KR101225617B1 - Pla vegetation mat - Google Patents

Pla vegetation mat Download PDF

Info

Publication number
KR101225617B1
KR101225617B1 KR1020110071543A KR20110071543A KR101225617B1 KR 101225617 B1 KR101225617 B1 KR 101225617B1 KR 1020110071543 A KR1020110071543 A KR 1020110071543A KR 20110071543 A KR20110071543 A KR 20110071543A KR 101225617 B1 KR101225617 B1 KR 101225617B1
Authority
KR
South Korea
Prior art keywords
resin
weight
biodegradable
biodegradable composite
composite material
Prior art date
Application number
KR1020110071543A
Other languages
Korean (ko)
Inventor
김병구
Original Assignee
김병구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김병구 filed Critical 김병구
Priority to KR1020110071543A priority Critical patent/KR101225617B1/en
Application granted granted Critical
Publication of KR101225617B1 publication Critical patent/KR101225617B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00346Production of lenses with markings or patterns having nanosize structures or features, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/732Floor coverings
    • B29L2031/7324Mats

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

PURPOSE: A manufacturing method of a polylactic acid vegetation mat using a biodegradable composite material with polylactic acid is provided to enhance the supporting force of a vegetation ground by suppressing the loss of biodegraded particles. CONSTITUTION: A manufacturing method of a polylactic acid vegetation using a biodegradable composite material comprises: a step of primary compounding 0.5-2 weight% of a biodegradable resin, and 98-99.5 weight% of a resin selected from PBS, PBSA and PBA resin; a step of secondary compounding 90-95 weight% of a polylactic acid resin, and 4-8 weight% of a resin selected from PBS, PBSA and PBA resin, and 4-8 weight% of the primary compounded nanocomposite resin; a step of manufacturing a biodegradable composite fiber by extruding and elongating the biodegradable composite resin; a step of soaking broken stones into a plant-nutrient solution for 30-40 minutes and drying the same; and a step of mixing 40-55 weight% of a biodegradable composite short fiber, 20-30 weight% of natural fiber and 25-30 weight% of the dried broken stone to manufacture a biodegradable composite material. [Reference numerals] (AA) Manufacturing a nanocomposite resin; (BB) Primarily compounding; (CC) Secondarily compounding; (DD) Manufacturing biodegradably composite short fibers; (EE) Introducing fine aggregate; (FF) Mixing; (GG) Introducing natural fibers; (HH) Introducing nutrient supplements; (II) Pressure molding; (JJ) Drawing after cooling and stabilization

Description

폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조방법{PLA vegetation mat}Manufacturing method of river block type reinforced vegetation mat using biodegradable composite material containing polylactic acid {PLA vegetation mat}

본 발명은 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 에 관한 것으로, 더욱 상세하게는 블럭형 강화 식생매트를 구성하는 조성물을 폴리락트산을 주축으로 하여 황마, 대마 등과 같은 천연섬유와 함께 블럭형 강화 식생매트의 설치 안정성을 위한 중량의 잔골재를 혼합구성하여, 식생된 식물의 뿌리 활착 시간 동안 안전한 보호구조물 기능을 수행함과 동시에 생분해 과정에서 식물 생장에 필요한 영양소를 제공해 식생 식물의 뿌리 활착 강화에 기여를 할 수 있도록 하는 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조방법에 관한 것이다.The present invention relates to a river block-type reinforced vegetation mat using a biodegradable composite material containing a polylactic acid, and more particularly, a composition constituting the block-type reinforced vegetation mat with polylactic acid as the main shaft. By mixing and constructing the fine aggregates of heavy weight for the stability of installation of block-type reinforced vegetation mat with natural fiber, it provides the nutrients necessary for plant growth during biodegradation process while performing the function of safe protection structure for root rooting time of vegetation. The present invention relates to a method for producing a stream-block-reinforced vegetation mat using biodegradable composite materials containing polylactic acid, which can contribute to strengthening the root lubrication of the plant.

일반적인 식생블럭은 식생이 가능한 공간을 확보한 규격의 콘크리트 구조물을 규칙적으로 쌓거나 연결하여 홍수와 같은 자연재해로부터 재방을 안전하게 보호하는 기능과 콘크리트 구조물의 삭막함을 식생된 식물을 통해 시각적으로 보완함은 물론이고 좀더 친환경적인 환경을 제공하는 목적으로 설치한다.The general vegetation block provides the ability to protect the disasters from natural disasters such as floods by regularly stacking or connecting concrete structures of the size that secure the space for vegetation, and to visually complement the erosion of concrete structures through vegetation plants. Of course, it is installed for the purpose of providing a more eco-friendly environment.

그렇지만, 식생블럭의 재질인 콘크리트는 강알칼리성 물질을 비롯한 공해물질들이 지속적으로 용출되는 관계로 수질오염의 원인이 되기 때문에 비친환경적일뿐만 아니라 또 시각적으로도 친환경적이지 못한 한계가 있다. However, concrete, which is a material of vegetation block, has a limit that is not environmentally friendly and visually unfriendly because it causes water pollution because pollutants including strong alkaline materials are continuously eluted.

물론 콘크리트 구조물 자체가 내구성이 있으므로 시공 구조물의 내구연한이 긴 장점은 있으나, 사실상 식물의 뿌리가 활착된 이후에는 식물 자체가 토양의 유실을 방지하기 때문에 이때부터는 불필요한 구조물이 되는 것이다.Of course, since the concrete structure itself is durable, the durability of the construction structure has a long advantage, but in fact, since the plant itself prevents the loss of soil after the roots of the plant are rooted, it becomes an unnecessary structure from this time.

요즘은 환경친화적이지 못한 콘크리트 구조물의 단점을 해소하기 위해 블럭형 강화 식생매트를 생분해성 수지로 제조하여 뿌리가 활착되는 동안은 형태를 안정적으로 유지하고 있다가 뿌리의 활착 이후에는 생분해되어 소멸되도록 함으로써 실질적으로 친환경의 목적을 달성할 수 있도록 하는 생분해성 블럭형 강화 식생매트가 출시되고 있다.Nowadays, block type reinforced vegetation mats are made of biodegradable resins to solve the shortcomings of environmentally unfriendly concrete structures.They keep their shape stable while roots stick, and then biodegrade and disappear after roots stick. Biodegradable block-type reinforced vegetation mats are being released to achieve practically environmentally friendly goals.

하지만, 생분해성 블럭형 강화 식생매트는 일정 기간 동안만 블럭형 강화 식생매트 기능을 수행하다가 생분해되어 환경오염을 일으키지 않는 자연친화적 장점은 있으나, 무게가 가벼운 생분해성 수지의 특성으로 인해 설치 후 안정성이 떨어지는 단점이 있다.However, the biodegradable block-type reinforced vegetation mat has a natural-friendly advantage of performing the function of the block-type reinforced vegetation mat only for a certain period of time and causing biodegradation, but does not cause environmental pollution. There is a downside to falling.

또한, 생분해성 블럭형 강화 식생매트가 생분해되면 미립자 상태가 되어 풍화로 인한 유실현상이 가속화되므로 블럭형 강화 식생매트가 위치하고 있던 자리에 공동화 현상이 발생하여 식생 지반의 지지력을 약화시키는 경향이 있다.In addition, when the biodegradable block-type reinforced vegetation mat is biodegraded, it becomes a particulate state and the loss phenomenon due to weathering is accelerated, so that the phenomenon of cavitation occurs at the position where the block-type reinforced vegetation mat is located, which tends to weaken the bearing capacity of the vegetation ground.

또한, 생분해성 블럭형 강화 식생매트의 주재료가 고가의 폴리락트산(PLA)이므로 제조비용이 매우 비싼 단점이 있다.In addition, since the main material of the biodegradable block-type reinforced vegetation mat is expensive polylactic acid (PLA), the manufacturing cost is very expensive.

본 발명은 상기와 같은 종래의 문제점을 해소하기 위해 창안한 것으로, 그 목적은,The present invention has been made to solve the above conventional problems, the object of which is,

블럭형 강화 식생매트를 구성하는 조성물을 폴리락트산을 주축으로 하여 황마, 대마 등과 같은 천연섬유와 함께 모래나 석분 등과 같은 잔골재를 부가하여 블럭형 강화 식생매트의 설치 안정성을 위한 중량성을 확보함과 아울러 블럭형 강화 식생매트를 구성하는 폴리락트산을 비롯한 천연섬유가 생분해에 의해 미립자 상태가 되더라도 입자가 굵은 모래나 석분 잡석 등이 생분해된 미립자들의 유실을 억제하여 식생 지반의 지지력을 강화토록 하는데 있다.The composition constituting the block-type reinforced vegetation mat is made of polylactic acid as the main axis, and natural aggregates such as jute and hemp are added together with fine aggregates such as sand or stone powder to secure weight for the installation stability of the block-type reinforced vegetation mat. In addition, even if natural fiber including polylactic acid constituting the block-type reinforcement vegetation mat is in the state of microparticles by biodegradation, the coarse sand or rubble rubble suppresses the loss of biodegraded fine particles, thereby strengthening the bearing capacity of the vegetation ground.

본 발명의 또 다른 목적은, 생분해성 블럭형 강화 식생매트의 구성요소를 모래나 잡석, 석분 등과 같은 잔골재를 블럭형 강화 식생매트의 기능에 영향이 없는 범위에서 다량 포함함으로써 주재료인 고가의 폴리락트산(PLA)의 비율을 최소화하여 제조비용을 절감하는데 있다.Another object of the present invention is to include a large amount of components of the biodegradable block-type reinforced vegetation mat, such as sand, rubble, stone powder, etc. in a range without affecting the function of the block-type reinforced vegetation mat, thereby making expensive polylactic acid the main material. It is to reduce manufacturing costs by minimizing the proportion of PLA.

본 발명의 또 다른 목적은, 생분해성 블럭형 강화 식생매트를 구성하는 요소 중 모래나 잡석, 석분 등과 같은 잔골재를 식물의 생장에 필요한 영양소와 혼합하거나 또는 용해된 용액 속에 침지시킨 후 건조시킨 후 혼합하여 블럭형 강화 식생매트를 구성함으로써 식생된 식물이 이를 흡수하도록 하여 식물의 생장에 도움을 줄 수 있도록 하는데 있다.
Still another object of the present invention is to mix fine aggregates such as sand, rubble and stone powder among constituents of the biodegradable block-type reinforced vegetation mat with nutrients necessary for plant growth or to immerse in a dissolved solution and then dry them. By constructing a block-type reinforcement vegetation mat to allow the vegetation plants to absorb it to help the growth of the plant.

상기 목적을 달성하기 위한 본 발명 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조방법은, Stream block type reinforced vegetation mat manufacturing method using a biodegradable composite material comprising a polylactic acid of the present invention for achieving the above object,

천연오일 중 팜유의 함량이 10중량%~15중량%, PLA함량이 17중량%~20중량%, 백운모 65중량%~73중량%의 나노복합수지를 제조하고, 10 to 15 wt% of palm oil in natural oil, 17 to 20 wt% of PLA content, and 65 to 73 wt% of mica are prepared.

제조된 생분해성 나노복합수지 0.5중량%~2중량%와 PBS, PBSA, PBA수지 중 택일된 수지 98중량%~99.5중량%를 분산 및 확산을 위한 1차컨파운딩하고,0.5 wt% to 2 wt% of the biodegradable nanocomposite resin prepared and 98 wt% to 99.5 wt% of the selected resin among PBS, PBSA and PBA resins were first compounded for dispersion and diffusion,

PLA수지 90중량%~95중량%와 PBS, PBSA, PBA수지 중 택일된 수지 4중량%~8중량%와 1차컴파운딩한 생분해성 나노복합수지 1중량%~2중량%를 2차컨파운딩하고,Secondary compounding 90% to 95% by weight of PLA resin, 4% to 8% by weight of the optional resin of PBS, PBSA, PBA resin and 1% to 2% by weight of the first compounded biodegradable nanocomposite resin,

상기 2차컨파운딩한 생분해성 복합수지를 제1번 스크류 200℃부터 다이스 온도 220℃까지 설정하여 압출 연신하여 생분해성 복합 단섬유를 제조하는 단계;Manufacturing the biodegradable composite short fibers by extrusion stretching the secondary compounded biodegradable composite resin by setting the first screw at 200 ° C. to a die temperature of 220 ° C .;

식물영양제 용해된 용액에 잡석을 30~40분간 침지시킨 후 건조하는 단계;Immersing rubble in a dissolved solution of plant nutrients for 30 to 40 minutes and then drying;

상기 생분해성 복합 단섬유40~55중량%와, 천연섬유20~30중량% 및 상기 건조된 잡석25~30중량%를 혼합하여 생분해 복합 소재를 제조하는 단계;Preparing a biodegradable composite material by mixing 40 to 55 wt% of the biodegradable composite short fibers, 20 to 30 wt% of natural fibers, and 25 to 30 wt% of the dried rubble;

180℃~200℃로 가열된 블럭형 강화 식생매트 프레스 금형에 상기 생분해 복합소재를 충진한 후 프레스로 3~4분 동안 가압한 후 냉각시켜 인출하는 단계;로 이루어지는 것을 특징으로 한다.After filling the biodegradable composite material in the block-type reinforced vegetation mat press mold heated to 180 ℃ ~ 200 ℃ pressurized for 3 to 4 minutes by a press and then cooled and taken out.

본 발명 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조방법은, The present invention provides a method for producing a stream block-type reinforced vegetation mat using a biodegradable composite material containing polylactic acid,

블럭형 강화 식생매트를 구성하는 조성물을 폴리락트산을 포함하는 생분해성 복합 단섬유와, 황마, 대마 등과 같은 천연섬유에 비중이 크고 입자가 큰 모래나 석분 등과 같은 잔골재를 부가하여 블럭형 강화 식생매트의 설치 안정성을 위한 중량성 확보할 수 있는 장점이 있음과 동시에 블럭형 강화 식생매트를 구성하는 폴리락트산을 비롯한 천연섬유가 생분해에 의해 미립자 상태가 되더라도 입자가 굵은 모래나 석분 잡석 등이 생분해된 미립자들의 유실을 억제하도록 하여 풍화로 인한 유실현상의 방지 및 식생 지반의 지지력 향상의 장점이 있다.The composition of the block-type reinforced vegetation mat is added to the biodegradable composite short fibers including polylactic acid and fine aggregates such as sand or stone powder having a large specific gravity and large particles to natural fibers such as jute and hemp. It has the advantage of ensuring the weight for the installation stability of the particles and at the same time the biodegradation of fine particles of coarse sand or stone rubble even if the natural fiber including polylactic acid constituting the block-type reinforced vegetation mat is biodegradable By suppressing the loss of them there is an advantage of preventing the loss phenomenon due to weathering and improving the bearing capacity of vegetation ground.

또한, 본 발명은, 생분해성 블럭형 강화 식생매트를 구성하는 요소 중 모래나 잡석, 석분 등과 같은 잔골재를 식물의 생장에 필요한 영양소, 예를 들면 질소, 인산, 칼륨 또는 뿌리 발근영양제등이 혼합되어 있으므로 식생된 식물이 식생 토양은 물론이고 블럭형 강화 식생매트에서도 흡수할 수 있어 식물의 생장에 큰 도움을 주는 장점이 있다. 특히 식물의 생장이 빠르게 진행됨에 따라 뿌리의 견고한 활착에 소요되는 시간을 최소 줄일 수 있으며 그로 인해 식생 지반의 유실현상을 최소로 줄일 수 있는 효과가 있다. In addition, the present invention, nutrients, such as nitrogen, phosphoric acid, potassium or root rooting nutrients necessary for plant growth of fine aggregates such as sand, rubble and stone powder among the components constituting the biodegradable block-type reinforced vegetation mat Therefore, the vegetated plants can be absorbed not only in the vegetation soil but also in the block-type reinforced vegetation mat, which has the advantage of greatly helping plant growth. In particular, as the plant grows rapidly, the time required for firm rooting of roots can be reduced to a minimum, thereby reducing the loss of vegetation soil to a minimum.

그리고 생분해성 블럭형 강화 식생매트의 구성요소를 모래나 잡석, 석분 등과 같은 잔골재를 블럭형 강화 식생매트의 기능에 영향이 없는 상태에서 다량 포함함으로써 주재료인 고가의 폴리락트산(PLA)의 비율을 최소화하여 제조비용을 절감할 수 있는 장점이 있다. Minimize the ratio of expensive polylactic acid (PLA), which is the main material, by including a large amount of fine aggregates such as sand, rubble, and stone without affecting the function of the block-type reinforced vegetation mat. There is an advantage to reduce the manufacturing cost.

도 1은 본 발명의 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조 공정도.1 is a process block diagram of a stream block-type reinforced vegetation mat using a biodegradable composite material containing a polylactic acid of the present invention.

본 발명 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트는, 생분해성 복합 소재로 이루어진 생분해성 복합 단섬유와, 천연섬유 및 잔골재를 포함한다.The stream-block-reinforced vegetation mat using the biodegradable composite material containing the polylactic acid of the present invention includes biodegradable composite short fibers made of a biodegradable composite material, natural fibers and fine aggregates.

생분해성 복합 단섬유는 블럭형 강화 식생매트의 주재료로써 블럭형 강화 식생매트의 형상을 오랫동안 안정적으로 유지하도록 하는 기능을 수행하는 것으로, 그 제조방법을 살펴보면, 1단계로, 천연오일 중 팜유의 함량이 10중량%~15중량%, PLA함량이 17중량%~20중량%, 백운모 65중량%~73중량%의 나노복합수지를 제조하고,Biodegradable composite short fiber is the main material of the block-type reinforced vegetation mat to perform the function of maintaining the shape of the block-type reinforced vegetation mat for a long time. Looking at the manufacturing method, in one step, the content of palm oil in natural oil 10 wt% to 15 wt% of PLA, 17 wt% to 20 wt% of nanocomposite, 65 wt% to 73 wt% of nano mica is prepared,

2단계로, 제조된 생분해성 나노복합수지 0.5중량%~2중량%와 PBS, PBSA, PBA수지 중 택일된 수지 98중량%~99.5중량%를 분산 및 확산을 위한 1차컨파운딩하고,In the second step, primary compounding for dispersing and diffusing 0.5 wt% to 2 wt% of the prepared biodegradable nanocomposite resin and 98 wt% to 99.5 wt% of the selected resin among PBS, PBSA and PBA resins,

3단계로, PLA수지 90중량%~95중량%와 PBS, PBSA, PBA수지 중 택일된 수지 4중량%~8중량%와 1차컴파운딩한 생분해성 나노복합수지 1중량%~2중량%를 2차컨파운딩하고,In three steps, 90 wt% to 95 wt% of PLA resin, 4 wt% to 8 wt% of the selected resin among PBS, PBSA, and PBA resin, and 1 wt% to 2 wt% of the first compounded biodegradable nanocomposite resin I've found some tea

4단계로 상기 2차컨파운딩한 생분해성 복합수지를 제1번 스크류 200℃부터 다이스 온도 220℃까지 설정하여 압출 연신하여 생분해성 복합 단섬유를 제조한다.The second compounded biodegradable composite resin in the fourth step is extrusion stretched by setting the first screw 200 ℃ to die temperature 220 ℃ to produce a biodegradable composite short fibers.

천연섬유는 충격강도와 같은 기계적 물성을 향상시키는 기능을 수행하는 것으로, 황마, 대마, 양마, 모시, 코코넛 섬유, 볏짚 등과 같은 소재를 택일하여 사용하거나 또는 2이상의 소재를 선택적으로 혼합하여 사용할 수 있다.Natural fiber performs a function of improving mechanical properties such as impact strength, and may be used by using materials such as jute, hemp, sheep, ramie, coconut fiber, rice straw, or by selectively mixing two or more materials. .

또한, 잔골재는, 블럭형 강화 식생매트의 설치 안정성을 위한 중량성 확보의 목적과 함께 생분해성 복합수지의 생분해 과정에서의 유실 현상을 억제하도록 하는 기능을 비롯하여 고가의 생분해성 복합 단섬유의 투입량을 최소화하면서도 견고한 블럭형 강화 식생매트를 형성할 수 있도록 하는 기능을 수행하는 것으로, 모래나 마사토 또는 돌이나 자갈을 작은 입자상으로 파쇄하여 얻은 파쇄석, 석분 등과 같은 소재를 일컷는다. 잔골재의 입자 크기는 0.5 ~ 1mm 정도의 것이 적당하나, 재질에 따라서 입자의 크기는 달리 선택할 수 있기 때문에 반드시 수치적으로 한정할 필요는 없다.In addition, fine aggregates, including the purpose of securing the weight for the stability of the installation of the block-type reinforced vegetation mat, and the ability to suppress the loss phenomenon during the biodegradation process of the biodegradable composite resin, including the input of expensive biodegradable composite short fibers By minimizing and forming a strong block-type reinforced vegetation mat, it cuts sand, masato, or other materials such as crushed stone and stone powder obtained by crushing stone or gravel into small particles. The particle size of the fine aggregate is suitable to about 0.5 ~ 1mm, but the size of the particles can be selected differently depending on the material does not necessarily need to be limited numerically.

이러한 구성요소들을 이용하여 블럭형 강화 식생매트를 제조하는 공정을 살펴보면,Looking at the process of manufacturing block type reinforced vegetation mat using these components,

우선, 상기 생분해성 복합 단섬유40~55중량%와, 천연섬유20~30중량% 및 상기 건조된 잡석25~30중량%를 혼합하여 생분해 복합 소재를 제조하는 단계를 수행한다.First, the step of preparing a biodegradable composite material by mixing the biodegradable composite short fibers 40 to 55% by weight, 20 to 30% by weight natural fibers and 25 to 30% by weight of the dried rubble.

생분해성 복합 단섬유의 양을 40%이하로 하게 되면 성형된 블럭형 강화 식생매트가 쉽게 부스러지는 현상이 발생하였고, 잔골재 사이로 공극이 많아 생분해 속도가 너무 빠르게 진행되는 현상이 발생하므로 40중량% 이상으로 투입하는 것이 적당하다. 또한, 투입량이 55중량% 이상이 될 경우에는 성형성이나 견고성이 대폭 향상되고 생분해 시간이 늘어나는 특징을 보였으나, 이는 생분해성 블럭형 강화 식생매트의 기능 수행에 필요한 견고성 및 생분해 시간을 초과하는 것으로, 대략 3년 정도의 생분해 시간을 필요로하는 생분해성 블럭형 강화 식생매트의 특성상 55중량% 이하가 적당한 것으로 나타났다.When the amount of biodegradable composite short fibers is less than 40%, the formed block-type reinforced vegetation mat easily collapses, and because of the large gaps between fine aggregates, the rate of biodegradation is too fast. It is suitable to inject into. In addition, when the input amount is more than 55% by weight, moldability and robustness are greatly improved, and biodegradation time is increased. However, this exceeds the firmness and biodegradation time necessary for performing the function of the biodegradable block type reinforced vegetation mat. However, the biodegradable block-type reinforced vegetation mat, which requires about 3 years of biodegradation time, was found to be less than 55% by weight.

이러한 구성요소들이 혼합된 혼합물은 프레스 금형으로 투입되어 높은 압력을 가하면서 고온으로 가열하여 성형한다. 이때 프레스 금형의 온도는 180℃~200℃로 유지하는 것이 바람직하다. 즉, 투입되는 생분해성 복합 단섬유와, 천연섬유 및 잔골재가 가지고 있는 온도의 불균일성 및 성형되는 블럭형 강화 식생매트의 두께의 불균일성 등의 요인에 의해 그 온도가 전체적으로 균일하게 전달되지 않게 되면, 생분해성 복합 단섬유의 용융 상태가 불균일하게 나타나 제품의 불량으로 이어질 수 있다. 따라서 프레스 금형에 상기 생분해 복합소재를 충진한 후 가압하는 시간을 3~4분 동안 충분히 가열하는 것이 바람직하다.The mixture of these components is introduced into a press mold and heated to a high temperature while applying a high pressure to form. At this time, it is preferable to maintain the temperature of a press die at 180 degreeC-200 degreeC. That is, if the temperature is not uniformly transmitted due to factors such as the nonuniformity of the temperature of the input biodegradable composite short fibers, natural fibers and fine aggregates and the thickness of the block-type reinforced vegetation mat formed, the biodegradation The melt state of the adult composite short fibers may be uneven, which may lead to product defects. Therefore, after filling the biodegradable composite material in the press mold, it is preferable to sufficiently heat the pressurizing time for 3 to 4 minutes.

이와 같이 프레스 금형으로 가압 완료한 후에는 다시 2~3분 동안 냉각시켜 안정화 단계를 거친 다음 금형으로 부터 분리하면 제품이 완료된다.After pressurizing is completed in this way, the product is completed by cooling again for 2 to 3 minutes, stabilizing, and separating from the mold.

완성된 제품은 삼각, 사각, 육각 원형 등의 형상으로 구성할 수 있고, 내부에는 식생을 위한 식생공간을 하나 또는 둘 이상 구성할 수 있다. 즉, 공간의 구성은 몸체의 내부 공간을 격벽으로 나누어 복수개의 공간을 구성한다. 또한, 몸체의 하부에는 바닥을 구성하며, 상기 바닥이 일측으로 연장되어 인접하여 연결되는 식생블럭과 겹쳐져 서로 지지하도록 할 수 있다. 또한, 식생블럭의 설치시 PLA 소재로된 핀으로 서로의 몸체를 관통 연결하여 일체화할 수 있다.The finished product can be configured in the shape of a triangular, square, hexagonal circle, and the like, there can be configured one or more vegetation space for vegetation inside. That is, the space configuration divides the internal space of the body into partitions to form a plurality of spaces. In addition, the bottom of the body constitutes a floor, and the floor may extend to one side and overlap with the vegetation blocks connected adjacently to support each other. In addition, the installation of the vegetation block can be integrated by connecting each other through the body of the pin made of PLA material.

한편, 본 발명의 생분해성 복합 소재로 이루어진 블럭형 강화 식생매트는, 생분해로 소멸되는 과정에서 식물의 생장에 필요한 영양소가 용출되므로 이를 흡수하는 식물은 그 발육이 양호하게 되며, 특히 뿌리가 깊고 넓게 퍼져 지반의 지지력을 향상시키는 기능을 수행토록 하고 있다. 이를 위해서 식물의 생장에 도움을 주는 영양소를 첨가해줄 수 있다. On the other hand, the block-type reinforced vegetation mat made of the biodegradable composite material of the present invention, the nutrients necessary for the growth of the plant is eluted in the process of biodegradation, so that the plant that absorbs it is well developed, especially deep roots and wide It is spreading to perform the function of improving the bearing capacity of the ground. To do this, you can add nutrients to help the plant grow.

영양소 첨가방법은, 크게 두 가지로 구분할 수 있는데, 비료와 같은 입자상태로 공급한 후 성형하는 방법이 있고, 영양소를 액상으로 용해시킨 후 이에 잔골재를 침지시켰다가 건조하여 잔골재의 표면에 영양소가 피막을 이루게 하거나 그 내부 공극에 침투시켰다가 차후 용출되도록 하는 방법이 있다. There are two ways to add nutrients, which are supplied in the form of particles such as fertilizers and then molded.The nutrients are dissolved in the liquid phase and the fine aggregates are immersed and dried to dry the nutrients on the surface of the fine aggregates. Or to penetrate the interior voids and later dissolve.

영양소에 상기 잔골재를 침지 시키는 시간은 대략 30분에서 1시간 정도이면 충분하다. 이는 골재의 내부 공극으로 영양소가 충분히 침투할 수 있는 시간을 적용한 것이다.The time for immersing the fine aggregate in nutrients is about 30 minutes to 1 hour is sufficient. This is the time to allow nutrients to fully penetrate the interior voids of the aggregate.

첨가하는 영양소는, 기본적인 영양소인 질소, 인산, 칼륨 중 어느 1개 또는 2종이상의 영양소를 혼합하여 구성한 것, 예를 들면 복합비료로 구성할 수가 있고, 뿌리가 썩지 않고 잘 자랄 수 있도록 하는 뿌리발근영양제로 구성할 수가 있다.
Nutrients to be added include one of basic nutrients such as nitrogen, phosphoric acid and potassium, or a mixture of two or more kinds of nutrients, for example, a compound fertilizer, and root rooting to make roots grow well without rot. It can be composed of nutrients.

Claims (4)

천연오일 중 팜유의 함량이 10중량%~15중량%, PLA함량이 17중량%~20중량%, 백운모 65중량%~73중량%의 나노복합수지를 제조하고,
제조된 생분해성 나노복합수지 0.5중량%~2중량%와 PBS, PBSA, PBA수지 중 택일된 수지 98중량%~99.5중량%를 분산 및 확산을 위한 1차컨파운딩하고,
PLA수지 90중량%~95중량%와 PBS, PBSA, PBA수지 중 택일된 수지 4중량%~8중량%와 1차컴파운딩한 생분해성 나노복합수지 1중량%~2중량%를 2차컨파운딩하고,
상기 2차컨파운딩한 생분해성 복합수지를 제1번 스크류 200℃부터 다이스 온도 220℃까지 설정하여 압출 연신하여 생분해성 복합 단섬유를 제조하는 단계;
식물영양제 용해된 용액에 잡석을 30~40분간 침지시킨 후 건조하는 단계;
상기 생분해성 복합 단섬유40~55중량%와, 천연섬유20~30중량% 및 상기 건조된 잡석25~30중량%를 혼합하여 생분해 복합 소재를 제조하는 단계;
180℃~200℃로 가열된 블럭형 강화 식생매트 프레스 금형에 상기 생분해 복합소재를 충진한 후 프레스로 3~4분 동안 가압한 후 냉각시켜 인출하는 단계;
로 이루어지는 것을 특징으로 하는 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조방법.
10 to 15 wt% of palm oil in natural oil, 17 to 20 wt% of PLA content, and 65 to 73 wt% of mica are prepared.
0.5 wt% to 2 wt% of the biodegradable nanocomposite resin prepared and 98 wt% to 99.5 wt% of the selected resin among PBS, PBSA and PBA resins were first compounded for dispersion and diffusion,
Secondary compounding 90% to 95% by weight of PLA resin, 4% to 8% by weight of the optional resin of PBS, PBSA, PBA resin and 1% to 2% by weight of the first compounded biodegradable nanocomposite resin,
Manufacturing the biodegradable composite short fibers by extrusion stretching the secondary compounded biodegradable composite resin by setting the first screw at 200 ° C. to a die temperature of 220 ° C .;
Immersing rubble in a dissolved solution of plant nutrients for 30 to 40 minutes and then drying;
Preparing a biodegradable composite material by mixing 40 to 55 wt% of the biodegradable composite short fibers, 20 to 30 wt% of natural fibers, and 25 to 30 wt% of the dried rubble;
Filling the biodegradable composite material in a block-type reinforced vegetation mat press mold heated to 180 ° C. to 200 ° C., pressurizing for 3 to 4 minutes by a press, and then cooling and withdrawing the mold;
Stream block type reinforced vegetation mat manufacturing method using a biodegradable composite material comprising a polylactic acid, characterized in that consisting of.
제 1 항에 있어서, 상기 식물영양제는 복합비료인 것을 특징으로 하는 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조방법.The method of claim 1, wherein the plant nutrient is a composite fertilizer, characterized in that the river block-type reinforced vegetation mat production method using a biodegradable composite material comprising a polylactic acid. 제 1 항에 있어서, 상기 식물영양제는 뿌리발근영양제인 것을 특징으로 하는 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조방법.The method of claim 1, wherein the phytonutrient is a root block-enriched vegetation mat using a biodegradable composite material comprising a polylactic acid, characterized in that the root root root nutrient. 천연오일 중 팜유의 함량이 10중량%~15중량%, PLA함량이 17중량%~20중량%, 백운모 65중량%~73중량%의 나노복합수지를 제조하고,
제조된 생분해성 나노복합수지 0.5중량%~2중량%와 PBS, PBSA, PBA수지 중 택일된 수지 98중량%~99.5중량%를 분산 및 확산을 위한 1차컨파운딩하고,
PLA수지 90중량%~95중량%와 PBS, PBSA, PBA수지 중 택일된 수지 4중량%~8중량%와 1차컴파운딩한 생분해성 나노복합수지 1중량%~2중량%를 2차컨파운딩하고,
상기 2차컨파운딩한 생분해성 복합수지를 제1번 스크류 200℃부터 다이스 온도 220℃까지 설정하여 압출 연신하여 생분해성 복합 단섬유를 제조하는 단계;
상기 생분해성 복합 단섬유 40~55중량%와, 천연섬유20~25중량%와, 상기 건조된 잡석20~25중량%과, 3대 영양소인 질소, 인산, 칼륨 중 택일된 영양소 5~10중량%를 혼합하여 생분해 복합 소재를 제조하는 단계;
180℃~200℃로 가열된 블럭형 강화 식생매트 프레스 금형에 상기 생분해 복합소재를 충진한 후 프레스로 3~4분 동안 가압성형 단계;
냉각 안정화한 후 인출 단계;
로 이루어지는 것을 특징으로 하는 하천 폴리유산을 포함하는 생분해성 복합소재를 활용한 하천 블럭형 강화 식생매트 제조방법.
10 to 15 wt% of palm oil in natural oil, 17 to 20 wt% of PLA content, and 65 to 73 wt% of mica are prepared.
0.5 wt% to 2 wt% of the biodegradable nanocomposite resin prepared and 98 wt% to 99.5 wt% of the selected resin among PBS, PBSA and PBA resins were first compounded for dispersion and diffusion,
Secondary compounding 90% to 95% by weight of PLA resin, 4% to 8% by weight of the optional resin of PBS, PBSA, PBA resin and 1% to 2% by weight of the first compounded biodegradable nanocomposite resin,
Manufacturing the biodegradable composite short fibers by extrusion stretching the secondary compounded biodegradable composite resin by setting the first screw at 200 ° C. to a die temperature of 220 ° C .;
40 to 55% by weight of the biodegradable composite short fibers, 20 to 25% by weight of natural fibers, 20 to 25% by weight of the dried rubble, and 5 to 10 weight of the nutrients selected from the three major nutrients nitrogen, phosphoric acid and potassium Mixing the% to prepare a biodegradable composite material;
Filling the biodegradable composite material in a block-type reinforced vegetation mat press mold heated to 180 ° C. to 200 ° C., followed by press molding for 3 to 4 minutes by a press;
Withdrawing after cooling and stabilizing;
Stream block type reinforced vegetation mat manufacturing method using a biodegradable composite material comprising a stream polylactic acid, characterized in that consisting of.
KR1020110071543A 2011-07-19 2011-07-19 Pla vegetation mat KR101225617B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110071543A KR101225617B1 (en) 2011-07-19 2011-07-19 Pla vegetation mat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110071543A KR101225617B1 (en) 2011-07-19 2011-07-19 Pla vegetation mat

Publications (1)

Publication Number Publication Date
KR101225617B1 true KR101225617B1 (en) 2013-01-24

Family

ID=47842482

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110071543A KR101225617B1 (en) 2011-07-19 2011-07-19 Pla vegetation mat

Country Status (1)

Country Link
KR (1) KR101225617B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210154388A (en) * 2020-06-12 2021-12-21 재단법인 한국탄소산업진흥원 Method for manufacturing natural fiber reinforced biodegradable composites and floor of cargo bed for truck made by the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159217A (en) 2000-11-27 2002-06-04 Kanebo Ltd Vegetation net
KR100948083B1 (en) 2009-06-23 2010-03-16 (주)다원녹화건설 River afforesting method using porosity green net of eco-textile
KR100992398B1 (en) 2009-10-20 2010-11-05 동양메이저 주식회사 Filament nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159217A (en) 2000-11-27 2002-06-04 Kanebo Ltd Vegetation net
KR100948083B1 (en) 2009-06-23 2010-03-16 (주)다원녹화건설 River afforesting method using porosity green net of eco-textile
KR100992398B1 (en) 2009-10-20 2010-11-05 동양메이저 주식회사 Filament nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210154388A (en) * 2020-06-12 2021-12-21 재단법인 한국탄소산업진흥원 Method for manufacturing natural fiber reinforced biodegradable composites and floor of cargo bed for truck made by the same
KR102389571B1 (en) * 2020-06-12 2022-04-21 재단법인 한국탄소산업진흥원 Method for manufacturing natural fiber reinforced biodegradable composites and floor of cargo bed for truck made by the same

Similar Documents

Publication Publication Date Title
EP2263985B1 (en) Composite material for construction comprising hemp stems
CN103541289A (en) Colored high-titanium heavy slag permeable pavement brick and production method thereof
CN105593189A (en) Composite structural material and aggregate therefor
CN105818395A (en) Method for making water-permeable bricks from waste plastics and paving method of water-permeable bricks
KR101847592B1 (en) Filler for artificial turf comprising poly vinyl butyral copolymer resin manufacturing method
KR101225617B1 (en) Pla vegetation mat
US20120183774A1 (en) Method of treating stone wool
CN111423182B (en) Method for preparing garden rockery by utilizing construction waste regeneration
KR101873528B1 (en) Block composition with excellent permeability and manufacturing method using the same
KR20100046881A (en) Manufacturing method of water permeable clayey block and water permeable clayey block manufactured thereby
CN116425507A (en) Vegetation type ecological concrete and preparation method thereof
JP2006306684A (en) Paving stone block body having both water holding properties and permeability and method for shaping the same
CN109133831A (en) A kind of stability of slope curing agent and its application in side slope solidifies
KR101389557B1 (en) The planting revetment block amd the planting revetment block unit
KR101842980B1 (en) Manufacturing method of environmentally friendly spheric Porous Concrete Cobble
US20220380255A1 (en) Cured article and method for manufacturing same
KR100963672B1 (en) A spherical shape-body manufacturing method of Porous Concrete Cobble
Smirnova et al. Structural and thermal insulation products based on vegetable raw materials
CN113773023A (en) Environment-friendly waste-utilizing type plant-growing concrete and preparation method thereof
CN106278077A (en) A kind of by building waste improve non-burning brick
KR100822061B1 (en) Environmentally friend planting block utilizing charcoal powder and recycled aggregates
JP2007112634A (en) Concrete formed body
CN104291753A (en) Environment-friendly type hollow building block prepared from ceramsite, concrete and polyphenyl particle
KR101506514B1 (en) Eco friendly method for manufacturing fish type fishing reef
KR101468949B1 (en) Board for interior materials and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160118

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170206

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 7