KR101175402B1 - 가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 초음파 시스템 및 방법 - Google Patents

가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 초음파 시스템 및 방법 Download PDF

Info

Publication number
KR101175402B1
KR101175402B1 KR1020090081265A KR20090081265A KR101175402B1 KR 101175402 B1 KR101175402 B1 KR 101175402B1 KR 1020090081265 A KR1020090081265 A KR 1020090081265A KR 20090081265 A KR20090081265 A KR 20090081265A KR 101175402 B1 KR101175402 B1 KR 101175402B1
Authority
KR
South Korea
Prior art keywords
ultrasound
center
signal
setting
blood vessel
Prior art date
Application number
KR1020090081265A
Other languages
English (en)
Other versions
KR20110023405A (ko
Inventor
신동국
김종식
Original Assignee
삼성메디슨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43064336&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101175402(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 삼성메디슨 주식회사 filed Critical 삼성메디슨 주식회사
Priority to KR1020090081265A priority Critical patent/KR101175402B1/ko
Priority to EP10174357A priority patent/EP2293098A1/en
Priority to US12/871,810 priority patent/US20110054325A1/en
Publication of KR20110023405A publication Critical patent/KR20110023405A/ko
Application granted granted Critical
Publication of KR101175402B1 publication Critical patent/KR101175402B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8918Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/892Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being curvilinear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques

Abstract

가상의 변환소자를 설정하여 스캔라인의 최대 스티어링 각도를 증가시키는 초음파 시스템 및 방법이 개시된다. 본 발명에 따른 초음파 시스템은, 초음파 신호를 송수신하도록 동작하는 복수의 변환소자를 포함하고, 대상체 - 대상체는 혈관을 포함함 - 에 대한 제1 초음파 데이터를 획득하도록 동작하는 초음파 데이터 획득부; 및 제1 초음파 데이터를 이용하여 제1 초음파 영상을 형성하고, 제1 초음파 영상을 분석하여 상기 혈관의 중심을 검출하도록 동작하는 프로세서를 포함한다. 초음파 데이터 획득부는, 복수의 변환소자를 기준으로 가상의 변환소자를 설정하고, 가상의 변환소자 및 혈관 중심을 이용하여 스티어링 각도를 산출하고, 가상의 변환소자, 혈관 중심 및 스티어링 각도를 고려하여 대상체의 제2 초음파 데이터를 획득하도록 더 동작한다. 프로세서는, 제2 초음파 데이터를 이용하여 제2 초음파 영상을 형성하도록 더 동작한다.
초음파, 혈관, 스캔라인, 스티어링, 구경, 변환소자

Description

가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 초음파 시스템 및 방법{ULTRASOUND SYSTEM AND METHOD FOR SETTING STEERING OF SCANLINES BASED ON VIRTUAL TRANSDUCER ELEMENT}
본 발명은 초음파 시스템에 관한 것으로, 특히 가상의 변환소자(transducer element)에 기초하여 스캔라인(scaline)의 스티어링(steering)을 설정하는 초음파 시스템 및 방법에 관한 것이다.
초음파 시스템은 무침습 및 비파괴 특성을 가지고 있어, 대상체 내부의 정보를 얻기 위한 의료 분야에서 널리 이용되고 있다. 초음파 시스템은 대상체를 직접 절개하여 관찰하는 외과 수술의 필요 없이, 대상체 내부의 고해상도 영상을 실시간으로 의사에게 제공할 수 있어 의료 분야에서 매우 중요하게 사용되고 있다.
초음파 시스템은 복수의 변환소자(transducer element)를 포함하는 초음파 프로브를 이용하여 초음파 신호를 대상체에 송신하고 대상체로부터 반사되는 초음파 신호(즉, 초음파 에코신호)를 수신한다. 초음파 시스템은 초음파 프로브를 통해 수신된 초음파 에코신호를 이용하여 대상체의 2차원 또는 3차원 초음파 영상을 형성한다. 한편, 초음파 시스템은 보다 넓은 시야각(view angle)을 갖는 초음파 영상 을 얻기 위해 복수의 스캔라인을 스티어링하여 초음파 신호를 송수신한다.
종래에는 길이가 제한된 변환소자를 포함하는 초음파 프로브를 이용하여 초음파 신호의 송수신을 수행하였다. 이로 인해, 스캔라인을 스티어링할 수 있는 최대 스티어링 각도가 제한되는 문제점이 있다.
본 발명은 가상의 변환소자(transducer element)를 설정하고, 가상의 변환소자를 고려하여 스캔라인(scanlines)의 스티어링을 설정하여 최대 스티어링 각도를 증가시킬 수 있는 초음파 시스템 및 방법을 제공한다.
본 발명에 따른 초음파 시스템은, 초음파 신호를 송수신하도록 동작하는 복수의 변환소자를 포함하고, 대상체 - 상기 대상체는 혈관을 포함함 - 에 대한 제1 초음파 데이터를 획득하도록 동작하는 초음파 데이터 획득부; 및 상기 제1 초음파 데이터를 이용하여 제1 초음파 영상을 형성하고, 상기 제1 초음파 영상을 분석하여 상기 혈관의 중심을 검출하도록 동작하는 프로세서를 포함하고, 상기 초음파 데이터 획득부는, 상기 복수의 변환소자를 기준으로 가상의 변환소자를 설정하고, 상기 가상의 변환소자 및 상기 혈관 중심을 이용하여 스티어링 각도를 산출하고, 상기 가상의 변환소자, 상기 혈관 중심 및 상기 스티어링 각도를 고려하여 상기 대상체의 제2 초음파 데이터를 획득하도록 더 동작하고, 상기 프로세서는, 상기 제2 초음파 데이터를 이용하여 제2 초음파 영상을 형성하도록 더 동작한다.
또한 본 발명에 따른, 초음파 신호를 송수신하는 복수의 변환소자를 포함하는 초음파 시스템에서 스캔라인의 스티어링 설정 방법은, a) 대상체 - 상기 대상체는 혈관을 포함함 - 에 대한 제1 초음파 데이터를 획득하는 단계; b) 상기 제1 초음파 데이터를 이용하여 제1 초음파 영상을 형성하는 단계; c) 상기 제1 초음파 영상을 분석하여 상기 혈관의 중심을 검출하는 단계; d) 상기 복수의 변환소자를 기준으로 가상의 변환소자를 설정하는 단계; e) 상기 가상의 변환소자 및 상기 혈관 중심을 이용하여 스티어링 각도를 산출하는 단계; f) 상기 가상의 변환소자, 상기 혈관 중심 및 상기 스티어링 각도를 고려하여 상기 대상체의 제2 초음파 데이터를 획득하는 단계; 및 g) 상기 제2 초음파 데이터를 이용하여 제2 초음파 영상을 형성하는 단계를 포함한다.
본 발명은 변환소자(transducer element)의 길이에 관계없이 스캔라인(scanlines)의 스티어링을 설정할 수 있어, 스캔라인의 최대 스티어링 각도를 증가시킬 수 있을 뿐만 아니라 보다 넓은 시야각(view angle)의 초음파 영상을 획득할 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다.
도 1은 본 발명의 실시예에 따른 초음파 시스템(100)의 구성을 보이는 블록도이다. 초음파 시스템(100)은 초음파 데이터 획득부(110), 영상 형성부(120), 영상 처리부(130), 제어부(140) 및 디스플레이부(150)를 포함한다. 아울러, 초음파 시스템(100)은 초음파 영상에서 관심객체(즉, 혈관)를 검출하기 위한 혈관 템플릿(template)을 저장하는 저장부(160) 및 사용자의 입력정보를 수신하도록 동작하는 사용자 입력부(170)를 더 포함할 수 있다. 본 실시예에서 입력정보는 관심영역(region of interest, ROI)을 설정하는 제1 입력정부 및 시드 포인트(seed point)를 설정하는 제2 입력정보중 적어도 하나를 포함할 수 있다.
전술한 실시예에서는 영상 형성부(120), 영상 처리부(130) 및 제어부(140)를 별도로 구성하는 것으로 설명하였지만, 다른 실시예에서는 영상 형성부(120), 영상 처리부(130) 및 제어부(140)를 하나의 프로세서, 예를 들어 CPU(central processing unit), 마이크로프로세서(microprocessor), 칩(chip) 등으로 구현할 수 있다.
초음파 데이터 획득부(110)는 초음파 신호를 대상체에 송신하고 대상체로부터 반사되는 초음파 신호(즉, 초음파 에코신호)를 수신하여 초음파 데이터를 획득한다.
도 2는 본 발명의 실시예에 따른 초음파 데이터 획득부(110)의 구성을 보이는 블록도이다. 초음파 데이터 획득부(110)는 송신신호 형성부(111), 복수의 변환소자(transducer element)(112a, 도 4 참조)를 포함하는 초음파 프로브(112), 빔 포머(beam former)(113) 및 초음파 데이터 형성부(114)를 포함한다.
송신신호 형성부(111)는 복수의 변환소자 각각에 인가할 송신신호를 형성한다. 아울러, 송신신호 형성부(111)는 가상의 변환소자를 설정하여 스티어링 각도를 설정한다.
초음파 프로브(112)는 송신신호 형성부(111)로부터 송신신호가 제공되면, 송신신호를 초음파 신호로 변환하여 대상체에 송신하고 대상체로부터 반사되는 초음파 에코신호를 수신하여 수신신호를 형성한다. 초음파 프로브(112)는 선형 프로브(linear probe), 컨벡스 프로브(convex probe) 등을 포함할 수 있다.
빔 포머(113)는 초음파 프로브(112)로부터 수신신호가 제공되면, 변환소자의 위치, 집속점 및 스티어링 각도를 고려하여 수신신호를 수신집속시켜 수신집속신호를 형성한다. 아울러, 빔 포머(113)는 가상의 변환소자에 따른 보상 처리를 수신집속신호에 수행한다. 본 실시예에서 보상 처리는 SGC(scanline gain compensation) 및 TGC(time gain compensation)를 포함한다.
초음파 데이터 형성부(114)는 빔 포머(113)로부터 수신집속신호가 제공되면, 수신집속신호를 이용하여 초음파 데이터를 형성한다. 초음파 데이터는 RF(radio frequency) 데이터, IQ(in-phase/quardrature) 데이터 등을 포함할 수 있다.
다시 도 1을 참조하면, 영상 형성부(120)는 초음파 데이터 획득부(110)로부터 초음파 데이터가 제공되면, 초음파 데이터를 이용하여 초음파 영상을 형성한다. 초음파 영상은 B 모드(brightness mode) 영상일 수 있다. 그러나, 초음파 영상은 이에 국한되지 않는다.
영상 처리부(130)는 저장부(160)에 저장된 혈관 템플릿 또는 사용자 입력부(170)로부터의 입력정보에 기초하여, 영상 형성부(120)에서 형성된 초음파 영상에서 혈관의 중심을 검출한다.
제어부(140)는 초음파 신호의 송수신을 제어하며, 초음파 데이터의 획득을 제어한다. 제어부(140)는 초음파 영상의 형성 및 디스플레이를 제어한다. 아울러, 제어부(140)는 가상의 변환소자의 설정, 혈관 중심의 검출 및 스캔라인의 스티어링 설정을 제어한다. 디스플레이부(150)는 영상 형성부(130)로부터 제공되는 초음파 영상을 디스플레이한다.
이하, 첨부된 도면을 참조하여 가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 절차를 설명한다.
도 3을 참조하면, 초음파 데이터 획득부(110)는 초음파 신호를 대상체에 송신하고 대상체로부터 반사되는 초음파 에코신호를 수신하여 제1 초음파 데이터를 획득한다(S102).
보다 상세하게, 송신신호 형성부(111)는 도 4에 도시된 바와 같이 사전 설정된 구경(이하, 제1 구경이라 함)(AP1)에 해당하는 변환소자의 위치 및 사전 설정된 집속점을 고려하여 제1 송신신호를 형성한다. 여기서, 구경(aperture)은 초음파 신호를 실질적으로 송수신하는데 이용되는 변환소자의 개수를 나타낸다. 도 4에 있어서, 도면부호 V는 혈관을 나타내고, Si(1≤i≤N)는 스캔라인(scanline)을 나타낸다. 초음파 프로브(112)는 송신신호 형성부(111)로부터 제1 송신신호가 제공되면, 제1 송신신호를 초음파 신호로 변환하여 대상체에 송신하고 대상체로부터 반사되는 초음파 에코신호를 수신하여 제1 수신신호를 형성한다. 빔 포머(113)는 초음파 프로브(112)로부터 제1 수신신호가 제공되면, 제1 구경(AP1)에 해당하는 변환소자의 위치 및 사전 설정된 집속점을 고려하여 제1 수신신호를 수신 집속시켜 제1 수신집속 신호를 형성한다. 초음파 데이터 형성부(114)는 빔 포머(113)로부터 제1 수신집속신호가 제공되면, 제1 수신집속신호를 이용하여 제1 초음파 데이터를 형성한다.
영상 형성부(120)는 초음파 데이터 획득부(110)로부터 제1 초음파 데이터가 제공되면, 제1 초음파 데이터를 이용하여 제1 초음파 영상을 형성한다(S104). 제1 초음파 영상은 디스플레이부(150)를 통해 디스플레이될 수 있다.
영상 처리부(130)는 영상 형성부(120)로부터 제1 초음파 영상이 제공되면, 제1 초음파 영상을 분석하여 제1 초음파 영상에서 혈관을 검출하고(S106), 검출된 혈관에서 혈관 중심을 검출한다(S108).
일례로서, 영상 처리부(130)는 저장부(160)로부터 혈관 템플릿을 추출한다. 영상 처리부(130)는 추출된 혈관 템플릿을 제1 초음파 영상에 위치시킨 후 혈관 템플릿을 이동시키면서 제1 초음파 영상에서 혈관을 검출한다. 혈관 검출은 패턴 매팅(pattern matting), SAD(sum of absolute difference) 등과 같은 공지된 영상 처리 기법을 이용하여 수행될 수 있다. 영상 처리부(130)는 검출된 혈관에서 최대 지름을 검출하고, 검출된 최대 지름의 중심을 검출하여 검출된 중심을 혈관 중심으로 설정한다.
다른 예로서, 영상 처리부(130)는 사용자 입력부(170)로부터 입력정보(즉, 제1 입력정보)가 제공되면, 제1 입력정보에 따라 도 5에 도시된 바와 같이 제1 초음파 영상(210)에 관심영역(230)을 설정한다. 영상 처리부(130)는 관심영역(230)의 중심(240)을 검출하고, 검출된 관심영역 중심(240)을 제1 초음파 영상(210)에 설정한다. 영상 처리부(130)는 관심영역 중심(240)을 상하좌우 각각으로 사전 설정된 거리만큼 이동시키면서 밝기값의 차이가 가장 큰 영역(251, 252, 253, 254)을 혈관벽(220)으로서 검출한다. 영상 처리부(130)는 영역(251, 252, 253, 254)을 지나는 가상의 사각형(260)을 설정한다. 영상 처리부(130)는 가상의 사각형(260)의 중심을 검출하고, 검출된 사각형 중심을 혈관 중심으로서 설정한다.
또 다른 예로서, 영상 처리부(130)는 사용자 입력부(170)로부터 입력정보(즉, 제2 입력정보)가 제공되면, 제2 입력정보에 따라 도 6에 도시된 바와 같이 제1 초음파 영상(210)에 시드 포인트(270)를 설정한다. 영상 처리부(130)는 시드 포인트(270)를 상하좌우 각각으로 사전 설정된 거리만큼 이동시키면서 밝기값의 차이가 가장 큰 영역(281, 282, 283, 284)을 혈관벽(220)으로서 검출한다. 영상 처리부(130)는 영역(281, 282, 283, 284)을 지나는 가상의 사각형(290)을 설정한다. 영상 처리부(130)는 검출된 사각형 중심을 혈관 중심으로서 설정한다.
송신신호 형성부(111)는 초음파 프로브(112)의 변환소자(112a)를 기준으로 도 7에 도시된 바와 같이 가상의 변환소자(112b, 점선표시)를 복수개 설정한다(S110). 가상의 변환소자(112b)의 위치 및 개수는 사용자에 의해 수동적으로 또는 초음파 시스템(100)에 의해 자동적으로 설정될 수 있다.
송신신호 형성부(111)는 가상의 변환소자(112b)에 해당하는 구경(이하, 제2 구경이라 함)(AP2)과 제1 구경(AP1)에 기초하여 제3 구경(AP3)을 설정한다(S112). 즉, 송신신호 형성부(111)는 제1 구경(AP1)과 제2 구경(AP2)을 합한 구경을 제3 구경(AP3)으로 설정한다.
송신신호 형성부(111)는 제3 구경(AP3)에 대해 구경 중심(APC)을 검출한다(S114). 송신신호 형성부(111)는 구경 중심(APC)에 해당하는 스캔라인(SC)을 설정하고(S116), 스캔라인(SC)이 단계 S018에서 검출된 혈관 중심(VC)을 지나가는 스티어링 각도(θ)를 산출한다(S118). 이 스티어링 각도(θ)가 최대 스티어링 각도로서 설정될 수 있다.
송신신호 형성부(111)는 제3 구경(AP3)에 해당하는 변환소자의 위치, 집속점(즉, 단계 S108에서 검출된 혈관 중심) 및 단계 S118에서 산출된 스티어링 각도(θ)를 고려하여 제2 송신신호를 형성한다(S120).
초음파 프로브(112)는 송신신호 형성부(111)로부터 제2 송신신호가 제공되면, 제2 송신신호를 초음파 신호로 변환하여 대상체에 송신하고 대상체로부터 반사되는 초음파 에코신호를 수신하여 제2 수신신호를 형성한다(S122).
빔 포머(113)는 초음파 프로브(112)로부터 제2 수신신호가 제공되면, 제3 구경(AP3)에 해당하는 변환소자의 위치, 집속점 및 스티어링 각도(θ)를 고려하여 제2 수신신호를 수신집속시켜 제2 수신집속신호를 형성하고(S124), 제2 수신집속신호에 보강 처리를 수행한다(S126). 일례로서, 도 8에 도시된 바와 같이 제2 수신신호는 실제의 변환소자(112b)로부터 제공되지만, 가상의 변환소자(112b, 점선 표시)로부터 제공되지 않아, 제2 수신집속신호의 크기가 작아지게 된다. 따라서, 빔 포머(113)는 가상의 변환소자(112b)를 고려하여 제2 수신집속신호에 SGC를 수행하여 제2 수신집속신호를 보상한다. 아울러, 초음파 신호는 변환소자로부터 집속점까지의 거리가 길면 길수록 감쇄가 많이 발생하게 된다. 따라서, 빔 포머(113)는 변환소자로부터 집속점까지의 거리를 고려하여 제2 수신집속신호에 TGC를 수행하여 제2 수신집속신호를 보상한다.
초음파 데이터 형성부(114)는 빔 포머(113)로부터 제공되는 제2 수신집속신호를 이용하여 제2 초음파 데이터를 형성한다(S128). 영상 형성부(120)는 초음파 데이터 형성부(114)로부터 제공되는 제2 초음파 데이터를 이용하여 제2 초음파 영상을 형성한다(S130). 디스플레이부(150)는 영상 형성부(120)로부터 제공되는 제2 초음파 영상을 디스플레이한다(S132).
본 발명이 바람직한 실시예를 통해 설명되고 예시되었으나, 당업자라면 첨부된 특허청구범위의 사항 및 범주를 벗어나지 않고 여러 가지 변경 및 변형이 이루어질 수 있음을 알 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 초음파 시스템의 구성을 보이는 블록도.
도 2는 본 발명의 실시예에 따른 초음파 데이터 획득부의 구성을 보이는 블록도.
도 3은 본 발명의 실시예에 따른 가상의 변환소자에 기초하여 스티어링 각도를 설정하는 절차를 보이는 플로우챠트.
도 4는 변환소자, 구경 및 스캔라인을 보이는 예시도.
도 5는 본 발명의 실시예에 따른 초음파 영상, 관심영역 및 가상의 사각형을 보이는 예시도.
도 6은 본 발명의 실시예에 따른 초음파 영상, 시드 포인트 및 가상의 사각형을 보이는 예시도.
도 7은 본 발명의 실시예에 따른 변환소자, 구경, 스캔라인 및 스티어링 각도를 보이는 예시도.
도 8은 본 발명의 실시예에 따라 제2 수신집속신호를 형성하는 예를 보이는 예시도.

Claims (20)

  1. 초음파 시스템으로서,
    초음파 신호를 송수신하는 복수의 변환소자를 포함하고, 혈관을 포함하는 대상체에 대한 제1 초음파 데이터를 획득하는 초음파 데이터 획득부; 및
    상기 제1 초음파 데이터를 이용하여 제1 초음파 영상을 형성하고, 상기 제1 초음파 영상을 분석하여 상기 혈관의 중심을 검출하는 프로세서
    를 포함하고,
    상기 초음파 데이터 획득부는, 상기 복수의 변환소자를 기준으로 가상의 변환소자를 설정하고, 상기 가상의 변환소자 및 상기 혈관 중심을 이용하여 스티어링 각도를 산출하고, 상기 가상의 변환소자, 상기 혈관 중심 및 상기 스티어링 각도를 고려하여 상기 대상체의 제2 초음파 데이터를 획득하도록 더 동작하고,
    상기 프로세서는, 상기 제2 초음파 데이터를 이용하여 제2 초음파 영상을 형성하도록 더 동작하는 초음파 시스템.
  2. 제1항에 있어서, 상기 초음파 데이터 획득부는,
    상기 제1 초음파 영상을 얻기 위한 제1 송신신호를 형성하며, 상기 복수의 변환소자를 기준으로 상기 가상의 변환소자를 설정하고, 상기 복수의 변환소자에 해당하는 제1 구경(apeture)과 상기 가상의 변환소자에 해당하는 제2 구경에 기초 하여 제3 구경을 설정하고, 상기 제3 구경에 대해 구경 중심을 검출하고, 상기 검출된 구경 중심에 해당하는 스캔라인에 대해 상기 혈관 중심을 지나는 상기 스티어링 각도를 산출하고, 상기 제3 구경, 상기 혈관 중심 및 상기 스티어링 각도를 고려하여 상기 제2 초음파 영상을 얻기 위한 제2 송신신호를 형성하도록 동작하는 송신신호 형성부;
    상기 복수의 변환소자를 포함하고, 상기 제1 송신신호를 초음파 신호로 변환하여 상기 대상체에 송신하고, 상기 대상체로부터 반사되는 초음파 에코신호를 수신하여 제1 수신신호를 형성하고, 상기 제2 송신신호를 초음파 신호로 변환하여 상기 대상체에 송신하고 상기 대상체로부터 반사되는 초음파 에코신호를 수신하여 제2 수신신호를 형성하도록 동작하는 초음파 프로브;
    상기 제1 구경을 고려하여 상기 제1 송신신호를 수신집속시켜 제1 수신집속신호를 형성하며, 상기 제3 구경, 상기 혈관 중심 및 상기 스티어링 각도를 고려하여 상기 제2 수신신호를 수신집속시켜 제2 수신집속신호를 형성하고, 상기 가상의 변환소자를 고려하여 상기 제2 수신집속신호에 대해 보상 처리를 수행하도록 동작하는 빔 포머; 및
    상기 제1 수신집속신호를 이용하여 상기 제1 초음파 데이터를 형성하고, 상기 제2 수신집속신호를 이용하여 상기 제2 초음파 데이터를 형성하도록 동작하는 초음파 데이터 형성부
    를 포함하는 초음파 시스템.
  3. 제2항에 있어서, 상기 보상 처리는 SGC(scanline gain compensation) 및 TGC(time gain compensation)를 포함하는 초음파 시스템.
  4. 제1항에 있어서,
    상기 혈관을 검출하기 위한 혈관 템플릿을 저장하는 저장부
    를 더 포함하는 초음파 시스템.
  5. 제4항에 있어서, 상기 프로세서는, 상기 저장부에서 상기 혈관 템플릿을 추출하고, 상기 추출된 혈관 템플릿을 상기 제1 초음파 영상에 설정하고, 상기 혈관 템플릿을 이동시키면서 상기 혈관을 검출하고, 상기 혈관에서 최대 지름을 검출하고, 상기 최대 지름의 중심을 검출하고, 상기 최대 지름의 중심을 상기 혈관 중심으로 설정하도록 동작하는 초음파 시스템.
  6. 제1항에 있어서,
    사용자로부터 상기 제1 초음파 영상에 관심영역을 설정하는 입력정보를 수신하도록 동작하는 사용자 입력부
    를 더 포함하는 초음파 시스템.
  7. 제6항에 있어서, 상기 프로세서는, 상기 입력정보에 따라 상기 제1 초음파 영상에 상기 관심영역을 설정하고, 상기 관심영역의 중심을 검출하여 상기 초음파 영상에 설정하고, 상기 관심영역의 중심을 상하좌우 각각으로 사전 설정된 거리만큼 이동시키면서 밝기값의 차이가 최대인 영역을 상기 혈관의 혈관벽으로서 검출하고, 상기 영역을 지나는 가상의 사각형을 설정하고, 상기 가상의 사각형의 중심을 검출하여 상기 가상의 사각형의 중심을 상기 혈관 중심으로 설정하도록 동작하는 초음파 시스템.
  8. 제1항에 있어서,
    사용자로부터 상기 제1 초음파 영상에 시드 포인트를 설정하는 입력정보를 입력받도록 동작하는 사용자 입력부
    를 더 포함하는 초음파 시스템.
  9. 제8항에 있어서, 상기 프로세서는, 상기 입력정보에 따라 상기 제1 초음파 영상에 상기 시드 포인트를 설정하고, 상기 시드 포인트를 사전 설정된 거리만큼 이동시키면서 밝기값의 차이가 최대인 영역을 상기 혈관의 혈관벽으로서 검출하고, 상기 영역을 지나는 가상의 사각형을 설정하고, 상기 가상의 사각형의 중심을 검출하여 상기 가상의 사각형의 중심을 상기 혈관 중심으로 설정하도록 동작하는 초음파 시스템.
  10. 제1항 내지 제9항중 어느 한 항에 있어서,
    상기 제1 초음파 영상 및 상기 제2 초음파 영상 중 적어도 하나를 디스플레 이하도록 동작하는 디스플레이부
    를 더 포함하는 초음파 시스템.
  11. 초음파 신호를 송수신하는 복수의 변환소자를 포함하는 초음파 시스템에서 스캔라인의 스티어링 설정 방법으로서,
    a) 혈관을 포함하는 대상체에 대한 제1 초음파 데이터를 획득하는 단계;
    b) 상기 제1 초음파 데이터를 이용하여 제1 초음파 영상을 형성하는 단계;
    c) 상기 제1 초음파 영상을 분석하여 상기 혈관의 중심을 검출하는 단계;
    d) 상기 복수의 변환소자를 기준으로 가상의 변환소자를 설정하는 단계;
    e) 상기 가상의 변환소자 및 상기 혈관 중심을 이용하여 스티어링 각도를 산출하는 단계;
    f) 상기 가상의 변환소자, 상기 혈관 중심 및 상기 스티어링 각도를 고려하여 상기 대상체의 제2 초음파 데이터를 획득하는 단계; 및
    g) 상기 제2 초음파 데이터를 이용하여 제2 초음파 영상을 형성하는 단계
    를 포함하는 스티어링 설정 방법.
  12. 제11항에 있어서, 상기 단계 e)는,
    상기 복수의 변환소자에 해당하는 제1 구경(apeture)과 상기 가상의 변환소자에 해당하는 제2 구경에 기초하여 제3 구경을 설정하는 단계;
    상기 제3 구경에 대해 구경 중심을 검출하는 단계;
    상기 검출된 구경 중심에 해당하는 스캔라인을 설정하는 단계; 및
    상기 설정된 스캔라인이 상기 혈관 중심을 지나는 스티어링 각도를 산출하는 단계
    를 포함하는 스티어링 설정 방법.
  13. 제12항에 있어서, 상기 단계 f)는,
    상기 제3 구경, 상기 혈관 중심 및 상기 스티어링 각도를 고려하여 제2 송신신호를 형성하는 단계;
    상기 제2 송신신호를 초음파 신호로 변환하여 상기 대상체에 송신하고 상기 대상체로부터 반사되는 초음파 에코신호를 수신하여 제2 수신신호를 형성하는 단계;
    상기 제3 구경, 상기 혈관 중심 및 상기 스티어링 각도를 고려하여 상기 제2 수신신호를 수신집속시켜 제2 수신집속신호를 형성하는 단계;
    상기 가상의 변환소자를 고려하여 상기 제2 수신집속신호에 대해 보상 처리를 수행하는 단계; 및
    상기 제2 수신집속신호를 이용하여 상기 제2 초음파 데이터를 형성하는 단계
    를 포함하는 스티어링 설정 방법.
  14. 제13항에 있어서, 상기 보상 처리는 SGC(scanline gain compensation) 및 TGC(time gain compensation)를 포함하는 스티어링 설정 방법.
  15. 제11항에 있어서, 상기 단계 c) 이전에
    상기 혈관을 검출하기 위한 혈관 템플릿을 저장하는 저장부를 마련하는 단계
    를 더 포함하는 스티어링 설정 방법.
  16. 제15항에 있어서, 상기 단계 c)는,
    상기 저장부에서 상기 혈관 템플릿을 추출하는 단계;
    상기 추출된 혈관 템플릿을 상기 제1 초음파 영상에 설정하는 단계;
    상기 혈관 템플릿을 이동시키면서 상기 혈관을 검출하는 단계;
    상기 혈관에서 최대 지름을 검출하는 단계; 및
    상기 최대 지름의 중심을 검출하고, 상기 최대 지름의 중심을 상기 혈관 중심으로 설정하는 단계
    를 포함하는 스티어링 설정 방법.
  17. 제11항에 있어서, 상기 단계 c) 이전에,
    사용자로부터 상기 제1 초음파 영상에 관심영역을 설정하는 입력정보를 수신하는 단계
    를 더 포함하는 스티어링 설정 방법.
  18. 제17항에 있어서, 상기 단계 c)는,
    상기 입력정보에 따라 상기 제1 초음파 영상에 상기 관심영역을 설정하는 단계;
    상기 관심영역의 중심을 검출하여 상기 초음파 영상에 설정하는 단계;
    상기 관심영역의 중심을 상하좌우 각각으로 사전 설정된 거리만큼 이동시키면서 밝기값의 차이가 최대인 영역을 상기 혈관의 혈관벽으로서 검출하는 단계;
    상기 영역을 지나는 가상의 사각형을 설정하는 단계; 및
    상기 가상의 사각형의 중심을 검출하여 상기 가상의 사각형의 중심을 상기 혈관 중심으로 설정하는 단계
    를 포함하는 스티어링 설정 방법.
  19. 제11항에 있어서, 상기 단계 c) 이전에,
    사용자로부터 상기 제1 초음파 영상에 시드 포인트를 설정하는 입력정보를 수신하는 단계
    를 더 포함하는 스티어링 설정 방법.
  20. 제19항에 있어서, 상기 단계 c)는,
    상기 입력정보에 따라 상기 제1 초음파 영상에 상기 시드 포인트를 설정하는 단계;
    상기 시드 포인트를 사전 설정된 거리만큼 이동시키면서 밝기값의 차이가 최 대인 영역을 상기 혈관의 혈관벽으로서 검출하는 단계;
    상기 영역을 지나는 가상의 사각형을 설정하는 단계; 및
    상기 가상의 사각형의 중심을 검출하여 상기 가상의 사각형의 중심을 상기 혈관 중심으로 설정하는 단계
    를 포함하는 스티어링 설정 방법.
KR1020090081265A 2009-08-31 2009-08-31 가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 초음파 시스템 및 방법 KR101175402B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090081265A KR101175402B1 (ko) 2009-08-31 2009-08-31 가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 초음파 시스템 및 방법
EP10174357A EP2293098A1 (en) 2009-08-31 2010-08-27 Steering angle adjustment of scan lines using virtual transducer elements in an ultrasound system
US12/871,810 US20110054325A1 (en) 2009-08-31 2010-08-30 Steering angle adjustment of scan lines using virtual transducer elements in an ultrasound system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090081265A KR101175402B1 (ko) 2009-08-31 2009-08-31 가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 초음파 시스템 및 방법

Publications (2)

Publication Number Publication Date
KR20110023405A KR20110023405A (ko) 2011-03-08
KR101175402B1 true KR101175402B1 (ko) 2012-08-20

Family

ID=43064336

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090081265A KR101175402B1 (ko) 2009-08-31 2009-08-31 가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 초음파 시스템 및 방법

Country Status (3)

Country Link
US (1) US20110054325A1 (ko)
EP (1) EP2293098A1 (ko)
KR (1) KR101175402B1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456111B2 (en) 2006-12-07 2019-10-29 Samsung Medison Co., Ltd. Ultrasound system and signal processing unit configured for time gain and lateral gain compensation
KR100936456B1 (ko) 2006-12-07 2010-01-13 주식회사 메디슨 초음파 시스템
EP2053420B1 (en) * 2007-10-25 2012-12-05 Samsung Medison Co., Ltd. Method of removing an effect of side lobes in forming an ultrasound synthetic image by motion estimation and compensation
JP5683232B2 (ja) * 2010-11-25 2015-03-11 キヤノン株式会社 被検体情報取得装置
JP5919311B2 (ja) * 2014-01-16 2016-05-18 富士フイルム株式会社 超音波診断装置および超音波画像生成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735282A (en) * 1996-05-30 1998-04-07 Acuson Corporation Flexible ultrasonic transducers and related systems
US6224552B1 (en) * 1998-10-01 2001-05-01 Atl Ultrasound Ultrasonic diagnostic imaging system with reduced spatial compounding seam artifacts
US6385332B1 (en) * 1999-02-19 2002-05-07 The John P. Roberts Research Institute Automated segmentation method for 3-dimensional ultrasound
JP4749592B2 (ja) * 2000-05-01 2011-08-17 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー パルス・ドプラ超音波イメージングにおいてサンプル・ゲートを自動設定する方法及び装置
US20080097210A1 (en) * 2004-08-11 2008-04-24 Koninklijke Philips Electronics N.V. Ultrasonic Diagnosis of Ischemic Cardiodisease
KR100949066B1 (ko) * 2006-09-08 2010-03-30 주식회사 메디슨 스캔라인을 제어하는 초음파 시스템 및 방법
KR100923026B1 (ko) * 2006-09-19 2009-10-22 주식회사 메디슨 초음파 영상을 형성하는 초음파 시스템 및 방법
US20080119735A1 (en) * 2006-11-20 2008-05-22 Sonowise, Inc. Ultrasound imaging system and method with offset alternate-mode line
JP5014051B2 (ja) * 2007-10-09 2012-08-29 株式会社ユネクス 血管超音波画像測定方法

Also Published As

Publication number Publication date
KR20110023405A (ko) 2011-03-08
EP2293098A1 (en) 2011-03-09
US20110054325A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
KR101121289B1 (ko) 영상 파라미터를 설정하는 초음파 시스템 및 방법
KR100969536B1 (ko) 초음파 영상을 형성하는 초음파 시스템 및 방법
KR101120812B1 (ko) 움직임 벡터를 제공하는 초음파 시스템 및 방법
KR101175402B1 (ko) 가상의 변환소자에 기초하여 스캔라인의 스티어링을 설정하는 초음파 시스템 및 방법
KR20110069186A (ko) 복수의 3차원 초음파 영상을 제공하는 초음파 시스템 및 방법
KR20110082811A (ko) 스캔 각도, 스캔 깊이 및 스캔 속도를 설정하는 초음파 시스템 및 방법
JP2010274120A (ja) 動きベクトルを提供する超音波システムおよび方法
JP5981246B2 (ja) 超音波診断装置及びセンサ選定装置
JP5748970B2 (ja) 血管セグメンテーションを行う超音波システムおよび方法
JP2011031023A (ja) サジタルビューを設定する超音波システムおよび方法
US10820889B2 (en) Acoustic wave image generating apparatus and method
KR102545007B1 (ko) 초음파 영상장치 및 그 제어방법
KR100978479B1 (ko) 스캔 변환을 고속으로 수행하는 초음파 시스템 및 방법
JP2011031022A (ja) 複数のスライス映像を提供する超音波システムおよび方法
JP2010046484A (ja) 弾性映像を形成する超音波システム及び弾性映像形成方法
KR20120046539A (ko) 바디 마크를 제공하는 초음파 시스템 및 방법
KR20120067535A (ko) 미드 포인트 알고리즘에 기초하여 hprf 도플러 영상을 제공하는 초음파 시스템 및 방법
KR101014552B1 (ko) 초음파 시스템 및 3차원 초음파 영상 형성 방법
JP2002017724A (ja) 超音波診断装置
KR20070105607A (ko) 초음파 영상을 형성하는 초음파 시스템 및 방법
KR101117900B1 (ko) 고유벡터를 설정하는 초음파 시스템 및 방법
KR101117879B1 (ko) 컬러 재구성 영상을 제공하는 초음파 시스템 및 방법
KR101158640B1 (ko) 이득 조절을 수행하는 초음파 시스템 및 방법
KR20120042601A (ko) 샘플볼륨의 위치를 설정하는 초음파 시스템 및 방법
JP5854929B2 (ja) 超音波診断装置、設定音速の信頼性判定方法およびプログラム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150728

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160811

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190729

Year of fee payment: 8