JP6873427B2 - Manufacturing method of porous ceramics - Google Patents

Manufacturing method of porous ceramics Download PDF

Info

Publication number
JP6873427B2
JP6873427B2 JP2017062227A JP2017062227A JP6873427B2 JP 6873427 B2 JP6873427 B2 JP 6873427B2 JP 2017062227 A JP2017062227 A JP 2017062227A JP 2017062227 A JP2017062227 A JP 2017062227A JP 6873427 B2 JP6873427 B2 JP 6873427B2
Authority
JP
Japan
Prior art keywords
mass
firing
aluminum oxide
amount
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017062227A
Other languages
Japanese (ja)
Other versions
JP2018165224A (en
Inventor
伸明 蒲地
伸明 蒲地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Prefecture
Original Assignee
Saga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Prefecture filed Critical Saga Prefecture
Priority to JP2017062227A priority Critical patent/JP6873427B2/en
Publication of JP2018165224A publication Critical patent/JP2018165224A/en
Application granted granted Critical
Publication of JP6873427B2 publication Critical patent/JP6873427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、焼成収縮率、および焼成変形量が小さな多孔質セラミックスに関するものである。 The present invention relates to porous ceramics having a small firing shrinkage rate and firing deformation amount.

多孔質セラミックスは、様々な方法によって作製している。
例えば、「単独の気孔よりなる球状中空の樹脂粉末を添加され、可塑成形され、焼成された焼成時に消失する中空の合成樹脂物質をセラミックス原料に混合して所望の形状に成形した後に焼成する方法」(例えば、特許文献1参照)の提案がある。
しかし、この方法では、焼成温度の上昇と共に焼結体中のガラスが増加し焼結が進行するために樹脂部分の分解あるいは焼失によって生じた空隙が減少するという問題があった。 また、焼成温度の上昇と共に焼成収縮が進行して焼成変形量が増加することも問題である。
Porous ceramics are produced by various methods.
For example, "a method in which a spherical hollow resin powder composed of single pores is added, plastically molded, and a hollow synthetic resin substance that disappears during firing is mixed with a ceramic raw material, molded into a desired shape, and then fired. (See, for example, Patent Document 1).
However, this method has a problem that the glass in the sintered body increases as the firing temperature rises and the sintering proceeds, so that the voids generated by the decomposition or burning of the resin portion decrease. Another problem is that the firing shrinkage progresses as the firing temperature rises and the firing deformation amount increases.

また、「酸化アルミニウム27〜80質量%、長石15〜70重量%、石灰質原料3〜40重量%を含有する坏土を泥漿化して消失性多孔質体に含浸させ乾燥し、1230〜1450℃で焼成し、前記焼失性多孔質体が焼失して得られ、その焼成の際にアノーサイトを析出させることにより線収縮率が1%以下となるセラミックス多孔質体。」(例えば、特許文献2参照)の提案がある。 Further, "a clay containing 27 to 80% by mass of aluminum oxide, 15 to 70% by weight of feldspar, and 3 to 40% by weight of a calcareous raw material is slurried, impregnated into a vanishing porous body, dried, and dried at 1230 to 1450 ° C. A ceramic porous body having a linear shrinkage rate of 1% or less by firing to obtain the burnt-out porous body by burning and precipitating feldspar during the firing. ”(See, for example, Patent Document 2). ) Is proposed.

また、珪石等の骨材を粗粒子に粉砕した後、少量の融剤と共に成形し、骨材間の隙間がガラスで閉じない温度で焼成して製造する方法である。同様の技術として板状粒子と粒状の粒子を組み合わせ、空隙を形成する方法の提案もある(例えば、特許文献2、特許文献3、参照)。 Further, it is a method in which an aggregate such as silica stone is crushed into coarse particles, molded with a small amount of flux, and fired at a temperature at which the gap between the aggregates is not closed by glass. As a similar technique, there is also a proposal of a method of forming voids by combining plate-like particles and granular particles (see, for example, Patent Document 2 and Patent Document 3).

これらの方法も骨材間の接着はガラスによるので、焼成温度の上昇と共に骨材はガラス中に徐々に融解し、焼結体中のガラスが増加し焼結が進行する。また、焼結体の空隙や焼成収縮率、焼成変形量は焼成温度に依存するので、空隙を確保するために焼成温度を低下すると骨材間の接合が弱くなり多孔質セラミックスの強度が低下するという問題を生じる。
また、セラミックス組成物中に高温分解する揮発成分や発泡性ガラス原料を混合した後、焼成することで高温分解揮発成分の揮発や発泡性ガラスの発泡により組織内に気孔を生成させる方法もある(例えば、特許文献4参照)。
In these methods as well, since the adhesion between the aggregates is based on the glass, the aggregates gradually melt into the glass as the firing temperature rises, the amount of glass in the sintered body increases, and the sintering proceeds. Further, since the voids of the sintered body, the firing shrinkage rate, and the firing deformation amount depend on the firing temperature, if the firing temperature is lowered to secure the voids, the bonding between the aggregates becomes weak and the strength of the porous ceramics decreases. Causes the problem.
There is also a method of mixing a volatile component that decomposes at high temperature or a raw material for foamable glass in a ceramic composition and then firing the ceramic composition to generate pores in the tissue by volatilizing the volatile component that decomposes at high temperature or foaming foamable glass. For example, see Patent Document 4).

しかしこの方法では中空樹脂は杯土に比べて比重が小さいため、混練によって坏土を調製する必要があるので、ロクロ等の回転成形、圧延、押し出し、射出等の可塑成形は可能であるが、セラミックスの主要な成型方法の一つである鋳込み成形はスラリー調製時に中空樹脂が浮遊し分離するために実施できないという問題があるので製品形状を限定せざるを得ない。
また、低温で有機物系添加剤が消失し、その後の焼結段階で収縮と緻密化が進むので、空隙が効果的に形成され難いという問題もある。
However, in this method, since the hollow resin has a smaller specific gravity than the cup soil, it is necessary to prepare the clay by kneading, so that it is possible to perform rotary molding such as slurry, rolling, extrusion, and plastic molding such as injection. Cast molding, which is one of the main molding methods for ceramics, has a problem that it cannot be carried out because the hollow resin floats and separates during slurry preparation, so the product shape must be limited.
Further, since the organic additive disappears at a low temperature and shrinkage and densification proceed in the subsequent sintering stage, there is also a problem that it is difficult to effectively form voids.

また、ガラスを焼結工程で発泡させて多孔質セラミックスを得る方法がある。例えば「ダクタイル鋳鉄製品の製造時に生成される非晶質のスラグを粉砕篩分けして、0.25〜2.0mmの粒度範囲に製粒してあり、該個々の粒子が可塑性粘土によって包まれた状態となるように成形してあり、前記組成物を900〜1000℃の温度範囲で加熱することにより、個々のスラグ粒子を、個々として発泡させてあり、かつ、相互に焼結させてある、連続貫通気孔を有することを特徴とするセラミックス多孔体。」(例えば、特許文献5参照)の提案がある。しかし、この方法では「乾燥生板から、容積を約3倍に拡大した形の良い平板上セラミックス多孔体を得た。」との表現が示すように焼成による寸法変化が大きいという問題がある。 There is also a method of obtaining porous ceramics by foaming glass in a sintering process. For example, "Amorphous slag produced during the production of ductile cast iron products is crushed and sieved and granulated into a particle size range of 0.25 to 2.0 mm, and the individual particles are wrapped with plastic clay. By heating the composition in a temperature range of 900 to 1000 ° C., individual slag particles are individually foamed and sintered with each other. , A ceramic porous body characterized by having continuous penetrating pores. ”(See, for example, Patent Document 5). However, this method has a problem that the dimensional change due to firing is large as shown by the expression "from the dried raw plate, a well-shaped ceramic porous body having a volume expanded about 3 times" is shown.

更に、「酸化アルミニウム20〜80質量%、長石15〜70重量%、石灰質原料3〜40重量%を含有する坏土を泥漿化して消失性多孔質体に含浸させ乾燥し、1230〜1450℃で焼成し、前記焼失性多孔質体が焼失して得られ、その焼成の際にアノーサイトを析出させることにより線収縮率が1%以下となるセラミックス多孔質体。」(例えば、特許文献4参照)の提案がある。しかしながら、融剤である長石を15%以上配合すると焼成変形は大きく、実施例の様な板状の形状以外を高精度に製造することは困難である。
他に、低温で有機物系添加剤が焼き飛ばされ、その後の焼結段階で収縮と緻密化が進むようになるため、空隙が効果的に形成され難いという問題もある。
この問題の解決法として、例えば「粒状の粒子/板状の粒子を所定の割合で含有する混合物を、焼成する方法」(例えば、特許文献2参照)の提案がある。しかしながらこの方法では原料粉末の分級が必要となり工程が煩雑化するという問題がある。
Further, "a clay containing 20 to 80% by mass of aluminum oxide, 15 to 70% by weight of feldspar, and 3 to 40% by weight of a calcareous raw material is slurried, impregnated into a vanishing porous body, dried, and dried at 1230 to 1450 ° C. A ceramic porous body having a linear shrinkage of 1% or less by firing to obtain the burnt-out porous body by burning and precipitating feldspar during the firing. ”(See, for example, Patent Document 4). ) Is proposed. However, when feldspar, which is a flux, is blended in an amount of 15% or more, the firing deformation is large, and it is difficult to produce a plate-like shape other than the one shown in the examples with high accuracy.
Another problem is that the organic additive is burned off at a low temperature, and shrinkage and densification proceed in the subsequent sintering stage, so that it is difficult to effectively form voids.
As a solution to this problem, for example, there is a proposal of "a method of firing a mixture containing granular particles / plate-shaped particles in a predetermined ratio" (see, for example, Patent Document 2). However, this method has a problem that the raw material powder needs to be classified and the process is complicated.

多孔質セラミックスは、様々な方法によって作製している。例えば、「単独の気孔よりなる球状中空の樹脂粉末を添加され、可塑成形され、焼成された焼成時に消失する中空の合成樹脂物質をセラミックス原料に混合して所望の形状に成形した後に焼成する方法」(例えば、特許文献1参照)の提案がある。
しかし、この方法では、気孔形成のための樹脂部分から生じる余計な気体の処理が必要である。
Porous ceramics are produced by various methods. For example, "a method in which a spherical hollow resin powder composed of single pores is added, plastically molded, and a hollow synthetic resin substance that disappears during firing is mixed with a ceramic raw material, molded into a desired shape, and then fired. (See, for example, Patent Document 1).
However, this method requires the treatment of extra gas generated from the resin moiety for pore formation.

また、「セメントと珪酸質微砂からなり、酸化カルシウム10重量%〜30重量%、酸化アルミニウム10重量%〜15重量%、二酸化珪素50重量%〜75重量%の化学組成を有する耐火度SK05a〜SK5aの低耐火性モルタル組成物と、耐火度SK12〜18の高耐火性骨材と、水とからなるスラリー状混合物を水和反応により硬化させた成型体の焼結体であって、低耐火性モルタル組成物熔融層により高耐火性骨材相互が接合された構造を有」し、高耐火性骨材の粒径を調整することで気孔を有するものと緻密体ともでき」(例えば、特許文献2参照)るとの提案がある。 Further, "a refractory SK05a which is composed of cement and siliceous fine sand and has a chemical composition of 10% to 30% by weight of calcium oxide, 10% by weight to 15% by weight of aluminum oxide, and 50% by weight to 75% by weight of silicon dioxide. A sintered body of a molded product obtained by curing a slurry-like mixture consisting of a low refractory mortar composition of SK5a, a highly refractory aggregate having a refractory of SK12 to 18 and water by a hydration reaction, and having a low refractory. The refractory mortar composition has a structure in which highly refractory aggregates are joined to each other by a molten layer. ”By adjusting the particle size of the highly refractory aggregate, it can be made into a dense body with pores” (for example, patent). There is a proposal (see Reference 2).

また、熱溶融型樹脂ビーズの平均粒子径が30〜500μmであり、セラミックス顆粒の平均粒子径が熱溶融型樹脂ビーズの平均粒子径の0.3〜3.0倍であって、各々の粒度分布が平均粒子径の±50%の範囲内に60重量%以上含まれることを特徴とする加圧成形用セラミックス原料。」(例えば、特許文献3参照)の提案がある。 Further, the average particle size of the heat-melted resin beads is 30 to 500 μm, the average particle size of the ceramic granules is 0.3 to 3.0 times the average particle size of the heat-melted resin beads, and the respective particle sizes. A ceramic raw material for pressure molding, wherein the distribution is contained in an amount of 60% by weight or more within a range of ± 50% of the average particle size. (See, for example, Patent Document 3).

また、「ダクタイル鋳鉄製品の製造時に生成される非晶質のスラグを破砕篩別して、0.25〜2.0mmの粒度範囲に整粒してあり、該個々の粒子が可塑性粘土によって包まれた状態となる様に成形してあり、前記組成物を900〜1100℃の温度範囲で加熱することにより、個々のスラグ粒子を、個々として発泡させてあり、かつ、相互に焼結させてある、連続貫通気孔を有することを特徴とするセラミックス多孔体。」(例えば、特許文献4参照)の提案がある。 In addition, "Amorphous slag produced during the production of ductile cast iron products was crushed and sieved and sized to a particle size range of 0.25 to 2.0 mm, and the individual particles were wrapped with plastic clay. The composition is molded to be in a state, and by heating the composition in a temperature range of 900 to 1100 ° C., individual slag particles are individually foamed and sintered with each other. There is a proposal of "a ceramic porous body having continuous penetrating pores." (See, for example, Patent Document 4).

更に、「酸化アルミニウム20〜80重量%、長石15〜70重量%、石灰質原料3〜40重量%を含有する坏土を泥漿化して焼失性多孔質体に含浸させ乾燥し、1230〜1450℃で焼成し、前記焼失性多孔質体が焼失して得られ、その焼成の際にアノーサイトを析出させることにより線収縮率が1%以下となるセラミックス多孔質体。」(例えば、特許文献5参照)の提案がある。 Further, "a clay containing 20 to 80% by weight of aluminum oxide, 15 to 70% by weight of feldspar, and 3 to 40% by weight of a calcareous raw material is slurried, impregnated into a burnt-out porous body, dried, and dried at 1230 to 1450 ° C. A ceramic porous body having a linear shrinkage of 1% or less by firing to obtain the burnt-out porous body by burning and precipitating feldspar during the firing. ”(See, for example, Patent Document 5). ) Is proposed.

しかし、この方法では、多孔質体に含浸させる工程が必要であって、樹脂部分の分解あるいは焼失によって生じた空隙が減少するという問題があるとともに、焼成温度の上昇と共に焼成収縮が進行し焼成変形量が増加することも問題である。 However, this method requires a step of impregnating the porous body, and has a problem that voids generated by decomposition or burning of the resin portion are reduced, and firing shrinkage progresses as the firing temperature rises, resulting in firing deformation. Increasing the amount is also a problem.

また、特許文献5では焼成の際にアノーサイトの析出により線収縮率が1%以下の骨格構造をもつ多孔質セラミックスを開示している。
しかしながら、結合剤として長石を15〜70重量%含有したセラミックス組成では、本発明の実施例比較例から予想されるように焼成変形量は大きく、実施例で挙げられた板状の形状以外を高精度に製造することは困難なものと考えられる。
Further, Patent Document 5 discloses a porous ceramic having a skeletal structure having a linear shrinkage rate of 1% or less due to precipitation of anorthite during firing.
However, in the ceramic composition containing 15 to 70% by weight of feldspar as a binder, the amount of calcination deformation is large as expected from the comparative examples of the present invention, and the shape other than the plate shape mentioned in the examples is high. It is considered difficult to manufacture with precision.

特許第3273310号Patent No. 3273310 特開平4−16570JP-A-4-16570 特開平2002−47075JP-A-2002-47075 特許第3997929号Patent No. 39979929

本発明は、焼成収縮率及び焼成変形量が小さな多孔質セラミックスを提供することを課題とするものである。 An object of the present invention is to provide porous ceramics having a small firing shrinkage rate and firing deformation amount.

本発明の課題は、不可避的不純物を除き、酸化物基準で、酸化アルミニウム30〜54質量%、酸化カルシウム5〜30質量%、アルカリ金属酸化物1〜3質量%、二酸化ケイ素15〜56質量%を含有し、前記成分の全成分に対する配合割合は98質量%以上であり、酸化カルシウムに対する酸化アルミニウムのモル比が0.9倍以上であり、酸化アルミニウム源として15〜35質量%の酸化アルミニウム、酸化カルシウム源として10〜40質量%の石灰質原料、二酸化ケイ素源として34質量%以下の石英粒子を含有し、酸化アルミニウムと石英粒子を合計した骨材含有量が30質量%以上である原料組成物を1200℃〜1300℃で焼成することを特徴とする多孔質セラミックスの製造方法によって解決することができる。
また、前記石灰質原料として石灰または珪灰石を用いることができる。
The subject of the present invention is to remove unavoidable impurities, and to remove unavoidable impurities, based on oxides, aluminum oxide 30 to 54% by mass, calcium oxide 5 to 30% by mass, alkali metal oxide 1 to 3% by mass, silicon dioxide 15 to 56% by mass. The compounding ratio of the above components to all the components is 98% by mass or more, the molar ratio of aluminum oxide to calcium oxide is 0.9 times or more, and 15 to 35% by mass of aluminum oxide as an aluminum oxide source. A raw material composition containing 10 to 40% by mass of a calcareous raw material as a calcium oxide source and 34% by mass or less of quartz particles as a silicon dioxide source, and the total aggregate content of aluminum oxide and quartz particles is 30% by mass or more. Can be solved by a method for producing porous ceramics, which is characterized by firing at 1200 ° C to 1300 ° C.
Further, lime or wollastonite can be used as the calcareous raw material.

本発明に係る焼成体は、焼成時に融剤となる長石、天草陶石中に含まれるマシコバイトが熔融してガラス形成すると、周囲の石灰質原料及び酸化アルミニウムと反応し、速やかにガラス中からアノーサイト(Ca(Al2Si28)やゲーレナイト(Ca2Al2(SiO7)等の高温安定な結晶が晶出する。その結果、坏土中の耐火性骨材である酸化アルミニウムや石英等と複雑に絡み合った新たな骨材となる。同時にガラスの増加を防止するので骨材間をガラスが充填することがなくなることで、焼成収縮率が小さく、焼成変形量も小さい多孔質セラミックスとなる。また、複雑に絡み合った骨材構造は高い気孔率を実現するとともに骨材同士が動きにくい構造となることで多孔質セラミックスの機械的強度の向上にも寄与する。 In the fired body according to the present invention, when feldspar and macicobite contained in Amakusa pottery stone, which are fluxes at the time of firing, are melted to form glass, they react with the surrounding calcareous raw material and aluminum oxide, and promptly annoy from the glass. High-temperature stable crystals such as sight (Ca (Al 2 Si 2 O 8 )) and feldspar (Ca 2 Al 2 (SiO 7 )) crystallize. As a result, aluminum oxide and quartz, which are fire-resistant aggregates in clay, are crystallized. It becomes a new aggregate that is intricately entwined with, etc. At the same time, it prevents the increase of glass, so that the glass does not fill the space between the aggregates, so that the firing shrinkage rate is small and the amount of firing deformation is small. In addition, the intricately intertwined aggregate structure realizes a high pore ratio and the aggregates do not move easily, which contributes to the improvement of the mechanical strength of the porous ceramics.

図1は、本発明の多孔質セラミックスの焼成に用いた支持台と、試料載置装置を説明する側面図である。FIG. 1 is a side view illustrating a support base used for firing the porous ceramics of the present invention and a sample mounting device. 図2は、焼成変形量の測定箇所を説明する図である。FIG. 2 is a diagram illustrating a measurement point of the firing deformation amount.

以下、本発明の実施例、比較例を示して本発明を詳細に説明する。
表1に示すように本発明の多孔質セラミックス焼成体は、不可避的不純物を除き、酸化物基準で酸化アルミニウム30〜54質量%、酸化カルシウム5〜30質量%、アルカリ金属酸化物を1〜3質量%、二酸化ケイ素15〜56質量%を含有し、前記成分の合計の全成分に対する配合割合は98質量%以上である。
また、酸化カルシウムに対する酸化アルミニウムのモル比が0.9倍以上のセラミックスである。
酸化アルミニウム源として15〜35質量%の酸化アルミニウムを含有しており、酸化カルシウム源としては、10〜40質量%の石灰質原料を、二酸化ケイ素源としては、34質量%までの石英粒子を含有している。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples of the present invention.
As shown in Table 1, the porous ceramic fired body of the present invention excludes unavoidable impurities and contains 30 to 54% by mass of aluminum oxide, 5 to 30% by mass of calcium oxide, and 1 to 3 by mass of alkali metal oxide on an oxide basis. It contains% by mass and 15 to 56% by mass of silicon dioxide, and the blending ratio of the above components to all the components is 98% by mass or more.
Further, it is a ceramic having a molar ratio of aluminum oxide to calcium oxide of 0.9 times or more.
It contains 15 to 35% by mass of aluminum oxide as an aluminum oxide source, 10 to 40% by mass of a calcareous raw material as a calcium oxide source, and up to 34% by mass of quartz particles as a silicon dioxide source. ing.

本発明の多孔質セラミックス焼結体は、酸化アルミニウム、石英粒子等の耐火性骨材の含有量を30質量%以上に調製した杯土から作製した生地を焼成して作製することができる。また、この坏土は水を混合することで適度の成形性を有する陶土とすることができる。調製した陶土は、鋳込み成形、ロクロ成形、プレス成形等の任意の成形方法にて所望の形状に成形した後に乾燥する。 The porous ceramics sintered body of the present invention can be produced by firing a dough prepared from a cup clay having a content of refractory aggregates such as aluminum oxide and quartz particles of 30% by mass or more. Further, this clay can be made into porcelain clay having appropriate moldability by mixing water. The prepared porcelain clay is formed into a desired shape by an arbitrary molding method such as casting molding, rokuro molding, press molding, and then dried.

次いで乾燥後に1150℃〜1350℃で焼成することで焼成収縮率及び焼成変形量の小さい多孔質セラミックスを得ることができる。
また、絵の具や釉などによる加飾のために600〜1350℃で仮焼の後に本焼成しても良い。仮焼温度が低すぎると素地強度が不十分となるので、仮焼温度は適宜調整することが好ましい。
また、本焼成後の多孔質セラミックスには、転写などにより加飾した後に上絵焼成工程を経て製造することもできる。
より好ましい本焼成温度は1200℃〜1300℃である。焼成温度が低すぎるとアノーサイト(Ca(Al2Si28)やゲーレナイト(Ca2Al2(SiO7)(Ca2Al2(SiO7)等の高温で安定な結晶の晶出が不十分となるため、素地強度が低下する。一方、本焼成温度が高すぎると骨材結晶の熔融が始まり焼成変形量が大きくなるので好ましくない。
Then, after drying, firing is performed at 1150 ° C. to 1350 ° C. to obtain porous ceramics having a small firing shrinkage rate and firing deformation amount.
Further, it may be fired at 600 to 1350 ° C. and then fired for decoration with paint or glaze. If the calcination temperature is too low, the strength of the substrate will be insufficient, so it is preferable to adjust the calcination temperature as appropriate.
Further, the porous ceramics after the main firing can be produced by undergoing an overpainting firing step after being decorated by transfer or the like.
A more preferable main firing temperature is 1200 ° C to 1300 ° C. If the calcination temperature is too low, stable crystals at high temperatures such as anorthite (Ca (Al 2 Si 2 O 8 )) and guerenite (Ca 2 Al 2 (SiO 7 ) (Ca 2 Al 2 (SiO 7)) will not crystallize. Since it is sufficient, the strength of the substrate is lowered. On the other hand, if the main firing temperature is too high, the aggregate crystals start to melt and the amount of firing deformation becomes large, which is not preferable.

実施例1
表1に記載の原料100質量部、分散剤A−6012(東亞合成株式会社製)0.2質量部及び水27質量部をボールミルにて混合して泥漿を得た。
次いで、作製した泥漿を用いて大きさが20mm×7mm×125mmの板状試料用生地を鋳込み成形によって作製した後、自然乾燥した。
作製した板状試料を図1に示すようにスパン100mmの支持台上に載置し、電気炉中で1300℃で焼成して試験片を作製した。
Example 1
100 parts by mass of the raw material shown in Table 1, 0.2 parts by mass of the dispersant A-6012 (manufactured by Toa Synthetic Co., Ltd.) and 27 parts by mass of water were mixed by a ball mill to obtain a slurry.
Next, a plate-shaped sample dough having a size of 20 mm × 7 mm × 125 mm was prepared by casting and molding using the prepared slurry, and then air-dried.
As shown in FIG. 1, the prepared plate-shaped sample was placed on a support base having a span of 100 mm and calcined at 1300 ° C. in an electric furnace to prepare a test piece.

作製した試験片を用いて以下の試験方法によって試験を行い表2に示した。
1.焼成収縮率
鋳込み型の幅と試料の幅を測定した後、次式により算出した。
焼成収縮率=(試料幅)/(型の幅)×100
Using the prepared test piece, a test was conducted by the following test method and shown in Table 2.
1. Firing shrinkage rate After measuring the width of the casting mold and the width of the sample, it was calculated by the following formula.
Firing shrinkage = (sample width) / (mold width) x 100

2.焼成変形量
焼成変形量は、図2に示す最大変形量にて評価した。
3.気孔率
気孔率は細孔分布測定装置(株式会社マイクロメリティック製オートポアIV9520)により水銀圧入法にて測定した。
2. Amount of calcination deformation The amount of calcination deformation was evaluated by the maximum amount of deformation shown in FIG.
3. 3. Porosity The porosity was measured by the mercury intrusion method using a pore distribution measuring device (Autopore IV9520 manufactured by Micromeritic Co., Ltd.).

4.吸水率
吸水率はASTMC373−88(和訳名、陶器製品の吸水率、密度、見かけ気孔率、見かけ比重の標準試験法)による煮沸法にて測定し、表2に示した。
5.結晶相同定
結晶相の同定は試験片を粉砕後、X線回折装置(PANalitical製XPertPRO)により測定を行い表2に示した。
6.組成分析
原料の組成分析は蛍光X線分析装置(株式会社リガク製ZSX100e)によりガラスビードによる検量線法にて測定した。原料の化学分析値と配合割合から素地の成分の配合割合、酸化カルシウムに対する酸化アルミニウムのモル比を算出して表2に示した。
4. Water absorption rate The water absorption rate was measured by the boiling method using ASTMC373-88 (Japanese translation name, water absorption rate of pottery products, density, apparent porosity, and apparent specific gravity standard test method), and is shown in Table 2.
5. Crystal phase identification The crystal phase was identified by crushing the test piece, measuring it with an X-ray diffractometer (XPertPRO manufactured by PANalitical), and showing it in Table 2.
6. Composition analysis The composition analysis of the raw material was measured by a calibration curve method using a glass bead with a fluorescent X-ray analyzer (ZSX100e manufactured by Rigaku Co., Ltd.). Table 2 shows the compounding ratio of the components of the base material and the molar ratio of aluminum oxide to calcium oxide calculated from the chemical analysis values of the raw materials and the compounding ratio.

7.耐火性骨材含有量
原料の天草陶土の化学組成を蛍光X線分析装置(株式会社リガク製ZSX100e)で、結晶相をX線回折装置(PANalitical製XPertPRO)にて確認し、最小ノルム法により天草陶土中の鉱物組成を算出したところ、石英56%、カオリン12%、マシコバイト32%であった。
また、表1に示した天草陶土配合量の56%を原料坏土中の石英含有量とし、これに、酸化アルミニウムの配合量を加えることで坏土中の耐火性骨材の含有量とし表2に示した。
表2に示すように実施例1は焼成収縮率−0.3%であり焼成変形量は0.6mmであり、気孔率は35.4%であった。
7. Fire-resistant aggregate content The chemical composition of the raw material Amakusa clay is confirmed by a fluorescent X-ray analyzer (ZSX100e manufactured by Rigaku Co., Ltd.), and the crystal phase is confirmed by an X-ray diffractometer (XPertPRO manufactured by PANalitical), and the minimum norm method is used. When the mineral composition in Amakusa pottery clay was calculated, it was 56% quartz, 12% kaolin, and 32% masicobite.
In addition, 56% of the Amakusa pottery clay content shown in Table 1 is used as the quartz content in the raw clay, and by adding the aluminum oxide content to this, the content of refractory aggregate in the clay is shown in the table. Shown in 2.
As shown in Table 2, in Example 1, the firing shrinkage rate was −0.3%, the firing deformation amount was 0.6 mm, and the porosity was 35.4%.

実施例2〜19
実施例1の試験条件に代えて表1の各実施例に記載の条件に変えた点を除き、実施例1と同様に作製した試料を実施例1と同様に測定した結果、焼成収縮率は、−2.9〜2.1%であった。焼成変形量は0〜2.9mmであった。また、気孔率は11.8〜45.2%であった。
Examples 2-19
As a result of measuring the sample prepared in the same manner as in Example 1 in the same manner as in Example 1 except that the conditions shown in each Example in Table 1 were changed instead of the test conditions in Example 1, the calcination shrinkage ratio was found. , -2.9 to 2.1%. The amount of calcination deformation was 0 to 2.9 mm. The porosity was 11.8 to 45.2%.

比較例1〜2
実施例1の試験条件に代えて表1の比較例1、表2に記載の条件とした点を除き、実施例1と同様に作製した試料を実施例1と同様に測定した。
酸化カルシウムに対する酸化アルミニウムのモル比が0.79倍と0.9未満である比較例1は焼成変形量が21.5mmと大きく増加した。
また、比較例2は、表に記載の条件とした点を除き、実施例1と同様に作製した試料を実施例1と同様に測定した。
耐火性骨材の含有量が25.6%と30%未満である比較例2は焼成変形量が13mmと大きく増加した。
Comparative Examples 1-2
Samples prepared in the same manner as in Example 1 were measured in the same manner as in Example 1 except that the conditions shown in Comparative Examples 1 and 2 in Table 1 were used instead of the test conditions in Example 1.
In Comparative Example 1 in which the molar ratio of aluminum oxide to calcium oxide was 0.79 times, which was less than 0.9, the amount of calcination deformation increased significantly to 21.5 mm.
Further, in Comparative Example 2, a sample prepared in the same manner as in Example 1 was measured in the same manner as in Example 1 except that the conditions described in the table were met.
In Comparative Example 2 in which the content of the refractory aggregate was 25.6%, which was less than 30%, the amount of firing deformation was significantly increased to 13 mm.

また、本発明の多孔質セラミックスは、酸化アルミニウム、酸化カルシウム、アルカリ金属酸化物、二酸化ケイ素を主成分として製造したものである。
具体的には、(a)酸化アルミニウム30〜55質量%、(b)酸化カルシウム5〜30質量%、(c)アルカリ金属酸化物を1〜3質量%、(d)二酸化ケイ素15〜56質量%を含有する。また(a)酸化アルミニウム、(b)酸化カルシウム、(c)アルカリ金属酸化物、(d)二酸化ケイ素の各成分の全成分に対する配合割合の合計は98質量%以上である。
Further, the porous ceramics of the present invention are produced mainly containing aluminum oxide, calcium oxide, alkali metal oxide and silicon dioxide.
Specifically, (a) aluminum oxide is 30 to 55% by mass, (b) calcium oxide is 5 to 30% by mass, (c) alkali metal oxide is 1 to 3% by mass, and (d) silicon dioxide is 15 to 56% by mass. Contains%. Further, the total blending ratio of each component of (a) aluminum oxide, (b) calcium oxide, (c) alkali metal oxide, and (d) silicon dioxide to all components is 98% by mass or more.

そして、酸化アルミニウムの全成分に対する好ましい配合割合は31〜54質量%である。酸化アルミニウムは酸化アルミニウム、粘土鉱物、カオリン類鉱物、陶石、融剤に由来する。酸化アルミニウム源の一部として酸化アルミニウムを13〜37質量%、好ましくは15〜35質量%配合することで焼成変形量が3mmより小さくなる。
酸化アルミニウムの配合割合が13質量%よりも少ない場合は、焼成変形量を十分に抑制することができない。
The preferable blending ratio of aluminum oxide with respect to all the components is 31 to 54% by mass. Aluminum oxide is derived from aluminum oxide, clay minerals, kaolin minerals, pottery stones and flux. By blending 13 to 37% by mass, preferably 15 to 35% by mass of aluminum oxide as a part of the aluminum oxide source, the amount of firing deformation becomes smaller than 3 mm.
When the blending ratio of aluminum oxide is less than 13% by mass, the amount of calcination deformation cannot be sufficiently suppressed.

一方、酸化アルミニウムの配合割合が37質量%よりも大きいと、石灰質原料や粘土鉱物、カオリン類鉱物、陶石粘土鉱物の配合割合が相対的に小さくなる。石灰質原料の配合割合が小さくなるとアノーサイト(Ca(Al2Si28)やゲーレナイト(Ca2Al(AlSiO7)等の高温で安定な結晶の晶出が不十分となるために焼成変形量が大きく、また、気孔率が低下する。また、粘土鉱物、カオリン類鉱物、陶石粘土鉱物の配合割合が小さくなると、成形性が悪化し、歩留まりが低下する。 On the other hand, when the blending ratio of aluminum oxide is larger than 37% by mass, the blending ratio of calcareous raw materials, clay minerals, kaolin minerals, and pottery clay minerals becomes relatively small. When the blending ratio of the calcareous raw material becomes small, the amount of calcination deformation becomes insufficient due to insufficient crystallization of stable crystals at high temperature such as anorthite (Ca (Al 2 Si 2 O 8 )) and guerenite (Ca 2 Al (AlSiO 7)). If the mixing ratio of clay mineral, kaolin mineral, and limestone clay mineral is small, the moldability is deteriorated and the yield is lowered.

また、酸化カルシウムの全成分に対する好ましい配合割合は9〜25質量%である。
酸化カルシウム源として石灰、珪灰石などの石灰質原料を10〜40質量%、好ましくは15〜35質量%配合することで焼成変形量が3mmよりも小さくなり、焼成収縮率も−2.9〜2.1%の範囲となる。石灰質原料の配合割合が10質量%よりも小さくなるとアノーサイト(Ca(Al2Si28)やゲーレナイト(Ca2Al(AlSiO7)等の高温安定な結晶の晶出が不十分となり焼成変形量が大きくなるとともに気孔率が低下する。一方、石灰質原料の配合割合が40質量%よりも大きいと、天草陶石に含まれる石英や酸化アルミニウム等の耐火性骨材の含有率が相対的に小さくなりすぎ、焼成変形量が大きくなる。
The preferable blending ratio of calcium oxide with respect to all the components is 9 to 25% by mass.
By blending 10 to 40% by mass, preferably 15 to 35% by mass of a calcareous raw material such as lime or wollastonite as a calcium oxide source, the amount of calcination deformation becomes smaller than 3 mm, and the calcination shrinkage rate is also 2.9 to 2 It is in the range of 1%. If the blending ratio of the calcareous raw material is smaller than 10% by mass, the crystallization of high-temperature stable crystals such as anorthite (Ca (Al 2 Si 2 O 8 )) and guerenite (Ca 2 Al (AlSiO 7)) becomes insufficient, resulting in calcination deformation. As the amount increases, the porosity decreases. On the other hand, when the blending ratio of the calcareous raw material is larger than 40% by mass, the content of fire-resistant aggregates such as quartz and aluminum oxide contained in anorthite is relatively high. It becomes too small and the amount of firing deformation becomes large.

また、アルカリ金属酸化物は、融剤、長石、粘土鉱物等に由来するが、アルカリ金属酸化物の全成分に対する好ましい配合割合は1〜2.6質量%である。アルカリ金属酸化物の含有量が少なすぎると、アノーサイト(Ca(Al2Si2O8)やゲーレナイト(Ca2Al(AlSiO7)等の晶出に必要な十分な量のガラスマトリックスを生成しないため強度が低下する。
一方、アルカリ金属酸化物の含有量が多すぎると、焼成変形量が大きくなる。
The alkali metal oxide is derived from a flux, feldspar, clay mineral, etc., and the preferable blending ratio of the alkali metal oxide to all the components is 1 to 2.6% by mass. If the content of the alkali metal oxide is too low, it will not produce a sufficient amount of glass matrix for crystallization of anorthite (Ca (Al 2 Si 2 O 8 )) and gerenite (Ca 2 Al (AlSiO 7)). Therefore, the strength is reduced.
On the other hand, if the content of the alkali metal oxide is too large, the amount of calcination deformation becomes large.

本発明の多孔質セラミックスは、二酸化ケイ素の全成分に対する好ましい配合割合は16〜55質量%である。二酸化ケイ素の含有量が小さすぎると、アノーサイト(Ca(Al2Si28)やゲーレナイト(Ca2Al(AlSiO7)等の晶出に必要な二酸化ケイ素が不足する。一方、二酸化ケイ素の含有量が大きすぎるとガラス増加し焼成変形量が大きくなる。 The porous ceramics of the present invention preferably have a blending ratio of 16 to 55% by mass with respect to all the components of silicon dioxide. If the content of silicon dioxide is too small, the silicon dioxide required for crystallization of anorthite (Ca (Al 2 Si 2 O 8 ), galenite (Ca 2 Al (AlSiO 7 ), etc.) will be insufficient, while silicon dioxide will be insufficient. If the content is too large, the amount of glass increases and the amount of firing deformation increases.

また、酸化カルシウムに対する酸化アルミニウムのモル比は好ましくは等倍以上である。酸化カルシウムに対する酸化アルミニウムのモル比が0.9倍より小さくなるとアノーサイト(Ca(Al2Si28)やゲーレナイト(Ca2Al(AlSiO7)等の晶出で消費する酸化アルミニウムが多くなり、焼成体に含まれる耐火性骨材である酸化アルミニウムの残存量が相対的に低下し、焼成変形量が大きくなる。
また、坏土に含まれる耐火性骨材である酸化アルミニウムと石英粒子を合計した耐火性骨材含有量は30質量%以上である。耐火性骨材含有量が30%より小さくなると焼成時に耐火性骨材が不足し焼成変形量が大きくなる。
The molar ratio of aluminum oxide to calcium oxide is preferably 1x or more. When the molar ratio of aluminum oxide to calcium oxide is less than 0.9 times, more aluminum oxide is consumed by crystallization of anorsite (Ca (Al 2 Si 2 O 8 )) and gerenite (Ca 2 Al (AlSiO 7)). , The residual amount of aluminum oxide, which is a fire-resistant aggregate contained in the fired body, is relatively reduced, and the amount of fired deformation is increased.
Further, the total content of the refractory aggregate contained in the clay is 30% by mass or more, which is the sum of aluminum oxide, which is a refractory aggregate, and quartz particles. When the content of the refractory aggregate is smaller than 30%, the refractory aggregate is insufficient at the time of firing and the amount of firing deformation becomes large.

Figure 0006873427
Figure 0006873427

また、各実施例、比較例の化学組成と共に、収縮率、焼成変形量、および気孔率を表2に示す。

Figure 0006873427
Figure 0006873427
Table 2 shows the shrinkage rate, the amount of calcination deformation, and the porosity together with the chemical compositions of each example and comparative example.
Figure 0006873427
Figure 0006873427

本発明の多孔質セラミックスは焼成収縮率が小さく焼成変形量が少なく、様々な形状の多孔質セラミックスを製造することができるので、ろ過材、吸着剤、散気筒、バイオリアクター担体、燃料電池電極等、多孔質セラミックスが用いられる広範な範囲で利用が可能である。 The porous ceramics of the present invention have a small firing shrinkage rate and a small amount of firing deformation, and can produce porous ceramics having various shapes. Therefore, a filter medium, an adsorbent, a scatter cylinder, a bioreactor carrier, a fuel cell electrode, etc. , Porous ceramics can be used in a wide range of applications.

1・・・ 本発明の試料
2・・・ 試料支持台
3・・・ 焼成変形量
1 ... Sample of the present invention 2 ... Sample support 3 ... Amount of deformation due to firing

Claims (1)

不可避的不純物を除き、酸化物基準で、酸化アルミニウム30〜54質量%、酸化カルシウム5〜30質量%、アルカリ金属酸化物1〜3質量%、二酸化ケイ素15〜56質量%を含有し、前記成分の全成分に対する配合割合は98質量%以上であり、酸化カルシウムに対する酸化アルミニウムのモル比が0.9倍以上であり、酸化アルミニウム源として15〜35質量%の酸化アルミニウム、酸化カルシウム源として10〜40質量%の石灰質原料、二酸化ケイ素源として34質量%以下の石英粒子を含有し、酸化アルミニウムと石英粒子を合計した骨材含有量が30質量%以上である原料組成物を1200℃〜1300℃で焼成することを特徴とする多孔質セラミックスの製造方法。 Excluding unavoidable impurities, it contains 30 to 54% by mass of aluminum oxide, 5 to 30% by mass of calcium oxide, 1 to 3% by mass of alkali metal oxide, and 15 to 56% by mass of silicon dioxide on an oxide basis. The compounding ratio to all the components of is 98% by mass or more, the molar ratio of aluminum oxide to calcium oxide is 0.9 times or more, 15 to 35% by mass of aluminum oxide as an aluminum oxide source, and 10 to 10 by mass as a calcium oxide source. A raw material composition containing 40% by mass of calcareous raw material and 34% by mass or less of quartz particles as a silicon dioxide source, and having an aggregate content of 30% by mass or more in total of aluminum oxide and quartz particles is produced at 1200 ° C to 1300 ° C. A method for producing porous ceramics, which is characterized by firing in.
JP2017062227A 2017-03-28 2017-03-28 Manufacturing method of porous ceramics Active JP6873427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017062227A JP6873427B2 (en) 2017-03-28 2017-03-28 Manufacturing method of porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062227A JP6873427B2 (en) 2017-03-28 2017-03-28 Manufacturing method of porous ceramics

Publications (2)

Publication Number Publication Date
JP2018165224A JP2018165224A (en) 2018-10-25
JP6873427B2 true JP6873427B2 (en) 2021-05-19

Family

ID=63921578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062227A Active JP6873427B2 (en) 2017-03-28 2017-03-28 Manufacturing method of porous ceramics

Country Status (1)

Country Link
JP (1) JP6873427B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133229A (en) * 2020-12-31 2022-03-04 郑州轻工业大学 Anorthite micro-nano-pore heat insulation refractory material and preparation method thereof
CN114920578B (en) * 2022-07-20 2022-10-04 淄博金狮王科技陶瓷集团有限公司 Preparation method of porous anorthite/gehlenite complex-phase ceramic with low firing shrinkage rate
CN115925443B (en) * 2022-12-30 2023-07-04 中南大学 Solid waste-based ceramic membrane support raw material with wide firing range and solid waste-based ceramic membrane support

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814303A (en) * 1987-09-25 1989-03-21 E. I. Du Pont De Nemours And Company Anorthite-cordierite based ceramics from zeolites
JPH0816021B2 (en) * 1993-06-10 1996-02-21 日本電気株式会社 Multi-layer glass ceramic substrate and manufacturing method thereof
JPH11246279A (en) * 1998-03-05 1999-09-14 Tochigi Prefecture Lightweight ceramics and its production
JP3336347B2 (en) * 1999-10-22 2002-10-21 株式会社イナックス Humidity control building material and its manufacturing method
JP3997929B2 (en) * 2003-02-26 2007-10-24 滋賀県 Ceramic porous body
JP5751923B2 (en) * 2011-05-11 2015-07-22 株式会社トクヤマ Effective use of shells

Also Published As

Publication number Publication date
JP2018165224A (en) 2018-10-25

Similar Documents

Publication Publication Date Title
Johari et al. Effect of the change of firing temperature on microstructure and physical properties of clay bricks from Beruas (Malaysia)
RU2640684C2 (en) Processing of fly ash and manufacture of products containing compositions based on fly ash
JP5661303B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
JP6873427B2 (en) Manufacturing method of porous ceramics
WO2009077589A1 (en) Lightweight ceramic material
CN108602113B (en) Refractory composite particles and feeder elements and corresponding methods and applications
AU2007304899A1 (en) Process and apparatus for hot-forging synthetic ceramic
Zawrah et al. Synthesis and characterization of calcium aluminate nanoceramics for new applications
KR20110066917A (en) Method for making porous mullite-containing composites
Ren et al. Recycling of solid wastes ferrochromium slag for preparation of eco-friendly high-strength spinel–corundum ceramics
Khattab et al. Alumina–zircon refractory materials for lining of the basin of glass furnaces: effect of processing technique and TiO2 addition
Zawrah et al. Recycling and utilization of some waste clays for production of sintered ceramic bodies
JP2018035052A (en) Large ceramic sheet and manufacturing method therefor
RU2458022C1 (en) High-temperature strength nanomodified quartz ceramic
JP2002226285A (en) Lightweight ceramic member and method for manufacturing the same
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
JPH06256069A (en) Ceramic porous material and its production
JP2007217208A (en) Method of manufacturing xonotlite based calcium silicate hydrate porous formed body
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
KR101343808B1 (en) Composite for low temperature sinterable porcelain and manufacturing method of low temperature sinterable porcelain
JP4967111B2 (en) Alumina-based porous ceramics and method for producing the same
Hanna et al. Characterization of porous Alumino-silicate bonded SiC-ceramics prepared by hand-pressing and extrusion methods
KR101204932B1 (en) Method of preparing porous silicon nitride cefamics and porous silicon nitride cefamics thereof
US20100279126A1 (en) Ceramic slabs and a method for manufacturing thereof
JP4437198B2 (en) Method for producing foam using crushed sludge and the like, and foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6873427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250