첨가반응 시켜 고리가 3개 이상인 다환 방향족 화합물을 고리가 1개 또는 2개인 방향족 화합물로 전환하는 제1단계, 상기의 제1단계의 반응물 전량을 수소첨가분해반응 시키는 제2단계로 벤젠, 톨루엔, 자일렌을 제조하는 방법을 포함하는 단일환 방향족 화합물의 제조방법을 제공할 수 있다.The present invention, by using the thermal decomposition fuel oil, a by-product generated in the naphtha cracking center, as a raw material, by selectively hydrogenating the entire amount of the raw material to a polycyclic aromatic compound having three or more rings as an aromatic compound having one or two rings In the first step of converting, the second step of hydrocracking the entire amount of reactants in the first step may provide a method for producing a monocyclic aromatic compound including a method of producing benzene, toluene, and xylene.

본 발명에서 이용하는 상기의 열분해 연료유는 하기의 표 1과 같은 고리 개수 별 방향족 화합물의 조성을 포함한다.The pyrolysis fuel oil used in the present invention includes the composition of the aromatic compound for each ring number as shown in Table 1 below.

PFOPFO 9%
heavy cut
9%
heavy cut
25%
heavy cut
25%
heavy cut
38%
heavy cut
38%
heavy cut
2환 이하 화합물2 or less compounds 82.482.4 85.285.2 94.894.8 98.198.1 3환 화합물Tricyclic compound 15.015.0 14.314.3 4.14.1 1.91.9 4환 이상 화합물4 or more compounds 2.262.26 0.50.5 1.11.1

참조: 9% Heavy cut은 고비점 화합물 9%를 제거한 PFONote: 9% Heavy cut is PFO with 9% high boiling point compound removed

본 발명은, 나프타 분해 센터에서 필수적으로 발생하는 부산물인 열분해 연료유의 전량을 원료로 이용하고, 별도의 저감 또는 분리 공정을 필요로 하지 않는다. The present invention uses the entire amount of pyrolysis fuel oil, which is a by-product essential in the naphtha cracking center, as a raw material, and does not require a separate reduction or separation process.

본 발명의 상기 제1단계에서의 선택적 수소첨가반응은 원료로써 상기의 열분해 연료유의 전량을 이용하고, NiMo/Al2O3 또는 CoMo/Al2O3 촉매를 이용하여 고리가 3개 이상인 다환 방향족 화합물을 250~400℃ 온도 및 30~100barg 압력하에서 수소와 반응시키는 선택적 수소첨가반응으로써 1환 또는 2환 방향족 화합물을 생성한다.The selective hydrogenation reaction in the first step of the present invention uses the entire amount of the pyrolysis fuel oil as a raw material, and a polycyclic aromatic having three or more rings using a NiMo / Al 2 O 3 or CoMo / Al 2 O 3 catalyst. Selective hydrogenation reaction of the compound with hydrogen at a temperature of 250 to 400 ° C. and a pressure of 30 to 100 barg produces a monocyclic or bicyclic aromatic compound.

본 발명의 상기 제2단계에서의 수소첨가분해반응은 원료로써 상기의 제1단계의 선택적 수소첨가반응의 생성물 전량을 이용하고, NiMo/제올라이트 또는 CoMo/제올라이트 촉매를 이용하여 1환 또는 2환 방향족 화합물을 250~450℃ 온도 및 30~100barg 압력하에서 수소와 반응시키는 수소첨가분해반응으로써 벤젠, 톨루엔, 자일렌을 포함하는 단일환 방향족 화합물을 생성한다.The hydrocracking reaction in the second step of the present invention uses the entire amount of the product of the selective hydrogenation reaction in the first step as a raw material, and uses a NiMo / zeolite or CoMo / zeolite catalyst to monocyclic or bicyclic aromatic As a hydrocracking reaction in which the compound is reacted with hydrogen at a temperature of 250 to 450 ° C. and a pressure of 30 to 100 barg, a monocyclic aromatic compound containing benzene, toluene, and xylene is produced.

본 발명의 상기 제2단계에서의 제올라이트는 ZSM-5 제올라이트, 베타제올라이트, 모데나이트 제올라이트 또는 Y 제올라이트 중에서 어느 하나를 사용할 수 있다.The zeolite in the second step of the present invention may be any one of ZSM-5 zeolite, beta zeolite, mordenite zeolite or Y zeolite.

상기의 2 종류의 단계에서 필요시 촉매 활성을 유지하기 위해 DMDS 등과 같은 황화합물을 투입하는 공정을 추가할 수 있다.In the above two kinds of steps, a process of adding a sulfur compound such as DMDS may be added to maintain catalytic activity if necessary.

상기 제2단계의 수소첨가분해반응 생성물로써, 벤젠, 톨루엔, 자일렌을 포함하는 방향족 화합물에 포함되어 있는 미전환 유분은 상기의 과정을 순환하는 공정을 추가할 수 있다. As the product of the hydrolysis reaction in the second step, unconverted oil contained in an aromatic compound including benzene, toluene, and xylene may be added to the process of circulating the above process.

이하, 실시예 및 비교예에 기초하여 본 발명을 보다 구체적으로 설명하지만, 본 발명은 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to these Examples.

[실시예 1][Example 1]

본 발명의 방법에 따라 열분해 연료유를 별도의 분리 단계없이 전량을 이용하여 제1단계의 선택적 수소화 반응을 통하여 열분해 연료유에 포함된 고리가 3개 이상인 화합물의 농도를 5% 이하로 전환시킨 뒤, 상기의 반응 생성물 전량을 본 발명의 방법에 따라 제2단계의 수소첨가분해반응기에 도입하여 수소첨가분해반응 시킴으로써 벤젠, 톨루엔, 자일렌을 포함한 단일환 방향족 화합물을 제조하였다. According to the method of the present invention, after converting the concentration of the compound having three or more rings contained in the pyrolysis fuel oil to 5% or less through the selective hydrogenation reaction of the first step using the total amount of the pyrolysis fuel oil without a separate separation step, A monocyclic aromatic compound including benzene, toluene, and xylene was prepared by introducing the entire amount of the reaction product into a hydrocracking reactor in the second step according to the method of the present invention to perform a hydrocracking reaction.

상기 1단계 선택적 수소화 단계에 NiMo/Al2O3를 촉매로 사용하였고, 반응조건은 반응온도 280도, 반응압력 80barg, 수소/탄화수소 비율 800, PFO LHSV 0.5 hr-1 이였다. 2단계 수소첨가분해반응 단계에는 CoMo/Beta를 촉매로 사용하고, 반응온도 300도, 반응압력 80barg, 수소/탄화수소 비율 800, 수첨 PFO LHSV 0.5 hr-1 이였다.NiMo / Al 2 O 3 was used as a catalyst in the step 1 selective hydrogenation, and reaction conditions were a reaction temperature of 280 degrees, a reaction pressure of 80 barg, a hydrogen / hydrocarbon ratio of 800, and a PFO LHSV of 0.5 hr −1 . In the two-step hydrocracking step, CoMo / Beta was used as a catalyst, the reaction temperature was 300 degrees, the reaction pressure was 80 barg, the hydrogen / hydrocarbon ratio 800, and the hydrogenated PFO LHSV 0.5 hr -1 was .

고리가 3개 이상인 다환 방향족 화합물을 고리가 2개 이하인 방향족 화합물로 전환시킴으로써 촉매의 비활성화를 획기적으로 저감시켰고, 수소화에 따른 반응열을 2 단계의 반응기로 분산시킴에 따라 열폭주(Thermal runaway) 발생 가능성을 최소화 하였다.By converting a polycyclic aromatic compound having 3 or more rings into an aromatic compound having 2 or less rings, the deactivation of the catalyst was drastically reduced, and the possibility of thermal runaway occurred by dispersing the reaction heat due to hydrogenation into a reactor in 2 stages. Was minimized.

도 1은 상기의 실시예 1에 따라 열분해 연료유를 피드(Feed)로 이용하여 선택적 수소화 반응을 시킨 후, 수소첨가분해반응을 실험한 결과를 그래프로 나타낸 것이다. 도 1에 따르면, 수소첨가분해반응 촉매의 활성화가 떨어지지 않고 7일이 넘도록 일정하게 유지되는 것을 확인할 수 있다.FIG. 1 is a graph showing the results of experiments of a hydrocracking reaction after a selective hydrogenation reaction using pyrolysis fuel oil as a feed according to Example 1 above. According to Figure 1, it can be seen that the activation of the hydrocracking catalyst does not drop and remains constant for more than 7 days.

[비교예 1][Comparative Example 1]

열분해 연료유 전량을 수소첨가분해반응기에 도입하여 수소첨가분해반응을 실시하고자 하였으나, 고리가 3개 이상인 다환 방향족 화합물에 의하여 수소첨가분해반응 촉매의 급격한 비활성화가 발생하여, 6개월 이상의 장기 운전이 불가능했으며, 수소첨가분해반응 시 급격한 온도 상승으로 열폭주의 우려가 있었다.[도 2]The entire amount of pyrolysis fuel oil was introduced to the hydrocracking reactor to perform a hydrocracking reaction, but a rapid deactivation of the hydrocracking catalyst occurred due to a polycyclic aromatic compound having 3 or more rings, so long-term operation of more than 6 months is impossible In the case of the hydrocracking reaction, there was a fear of thermal runaway due to the rapid temperature rise.

※ 전환율(무게%): 2환 이상 방향족 화합물의 전환율을 의미함.※ Conversion rate (% by weight): The conversion rate of two or more aromatic compounds.

※ A1 수율(무게%): 반응 생성물 중 1환 방향족 화합물의 수율.※ A1 yield (weight%): Yield of the monocyclic aromatic compound in the reaction product.

※ C1-C4 수율(무게%): 반응 생성물 중 탄소수 1-4개까지 탄화수소 화합물의 수율.※ C1-C4 yield (% by weight): The yield of hydrocarbon compounds up to 1-4 carbons in the reaction product.

상기 수소첨가분해반응 단계에서 촉매는 CoMo/Beta를 사용하고, 반응온도 280도, 반응압력 80barg, 수소/탄화수소 비율 2,500, PFO LHSV 0.1 hr-1 이였다.In the hydrocracking step, CoMo / Beta was used as the catalyst, the reaction temperature was 280 degrees, the reaction pressure was 80 barg, the hydrogen / hydrocarbon ratio was 2,500, and the PFO LHSV was 0.1 hr -1 .

도 2는 열분해 연료유 전량을 피드로 이용하여 수첨분해반응 실험을 통해 전환효율 결과를 그래프로 나타낸 것이다. 도 2에서 보는 바와 같이 수소첨가분해 반응 촉매의 활성화가 약 20시간부터는 전환효율이 떨어지는 것을 확인할 수 있다.Figure 2 is a graph showing the conversion efficiency results through a hydrocracking reaction experiment using the total amount of pyrolysis fuel oil as a feed. As shown in FIG. 2, it can be seen that the activation efficiency of the hydrocracking reaction catalyst decreases from about 20 hours.

[비교예 2][Comparative Example 2]

열분해 연료유에 포함된 고비점 화합물을 25% 제거하여, 고리가 3개 이상인 다환 방향족 화합물의 농도가 5.2%인 피드를 수소첨가분해반응 시켰다. 이 경우, 열분해 연료유 전량을 수소첨가분해 반응한 경우보다 촉매의 비활성화는 감소되었으나, 완전히 비활성화를 억제하지는 못하였다.[도 3]The high boiling point compound contained in the pyrolysis fuel oil was removed by 25%, and the feed having a concentration of 5.2% or more of polycyclic aromatic compounds having three or more rings was subjected to hydrocracking reaction. In this case, the deactivation of the catalyst was reduced compared to the case where the entire amount of pyrolysis fuel oil was subjected to a hydrocracking reaction, but it was not possible to completely suppress the deactivation.

상기 수소첨가분해반응 단계에서 촉매는 CoMo/Beta를 사용하고, 반응온도 280도, 반응압력 80barg, 수소/탄화수소 비율 2,500, PFO LHSV 0.1 hr-1 이였다.In the hydrocracking step, CoMo / Beta was used as the catalyst, the reaction temperature was 280 degrees, the reaction pressure was 80 barg, the hydrogen / hydrocarbon ratio was 2,500, and the PFO LHSV was 0.1 hr -1 .

도 3은 열분해 연료유에 포함된 고비점 화합물을 25% 제거하여 피드로 이용한 수소첨가분해반응 촉매를 통해 촉매의 전환효율 결과를 그래프로 나타낸 것이다. 도 3에 따르면, 비교예 1에서의 결과보다는 수소첨가분해반응 촉매의 비활성화가 상대적으로 감소되었으나, 여전히 감소하는 모습을 보여, 수소첨가분해 반응 촉매의 완전한 비활성화를 억제하진 못하였다.3 is a graph showing the conversion efficiency of the catalyst through a hydrocracking catalyst used as a feed by removing 25% of the high boiling point compound contained in the pyrolysis fuel oil. According to FIG. 3, the deactivation of the hydrocracking catalyst was relatively reduced, but still decreased, rather than the result in Comparative Example 1, and the complete deactivation of the hydrocracking catalyst was not suppressed.

[비교예 3][Comparative Example 3]

열분해 연료유 전량을 증류하여 고리가 3개 이상인 다환 방향족 화합물의 농도를 5% 이하로 최소화 한 뒤, 수소첨가분해반응 시켰다. 이 경우, 수소첨가분해반응 촉매의 급격한 비활성화를 감소 시킬 수 있었으나, 증류 공정의 추가로 공정 효율성 및 경제성이 저하되었다.[도 4]The total amount of pyrolysis fuel oil was distilled to minimize the concentration of polycyclic aromatic compounds having 3 or more rings to 5% or less, followed by a hydrocracking reaction. In this case, the rapid deactivation of the hydrocracking catalyst could be reduced, but the process efficiency and economic efficiency were lowered by the addition of a distillation process.

상기 수소첨가분해반응 단계에서 촉매는 CoMo/Beta를 사용하고, 반응온도 280도, 반응압력 80barg, 수소/탄화수소 비율 2,500, PFO LHSV 0.1 hr-1 이였다.In the hydrocracking step, CoMo / Beta was used as the catalyst, the reaction temperature was 280 degrees, the reaction pressure was 80 barg, the hydrogen / hydrocarbon ratio was 2,500, and the PFO LHSV was 0.1 hr -1 .

도 4는 증류를 통하여 열분해 연료유에 포함된 고비점 화합물을 38% 제거하여 피드로 사용한 수소첨가분해반응 촉매의 활성화를 실험한 결과를 그래프로 나타낸 것이다. 비교예 1 및 2와 비교했을 때 수소첨가분해반응 촉매의 급격한 비활성화를 실시예 수준으로 감소 시키는 것을 확인했다.4 is a graph showing the results of experiments of activation of the hydrocracking catalyst used as a feed by removing 38% of the high boiling point compound contained in the pyrolysis fuel oil through distillation. When compared with Comparative Examples 1 and 2, it was confirmed that the rapid deactivation of the hydrocracking catalyst was reduced to the level of the Examples.

Claims (7)

나프타 분해 센터에서 생성된 부산물인 열분해 연료유는 2환 이상의 방향족 화합물이 50%이상을 포함하는 원료로서, 상기의 원료 전량을 선택적 수소첨가반응 시키는 제1단계, 상기의 제1단계의 반응물 전량을 수소첨가분해반응 시키는 제2단계; 를 포함하는 벤젠, 톨루엔, 자일렌 제조방법.
Pyrolysis fuel oil, a by-product generated in the naphtha cracking center, is a raw material containing 50% or more of two or more aromatic compounds, and the first step of selectively hydrogenating the whole amount of the above raw materials, and the entire amount of reactants in the first step A second step of performing a hydrocracking reaction; The benzene, toluene, xylene production method comprising a.
제1항에 있어서, 상기의 열분해 연료유는 나프타 분해 센터의 부산물로서, 별도의 분리단계 없이 2환 이상의 방향족 화합물 50% 이상을 포함하는 상기의 열분해 연료유 전량을 사용하는 것을 특징으로 하는 벤젠, 톨루엔, 자일렌 제조방법.The method of claim 1, wherein the pyrolysis fuel oil is a by-product of the pyrolysis fuel oil containing 50% or more of two or more aromatic compounds without a separate separation step, as a by-product of the naphtha cracking center, characterized in that, Method of manufacturing toluene and xylene. 제1항에 있어서, 상기의 제1단계의 선택적 수소첨가반응은 NiMo/Al2O3 또는 CoMo/Al2O3 촉매를 사용하는 것을 특징으로 하는 벤젠, 톨루엔, 자일렌 제조방법.The method for preparing benzene, toluene, and xylene according to claim 1, wherein the selective hydrogenation reaction of the first step uses a NiMo / Al 2 O 3 or CoMo / Al 2 O 3 catalyst. 제1항에 있어서, 상기의 제2단계의 수소첨가분해반응은 NiMo/제올라이트 또는 CoMo/제올라이트 촉매를 사용하는 것을 특징으로 하는 벤젠, 톨루엔, 자일렌 제조방법.The method for preparing benzene, toluene, and xylene according to claim 1, wherein the hydrocracking reaction in the second step uses a NiMo / zeolite or CoMo / zeolite catalyst. 제4항에 있어서, 상기의 제올라이트는 ZSM-5 제올라이트, 베타 제올라이트, 모데나이트 제올라이트, Y 제올라이트 중 어느 하나인 것을 특징으로 하는 벤젠, 톨루엔, 자일렌 제조방법.The method of claim 4, wherein the zeolite is one of ZSM-5 zeolite, beta zeolite, mordenite zeolite, and Y zeolite. 제1항에 있어서, 상기의 제1단계는 250 내지 400℃ 온도, 30 내지 100 barg하에서의 선택적 수소첨가반응인 것을 특징으로 하는 벤젠, 톨루엔, 자일렌 제조방법.The method according to claim 1, wherein the first step is a selective hydrogenation reaction under a temperature of 250 to 400 ° C. and 30 to 100 barg. 제1항에 있어서, 상기의 제2단계는 250 내지 450℃ 온도, 30 내지 100barg하에서의 수소첨가분해반응인 것을 특징으로 하는 벤젠, 톨루엔, 자일렌 제조방법.
The method of claim 1, wherein the second step is a benzene, toluene, and xylene production method, which is a hydrocracking reaction at a temperature of 250 to 450 ° C and 30 to 100 barg.
KR1020180139163A 2018-11-13 2018-11-13 Method for Benzene, Toluene and Xylene from pyrolysis fuel oil KR102295333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180139163A KR102295333B1 (en) 2018-11-13 2018-11-13 Method for Benzene, Toluene and Xylene from pyrolysis fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180139163A KR102295333B1 (en) 2018-11-13 2018-11-13 Method for Benzene, Toluene and Xylene from pyrolysis fuel oil

Publications (2)

Publication Number Publication Date
KR20200055472A true KR20200055472A (en) 2020-05-21
KR102295333B1 KR102295333B1 (en) 2021-08-27

Family

ID=70910508

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180139163A KR102295333B1 (en) 2018-11-13 2018-11-13 Method for Benzene, Toluene and Xylene from pyrolysis fuel oil

Country Status (1)

Country Link
KR (1) KR102295333B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220109780A (en) 2021-01-29 2022-08-05 주식회사 엘지화학 Method for preparing synthesis gas
KR20220109788A (en) 2021-01-29 2022-08-05 주식회사 엘지화학 Method for preparing synthesis gas
KR20220109784A (en) 2021-01-29 2022-08-05 주식회사 엘지화학 Method for preparing synthesis gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140068598A (en) 2012-11-28 2014-06-09 한국화학연구원 Nano-sized crystal zeolite catalyst supported zinc and lanthanum, and manufacturing method thereof
KR20160110711A (en) * 2015-03-11 2016-09-22 한화토탈 주식회사 Method of the convrsion of polycyclic aromatic hydrocarbons into btx-rich monocyclic aromatic hydrocarbons
KR101800463B1 (en) * 2010-10-22 2017-12-21 에스케이이노베이션 주식회사 The method for producing valuable aromatics and light paraffins from hydrocarbonaceous oils derived from oil, coal or wood
KR101815056B1 (en) 2016-06-15 2018-01-05 한화토탈 주식회사 Method for the conversion of polycyclic aromatic hydrocarbons into BTX-rich mono-aromatic hydrocarbons using metal substitution zeolite
KR20180045594A (en) 2016-10-26 2018-05-04 에쓰대시오일 주식회사 Hydrocracking catalysts for the production of light alkyl-aromatic hydrocarbons, preparation method thereof and method for producing light alkyl-aromatic hydrocarbons using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800463B1 (en) * 2010-10-22 2017-12-21 에스케이이노베이션 주식회사 The method for producing valuable aromatics and light paraffins from hydrocarbonaceous oils derived from oil, coal or wood
KR20140068598A (en) 2012-11-28 2014-06-09 한국화학연구원 Nano-sized crystal zeolite catalyst supported zinc and lanthanum, and manufacturing method thereof
KR20160110711A (en) * 2015-03-11 2016-09-22 한화토탈 주식회사 Method of the convrsion of polycyclic aromatic hydrocarbons into btx-rich monocyclic aromatic hydrocarbons
KR101815056B1 (en) 2016-06-15 2018-01-05 한화토탈 주식회사 Method for the conversion of polycyclic aromatic hydrocarbons into BTX-rich mono-aromatic hydrocarbons using metal substitution zeolite
KR20180045594A (en) 2016-10-26 2018-05-04 에쓰대시오일 주식회사 Hydrocracking catalysts for the production of light alkyl-aromatic hydrocarbons, preparation method thereof and method for producing light alkyl-aromatic hydrocarbons using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220109780A (en) 2021-01-29 2022-08-05 주식회사 엘지화학 Method for preparing synthesis gas
KR20220109788A (en) 2021-01-29 2022-08-05 주식회사 엘지화학 Method for preparing synthesis gas
KR20220109784A (en) 2021-01-29 2022-08-05 주식회사 엘지화학 Method for preparing synthesis gas

Also Published As

Publication number Publication date
KR102295333B1 (en) 2021-08-27

Similar Documents

Publication Publication Date Title
JP5917532B2 (en) Method for producing high addition aromatic products and light paraffin products from hydrocarbon fractions derived from petroleum, coal or wood
CN103108849B (en) The method of valuable aromatic hydrocarbons and alkene prepared by the hydrocarbon ils that origin comes from coal or timber
KR102295333B1 (en) Method for Benzene, Toluene and Xylene from pyrolysis fuel oil
KR101791051B1 (en) Method of the convrsion of polycyclic aromatic hydrocarbons into btx-rich monocyclic aromatic hydrocarbons
EP2130812B1 (en) Process for producing light olefins from a feed containing triglycerides
US20110207979A1 (en) Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
EP3110915B1 (en) Process for producing btx from a c5-c12 hydrocarbon mixture
NZ598858A (en) Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
KR101273343B1 (en) Process for preparing aromatics using shape selective catalyst
CN103328416A (en) Method for producing high-added-value aromatic products and olefinic products from an aromatic-compound-containing oil fraction
CN102285852B (en) Utilize the method for refinery C four increasing output of ethylene and propylene
US20210380887A1 (en) Method of Producing Selective Naphtha Oil Through Secondary Pyrolysis of Waste Oil
US12091373B2 (en) Systems and processes for catalytic conversion of C1—C5 alcohols to C2—C5 olefin mixtures
KR101936440B1 (en) Process for Producing Lube Base Oils by Alkylation of Hydrocarbons
US10654764B2 (en) Process for the production of an alkylated aromatic product
KR101173345B1 (en) The method for producing valuable aromatics and olefin from hydrocarbonaceous oils comprising aromatic compounds
US20150307412A1 (en) Methods and apparatuses for producing xylene from propylbenzene
US9273252B2 (en) Production of aromatics from noncatalytically cracked fatty acid based oils
CN111099944B (en) Method for co-producing ethylene, propylene and xylene
CN112441927B (en) Pt-ReOx/TiO2Method for preparing aniline by selective catalytic conversion of lignin
US10538464B1 (en) Process for enhanced production of desired hydrocarbons from biologically-derived compounds and bio-oils containing cyclic compounds by opening of aromatics and naphthenic ring-containing compounds
EP3974499A1 (en) Production of linear alpha olefins
KR20240090397A (en) Methods of producing transportation fuel
KR20090020776A (en) Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed
SA522432302B1 (en) Process for Producing Light Olefins and Low-Sulfur Fuel Oil Components

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant