KR101204932B1 - Method of preparing porous silicon nitride cefamics and porous silicon nitride cefamics thereof - Google Patents

Method of preparing porous silicon nitride cefamics and porous silicon nitride cefamics thereof Download PDF

Info

Publication number
KR101204932B1
KR101204932B1 KR1020100135996A KR20100135996A KR101204932B1 KR 101204932 B1 KR101204932 B1 KR 101204932B1 KR 1020100135996 A KR1020100135996 A KR 1020100135996A KR 20100135996 A KR20100135996 A KR 20100135996A KR 101204932 B1 KR101204932 B1 KR 101204932B1
Authority
KR
South Korea
Prior art keywords
silicon nitride
low melting
melting point
porous silicon
point composition
Prior art date
Application number
KR1020100135996A
Other languages
Korean (ko)
Other versions
KR20120074051A (en
Inventor
한상무
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020100135996A priority Critical patent/KR101204932B1/en
Publication of KR20120074051A publication Critical patent/KR20120074051A/en
Application granted granted Critical
Publication of KR101204932B1 publication Critical patent/KR101204932B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명은 다공성 질화규소 요업체에 관한 것으로, SiO2, Y2O3, Si3N4를 혼합하여 저융점 조성 분말을 제조하는 단계; 상기 제조된 저융점 조성 분말을 구형으로 성형하는 단계;상기 저융점 조성 분말과 Si2N2O을 혼합하여 혼합물을 형성하는 단계;상기 혼합물을 가열하여 상기 저융점 조성 분말과 Si2N2O가 공융액상을 형성하는 단계;상기 공융액상이 Si2N2O 분말의 모세관 사이로 들어가 구형 기공을 형성하는 단계;를 포함하는 다공성 질화규소 요업체의 제조방법과 이에 의해 제조되는 다공성 질화규소 요업체를 제공하여,
저융점 조성 분말을 구형으로 성형하고 이를 산질화규소 분말에 혼합하여 공융액상을 형성하도록 하여 내화재 소결을 촉진함으로써 강도가 향상되고, 내화재 파괴인성 증가에 효과적인 구형기공을 제공함으로써 파괴인성을 향상시키는 효과가 있다.
The present invention relates to a porous silicon nitride carrier, comprising: preparing a low melting point composition powder by mixing SiO 2 , Y 2 O 3 , Si 3 N 4 ; Molding the prepared low melting point composition into a sphere; mixing the low melting point composition with Si 2 N 2 O to form a mixture; heating the mixture to form the low melting point composition with Si 2 N 2 O Forming a eutectic eutectic phase; The eutectic phase enters between the capillary of the Si 2 N 2 O powder to form a spherical pore; Provides a method of manufacturing a porous silicon nitride company comprising, and a porous silicon nitride carrier produced thereby So,
The low melting point composition is formed into a sphere and mixed with silicon oxynitride powder to form a eutectic liquid phase, which promotes sintering of the refractory material, thereby improving strength and providing spherical pores effective for increasing the toughness of the refractory material, thereby improving fracture toughness. have.

Description

다공성 질화규소 요업체의 제조방법 및 이에 의해 제조된 다공성 질화규소 요업체{METHOD OF PREPARING POROUS SILICON NITRIDE CEFAMICS AND POROUS SILICON NITRIDE CEFAMICS THEREOF}Manufacturing Method of Porous Silicon Nitride Agents and Porous Silicon Nitride Agents Prepared by the Method {METHOD OF PREPARING POROUS SILICON NITRIDE CEFAMICS AND POROUS SILICON NITRIDE CEFAMICS THEREOF}

본 발명은 다공성 질화규소 요업체 제조방법 및 이에 의해 제조되는 다공성 질화규소 요업체에 관한 것으로, 보다 상세하게는 수 밀리미터 크기의 미세 기공이 균일하게 형성되도록 하는 다공성 질화규소 요업체의 제조방법 및 그에 의해 제조된 다공성 질화규소 요업체에 관한 것이다.The present invention relates to a method for producing a porous silicon nitride carrier and a porous silicon nitride carrier produced thereby, and more particularly, to a method for producing a porous silicon nitride carrier and to produce fine pores of several millimeters in size. It relates to a porous silicon nitride carrier.

일반적으로 질화규소 요업체(ceramics)는 질화규소를 기본으로 하여 질화물이 소결제로 첨가되어 제조되며, 이러한 질화규소 요업체는 비중이 낮고, 경도가 우수하며 화학적 안정성 및 내열성이 우수한 특징을 가진다.In general, silicon nitride manufacturers (ceramics) is manufactured by adding nitride as a sintering agent on the basis of silicon nitride, these silicon nitride manufacturers have low specific gravity, excellent hardness, excellent chemical stability and heat resistance.

질화규소 요업체에는 일반적으로 Si3N4에 마그네시아(MgO), 알루미나(Al2O3) 등을 보조제로서 첨가한 후, 이러한 혼합물을 소결하여 제조되는 β-Si3N4, 알루미나와 질화알루미늄 또는 실리카와 질화알루미늄을 특정한 비율로 첨가하여 β-Si3N4의 결정 구조를 유지하면서 Si과 Ni이 각각 Al과 O로 치환된 β-사이알론(sialon), 기본적으로 α-Si3N4의 결정 구조를 유지하면서 Si와 N이 각각 Al과 O로 치환된 α-사이알론이 있다.Silicon nitride requires companies typically Si 3 N 4 on a magnesia (MgO), alumina (Al 2 O 3), etc., and then added as an auxiliary agent, β-Si 3 N 4, alumina and aluminum nitride, or it is made by sintering this mixture Silica and aluminum nitride are added at a specific ratio to maintain the crystal structure of β-Si 3 N 4 , while Si and Ni are substituted with Al and O, respectively, β-sialon, basically α-Si 3 N 4 . There is an α-sialon in which Si and N are substituted with Al and O, respectively, while maintaining the crystal structure.

이러한 질화규소 요업체와 더불어 질화규소와 실리카가 몰비로서 1:1로 고용되어 형성되는 질화규소 요업체가 존재하며, 이러한 질화규소 요업체는 주로 고온내화재료로서 이용되고 있다.In addition to these silicon nitride components, there are silicon nitride components in which silicon nitride and silica are employed in a molar ratio of 1: 1, and these silicon nitride components are mainly used as high temperature refractory materials.

한편, 이와 같이 다양한 원료 분말이 혼합된 질화규소 요업체는 질화규소 및다른 소결 조제가 혼합, 성형, 소결되는 과정에서 발달한 액상이 치밀화를 촉진한 후 반응하여 생성된 입자에 고용되어 최종적으로 고상 및 불규칙한 형태의 기공이 남게 된다. On the other hand, the silicon nitride key material in which various raw material powders are mixed is employed in particles formed by reacting the liquid phase developed in the process of mixing, forming, and sintering silicon nitride and other sintering aids to finally form solid and irregular particles. The pores of the form remain.

상기의 잔류 기공의 형태를 제어하기 위하여, 최종적으로 탄화규소 및 질화규소로 분해되는 세라믹 전구체(ceramic precursor)를 첨가하여 요업체를 제조하는 방법(미국 특허 제 5,643,987호)이 제안되었으나, 이러한 경우에 발달되는 기공은 수십 옹스트롬의 극미세 기공으로서, 내화물에 요구되는 수 밀리미터 크기의 기공 발달에는 부적합하다는 문제가 있었다.In order to control the morphology of the residual pores, a method of preparing a urine by adding a ceramic precursor which is finally decomposed into silicon carbide and silicon nitride (US Pat. No. 5,643,987) has been proposed, but in this case, development The pore to be made is an extremely fine pore of tens of angstroms, which is not suitable for the development of pores of several millimeters in size required for refractory materials.

즉, 고온에서 사용되는 질화규소계 내화재 내부에 기공을 형성하기 위해 최종적으로 탄화규소나 질화규소로 분해되는 세라믹 전구체(precursor)를 첨가하였으나, 고분자나 세라믹 전구체를 이용할 경우에는 수십 옹스트롬 크기로 극히 미세한 기공이 형성되어 실제적인 내화재에 필요한 수 밀리미터 크기의 기공을 균일하게 형성하기 어렵다는 문제가 있었고, 내화재의 강도가 낮다는 문제가 있었다. That is, in order to form pores in the silicon nitride-based refractory material used at high temperature, a ceramic precursor which is finally decomposed into silicon carbide or silicon nitride is added. There was a problem that it is difficult to uniformly form the pores of the size of several millimeters required for the actual refractory material, there was a problem that the strength of the refractory material is low.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 수 밀리미터의 크기를 갖는 미세 기공이 균일하게 형성되는 다공성 질화규소 요업체를 제조하는 방법과 이에 의해 제조되는 다공성 질화규소 요업체를 제공하는데 그 목적이 있다.The present invention has been made in order to solve the above problems, to provide a method for producing a porous silicon nitride urea is uniformly formed micropores having a size of several millimeters and to provide a porous silicon nitride urea produced thereby There is this.

상기와 같은 목적을 달성하기 위한 본 발명의 실시예는 SiO2, Y2O3, Si3N4를 혼합하여 저융점 조성 분말을 제조하는 단계; 상기 제조된 저융점 조성 분말을 구형으로 성형하는 단계; 상기 저융점 조성 분말과 Si2N2O을 혼합하여 혼합물을 형성하는 단계; 상기 혼합물을 가열하여 상기 저융점 조성 분말과 Si2N2O가 공융액상을 형성하는 단계; 상기 공융액상이 Si2N2O 분말의 모세관 사이로 들어가 구형 기공을 형성하는 단계; 를 포함하는 다공성 질화규소 요업체의 제조방법을 제공한다.Embodiments of the present invention for achieving the above object comprises the steps of preparing a low melting point composition powder by mixing SiO 2 , Y 2 O 3 , Si 3 N 4 ; Molding the prepared low melting point composition into a sphere; Mixing the low melting point composition powder with Si 2 N 2 O to form a mixture; Heating the mixture to form a eutectic liquid phase of the low melting point composition powder and Si 2 N 2 O; The eutectic phase enters between capillaries of Si 2 N 2 O powder to form spherical pores; It provides a method of manufacturing a porous silicon nitride main company comprising a.

본 발명에 따른 실시예의 저융점 조성 분말은 SiO2 12~16중량%, Y2O3 4~8중량%, Si3N4 76~84중량%인 것을 특징으로 한다.Low melting point composition powder of the embodiment according to the invention is characterized in that 12 to 16% by weight of SiO 2 , 4 to 8% by weight of Y 2 O 3 , 76 to 84% by weight of Si 3 N 4 .

본 발명에 따른 실시예의 혼합물의 조성은 저융점 조성 분말과 Si2N2O의 분말이 상평형을 이루는 조성인 것을 특징으로 하고, 특히 상기 혼합물은 저융점 조성 분말 0.1~5중량%, Si2N2O 95~99.9중량%인 것을 특징으로 한다.The composition of the mixture according to the embodiment of the present invention is characterized in that the composition of the low melting point powder and the powder of Si 2 N 2 O phase equilibrium, in particular the mixture is 0.1 to 5% by weight of the low melting point composition powder, Si 2 N 2 O 95 ~ 99.9% by weight.

본 발명에 따른 실시예의 구형으로 성형된 저융점 조성 분말은 입경이 0.5~1mm인 것을 특징으로 한다.The spherical shaped low melting point composition of the embodiment according to the present invention is characterized in that the particle diameter is 0.5 ~ 1mm.

또한, 본 발명에 따른 실시예는 상기의 제조방법 중 어느 하나의 제조방법에 의해 제조된 다공성 질화규소 요업체를 제공한다. In addition, the embodiment according to the present invention provides a porous silicon nitride main material manufactured by any one of the above manufacturing method.

이상 설명한 바와 같이 본 발명은 저융점 조성 분말을 구형으로 성형하고 이를 산질화규소 분말에 혼합하여 공융액상을 형성하도록 하여 내화재 소결을 촉진함으로써 강도가 향상되고, 내화재 파괴인성 증가에 효과적인 구형기공을 제공함으로써 파괴인성을 향상시키는 효과가 있다.As described above, the present invention forms a low melting point powder into a sphere and mixes it with silicon oxynitride powder to form a eutectic liquid phase, thereby facilitating sintering of the refractory material, thereby improving strength and providing spherical pores effective for increasing the fire resistance fracture toughness. It has the effect of improving fracture toughness.

도 1은 본 발명에 따른 실시예의 다공성 질화규소 요업체의 제조방법의 플로차트이다.1 is a flow chart of a method of manufacturing a porous silicon nitride main body of the embodiment according to the present invention.

이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.

이러한 실시예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않는다.Such an embodiment may be embodied in various different forms as one of ordinary skill in the art to which the present invention pertains, and is not limited to the embodiments described herein.

본 발명에 관한 실시예는 SiO2 12~16중량%, Y2O3 4~8중량%, Si3N4 76~84중량%를 포함하는 저융점 조성 분말을 구상화하여 산질화규소에 혼합한 후 가열함으로써 다공성 질화규소 요업체를 제조하는 방법 및 그에 의해 제조된 다공성 질화규소 요업체에 관한 것이다.Example according to the present invention is spheroidized low-melting composition composition containing 12 to 16% by weight of SiO 2 , 4 to 8% by weight of Y 2 O 3 , 76 to 84% by weight of Si 3 N 4 and then mixed with silicon oxynitride The present invention relates to a method for producing a porous silicon nitride carrier by heating and to a porous silicon nitride carrier produced thereby.

본 발명에 따른 실시예는 저융점 조성 분말을 구상화하여 첨가함으로써 상기저융점 조성 분말의 소결 공정시 상기 저융점 조성 분말이 공융액상이 되어 산질화규소(Si2N2O) 조성 분말들이 형성하는 모세관에 빨려 들어가 최종적으로는 구형의 기공들이 균일하게 분포되는 수 밀리미터의 크기를 갖는 기공을 제공한다.According to an embodiment of the present invention, the low melting point composition powder becomes a eutectic liquid phase during the sintering process of the low melting point composition powder by adding spherical low melting point composition powder to form silicon oxynitride (Si 2 N 2 O) composition powders. It is sucked into and finally provides pores with a size of several millimeters in which the spherical pores are uniformly distributed.

본 발명에 따른 실시예는 먼저 저융점 조성 분말을 제조(S100)하는데, 이를 위해서는 SiO2 12~16중량%, Y2O3 4~8중량%, Si3N4 76~84중량%를 혼합한다. 만약 이를 벗어나는 경우에는 본 발명이 목적하는 액상 이외의 고상이 발달하거나 미반응 원료입자가 잔존하여 구형의 기공 발달을 방해할 수 있게 된다. Example according to the present invention first to prepare a low melting point powder (S100), for this purpose 12 to 16% by weight of SiO 2 , 4 to 8% by weight of Y 2 O 3 , 76 to 84% by weight of Si 3 N 4 mixed do. If it is out of this it is possible to hinder the development of spherical pores due to the development of a solid phase other than the liquid phase of the present invention or the remaining unreacted raw particles.

따라서, 상기의 조성으로 저융점 조성 분말을 제조한 것을 구상으로 성형(S110)한다. 상기 구상화하는 방법으로는 SiO2, Y2O3, Si3N4 를 진동혼합기에 투입하고, 상기 진동혼합기를 돌리면서 혼합한 후, 생성된 구상의 생성물을 300 ~ 500℃에서 1~2시간 열처리하여 저융점을 갖는 조성 분말을 제조할 수 있다. 본 발명에 따른 다공성 질화규소 요업체를 일반적인 내화벽돌로 이용하는 경우에는 구상화 저융점 조성 분말의 크기는 0.5 ~ 1mm인 것이 바람직하다. 그러나, 다공성 질화규소 요업체에서 요구되는 기공 크기에 따라 저융점 조성 분말의 크기는 자유롭게 조절할 수 있는 것이므로 일반적인 요업 공정에 부합되는 한 그 크기는 특별히 한정되지 않는다.Therefore, the low melting point composition powder prepared in the above composition is spherically shaped (S110). In the spheroidizing method, SiO 2 , Y 2 O 3 , and Si 3 N 4 were added to a vibratory mixer, mixed while turning the vibratory mixer, and then the resulting spherical product was produced at 300 to 500 ° C. for 1 to 2 hours. The heat treatment may be performed to prepare a composition powder having a low melting point. When the porous silicon nitride insulator according to the present invention is used as a general refractory brick, the size of the spheroidized low melting point composition powder is preferably 0.5 to 1 mm. However, the size of the low melting point composition powder is freely adjustable according to the pore size required by the porous silicon nitride company, so long as it conforms to the general ceramic process, the size is not particularly limited.

상기 저융점 조성 분말은 산질화규소의 조성과 공융액상(S130)을 이루도록 혼합(S120)한다. The low melting point powder is mixed (S120) to form a eutectic liquid phase (S130) with the composition of silicon oxynitride.

상기 공융액상의 조성은 저융점 조성 분말 0.1~5중량%, Si2N2O 95~99.9중량%인데, 저융점 조성 분말의 조성이 0.1중량% 미만인 경우에는 다공성 질화규소 요업체의 제조에 대한 효과가 적고, 5중량%를 초과하는 경우에는 소결 중 일시적으로 발생되는 액상의 양이 많아 구형의 기공 형태를 유지하는 것이 어렵다.The composition of the eutectic phase is 0.1 to 5% by weight of the low melting point composition powder, 95 to 99.9% by weight of Si 2 N 2 O, when the composition of the low melting point composition powder is less than 0.1% by weight effect on the production of porous silicon nitride major When the amount is less than 5% by weight, it is difficult to maintain a spherical pore shape because a large amount of liquid phase is generated temporarily during sintering.

또한, 상기 저융점 조성 분말과 산질화규소의 분말은 저융점 평형 액상 조성과 상평형을 이루는 이론적 조성으로 제한된다.In addition, the low melting point composition powder and the silicon oxynitride powder are limited to the theoretical composition which is in phase equilibrium with the low melting point equilibrium liquid composition.

상기 혼합물은 소결을 위해 가열되는데 가열은 1700~1750℃에서 1시간 내지 4시간 동안 가열하여 소결시킨다. 만약, 소결 온도가 1700℃보다 낮은 경우에는 치밀한 소결체의 제조가 어렵고, 1750℃보다 높은 경우에는 저융점 조성 액상이 휘발하거나 질화규소의 분해로 인하여 강도 저하된다. 이 때, 소결 시간은 소결 온도에 따라 변하는데, 소결 온도가 높을수록 짧아지고, 1700℃에서는 최소한 4시간 이상 가열해야 치밀한 소결체를 얻을 수 있다.The mixture is heated for sintering, the heating is sintered by heating for 1 to 4 hours at 1700 ~ 1750 ℃. If the sintering temperature is lower than 1700 ℃, it is difficult to manufacture a dense sintered body, if the sintering temperature is higher than 1750 ℃, the low melting point composition liquid is volatilized or the strength is degraded due to decomposition of silicon nitride. At this time, the sintering time changes depending on the sintering temperature. The sintering temperature is shorter as the sintering temperature is higher, and at 1700 ° C., a compact sintered compact can be obtained by heating at least 4 hours.

상기 소결 단계에서 저융점 조성 분말이 용융되어 액상이 형성되고, 상기 액상은 산질화규소 분말 입자 사이의 모세관에 침투(S140)되어 구형 기공을 형성하는 동시에 소결을 촉진(S150)하는 한편 저융점 조성의 구상체가 있던 자리는 빈 공간, 즉 구형의 기공으로 남게 된다. 이 때, 소결의 촉진에 의해 내화재의 강도와 파괴인성이 향상된다.
In the sintering step, the low melting point composition powder is melted to form a liquid phase, and the liquid phase penetrates into the capillaries between silicon oxynitride powder particles (S140) to form spherical pores and at the same time promote sintering (S150) while having a low melting point composition. The site of the globular remains in the empty space, that is, the spherical pores. At this time, the strength and fracture toughness of the refractory material are improved by promoting the sintering.

이하에서는 본 발명에 따른 실시예에 대하여 설명한다.Hereinafter, an embodiment according to the present invention will be described.

SiO2, Y2O3, Si3N4를 각각 14중량%, 6중량%, 20중량%를 V형 혼합기에 넣고 약1시간 정도 혼합하여 구상화하였다. 구상화된 저융점 조성 분말을 약 400℃에서 1시간 정도 가열하여, 구상화 저융점 조성 분말을 제조하였다.SiO 2 , Y 2 O 3 , and Si 3 N 4 were each 14 wt%, 6 wt%, and 20 wt% in a V-type mixer, mixed for about 1 hour, and spheroidized. The spheroidized low melting point composition powder was heated at about 400 ° C. for about 1 hour to prepare a spheroidized low melting point composition powder.

상기 제조된 저융점 조성 분말 중 크기가 0.5 내지 1mm인 것을 분급하여 모은 후에 상기의 저융점 조성 분말은 1중량%로 하고, 질화규소를 99중량%로 하여 혼합한 후 1750℃에서 약 1시간 가열하여 다공성 질화규소 요업체를 제조하였다.The low melting point composition powder was classified into 0.5 to 1 mm in size and collected, and then the low melting point composition powder was mixed with 1 wt% of silicon nitride and 99 wt% of silicon nitride, and then heated at 1750 ° C. for about 1 hour. Porous silicon nitride carriers were prepared.

상기의 제조 방법에 의해 얻어진 다공성 질화규소 요업체는 0.5 내지 1mm 크기의 구형 기공이 생성되며, 기공률은 15%정도였다.The porous silicon nitride ingot obtained by the above manufacturing method produced spherical pores of 0.5 to 1 mm in size, and the porosity was about 15%.

Claims (6)

SiO2, Y2O3, Si3N4를 혼합하여 저융점 조성 분말을 제조하는 단계;
상기 제조된 저융점 조성 분말을 구형으로 성형하는 단계;
상기 저융점 조성 분말과 Si2N2O을 혼합하여 혼합물을 형성하는 단계;
상기 혼합물을 가열하여 상기 저융점 조성 분말과 Si2N2O가 공융액상을 형성하는 단계;
상기 공융액상이 Si2N2O 분말의 모세관 사이로 들어가 구형 기공을 형성하는 단계;
를 포함하는 다공성 질화규소 요업체의 제조방법.
Preparing a low melting composition powder by mixing SiO 2 , Y 2 O 3 , and Si 3 N 4 ;
Molding the prepared low melting point composition into a sphere;
Mixing the low melting point composition powder with Si 2 N 2 O to form a mixture;
Heating the mixture to form a eutectic liquid phase of the low melting point composition powder and Si 2 N 2 O;
The eutectic phase enters between capillaries of Si 2 N 2 O powder to form spherical pores;
Porous silicon nitride manufacturing method comprising a.
제1항에 있어서,
상기 저융점 조성 분말은 SiO2 12~16중량%, Y2O3 4~8중량%, Si3N4 76~84중량%인 것을 특징으로 하는 다공성 질화규소 요업체의 제조방법.
The method of claim 1,
The low melting point composition powder is SiO 2 12 to 16% by weight, Y 2 O 3 4 to 8% by weight, Si 3 N 4 76 to 84% by weight of the manufacturing method of porous silicon nitride manufacturers.
제1항에 있어서,
상기 혼합물의 조성은 저융점 조성 분말과 Si2N2O의 분말이 상평형을 이루는 조성인 것을 특징으로 하는 다공성 질화규소 요업체의 제조방법.
The method of claim 1,
The composition of the mixture is a low melting point composition powder and Si 2 N 2 O powder manufacturing method of the porous silicon nitride main body, characterized in that the composition of the phase equilibrium.
제3항에 있어서,
상기 혼합물은 저융점 조성 분말 0.1~5중량%, Si2N2O 95~99.9중량%인 것을 특징으로 하는 다공성 질화규소 요업체의 제조방법.
The method of claim 3,
The mixture is a low melting point composition powder of 0.1 to 5% by weight, Si 2 N 2 O 95 ~ 99.9% by weight manufacturing method of a porous silicon nitride major.
제1항에 있어서,
상기 구형으로 성형된 저융점 조성 분말은 입경이 0.5~1mm인 것을 특징으로하는 다공성 질화규소 요업체의 제조방법.
The method of claim 1,
The spherical molded low melting point composition powder is a porous silicon nitride manufacturing method, characterized in that the particle size is 0.5 ~ 1mm.
제1항 내지 제5항 중 어느 하나의 항의 제조방법에 의해 제조된 다공성 질화규소 요업체. Claims 1 to 5 porous silicon nitride manufacturers prepared by the method of any one of claims.
KR1020100135996A 2010-12-27 2010-12-27 Method of preparing porous silicon nitride cefamics and porous silicon nitride cefamics thereof KR101204932B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100135996A KR101204932B1 (en) 2010-12-27 2010-12-27 Method of preparing porous silicon nitride cefamics and porous silicon nitride cefamics thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100135996A KR101204932B1 (en) 2010-12-27 2010-12-27 Method of preparing porous silicon nitride cefamics and porous silicon nitride cefamics thereof

Publications (2)

Publication Number Publication Date
KR20120074051A KR20120074051A (en) 2012-07-05
KR101204932B1 true KR101204932B1 (en) 2012-11-26

Family

ID=46708319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100135996A KR101204932B1 (en) 2010-12-27 2010-12-27 Method of preparing porous silicon nitride cefamics and porous silicon nitride cefamics thereof

Country Status (1)

Country Link
KR (1) KR101204932B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105082B (en) * 2019-05-09 2021-06-01 西安航空学院 Preparation method of fiber-toughened porous silicon nitride ceramic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102698A (en) 1976-11-23 1978-07-25 Westinghouse Electric Corp. Silicon nitride compositions in the Si3 N4 -Y2 O3 -SiO2 system
JP2002053376A (en) 2000-08-08 2002-02-19 Toyota Central Res & Dev Lab Inc Method for sintering silicon nitride ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102698A (en) 1976-11-23 1978-07-25 Westinghouse Electric Corp. Silicon nitride compositions in the Si3 N4 -Y2 O3 -SiO2 system
JP2002053376A (en) 2000-08-08 2002-02-19 Toyota Central Res & Dev Lab Inc Method for sintering silicon nitride ceramics

Also Published As

Publication number Publication date
KR20120074051A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
WO2006016730A1 (en) Porous ceramic heating element and method of manufacturing thereof
KR101233744B1 (en) Manufacturing method of pre-sintered porous Si-mixture granules for porous sintered reaction-bonded silicon nitride, pre-sintered porous granules therefrom, and method manufacturing the porous sintered reaction-bonded silicon nitride
CN101182231A (en) Inorganic binder, preparation method and its application in preparation of porous ceramics
JP6873427B2 (en) Manufacturing method of porous ceramics
Li et al. Effect of magnesium titanate content on microstructures, mechanical performances and dielectric properties of Si3N4-based composite ceramics
KR101204932B1 (en) Method of preparing porous silicon nitride cefamics and porous silicon nitride cefamics thereof
KR100562990B1 (en) Method of preparing porous sialon
KR101364484B1 (en) Method of preparing porous silicon nitride ceramics and porous silicon nitride ceramics thereof
KR100569760B1 (en) Method of preparing porous silicon nitride ceramics
KR100646247B1 (en) Fabrication method of porous sialon
KR100472002B1 (en) Method of preparing porous sialon
Alem et al. The influence of α-and β-Si3N4 seeds on the properties of reaction bonded silicon nitride foams produced via wet processing
KR100311694B1 (en) Preparation of porous sintered silicon oxynitride
JP4217278B2 (en) Method for producing metal-ceramic composite material
KR20140137175A (en) Method for synthesis of Zr2WP2O12 ceramics
JPH0753256A (en) Aluminous composite sintered compact and its production
JP2543408B2 (en) Ceramic heat insulating member and manufacturing method thereof
JPS6374978A (en) Ceramic composite body
JP2012180234A (en) Method for producing silicon nitride-based ceramic
JP2002275556A (en) Metal-ceramic composite material
KR20120062088A (en) Porous silicon nitride ceramics composition having high density and high porous and method for fabricating silicon nitride ceramics using the same
JP2000345212A (en) Metal-ceramics composite material and its production
JPH10140263A (en) Production of metal-ceramics composite
JP5652762B2 (en) Porous mold
JPS63107876A (en) Gas permeable porous body and manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150709

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161101

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181031

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191031

Year of fee payment: 8