KR101189098B1 - 탄성체를 공유하는 3축 가속도 센서 - Google Patents

탄성체를 공유하는 3축 가속도 센서 Download PDF

Info

Publication number
KR101189098B1
KR101189098B1 KR1020120010624A KR20120010624A KR101189098B1 KR 101189098 B1 KR101189098 B1 KR 101189098B1 KR 1020120010624 A KR1020120010624 A KR 1020120010624A KR 20120010624 A KR20120010624 A KR 20120010624A KR 101189098 B1 KR101189098 B1 KR 101189098B1
Authority
KR
South Korea
Prior art keywords
axis
acceleration
shaft
electrode
flow
Prior art date
Application number
KR1020120010624A
Other languages
English (en)
Inventor
홍순원
Original Assignee
주식회사 티엘아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티엘아이 filed Critical 주식회사 티엘아이
Priority to KR1020120010624A priority Critical patent/KR101189098B1/ko
Application granted granted Critical
Publication of KR101189098B1 publication Critical patent/KR101189098B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Abstract

탄성체를 공유하는 3축 가속도 센서가 개시된다. 본 발명의 3축 가속도 센서는 기판상에 배열되는 탄성체, X축, Y축, Z축 가속도 센싱부를 구비한다. 상기 탄성체는 X축, Y축 및 Z축 방향의 탄성을 가진다. X축 가속도 센싱부는 X축 방향의 가속도에 따라 변화되는 X축 고정 전극에 대한 X축 유동 전극의 위치 변동에 의하여 X축 방향의 가속도를 센싱한다. Y축 가속도 센싱부는 Y축 방향의 가속도에 따라 변화되는 X축 고정 전극에 대한 Y축 유동 전극의 위치 변동에 의하여 Y축 방향의 가속도를 센싱한다. Z축 가속도 센싱부는 Z축 방향의 가속도에 따라 변화되는 Z축 고정 전극에 대한 Z축 유동 전극의 위치 변동에 의하여 Z축 방향의 가속도를 센싱한다. 본 발명의 3축 가속도 센서에 의하면, X축, Y축, Z축 방향의 가속도 센싱부가 탄성체를 공유함으로써, 배치 면적이 최소화되면서도, 성능이 극대화된다.

Description

탄성체를 공유하는 3축 가속도 센서{3 Axis Accelerometer sharing Elastic body}
본 발명은 MEMS(Micro Electro Mechanical System) 기술을 이용한 3축 가속도 센서에 관한 것으로서, 특히 X축, Y축, Z축 방향의 가속도 센싱부가 탄성체를 공유함으로써, 배치 면적을 최소화하면서도, 성능을 극대화하는 3축 가속도 센서에 관한 것이다.
일반적으로, MEMS 기술은 실리콘 공정을 이용하여 시스템의 특정 부위를 마이크로미터 단위의 정교한 형상으로 실리콘 기판상에 집적하여 형성하는 기술을 말하는데, 가속도 센서는 MEMS(Micro Electro Machining System) 기술로 제작되는 대표적인 소자이다.
가속도 센서는 인가되는 가속 운동을 감지하는 소자로서, 특히 제작 공정이 간단하고 온도 변화에 둔감하며, 비선형성이 적은 용량성 가속도 센서가 널리 사용되고 있다. 용량성 가속도 센서는, 가속 운동이 인가되는 경우, 가속도 센서의 내부의 유동 전극의 위치가 변동되며, 이에 따라, 유동 전극과 고정 전극 사이의 용량(capacitance)가 변화하는 것을 이용하여 가속도의 인가를 감지한다.
한편, 실제의 가속도 센서는, 공간상에 완전한 가속의 인식을 위해서는, X축, Y축 및 Z축 등 3축에 대한 가속을 인식하는 3축 가속도 센서로 구성되는 경우가 대부분이다. 이 경우, MEMS 기술을 이용하는 3축 가속도 센서에서는, 최종 칩 패키징시에 면적을 최소화하기 위하여 X축 가속도 센서, Y축 가속도 센서 및 Z축 가속도 센서가 하나의 칩에 구현된다. 이때, X축 가속도 센서 및 Y축 가속도 센서는 수평 방향의 운동 감지를 통하여 가속도 입력을 인식하며, Z축 가속도 센서는 수직 방향의 운동 감지를 통하여 가속도 입력을 인식한다.
도 1은 종래 기술에 따른 3축 가속도 센서를 설명하기 위한 도면이다. 도시된 바와 같이, 종래 기술에 따른 3축 가속도 센서에서, X축 가속도 센서(10), Y축 가속도 센서(20) 및 Z축 가속도 센서(30)는 하나의 칩 내에 구성된다.
그런데, 도 1의 3축 가속도 센서에서, X축 가속도 센서(10), Y축 가속도 센서(20) 및 Z축 가속도 센서(30)는 각자의 감지콤(11, 21, 31)과 각자의 스프링(12, 22, 32)을 가지고 있다. 즉, 종래의 3축 가속도 센서에서는, 가속도의 인가에 따라 변형되는 탄성체가 3축 방향에 대하여 별개로 존재한다.
그러므로, 종래의 가속도 센서에서는, 탄성체가 3축 방향에 대하여 별개로 존재함으로 인하여, 전제적인 배치 면적이 증가하는 문제점이 발생된다.
본 발명의 목적은 종래기술의 문제점을 해결하기 위한 것으로서, 전체적인 배치 면적이 감소되는 3축 가속도 센서를 제공하는 데 있다.
상기와 같은 기술적 과제를 달성하기 위한 본 발명의 일면은 3축 가속도 센서에 관한 것이다. 본 발명의 3축 가속도 센서는 기판상에 배열되며, X축, Y축 및 Z축 방향의 탄성을 가지는 탄성체로서, 상기 X축 방향 및 상기 Y축 방향은 기판의 평면상에서 서로 직각인 2개의 축 방향이며, 상기 Z축 방향은 상기 기판의 평면에 수직인 방향인 상기 탄성체; 상기 기판상에 배열되며, 상기 X축, 상기 Y축, 상기 Z축 방향으로 이동되는 유동판으로서, 상기 탄성체에 의하여 복귀되는 상기 유동판; 상기 기판상에 배열되며, X축 고정 전극 및 X축 유동 전극을 가지는 X축 가속도 센싱부로서, X축 방향의 가속도에 따라 변화되는 상기 X축 고정 전극에 대한 상기 X축 유동 전극의 위치 변동에 의하여 X축 방향의 가속도를 센싱하는 상기 X축 가속도 센싱부로서, 상기 X축 유동 전극은 상기 유동판에 연결되며, 상기 탄성체의 X축 방향의 탄성에 의하여 원래의 위치로 복귀되는 상기 X축 가속도 센싱부; 상기 기판상에 배열되며, Y축 고정 전극 및 Y축 유동 전극을 가지는 Y축 가속도 센싱부로서, Y축 방향의 가속도에 따라 변화되는 상기 Y축 고정 전극에 대한 상기 Y축 유동 전극의 위치 변동에 의하여 Y축 방향의 가속도를 센싱하는 상기 Y축 가속도 센싱부로서, 상기 Y축 유동 전극은 상기 유동판에 연결되며, 상기 탄성체의 Y축 방향의 탄성에 의하여 원래의 위치로 복귀되는 상기 Y축 가속도 센싱부; 및 상기 기판상에 배열되며, Z축 고정 전극 및 Z축 유동 전극을 가지는 Z축 가속도 센싱부로서, Z축 방향의 가속도에 따라 변화되는 상기 Z축 고정 전극에 대한 상기 Z축 유동 전극의 위치 변동에 의하여 Z축 방향의 가속도를 센싱하는 상기 Z축 가속도 센싱부로서, 상기 Z축 유동 전극은 상기 유동판에 연결되며, 상기 탄성체의 Z축 방향의 탄성에 의하여 원래의 위치로 복귀되는 상기 Z축 가속도 센싱부를 구비한다. 이때, 상기 Z축 고정 전극 및 상기 Z축 유동 전극은 콤(comb) 구조로 형성된다.
본 발명의 3축 가속도 센서에 의하면, X축, Y축, Z축 방향의 가속도 센싱부가 탄성체를 공유함으로써, 배치 면적이 최소화되면서도, 성능이 극대화된다.
본 발명에서 사용되는 각 도면의 간단한 설명이 제공된다.
도 1은 종래 기술에 따른 3축 가속도 센서를 설명하기 위한 도면이다.
도 2는 본 발명의 일실시예에 따른 3축 가속도 센서를 개념적으로 나타내는 도면이다.
도 3은 도 2의 탄성체를 개념적으로 설명하기 위한 도면이다.
도 4a, 도 4b 및 도 4c는 각각 도 2의 X축 가속도 센싱부, Y축 가속도 센싱부 및 Z축 가속도 센싱부를 설명하기 위한 도면이다.
본 발명과 본 발명의 동작상의 잇점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다. 각 도면을 이해함에 있어서, 동일한 부재는 가능한 한 동일한 참조부호로 도시하고자 함에 유의해야 한다.
이하에서, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세히 설명한다.
참고로, 본 명세서에서 'Z축'은 중력 가속도의 방향과 일치하는 방향을 의미하며, 일반적으로 Z축으로 표시된다. 또한 본 명세서에서 'X축' 및 'Y축'은 상기 'Z축'과 직각을 이루는 방향으로서, 평면상에 위치하는 2개의 축 방향을 지칭하기 위하여 사용된다.
도 2는 본 발명의 일실시예에 따른 3축 가속도 센서를 개념적으로 나타내는 도면이다. 도 2를 참조하면, 본 발명의 3축 가속도 센서는 기판(SUB)상에 배열되는 탄성체(CSP), 유동판(180), X축 가속도 센싱부(110), Y축 가속도 센싱부(130) 및 Z축 가속도 센싱부(150)를 구비한다.
본 명세서에서, 'X축' 및 'Y축'은 상기 기판(SUB) 평면상에 위치하는 2개의 축 방향으로, 서로 직각을 이룬다. 그리고, 'Z축'은 상기 기판(SUB)의 평면과 수직방향으로, 상기 'X축' 및 'Y축'과 직각을 이룬다. 이때, 상기 기판(SUB)의 평면을 수평으로 할 때, 상기 'Z축'은 중력 가속도의 방향으로 된다.
상기 탄성체(CSP)은 기판상(SUB)에 배열되며, X축, Y축 및 Z축 방향의 가속도에 의하여 탄성적으로 변형된다. 그리고, 상기 유동판(180)은 상기 기판상(SUB)에 배열되어, 가속도의 인가에 의하여 X축, Y축 및 Z축 방향으로 이동가능하며, 상기 탄성체(CSP)에 의하여 원위치로 복귀된다.
도 3은 도 2의 탄성체(CSP)를 개념적으로 설명하기 위한 도면이다. 도 3을 참조하면, 상기 탄성체(CSP)는 X축, Y축 및 Z축 방향으로 각각 Kx, Ky 및 Kz의 탄성력을 가지며, 다양한 방법으로 구현될 수 있다. 일예로, X축, Y축 및 Z축을 구불구불한(serpentine) 확장 형태를 가지는 스프링으로 구현될 수 있으며, 이러한, 탄성체(CSP)의 구현은 당업자에게는 자명하다.
이때, 상기 탄성체(CSP)의 한쪽은 상기 기판(SUB)에 고정되는 탄성체 고정판(170)에 연결되고, 반대면은 상기 기판(SUB)에 대하여 상대적으로 이동될 수 있는 상기 유동판(180)에 연결된다.
이에 따라, 가속도가 인가되는 경우, 상기 유동판(180)은, 상기 탄성체 고정판(170)에 대하여, X축, Y축 및 Z축 방향으로 각각 Kx, Ky 및 Kz의 탄성계수를 가지고 움직이게 된다. 이후, 가속도 인가가 종료되면, 상기 유동판(180)은, 상기 탄성체(CSP)에 의하여, X축, Y축 및 Z축 방향으로 각각 Kx, Ky 및 Kz의 탄성계수를 가지고 인가전의 위치로 복귀된다.
본 발명의 3축 가속도 센서에서는, 상기 X축 가속도 센싱부(110), 상기 Y축 가속도 센싱부(130), 상기 Z축 가속도 센싱부(150)의 유동전극들이 상기 유동판(180)에 연결되어 상기 탄성체(CSP)를 공유하게 된다.
도 4a는 도 2의 X축 가속도 센싱부(110)를 설명하기 위한 도면으로, 도 2의 PART_1을 자세히 나타내는 도면이다.
상기 X축 가속도 센싱부(110)는, X축 방향으로 확장되는 X축 고정 전극(111)들과 X축 유동 전극(113)들을 가진다. 그리고, 상기 X축 가속도 센싱부(110)는 X축 방향의 가속도에 따라 변화되는 상기 X축 고정 전극(111)에 대한 X축 유동 전극(113)의 위치 변동에 의하여 X축 방향의 가속도를 센싱한다.
구체적으로 설명하면, 상기 X축 고정 전극(111)들은 자신에 대응하는 X축 고정판(120)과 일체형으로 형성될 수 있으며, 상기 X축 유동 전극(113)들은 상기 유동판(180)과 일체형으로 형성될 수 있다.
이에 따라, 상기 X축 고정 전극(111)들은 가속도의 인가 여부에 관계없이 상기 기판(SUB)에 대하여 고정된다. 반면에, 상기 X축 유동 전극(113)들은 상기 유동판(180)을 따라 X축 방향으로 인가되는 가속도의 반대방향으로 이동된다. 즉, X축 방향의 가속도에 따라 상기 X축 고정 전극(111)에 대한 X축 유동 전극(113)의 위치가 변동된다.
그 결과, 상기 X축 고정 전극(111)과 상기 X축 유동 전극(113)의 오버랩 면적은 변화되고, 상기 X축 고정 전극(111)과 상기 X축 유동 전극(113)으로 이루어지는 캐패시터의 용량이 변화된다. 그리고, 상기 캐패시터의 용량의 변화에 의하여, 인가되는 X축 방향의 가속도가 센싱된다.
그리고, 가속도의 인가가 종료되면, 상기 X축 유동 전극(113)은 상기 탄성체(CSP)의 탄성에 의하여 원래의 위치로 복귀하는 상기 유동판(180)을 자신도 가속도 인가전의 위치로 복귀한다.
이때, 상기 X축 유동 전극(113)들의 이동변위는 상기 탄성체(CSP)의 X축 방향의 탄성계수 Kx에 음의 상관관계로 영향을 받게 된다.
바람직하기로는, 상기 X축 고정 전극(111)들과 상기 X축 유동 전극(113)들은 오버랩 면적을 증가시키기 위하여, 빗살 형태로 맞물려 서로 마주보고 있는 콤(comb) 구조로 형성된다. 이와 같이, 상기 X축 고정 전극(111)들과 상기 X축 유동 전극(113)들이 콤(comb) 구조로 형성됨으로써, 가속에 따른 상기 X축 고정 전극(111)과 상기 X축 유동 전극(113)의 오버랩 면적의 변화가 크게 될 수 있다.
그 결과, X축 가속 운동이 인가되는 경우, 상기 X축 고정 전극(111)과 상기 X축 유동 전극(113)으로 이루어지는 캐패시터의 용량의 변화의 감지가 용이하게 됨으로써, 가속도의 인가를 효율적으로 감지할 수 있다.
도 4b는 도 2의 Y축 가속도 센싱부(130)를 설명하기 위한 도면으로, 도 2의 PART_2를 자세히 나타내는 도면이다.
상기 Y축 가속도 센싱부(130)는, Y축 방향으로 확장되는 Y축 고정 전극(131)들과 Y축 유동 전극(133)들을 가진다. 그리고, 상기 Y축 가속도 센싱부(130)는 Y축 방향의 가속도에 따라 변화되는 상기 Y축 고정 전극(131)에 대한 Y축 유동 전극(133)의 위치 변동에 의하여 Y축 방향의 가속도를 센싱한다.
구체적으로 설명하면, 상기 Y축 고정 전극(131)들은 자신에 대응하는 Y축 고정판(140)과 일체형으로 형성될 수 있으며, 상기 Y축 유동 전극(133)들은 상기 유동판(180)과 일체형으로 형성될 수 있다.
이에 따라, 상기 Y축 고정 전극(131)들은 가속도의 인가 여부에 관계없이 상기 기판(SUB)에 대하여 고정된다. 반면에, 상기 Y축 유동 전극(133)들은 상기 유동판(180)을 따라 Y축 방향으로 인가되는 가속도의 반대방향으로 이동된다. 즉, Y축 방향의 가속도에 따라 상기 Y축 고정 전극(131)에 대한 Y축 유동 전극(133)의 위치가 변동된다.
그 결과, 상기 Y축 고정 전극(131)과 상기 Y축 유동 전극(133)의 오버랩 면적은 변화되고, 상기 Y축 고정 전극(131)과 상기 Y축 유동 전극(133)으로 이루어지는 캐패시터의 용량이 변화된다. 그리고, 상기 캐패시터의 용량의 변화에 의하여, 인가되는 X축 방향의 가속도가 센싱된다.
그리고, 가속도의 인가가 종료되면, 상기 Y축 유동 전극(133)은 상기 탄성체(CSP)의 탄성에 의하여 원래의 위치로 복귀하는 상기 유동판(180)을 자신도 원래의 위치로 복귀한다.
이때, 상기 Y축 유동 전극(133)들의 이동변위는 상기 탄성체(CSP)의 Y축 방향의 탄성계수 Ky에 음의 상관관계로 영향을 받게 된다.
바람직하기로는, 상기 Y축 고정 전극(131)들과 상기 Y축 유동 전극(133)들은 오버랩 면적을 증가시키기 위하여, 빗살 형태로 맞물려 서로 마주보고 있는 콤(comb) 구조로 형성된다. 이와 같이, 상기 Y축 고정 전극(131)들과 상기 Y축 유동 전극(133)들이 콤(comb) 구조로 형성됨으로써, 가속에 따른 상기 Y축 고정 전극(131)과 상기 Y축 유동 전극(133)의 오버랩 면적의 변화가 크게 될 수 있다.
그 결과, Y축 가속 운동이 인가되는 경우, 상기 Y축 고정 전극(131)과 상기 Y축 유동 전극(133)으로 이루어지는 캐패시터의 용량의 변화의 감지가 용이하게 됨으로써, 가속도의 인가를 효율적으로 감지할 수 있다.
도 4c는 도 2의 Z축 가속도 센싱부(150)를 설명하기 위한 도면으로, 도 2의 PART_3을 자세히 나타내는 도면이다.
상기 Z축 가속도 센싱부(150)는, Z축 고정 전극(151)들과 Z축 유동 전극(153)들을 가진다. 그리고, 상기 Z축 가속도 센싱부(150)는 Z축 방향의 가속도에 따라 변화되는 상기 Z축 고정 전극(151)에 대한 Z축 유동 전극(153)의 위치 변동에 의하여 Z축 방향의 가속도를 센싱한다.
구체적으로 설명하면, 상기 Z축 고정 전극(151)들은 자신에 대응하는 Z축 고정판(160)과 일체형으로 형성될 수 있으며, 상기 Z축 유동 전극(153)들은 상기 유동판(180)과 일체형으로 형성될 수 있다.
이에 따라, 상기 Z축 고정 전극(151)들은 가속도의 인가 여부에 관계없이 상기 기판(SUB)에 대하여 고정된다. 반면에, 상기 Z축 유동 전극(153)들은 상기 유동판(180)을 따라 Z축 방향으로 인가되는 가속도의 반대방향으로 이동된다. 즉, Z축 방향의 가속도에 따라 상기 Z축 고정 전극(151)에 대한 Z축 유동 전극(153)의 위치가 변동된다.
그 결과, 상기 Z축 고정 전극(151)과 상기 Z축 유동 전극(153)의 오버랩 면적은 변화되고, 상기 Z축 고정 전극(151)과 상기 Z축 유동 전극(153)으로 이루어지는 캐패시터의 용량이 변화된다. 그리고, 상기 캐패시터의 용량의 변화에 의하여, 인가되는 Z축 방향의 가속도가 센싱된다.
그리고, 가속도의 인가가 종료되면, 상기 Z축 유동 전극(153)은 상기 탄성체(CSP)의 탄성에 의하여 원래의 위치로 복귀하는 상기 유동판(180)을 자신도 원래의 위치로 복귀한다.
이때, 상기 Z축 유동 전극(153)들의 이동변위는 상기 탄성체(CSP)의 Z축 방향의 탄성계수 Kz에 음의 상관관계로 영향을 받게 된다.
바람직하기로는, 상기 Z축 고정 전극(151)들과 상기 Z축 유동 전극(153)들은 오버랩 면적을 증가시키기 위하여, 빗살 형태로 맞물려 서로 마주보고 있는 콤(comb) 구조로 형성된다. 이와 같이, 상기 Z축 고정 전극(151)들과 상기 Z축 유동 전극(153)들이 콤(comb) 구조로 형성됨으로써, 가속에 따른 상기 Z축 고정 전극(151)과 상기 Z축 유동 전극(153)의 오버랩 면적의 변화가 크게 될 수 있다.
그 결과, Z축 가속 운동이 인가되는 경우, 상기 Z축 고정 전극(151)과 상기 Z축 유동 전극(153)으로 이루어지는 캐패시터의 용량의 변화의 감지가 용이하게 됨으로써, 가속도의 인가를 효율적으로 감지할 수 있다.
한편, 본 발명의 3축 가속도 센서에서는, 상기 X축 가속도 센싱부(110), 상기 Y축 가속도 센싱부(130) 및 상기 Z축 가속도 센싱부(150)는 X축, Y축 및 Z축 방향으로 탄성을 가지는 상기 탄성체(CSP)를 함께 이용한다. 다시 기술하면, 상기 X축 가속도 센싱부(110), 상기 Y축 가속도 센싱부(130) 및 상기 Z축 가속도 센싱부(150)의 고정 전극들(111, 131, 151)은 각자의 고정판(120, 140, 160)에 연결되는 반면에, 상기 X축 가속도 센싱부(110), 상기 Y축 가속도 센싱부(130) 및 상기 Z축 가속도 센싱부(150)의 유동 전극들(113, 133, 153)은 모두 상기 탄성체(CSP)에 의하여 원위치로 복귀는 유동판(180)에 공통적으로 연결된다.
이와 같이, 상기 X축 가속도 센싱부(110), 상기 Y축 가속도 센싱부(130) 및 상기 Z축 가속도 센싱부(150)의 유동전극들(111, 131,151)은 원위치로의 복귀를 위하여, 상기 탄성체(CSP)를 공유함으로써, 본 발명의 3축 가속도 센서는 배치를 위하여 요구되는 면적이 최소화될 수 있다.
한편, 본 발명의 3축 가속도 센서에서는, 상기 X축 고정 전극(111)과 상기 X축 유동 전극(113)의 콤의 수(Nx), 상기 Y축 고정 전극(121)과 상기 Y축 유동 전극(123)의 콤의 수(Ny), 그리고, 상기 Z축 고정 전극(131)과 상기 Z축 유동 전극(133)의 콤의 수(Nz)는 상기 탄성체(CSP)의 X축, Y축, Z축의 탄성계수(Kx, Ky, Kz)에 따른다.
바람직하기로는, 상기 X축 고정 전극(111)과 상기 X축 유동 전극(113)의 콤의 수(Nx), 상기 Y축 고정 전극(121)과 상기 Y축 유동 전극(123)의 콤의 수(Ny), 그리고, 상기 Z축 고정 전극(131)과 상기 Z축 유동 전극(133)의 콤의 수(Nz)는 상기 탄성체(CSP)의 X축, Y축, Z축의 탄성계수(Kx, Ky, Kz)에 비례한다.
이와 같이, 상기 Nx, Ny, Nz가 상기 탄성체(CSP)의 X축, Y축, Z축의 탄성계수(Kx, Ky, Kz)에 비례하도록 설계됨으로써, X축, Y축, Z축 방향의 가속도가 균등에 가깝도록 센싱하게 된다.
즉, 본 발명의 3축 가속도 센서에서, 상기 X축 고정 전극(111)과 상기 X축 유동 전극(113)의 콤의 수(Nx), 상기 Y축 고정 전극(121)과 상기 Y축 유동 전극(123)의 콤의 수(Ny), 그리고, 상기 Z축 고정 전극(131)과 상기 Z축 유동 전극(133)의 콤의 수(Nz)는 상기 탄성체(CSP)의 X축, Y축, Z축의 탄성계수(Kx, Ky, Kz)를 따르도록 설계됨으로써, 본 발명의 3축 가속도 센서는, 배치 면적이 최소화되면서도, 성능이 극대화된다.
다시 도 2를 참조하면, 본 발명의 3축 가속도 센서에서는, 상기 Z축 가속도 센싱부(150)는 상기 탄성체(CSP)를 기준으로, 상기 X축 가속도 센싱부(110) 및 상기 Y축 가속도 센싱부(130) 보다 먼곳에 배치된다.
이는, Z축 방향의 상기 Z축 유동전극(131)의 회전반경을 크게 하여 Z축 감지성능의 향상을 가져오기 위함이다.
본 실시예에서는, 상기 X축 가속도 센싱부(110)는 2개로 나누어 상기 탄성체(CSP)의 상부에 배치된다. 상기 Y축 가속도 센싱부(130)는 2개로 나누어 상기 탄성체(CSP)의 하부에 배치된다. 그리고, 상기 Z축 가속도 센싱부(150)는 상기 Y축 가속도 센싱부(130)의 하부에 배치된다.
그 결과, 본 발명의 3축 가속도 센서는, 배치 면적이 최소화되면서도, 성능이 더욱 극대화된다.
본 발명은 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (7)

  1. 3축 가속도 센서에 있어서,
    기판상에 배열되며, X축, Y축 및 Z축 방향의 탄성을 가지는 탄성체로서, 상기 X축 방향 및 상기 Y축 방향은 기판의 평면상에서 서로 직각인 2개의 축 방향이며, 상기 Z축 방향은 상기 기판의 평면에 수직인 방향인 상기 탄성체;
    상기 기판상에 배열되며, 상기 X축, 상기 Y축, 상기 Z축 방향으로 이동되는 유동판으로서, 상기 탄성체에 의하여 복귀되는 상기 유동판;
    상기 기판상에 배열되며, X축 고정 전극 및 X축 유동 전극을 가지는 X축 가속도 센싱부로서, X축 방향의 가속도에 따라 변화되는 상기 X축 고정 전극에 대한 상기 X축 유동 전극의 위치 변동에 의하여 X축 방향의 가속도를 센싱하는 상기 X축 가속도 센싱부로서, 상기 X축 유동 전극은 상기 유동판에 연결되며, 상기 탄성체의 X축 방향의 탄성에 의하여 원래의 위치로 복귀되는 상기 X축 가속도 센싱부;
    상기 기판상에 배열되며, Y축 고정 전극 및 Y축 유동 전극을 가지는 Y축 가속도 센싱부로서, Y축 방향의 가속도에 따라 변화되는 상기 Y축 고정 전극에 대한 상기 Y축 유동 전극의 위치 변동에 의하여 Y축 방향의 가속도를 센싱하는 상기 Y축 가속도 센싱부로서, 상기 Y축 유동 전극은 상기 유동판에 연결되며, 상기 탄성체의 Y축 방향의 탄성에 의하여 원래의 위치로 복귀되는 상기 Y축 가속도 센싱부; 및
    상기 기판상에 배열되며, Z축 고정 전극 및 Z축 유동 전극을 가지는 Z축 가속도 센싱부로서, Z축 방향의 가속도에 따라 변화되는 상기 Z축 고정 전극에 대한 상기 Z축 유동 전극의 위치 변동에 의하여 Z축 방향의 가속도를 센싱하는 상기 Z축 가속도 센싱부로서, 상기 Z축 유동 전극은 상기 유동판에 연결되며, 상기 탄성체의 Z축 방향의 탄성에 의하여 원래의 위치로 복귀되는 상기 Z축 가속도 센싱부를 구비하며,
    상기 Z축 고정 전극 및 상기 Z축 유동 전극은
    콤(comb) 구조로 형성되는 것을 특징으로 하는 3축 가속도 센서.
  2. 제1 항에 있어서, 상기 X축 고정 전극 및 상기 X축 유동 전극은
    콤(comb) 구조로 형성되는 것을 특징으로 하는 3축 가속도 센서.
  3. 제1 항에 있어서, 상기 Y축 고정 전극 및 상기 Y축 유동 전극은
    콤(comb) 구조로 형성되는 것을 특징으로 하는 3축 가속도 센서.
  4. 제1 항에 있어서, 상기 Z축 고정 전극 및 상기 Z축 유동 전극은
    콤(comb) 구조로 형성되는 것을 특징으로 하는 3축 가속도 센서.
  5. 제1 항에 있어서,
    상기 X축 고정 전극과 상기 X축 유동 전극, 상기 Y축 고정 전극과 상기 Y축 유동 전극, 그리고, 상기 Z축 고정 전극과 상기 Z축 유동 전극 각각은
    콤 구조로 형성되는 것을 특징으로 하는 3축 가속도 센서.
  6. 제5 항에 있어서,
    상기 X축 고정 전극과 상기 X축 유동 전극의 콤의 수, 상기 Y축 고정 전극과 상기 Y축 유동 전극의 콤의 수, 그리고, 상기 Z축 고정 전극과 상기 Z축 유동 전극의 콤의 수는
    상기 탄성체의 X축, Y축, Z축 방향의 탄성계수의 크기의 순서에 따르는 것을 특징으로 하는 3축 가속도 센서.
  7. 삭제
KR1020120010624A 2012-02-02 2012-02-02 탄성체를 공유하는 3축 가속도 센서 KR101189098B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120010624A KR101189098B1 (ko) 2012-02-02 2012-02-02 탄성체를 공유하는 3축 가속도 센서

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120010624A KR101189098B1 (ko) 2012-02-02 2012-02-02 탄성체를 공유하는 3축 가속도 센서

Publications (1)

Publication Number Publication Date
KR101189098B1 true KR101189098B1 (ko) 2012-10-10

Family

ID=47287643

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120010624A KR101189098B1 (ko) 2012-02-02 2012-02-02 탄성체를 공유하는 3축 가속도 센서

Country Status (1)

Country Link
KR (1) KR101189098B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304834A (ja) * 1998-04-22 1999-11-05 Mitsumi Electric Co Ltd 物理量検出センサ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304834A (ja) * 1998-04-22 1999-11-05 Mitsumi Electric Co Ltd 物理量検出センサ

Similar Documents

Publication Publication Date Title
EP3121605B1 (en) Multi-axis inertial sensor with dual mass and integrated damping structure
US9360496B2 (en) Three-axis microelectromechanical systems device with single proof mass
EP3382400B1 (en) Three-axis inertial sensor for detecting linear acceleration
US8333113B2 (en) Triaxial acceleration sensor
JP2011523905A (ja) パッケージ応力に対する感度を低くした半導体装置
CN111417594B (zh) 非对称平面外加速度计
US10794701B2 (en) Inertial sensor with single proof mass and multiple sense axis capability
US8516891B2 (en) Multi-stage stopper system for MEMS devices
EP3361265B1 (en) Mems device with off-axis shock protection
US9733269B2 (en) Micro-electro-mechanical system (MEMS) device with multi-dimensional spring structure and frame
KR101189098B1 (ko) 탄성체를 공유하는 3축 가속도 센서
US11933809B2 (en) Inertial sensor
KR100895037B1 (ko) 고감도 3축 가속도 센서
KR101009903B1 (ko) 3축 가속도 센서
KR102528214B1 (ko) 단일 질량체 기반의 3축 멤스 가속도 센서
KR102534682B1 (ko) 멤스 기반의 3축 가속도 센서
CN111174772B (zh) 一种三轴mems陀螺仪
KR20190131679A (ko) 3축 멤스 가속도 센서
US20230168271A1 (en) Physical Quantity Sensor and Inertial Measurement Unit
KR101693935B1 (ko) 미세전자기계시스템(mems) 디바이스
KR101679594B1 (ko) z축 멤스 가속도 센서
KR20190024073A (ko) 이중 구조의 3축 멤스 가속도 센서
KR20200006897A (ko) 이중 구조의 3축 멤스 가속도 센서
KR20080073195A (ko) 양방향 측정 가능한 수직축 가속도 센서
KR20200000304A (ko) 대칭 구조의 3축 멤스 가속도 센서

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160927

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170926

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180919

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 8