KR101214638B1 - Power supply module for on line electric vehicle and road structure using the same, and method for constructing the road - Google Patents

Power supply module for on line electric vehicle and road structure using the same, and method for constructing the road Download PDF

Info

Publication number
KR101214638B1
KR101214638B1 KR1020090098736A KR20090098736A KR101214638B1 KR 101214638 B1 KR101214638 B1 KR 101214638B1 KR 1020090098736 A KR1020090098736 A KR 1020090098736A KR 20090098736 A KR20090098736 A KR 20090098736A KR 101214638 B1 KR101214638 B1 KR 101214638B1
Authority
KR
South Korea
Prior art keywords
power supply
rail module
electric vehicle
road
induction charging
Prior art date
Application number
KR1020090098736A
Other languages
Korean (ko)
Other versions
KR20110041755A (en
Inventor
조동호
서인수
유병역
윤 정
강대준
설동균
김중귀
이흥열
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020090098736A priority Critical patent/KR101214638B1/en
Publication of KR20110041755A publication Critical patent/KR20110041755A/en
Application granted granted Critical
Publication of KR101214638B1 publication Critical patent/KR101214638B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/02Details
    • B60M1/04Mechanical protection of line; Protection against contact by living beings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

본 발명은 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈에 있어서, 급전라인을 충격 및 하중으로부터 보호하는 한편 우천시 수분 침투 등으로부터 보호하며, 자기장을 집전장치 쪽으로 집중시켜 에너지 효율을 향상시킬 수 있도록 하는데 그 목적이 있다.The present invention provides a non-contact magnetic induction charging type electric vehicle power supply rail module, which protects the power supply line from impact and load, protects against water ingress during rain, and improves energy efficiency by concentrating the magnetic field toward the current collector. The purpose is.

이를 위해, 본 발명은 에너지를 공급하는 급전라인과; 상기 급전라인을 감싸는 절연덕트와; 상기 절연덕트의 적어도 상부 및 측면을 감싸는 보호커버와; 상기 절연덕트 하부측에 자속의 누설을 방지하도록 설치되는 자속누설방지부재를 포함하여 구성됨을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈 및 이를 적용한 도로 구조, 그리고 도로 시공방법이 제공된다.To this end, the present invention and the power supply line for supplying energy; An insulation duct surrounding the power supply line; A protective cover surrounding at least an upper portion and a side surface of the insulating duct; Provided is a non-contact magnetic induction charging type electric vehicle power supply rail module, a road structure using the same, and a road construction method, comprising a magnetic flux leakage preventing member installed to prevent leakage of magnetic flux on the lower side of the insulating duct. .

비접촉, 자기, 유도, 충전, 전기자동차, 급전레일, 모듈, 도로 Contactless, Magnetic, Inductive, Charged, Electric Vehicle, Feed Rail, Module, Road

Description

비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈 및 이를 적용한 도로, 그리고 도로 시공방법{POWER SUPPLY MODULE FOR ON LINE ELECTRIC VEHICLE AND ROAD STRUCTURE USING THE SAME, AND METHOD FOR CONSTRUCTING THE ROAD}Non-contact magnetic induction charging type electric vehicle power supply rail module, road and road construction method using the same {POWER SUPPLY MODULE FOR ON LINE ELECTRIC VEHICLE AND ROAD STRUCTURE USING THE SAME, AND METHOD FOR CONSTRUCTING THE ROAD}

본 발명은 비접촉 자기 유도 충전 방식의 전기자동차와 관련된 것으로서, 더욱 상세하게는 비접촉 자기 유도 충전 방식의 전기자동차 급전 라인의 신뢰성을 높이기 위한 급전레일 모듈 및 이를 적용한 도로 구조 그리고 그 시공방법에 관한 것이다.The present invention relates to an electric vehicle of a non-contact magnetic induction charging method, and more particularly, to a feed rail module for improving the reliability of the electric vehicle power supply line of the non-contact magnetic induction charging method, a road structure using the same and a construction method thereof.

일반적으로 비접촉 자기 유도 충전 방식의 전기자동차의 집전장치는 급전도로에서 발생하는 자기장의 힘을 전기에너지로 받는 트랜지스터의 원리가 적용된다. In general, the current collector of an electric vehicle of a non-contact magnetic induction charging type is applied to the principle of a transistor that receives the force of a magnetic field generated by a feeder road as electrical energy.

도 1은 종래의 급전장치의 단면을 도시한 것으로서, 1차 측 코일(12)과 철심(11)으로 구성되는 전력전송장치(10)는 지정된 위치에 매설되어 전력집전장치(20)와 일정 공극을 유지한 상태로 구성된다.1 is a cross-sectional view of a conventional power feeding device, wherein the power transmission device 10 composed of the primary side coil 12 and the iron core 11 is embedded at a designated position, and has a predetermined gap with the power current collecting device 20. It is configured to hold.

그리고, 상기 전력집전장치(20)는 상기 전력전송장치의 철심의 자로와 대향되도록 자로를 형성한 철심(21)과, 철심(21)에 형성된 자로상에 코일(22)이 수평 권선된 구조를 갖는다.The power collector 20 has a structure in which a coil 22 is horizontally wound on a magnetic core 21 formed with a magnetic core so as to face a magnetic core of the power transmission apparatus, and a magnetic core formed at the iron core 21. Have

이러한 종래의 급전장치(10)는 정차 중에 전기자동차 배터리에 충전하는 방식으로 도로면으로부터 받는 하중에 대해서는 고려하지 못하여 내구성이 떨어지는 문제점을 가지고 있다.The conventional power supply device 10 has a problem in that durability is not considered due to the load received from the road surface by charging the electric vehicle battery while the vehicle is stopped.

또한, 우천 시 도로 하부로 스며드는 물에 대한 방수 문제는 고려하지 못하였다. 그리고 자기장에 대한 에너지 효율은 일반적인 자기장의 형태로만 에너지를 흡수하는 방식이므로 효율의 문제가 제기되고 있다.In addition, the problem of waterproofing against water that penetrates under the road during rainy weather was not considered. In addition, the energy efficiency of the magnetic field is a method of absorbing energy only in the form of a general magnetic field, which raises the problem of efficiency.

본 발명은 상기한 제반 문제점을 해결하기 위하여 안출된 것으로서, 급전레일이 일반도로와 같은 충격과 하중을 받게 되면 손상을 입게 되므로 급전레일의 손상을 막기 위하여 충격과 하중을 견딜 수 있도록 한 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈 및 이를 적용한 도로 구조, 그리고 도로 시공방법을 제공하는데 그 목적이 있다.The present invention has been made in order to solve the above problems, and the non-contact magnetic induction to withstand the impact and load in order to prevent damage to the feed rail because the feed rail is damaged when subjected to the same impact and load as a general road The purpose of the present invention is to provide a charging rail module of a charging method, a road structure using the same, and a road construction method.

그리고, 본 발명은 자기장의 분산으로 인해 효율이 떨어지는 문제를 보완할 수 있도록 한 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈 및 이를 적용한 도로 구조, 그리고 도로 시공방법을 제공함에 그 목적이 있다.Another object of the present invention is to provide a non-contact magnetic induction charging electric vehicle power supply rail module, a road structure using the same, and a road construction method that can compensate for a problem of low efficiency due to dispersion of magnetic fields.

또한, 본 발명은 여러 가지 도로 조건에 따라 급전레일 부근의 온도와 습도가 달라짐으로 인하여 급전레일이 손상되거나 효율이 떨어지는 현상을 방지하는 한편, 우천 시 방수에 대한 대책이 필요해지므로 이를 보완할 수 있는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈 및 도로 구조, 그리고 도로 시공방법을 제공함에 그 목적이 있다.In addition, the present invention prevents the feed rail from being damaged or deteriorated due to the change in temperature and humidity of the feed rail in accordance with various road conditions, and it is necessary to take measures against water resistance in rainy weather. The purpose of the present invention is to provide a non-contact magnetic induction charging type electric vehicle power supply rail module, road structure, and road construction method.

상기한 바와 같은 목적을 달성하기 위해 본 발명은, 에너지를 공급하는 급전라인과; 상기 급전라인을 감싸는 절연덕트와; 상기 절연덕트의 적어도 상부 및 측면을 감싸는 보호커버와; 상기 절연덕트 하부측에 자속의 누설을 방지하도록 설치되는 자속누설방지부재를 포함하여 구성됨을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈이 제공된다.The present invention to achieve the above object, the power supply line for supplying energy; An insulation duct surrounding the power supply line; A protective cover surrounding at least an upper portion and a side surface of the insulating duct; There is provided a non-contact magnetic induction charging type electric vehicle power supply rail module, including a magnetic flux leakage prevention member installed to prevent leakage of magnetic flux on the lower side of the insulating duct.

그리고, 상기한 목적을 달성하기 위한 본 발명의 다른 형태에 따르면, 전술한 구성의 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈을 적용한 도로가 제공된다. In addition, according to another aspect of the present invention for achieving the above object, there is provided a road to which the electric vehicle feeding rail module of the non-contact magnetic induction charging method of the above-described configuration is applied.

한편, 상기한 목적을 달성하기 위한 본 발명의 또 다른 형태에 따르면, 급전레일모듈 시공용 터파기를 수행하는 단계와; 터파기한 바닥면에 기초면 콘크리트를 타설하는 단계와; 급전레일모듈을 설치하는 단계와; 아스팔트 등으로 급전레일모듈을 봉지하는 단계를 포함하여서 이루어짐을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈을 적용한 도로 시공방법이 제공된다.On the other hand, according to another aspect of the present invention for achieving the above object, the step of performing a feed rail module construction trench; Placing foundation concrete on the bottom of the trench; Installing a feeding rail module; Provided is a road construction method using a non-contact magnetic induction charging type electric vehicle power supply rail module, comprising the step of encapsulating the power supply rail module with asphalt.

이때, 급전레일설치는, 페라이트구조체를 설치하는 단계와, 상기 페라이트구조체 위로 스페이서를 설치하는 단계와, 스페이서 위로 급전라인을 가설하는 단계와, 상기 급전라인 외측에 보호커버를 설치하는 단계를 포함하는 것을 특징으로 한다.In this case, the feed rail installation includes installing a ferrite structure, installing a spacer on the ferrite structure, laying a feed line over the spacer, and installing a protective cover outside the feed line. It is characterized by.

본 발명에 따르면, 충격과 하중을 흡수할 수 있는 구조물인 보호커버 아래에 급전라인이 매설되므로 충격과 하중에 의한 급전레일의 손상을 방지할 수 있다.According to the present invention, since the feed line is buried under the protective cover which is a structure capable of absorbing the impact and the load, it is possible to prevent damage to the feed rail due to the impact and the load.

또한, 본 발명에 따르면 급전레일 주변에 페라이트 구조를 설치하여 자기장의 방향을 조절하여 에너지 효율을 상승시킨다. 즉, 기존 급전라인에서 발생하는 자기장의 분산으로 인해 에너지 효율이 떨어지는 현상을 보완할 수 있다.In addition, according to the present invention by installing a ferrite structure around the feed rail to adjust the direction of the magnetic field to increase the energy efficiency. That is, due to the dispersion of the magnetic field generated in the existing power supply line it can compensate for the phenomenon of low energy efficiency.

그리고, 우천 시 도로 아래에 있는 급전라인과 수분이 접촉하게 되면 급전라 인의 안정성이 떨어지게 되는데 이를 보완하기 위하여 방수가 잘 이루어지도록 스페이서를 통해 급전라인의 안전성을 향상시킨다. In addition, when the rain comes in contact with the power supply line under the rainy weather, the stability of the power supply line is reduced.

이와 더불어, 급전라인에 가해지는 충격과 하중을 흡수하는 구조물인 보호커버 또한 급전라인으로 빗물등이 흘러들어가는 것을 차단하여 방수에 대한 문제점을 보완할 수 있다.In addition, the protective cover that absorbs the impact and load applied to the power supply line can also prevent the rainwater flows into the power supply line to compensate for the problem of waterproofing.

또한, 상기 스페이서를 통해 급전라인 아래에 공간을 확보함으로써 급전라인에 대한 방열공간을 제공할 수 있게 된다.In addition, it is possible to provide a heat dissipation space for the feed line by securing a space under the feed line through the spacer.

그리고 급전라인이 절연덕트 내부에 설치됨으로써 방수에 대한 안전성이 더욱 향상된다.And the feed line is installed inside the insulation duct further improves the safety against waterproof.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

도 2는 본 발명에 따른 비접촉 자기 유도 방식의 전기자동차 급전레일 모듈용 도로 구조를 나타낸 사시도이고, 도 3은 본 발명의 급전레일 모듈이 적용된 도로 시공 방법을 나타낸 흐름도이며, 도 4a 내지 도 4g는 본 발명의 도로 시공 방법을 순차적으로 나타낸 단면도이다.2 is a perspective view showing a road structure for a non-contact magnetic induction type electric vehicle power supply rail module according to the present invention, Figure 3 is a flow chart showing a road construction method is applied to the power supply rail module of the present invention, Figures 4a to 4g It is sectional drawing which showed the road construction method of this invention sequentially.

이들 도면을 참조하면, 본 발명의 급전레일 모듈은, 에너지를 공급하는 급전라인(5)과; 상기 급전라인(5)을 감싸는 절연재질의 절연덕트(2)와; 상기 절연덕트(2)의 적어도 상부 및 측면을 감싸 충격 및 수분으로부터 급전라인(5)을 보호하게 되는 보호커버(1)와; 상기 절연덕트(2) 하부측에 자속의 누설을 방지하도록 설 치되는 자속누설방지부재(4)를 포함하여 구성된다.Referring to these drawings, the feed rail module of the present invention includes: a feed line 5 for supplying energy; An insulating duct (2) of insulating material surrounding the feeding line (5); A protective cover (1) covering at least the upper and side surfaces of the insulating duct (2) to protect the feed line (5) from impact and moisture; It is configured to include a magnetic flux leakage preventing member (4) installed on the lower side of the insulating duct (2) to prevent the leakage of magnetic flux.

이때, 상기 보호커버(1)는 단면상 "

Figure 112009063505912-pat00001
"형태로서, 급전라인(5)의 길이방향을 따라 연속적으로 상부 및 측면을 감싸도록 형성되며, FRP(Fiber Reinforced Plastic)등의 충분한 강성을 갖는 재질로 이루어지면 된다.At this time, the protective cover 1 is in cross-section "
Figure 112009063505912-pat00001
"As a shape, it is formed so as to surround the top and side continuously along the longitudinal direction of the feed line 5, it may be made of a material having a sufficient rigidity, such as FRP (Fiber Reinforced Plastic).

상기 절연덕트(2)와 자속누설방지부재(4) 사이에는 절연덕트(2) 하부측에 공간을 제공하는 스페이서(3)(Spacer)가 더 구비되며, 상기 스페이서(3)는 충분한 강성을 갖는 섬유강화 플라스틱, 즉 FRP(Fiber Reinforced Plastic) 등의 절연체로 이루어진다.A spacer 3 is provided between the insulating duct 2 and the magnetic flux leakage preventing member 4 to provide a space on the lower side of the insulating duct 2, and the spacer 3 has sufficient rigidity. Fiber reinforced plastic, that is, made of an insulator such as FRP (Fiber Reinforced Plastic).

그리고, 상기 자속누설방지부재(4)는 보호커버(1) 좌우측 및 아래쪽으로의 자속누설을 차단하여 위쪽으로 집중시켜주는 구조물로서, "

Figure 112009063505912-pat00002
"형태를 띠게 되는 페라이트(ferrite) 구조체로 이루어짐이 바람직하다.And, the magnetic flux leakage preventing member (4) is a structure that concentrates upward by blocking the magnetic flux leakage to the left and right and bottom of the protective cover (1), "
Figure 112009063505912-pat00002
"Preferably of a ferrite structure to be shaped.

그리고, 상기 급전레일 모듈은 좌우측에 각각 급전라인(5)이 설치되는 듀얼(dual) 타입이다. In addition, the power supply rail module is a dual type in which power supply lines 5 are installed at left and right sides, respectively.

이와 같이 구성된 본 발명의 작용은 다음과 같다.The operation of the present invention configured as described above is as follows.

먼저, 본 발명의 급전레일 모듈을 구성하는 보호커버(1)는 급전라인(5)의 길이방향을 따라 연속적으로 상부 및 측면을 감싸도록 형성되어 도로 위로부터 가해지는 충격과 하중을 흡수하여 충격과 하중에 의한 급전레일의 손상을 방지한다.First, the protective cover 1 constituting the feed rail module of the present invention is formed to surround the top and side continuously along the longitudinal direction of the feed line (5) to absorb the impact and load applied from the road to the impact and Prevents damage to the feed rail by the load.

그리고, 상기 보호커버(1)는 급전라인(5)의 길이방향을 따라 연속적으로 상부 및 측면을 감싸도록 형성되어 빗물등의 수분이 위쪽이나 측면에서 급전라인(5) 으로 유입되는 현상을 차단하게 된다.In addition, the protective cover 1 is formed to continuously wrap the upper and side in the longitudinal direction of the feed line 5 to block the phenomenon that water such as rainwater flows into the feed line 5 from the top or side. do.

또한, 상기 스페이서(3)는 충분한 강성을 갖는 FRP(강화플라스틱) 등의 절연체로 이루어져, 만약 빗물이 아래로 스며들 경우에 스페이서(3)에 의해 절연덕트(2)와 자속누설방지부재(4) 사이의 공간을 통해 빗물이 흘러나가도록 함으로써 급전라인(5)측으로는 빗물이 유입되지 않도록 막아주는 역할을 하게 된다.In addition, the spacer 3 is made of an insulator such as FRP (reinforced plastic) having sufficient rigidity, and if the rainwater penetrates down, the insulation duct 2 and the magnetic flux leakage preventing member 4 are separated by the spacer 3. By rainwater flows through the space between) serves to prevent the rainwater flows into the feed line (5) side.

그리고, 상기 자속누설방지부재(4)는 급전라인(5) 좌우측 및 아래쪽으로의 자속누설을 차단하는 자성체로서 페라이트(ferrite)재질의 구조체로 이루어짐이 바람직하며, 구조적으로 급전라인(5) 아래쪽에서 급전라인(5)을 가로질러 설치됨과 아울러 급전라인(5) 좌우측으로 상향 돌출되는 형태를 이루어 급전라인(5) 좌우측 및 아래쪽으로의 자속누설을 차단하게 된다.In addition, the magnetic flux leakage preventing member 4 is a magnetic material that blocks magnetic flux leakage to the left and right sides and the lower side of the power supply line 5, and is preferably made of a ferrite material structure, and structurally below the power supply line 5. It is installed across the feed line 5 and protrudes upward to the left and right sides of the feed line 5 to block magnetic flux leakage to the left and right sides and the bottom of the feed line 5.

이에 따라, 자기장의 방향이 급전라인(5) 상부방향으로 집중됨으로써 에너지 효율을 상승시킨다. Accordingly, the direction of the magnetic field is concentrated in the upper direction of the feed line 5 to increase the energy efficiency.

그리고, 상기 페라이트구조체는 충격 및 하중 등으로 인해 균열이 일어나더라도 자속의 누설을 차단하여 전기자동차의 전력집전장치(미도시) 쪽으로 자기장이 집중될 수 있도록 역할하게 된다.In addition, the ferrite structure serves to block the leakage of magnetic flux even if a crack occurs due to impact and load so that the magnetic field can be concentrated toward the electric power collector (not shown) of the electric vehicle.

그리고, 상기 급전레일 모듈은 좌우측에 각각 급전라인(5)이 설치되는 듀얼(dual) 타입이어서, 급전라인(5)이 하나만 배치된 경우에 비해 더욱 많은 에너지를 전력집전장치 쪽으로 공급할 수 있게 된다. In addition, the power supply rail module is a dual type in which power supply lines 5 are installed at left and right sides, respectively, so that more energy can be supplied to the power collector than when only one power supply line 5 is disposed.

한편, 상기한 본 발명의 급전레일 모듈을 적용한 도로 구조 및 시공에 대해 설명하면 다음과 같다.On the other hand, the road structure and construction to which the feed rail module of the present invention described above is described as follows.

본 발명의 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈을 적용한 도로 시공 방법에 따르면, 급전레일모듈 시공용 터파기를 수행하는 단계(도 4a 참조)와, 터파기한 바닥면에 기초면 콘크리트(6)를 타설하는 단계(도 4b참조)와, 급전레일모듈을 설치하는 단계와, 아스팔트 등 포장재(8)를 이용하여 급전레일모듈을 봉지(encapsulating)하는 단계를 포함한다. According to the road construction method applying the electric vehicle feed rail module of the non-contact magnetic induction charging method of the present invention, the step of performing the feed rail module construction trench (see Fig. 4a), and the base surface concrete (6) It includes the step (see Figure 4b), the step of installing the feed rail module, and encapsulating the feed rail module using the packaging material (8), such as asphalt.

이때, 급전레일모듈 설치는, 자속의 누설 방지를 위한 페라이트구조체가 매설된 콘크리트구조체(7)를 기초면 콘크리트(6) 위로 설치하는 단계(도 4c 참조)와, 상기 페라이트구조체 위로 스페이서(3)를 설치하는 단계(도 4d 참조)와, 상기 스페이서(3) 위로 급전라인(5)을 가설하는 단계와, 상기 급전라인(5) 외측에 보호커버(1)를 설치하는 단계를 포함한다. At this time, the power supply rail module installation, the step of installing a concrete structure (7) embedded with a ferrite structure for preventing leakage of magnetic flux on the base surface concrete (see Fig. 4c), and the spacer 3 over the ferrite structure It includes the step (see FIG. 4D), the step of installing the power supply line 5 over the spacer 3, the step of installing a protective cover (1) outside the power supply line (5).

상기 페라이트구조체가 매설되는 콘크리트구조체(7)는 현장이 아닌 공장에서 프리캐스트(Precast)됨이 바람직하다.Concrete structure 7 in which the ferrite structure is embedded is preferably precast (precast) at the factory, not the site.

이와 같은 도로 시공 과정 및 그 작용에 대해 보다 구체적으로 살펴보면 다음과 같다.Looking at the road construction process and its action in more detail as follows.

도 2 및 도 3을 참조하면, 본 발명의 실시 예는 비접촉 자기 유도 충전 방식의 전기자동차용 급전레일모듈이 일반도로에서 충격과 하중에 대해 안전성을 가지기 위해 먼저 급전레일모듈을 설치하기 전 도로를 파낸 상태는 표면이 불균일하여 모듈을 설치할 경우 충격과 하중에 의해 변형이 생기게 되므로, 이를 방지하기 위해 모듈을 매설하기 전에 시멘트로 기초 바닥면을 타설함으로써 급전레일모듈의 하중에 대한 안전성을 확보한다.2 and 3, an embodiment of the present invention is a non-contact magnetic induction charging method for the electric vehicle feed rail module in order to have a safety against shock and load in the general road first before installing the feed rail module In the dug state, the surface is uneven, so when the module is installed, deformation occurs due to impact and load. To prevent this, the foundation floor is casted with cement before embedding the module to secure the safety of the load of the feeding rail module.

또한, 도로표면으로부터 직접적으로 받는 하중에 대해서도 급전레일의 안전성을 확보하여야 함으로 "

Figure 112009063505912-pat00003
" 형태의 보호커버(1)를 설치하여 안전성에 대한 신뢰성을 더욱 향상시킨다.In addition, the safety of the feed rail should be ensured against loads directly received from the road surface.
Figure 112009063505912-pat00003
By installing the protective cover (1) of the form further improves the reliability for safety.

한편, 본 발명 급전레일모듈의 방수 문제를 해결하기 위한 내구설계가 필요하다. 이를 극복하기 위해 PVC등의 절연재로 된 절연덕트(2) 내부에 급전라인(5)을 매설한다. 이는 1차적으로 물과 급전라인(5)이 접촉하는 것을 막아주게 된다. On the other hand, there is a need for a durable design to solve the waterproof problem of the feed rail module of the present invention. In order to overcome this, the power supply line 5 is embedded in an insulation duct 2 made of an insulation material such as PVC. This primarily prevents the water and the feed line 5 from contacting.

또한 충격과 하중을 흡수하는 "

Figure 112009063505912-pat00004
"형태의 보호커버(1)가 도로 내부로 흡수되는 물을 2차적으로 급전라인(5)으로 유입되지 않도록 차단한다.Also absorb shock and load "
Figure 112009063505912-pat00004
The protective cover 1 of the "shape" prevents water absorbed into the road from being introduced into the feed line 5.

그리고, 급전라인(5)쪽으로 물이 차올라오는 경우 또한 고려하여 스페이서(3)를 급전라인(5) 아래쪽에 설치함으로써 3차적으로 물과의 접촉을 차단하여 방수 문제를 완전히 해결할 수 있도록 한다.In addition, when the water rises toward the power supply line 5, the spacer 3 is disposed below the power supply line 5 to allow the third contact to be blocked in order to completely solve the waterproof problem.

한편, 급전라인(5)에서 발생하는 자기장은 일반적인 자기장 형태를 가지게 되는데 이는 에너지 효율이 낮다는 문제점을 야기한다. On the other hand, the magnetic field generated in the feed line 5 has a general magnetic field form, which causes a problem of low energy efficiency.

본 발명에서는 이러한 문제점을 극복하기 위한 방안으로 에너지 효율을 상승시키기 위하여 급전라인(5) 주변에 자속누설방지부재(4)인 페라이트 구조체를 설치함으로써, 자기장의 방향을 조절해 급전라인(5)에서 발생하는 자기장의 방향을 에너지를 받아들이는 차량의 전력집전장치 방향으로 치우치게 하여 에너지 효율을 70%까지 상승시킬 수 있게 된다. In the present invention, in order to overcome this problem by installing a ferrite structure, the magnetic flux leakage preventing member (4) around the feed line (5) to increase the energy efficiency, by adjusting the direction of the magnetic field in the feed line (5) The direction of the generated magnetic field is biased toward the power collector of the vehicle that receives the energy, thereby increasing the energy efficiency by 70%.

한편, 본 발명은 상기한 실시예들로 한정되지 아니하며, 본 발명의 기술사상의 범주를 벗어나지 않는 한 여러 가지 다양한 형태로의 변경 및 수정이 가능하다.Meanwhile, the present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the technical spirit of the present invention.

예컨대, 상기 실시예에서는 자속누설방지부재(4)는 듀얼 타입의 급전라인에 알맞도록 좌우측이 일체로 연결된 "

Figure 112009063505912-pat00005
"형태를 띠는 것을 예시하였지만, 좌우측 각 부분이 분리설치되는 구조를 취하는 것도 가능함은 물론이다. For example, in the above embodiment, the magnetic flux leakage preventing member 4 is integrally connected to the left and right sides so as to be suitable for the dual type feed line.
Figure 112009063505912-pat00005
"It is illustrated that the form, but it is also possible to take a structure in which each of the left and right parts are separated.

따라서, 본 발명의 권리는 위에서 설명된 실시예들로 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.Accordingly, the rights of the present invention are not limited to the embodiments described above, but are defined by what is stated in the claims, and those skilled in the art can make various modifications and adaptations within the scope of the claims. It is self evident.

본 발명은 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈 및 이를 적용한 도로 구조, 그리고 도로 시공방법에 관한 것으로, 급전라인을 충격 및 하중으로부터 보호하는 한편 우천시 수분 침투 등으로부터 보호하며, 자기장을 집전장치 쪽으로 집중시켜 에너지 효율을 향상시키는 등, 미래 환경에 적합한 전기자동차 급전 라인의 신뢰성을 높일 수 있는 기술이므로 산업상 이용 가능성이 매우 높다.The present invention relates to an electric vehicle power supply rail module of a non-contact magnetic induction charging method, a road structure using the same, and a road construction method, which protects a power supply line from shocks and loads and protects it from water infiltration in rainy weather, and collects a magnetic field. It is highly applicable to the industry because it can improve the reliability of electric vehicle power supply line suitable for the future environment by focusing on energy efficiency.

도 1은 종래의 비접촉 급전방식을 이용한 전기자동차의 배터리 충전 시스템을 나타낸 사시도1 is a perspective view showing a battery charging system of an electric vehicle using a conventional non-contact power feeding method

도 2는 본 발명에 따른 비접촉 자기 유도 방식의 전기자동차 급전레일 모듈을 나타낸 사시도Figure 2 is a perspective view of a non-contact magnetic induction electric vehicle feeding rail module according to the present invention

도 3은 본 발명의 급전레일 모듈이 적용된 도로 시공 방법을 나타낸 흐름도3 is a flowchart illustrating a road construction method to which a feed rail module according to the present invention is applied;

도 4a 내지 도 4g는 본 발명의 도로 시공 방법을 순차적으로 나타낸 단면도로서,4A to 4G are cross-sectional views sequentially showing the road construction method of the present invention.

도 4a는 급전레일모듈 시공을 위해 터파기를 수행한 상태를 나타낸 단면도Figure 4a is a cross-sectional view showing a state that the trench for the power supply rail module construction

도 4b는 기초면 콘크리트를 타설한 상태를 나타낸 단면도4B is a cross-sectional view showing a state in which the foundation concrete is poured

도 4c는 페라이트구조체가 매설된 콘크리트구조체를 기초면 콘크리트 위로 설치하기 전의 상태를 보여주는 단면도 Figure 4c is a cross-sectional view showing a state before installing the ferrite structure embedded concrete structure on the base surface concrete

도 4d는 페라이트구조체가 매설된 콘크리트구조체를 기초면 콘크리트 위로 설치한 후의 상태를 보여주는 단면도 Figure 4d is a cross-sectional view showing a state after installing the ferrite structure embedded concrete structure on the base surface concrete

도 4e는 페라이트구조체 위로 스페이서 등을 설치하는 과정을 보여주는 단면도4E is a cross-sectional view illustrating a process of installing a spacer or the like on a ferrite structure;

도 4f는 급전레일모듈의 설치가 완료된 상태를 보여주는 단면도4F is a cross-sectional view showing a state where installation of a feed rail module is completed;

도 4g는 아스팔트 등 포장재에 의한 포장이 완료된 상태를 보여주는 단면도Figure 4g is a cross-sectional view showing a state in which the paving is completed by the paving material, such as asphalt

*도면의 주요 부분에 대한 부호의 설명*Description of the Related Art [0002]

1:보호커버 2:절연덕트1: Protective cover 2: Insulation duct

3:스페이서(spacer) 4:자속누설방지부재3: spacer 4: flux leakage preventing member

5:급전라인5: Feeding line

Claims (11)

에너지를 공급하는 급전라인과;A feeding line for supplying energy; 상기 급전라인을 감싸는 절연덕트와;An insulation duct surrounding the power supply line; 상기 절연덕트의 상부 및 측면을 감싸는 보호커버와;A protective cover surrounding upper and side surfaces of the insulating duct; 상기 절연덕트 하부측에 절연덕트의 하부 및 측면을 감싸도록 설치되어 자속의 누설을 방지하며, 급전라인의 길이방향을 따라 일정 간격으로 배열된 복수개의 페라이트 (ferrite) 재질의 자속누설방지부재와; A magnetic flux leakage preventing member formed of a plurality of ferrite materials arranged at a predetermined interval along the longitudinal direction of the power supply line by being installed to surround the lower side and the side surface of the insulating duct to prevent the leakage of magnetic flux; 상기 절연덕트와 자속누설방지부재 사이에서 자속누설방지부재에 대해 절연덕트를 일정 거리 이격시키면서 지지하여 절연덕트 하부측에 공간을 제공하는 FRP(섬유강화플라스틱) 절연체로 이루어진 스페이서(Spacer)를 포함하여 구성됨을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈.Including a spacer made of an FRP (fiber-reinforced plastic) insulator that provides a space on the lower side of the insulating duct by supporting the insulating duct at a predetermined distance from the insulating duct and the magnetic flux leakage preventing member. Electric vehicle feed rail module of the non-contact magnetic induction charging method, characterized in that configured. 제 1 항에 있어서, The method of claim 1, 상기 보호커버는 급전라인의 길이방향을 따라 연속적으로 상부 및 측면을 감싸도록 형성됨을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈.The protective cover is an electric vehicle power supply rail module of the non-contact magnetic induction charging method characterized in that it is formed so as to surround the top and side continuously in the longitudinal direction of the feed line. 삭제delete 삭제delete 삭제delete 삭제delete 제 1 항에 있어서, The method of claim 1, 상기 급전레일 모듈은 좌우측에 각각 급전라인이 설치되는 듀얼(dual) 타입임을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈.The power supply rail module is a non-contact magnetic induction charging type electric vehicle power supply rail module, characterized in that the dual (dual) type is provided with a power supply line respectively on the left and right sides. 제 1 항 또는 제2항 또는 제 7 항에 따른 급전레일 모듈을 포함하는 것을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일용 도로.A road for a non-contact magnetic induction charging type electric vehicle power supply rail, comprising a power supply rail module according to claim 1. 급전레일모듈 시공용 터파기를 수행하는 단계와; Performing a feed rail module construction trench; 터파기한 바닥면에 기초면 콘크리트를 타설하는 단계와; Placing foundation concrete on the bottom of the trench; 제 1 항 또는 제2항 또는 제 7 항에 기재된 급전레일모듈을 설치하는 단계와; Installing the power supply rail module according to claim 1 or 2; 아스팔트 등 포장재로 급전레일모듈을 봉지하는 단계를 포함하여서 이루어짐을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈을 적용한 도로 시공방법.Road construction method using the electric vehicle feed rail module of the non-contact magnetic induction charging method characterized in that it comprises the step of encapsulating the feed rail module with paving material such as asphalt. 제 9 항에 있어서, The method of claim 9, 상기 급전레일모듈 설치 단계는,The feeding rail module installation step, 자속의 누설 방지를 위한 페라이트구조체가 매설된 콘크리트구조체를 기초면 콘크리트 위로 설치하는 단계와, 상기 페라이트구조체 위로 스페이서를 설치하는 단계와, 스페이서 위로 급전라인을 가설하는 단계와, 상기 급전라인 외측에 보호커버를 설치하는 단계를 포함하여 이루어짐을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈을 적용한 도로 시공방법.Installing a concrete structure embedded with a ferrite structure for preventing leakage of magnetic flux on the foundation concrete, installing a spacer on the ferrite structure, laying a feed line over the spacer, and protecting the outside of the feed line. Road construction method applying the electric vehicle feed rail module of the non-contact magnetic induction charging method characterized in that it comprises a step of installing a cover. 제 10 항에 있어서, 11. The method of claim 10, 상기 페라이트구조체가 매설된 콘크리트구조체는 공장에서 프리캐스트됨을 특징으로 하는 비접촉 자기 유도 충전 방식의 전기자동차 급전레일 모듈을 적용한 도로 시공방법.The concrete structure in which the ferrite structure is embedded is a road construction method applying the electric vehicle feeding rail module of the non-contact magnetic induction charging method, characterized in that the precast in the factory.
KR1020090098736A 2009-10-16 2009-10-16 Power supply module for on line electric vehicle and road structure using the same, and method for constructing the road KR101214638B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090098736A KR101214638B1 (en) 2009-10-16 2009-10-16 Power supply module for on line electric vehicle and road structure using the same, and method for constructing the road

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090098736A KR101214638B1 (en) 2009-10-16 2009-10-16 Power supply module for on line electric vehicle and road structure using the same, and method for constructing the road

Publications (2)

Publication Number Publication Date
KR20110041755A KR20110041755A (en) 2011-04-22
KR101214638B1 true KR101214638B1 (en) 2012-12-21

Family

ID=44047558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090098736A KR101214638B1 (en) 2009-10-16 2009-10-16 Power supply module for on line electric vehicle and road structure using the same, and method for constructing the road

Country Status (1)

Country Link
KR (1) KR101214638B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182376B1 (en) * 2011-04-26 2012-09-12 한국과학기술원 Magnetic Inductive Apparatus for Power Transmission, Power Collection and Power Transmission Considering Horizontal Deviation
KR101379793B1 (en) * 2012-09-11 2014-03-31 한국과학기술원 Module type of non-touch power supply for waterproof and sealing
KR101478128B1 (en) * 2013-11-14 2014-12-31 한국철도기술연구원 Railway vehicle of wireless power transfer system for constructing method
DE102014114640A1 (en) * 2014-10-09 2016-04-14 Paul Vahle Gmbh & Co. Kg Inductive energy transfer system with broad primary order
KR20220159028A (en) 2021-05-25 2022-12-02 윤태호 Torque transmission device using lever effect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596459B1 (en) * 2006-03-14 2006-07-05 (주)서광전기컨설팅 Protector for underground line of apartment house
JP2008120239A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Noncontact power supply device of mobile body, and its protecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596459B1 (en) * 2006-03-14 2006-07-05 (주)서광전기컨설팅 Protector for underground line of apartment house
JP2008120239A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Noncontact power supply device of mobile body, and its protecting device

Also Published As

Publication number Publication date
KR20110041755A (en) 2011-04-22

Similar Documents

Publication Publication Date Title
KR101214638B1 (en) Power supply module for on line electric vehicle and road structure using the same, and method for constructing the road
KR101040662B1 (en) Ultra slim power supply and collector device for electric vehicle
KR20150053271A (en) Pavement slab assembly and method of building a pavement slab assembly
US20130092491A1 (en) Power supply apparatus for on-line electric vehicle, method for forming same and magnetic field cancelation apparatus
KR20110041937A (en) Power supply device for electric vehicle protected by concrete structure
US10763024B2 (en) Power transmission apparatus
CN107852031B (en) Removable inductive power transfer pad
CN103171041A (en) Auxiliary curing method for cold weather concrete by electric heating tapes
WO2012141357A1 (en) Power feeding rail module using non-contact magnetic inductive charging method, road structure using same, and method for constructing road
KR101056174B1 (en) Non-contact magnetic induction charging module for electric vehicle power supply
CN107240901B (en) A kind of direct-burried high-voltage cable joint protection structure
KR101177920B1 (en) Underground electronic cable connector of power distribution
KR101042948B1 (en) Smart Highway having Embedded Cable
KR101087769B1 (en) Power supply device for electric vehicle
KR101056169B1 (en) Ferrite core module for electric power feeding device of non-contact magnetic induction charging method
KR101416801B1 (en) Concrete panel for supplying electric power of wireless charging electric vehicle, and constructing method for the same
KR101269224B1 (en) Module type of non-touch power supply
JP2023023997A (en) Pavement structure and paving method
KR101114601B1 (en) Power supply device for electric vehicle
KR20120058892A (en) pavement structure of road buried power line for electric vehicle
CN208539528U (en) A kind of cold district private cable ditch
CN108767800B (en) Cable trench for cold areas and construction method thereof
JP2012248131A (en) Method for laying loop coil, buffer member, loop coil type vehicle sensing system
KR101111744B1 (en) Power supply device for electric vehicle
JP7405423B2 (en) Loop coil, vehicle detection system and vehicle detection method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20111128

Effective date: 20120629

S901 Examination by remand of revocation
E902 Notification of reason for refusal
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161129

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 8