KR101171316B1 - Method for repairing working stage with CNT antistatic treatment - Google Patents

Method for repairing working stage with CNT antistatic treatment Download PDF

Info

Publication number
KR101171316B1
KR101171316B1 KR1020100031220A KR20100031220A KR101171316B1 KR 101171316 B1 KR101171316 B1 KR 101171316B1 KR 1020100031220 A KR1020100031220 A KR 1020100031220A KR 20100031220 A KR20100031220 A KR 20100031220A KR 101171316 B1 KR101171316 B1 KR 101171316B1
Authority
KR
South Korea
Prior art keywords
repair
work stage
coating
cnt
stage
Prior art date
Application number
KR1020100031220A
Other languages
Korean (ko)
Other versions
KR20110111904A (en
Inventor
박도형
이동면
구성창
Original Assignee
(주)탑나노시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)탑나노시스 filed Critical (주)탑나노시스
Priority to KR1020100031220A priority Critical patent/KR101171316B1/en
Priority to PCT/KR2011/002397 priority patent/WO2011126292A2/en
Publication of KR20110111904A publication Critical patent/KR20110111904A/en
Application granted granted Critical
Publication of KR101171316B1 publication Critical patent/KR101171316B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/005Repairing damaged coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

본 발명은 CNT대전 방지 처리된 작업 스테이지의 수선 방법을 제공한다. 본 발명의 CNT대전 방지 처리된 작업 스테이지의 수선 방법은, 세척 단계와, 예열 단계와, 코팅 단계와, 열경화 단계를 포함한다. 세척 단계는 작업스테이지 중 수선이 필요한 특정 부위를 세척한다. 예열 단계는 상기 특정 부위를 예열한다. 코팅 단계는 상기 특정 부위에 탄소나노튜브가 함유된 리페어 용액을 코팅한다. 열경화 단계는 상기 리페어 용액이 코팅된 특정 부위를 열경화시킨다. 본 발명에 따르면 현장에서 신속하고, 간편하게 CNT 대전방지 처리된 작업 스테이지를 리페어 할 수 있다.The present invention provides a method for repairing a CNT antistatic treatment work stage. The repairing method of the CNT antistatic treatment stage of the present invention includes a washing step, a preheating step, a coating step, and a thermosetting step. The cleaning step cleans certain parts of the work stage that need repair. The preheating step preheats the specific site. The coating step coats the repair solution containing carbon nanotubes on the specific portion. The thermal curing step thermally cures the specific site coated with the repair solution. According to the present invention, it is possible to repair CNT antistatic work stage quickly and simply in the field.

Description

씨엔티대전 방지 처리된 작업 스테이지의 수선 방법{Method for repairing working stage with CNT antistatic treatment}Method for repairing working stage with CNT antistatic treatment

본 발명은 대전 방지 처리된 작업 스테이지에 관한 것으로, 보다 상세하게는 기판 등의 편평한 작업물이 안착되는 것으로 상기 작업물을 정전기로부터 보호할 수 있는 대전 방지 처리된 작업 스테이지의 수선방법에 관한 관한 것이다.The present invention relates to an antistatic work stage, and more particularly, to a method for repairing an antistatic work stage that can protect the work from static electricity by mounting a flat work such as a substrate. .

반도체 제조 장치에서 사용되는 작업 스테이지는 웨이퍼 기판이 안착되는 것으로 통상 금속성의 재질로 제작된다. 상기 작업 스테이지를 사용하는 반도체 제조 장치에서, 핸들러가 웨이퍼 기판을 고정하여 상기 작업 스테이지로 이동시킨 이후, 상기 웨이퍼 기판을 작업 스테이지에 올려놓을 때 상기 작업 스테이지와 웨이퍼 기판 간에 마찰 정전기가 발생한다.The work stage used in the semiconductor manufacturing apparatus is a substrate on which a wafer is placed and is usually made of a metallic material. In the semiconductor manufacturing apparatus using the work stage, after the handler fixes the wafer substrate and moves to the work stage, tribostatic static electricity occurs between the work stage and the wafer substrate when the wafer substrate is placed on the work stage.

또한, FPD(Flat Panel Display)용 디스펜서에 사용되는 작업 스테이지는 통상 진공 방식으로 디스플레이 기판을 흡착한다. 이 경우의 작업 스테이지 또한 통상 금속성의 재질로 제작되며, 상기 디스플레이 기판이 작업 스테이지 상에 흡착될 때 또는 상기 흡착 고정되었던 디스플레이 기판이 작업 스테이지로부터 박리될 때, 상기 작업 스테이지에는 대전이 발생하여, 디스플레이 기판에 대전된다. 최근에는 디스플레이 기판이 대형화됨에 따라서 대전량이 증가되어서, 정전기 대전 문제가 커지는 경향이다.In addition, the work stage used in the flat panel display (FPD) dispenser usually adsorbs the display substrate in a vacuum manner. The work stage in this case is also usually made of a metallic material, and when the display substrate is adsorbed on the work stage or when the display substrate which was fixed to the adsorption is detached from the work stage, charging occurs in the work stage, so that the display It is charged to the substrate. In recent years, as the display substrate is enlarged, the amount of charging increases, so that the problem of electrostatic charging increases.

상기 웨이퍼 기판 및 디스플레이 기판에는 반도체 소자 등의 복수의 전자부품들이 배치되어 있다. 따라서, 정전기가 발생하게 되면 상기 전자부품에 인가되어서 그 내부회로에 전달될 수 있다. 이는 결과적으로 전자부품의 신뢰성에 치명적인 손상을 주게 된다. 또한, 정전기의 대전으로 인하여 상기 기판에 파티클이 부착되거나, 기판을 리프트 업(lift up)시에 기판이 깨어지는 문제점이 있다. A plurality of electronic components such as semiconductor devices are disposed on the wafer substrate and the display substrate. Therefore, when static electricity is generated, it may be applied to the electronic component and transferred to the internal circuit. This, in turn, will seriously damage the reliability of the electronic components. In addition, there is a problem in that particles are attached to the substrate or the substrate is broken when the substrate is lifted up due to the electrostatic charging.

종래에는 상기 정전기의 대전을 방지하기 위하여, 작업 스테이지에 이오나이저를 설치하여 대전 전위를 중화하도록 하였다. 그러나, 이 경우에는 리프트 업이 불가능하며 이오나이저의 이온풍이 도달하지 않고, 리프트 업이 되어도 중화가 필요한 곳에 이온풍이 도달하기 전에 방전 등의 트러블이 발생하는 등 작업 스테이지와 기판 사이에서 발생한 정전기가 순간적으로 일으키는 박리대전문제를 해결할 수 없다. Conventionally, in order to prevent the charging of the static electricity, an ionizer is installed in the work stage to neutralize the charging potential. In this case, however, lift-up is not possible, and the ion wind of the ionizer does not reach, and even when lift-up occurs, static electricity generated between the work stage and the substrate is generated instantaneously, such as a discharge occurs before the ion wind reaches a place where neutralization is required. The problem of peeling charge caused by

이런 문제점을 해결하기 위하여, 상기 작업 스테이지의 정전기 방지를 위하여 불소수지로 코팅(일명, 테프론 코팅)을 할 수 있다. 불소수지는 다른 물질과의 흡착에너지가 작고, 비점착성이 우수하며, 마찰계수가 작기 때문에, 유리기판과의 상관관계가 작아져, 박리에 의한 정전기의 발생량이 작아진다.In order to solve this problem, in order to prevent the static electricity of the work stage can be coated with a fluorine resin (aka, Teflon coating). Since the fluorine resin has a small adsorption energy with other substances, excellent non-tackiness, and a small coefficient of friction, the fluorine resin has a small correlation with the glass substrate, and thus a small amount of static electricity generated by peeling.

이 경우 통상의 불소 성분은 절연성을 가지므로, 테프론 코팅에는 상기 불소 성분에 대전물질을 함유시킨다. 즉, 작업 스테이지를 아노다이징(anodizing) 후 테프론 코팅을 행함으로써, 상기 작업 스테이지의 정전기 발생을 방지하도록 하였다.In this case, since the normal fluorine component has insulation, the teflon coating contains a charged material in the fluorine component. That is, by anodizing the work stage and then applying Teflon coating, it is possible to prevent the generation of static electricity in the work stage.

그러나, 상기 테프론 코팅 방법은 제조 비용이 상대적으로 많이 든다. 특히 디스펜서의 경우 디스플레이 기판의 대형화됨에 따라서, 상기 작업 스테이지의 사이즈 또한 증가 하게 됨으로써, 상기 제조 비용은 더욱더 많이 들 수 밖에 없다.However, the Teflon coating method is relatively expensive to manufacture. In particular, in the case of the dispenser, as the size of the display substrate is increased, the size of the work stage is also increased, so that the manufacturing cost is inevitably higher.

또한, 불소 자체의 경도가 낮아, 상기 불소로 이루어진 코팅막의 경도가 낮을 수 밖에 없어서 쉽게 스크래치가 발생한다. 이로 인하여 스크래치가 발생한 부분의 평탄도 유지가 어려우며, 파티클이 발생하는 요인이 된다.In addition, since the hardness of the fluorine itself is low, the hardness of the coating film made of fluorine is low, and scratches easily occur. As a result, it is difficult to maintain flatness of the scratched portion, which causes particles to occur.

또한, 불소는 절연성을 가지고 있으므로 카본 블랙이나 전도성 폴리머 등의 필러를 추가하여 대전 방지용의 면저항을 갖도록 하여야 하는데, 카본 블랙은 구형으로서 분진이 발생한다는 문제점이 있고, 전도성 폴리머의 경우에는 내용제성이 약하고, 과량의 바인더를 사용하여야 하며, 박막 형성이 어렵다는 문제점이 있다.In addition, since fluorine has an insulating property, a filler such as carbon black or a conductive polymer should be added to have an antistatic sheet resistance. Carbon black has a problem that dust is generated as a spherical shape. , An excessive amount of binder should be used, and there is a problem that it is difficult to form a thin film.

한편, 대전방지된 작업 스테이지의 특정 부위에 아주 작은 손상이라도 입게 된다면, 그 부분으로 대전압이 모이게 되어, 기판 등의 작업 제품에 전기적으로 큰 손상을 주게 된다. 따라서, 상기 손상이 된 부분은 다시 대전방지코팅을 행하여야 한다.On the other hand, if a very small damage is caused to a specific part of the antistatic work stage, a large voltage is collected in that part, thereby causing a great electrical damage to a work product such as a substrate. Therefore, the damaged part should be subjected to antistatic coating again.

그런데, 상기 기존의 아노다이징 처리나, 불소코팅은 특정 부위 수선이 불가능하다. 이에 따라서, 작업 스테이지의 아주 작은 부위에 손상이 있더라도, 작업 스테이지의 전면을 다시 대전방지 코팅을 행할 수 밖에 없다. 이에 따라서 수선 비용이 증가하게 되고, 수선 시간이 길어지게 된다.By the way, the existing anodizing treatment or fluorine coating is impossible to repair a specific site. Accordingly, even if there is damage to a very small part of the work stage, the front surface of the work stage has to be subjected to the antistatic coating again. This increases the repair cost and lengthens the repair time.

특히, 상기 대전방지 코팅을 다시 행하기 위해서는, 상기 작업 스테이지를 대전방지 코팅을 위한 별도의 위치로 이동시켜야 한다. 이에 따라서 수선을 위한 작업자의 수가 증가할 수 밖에 없고, 수선이 불편하다는 문제점이 있다. In particular, to perform the antistatic coating again, the work stage must be moved to a separate location for the antistatic coating. Accordingly, the number of workers for repair is inevitably increased, and the repair is inconvenient.

본 발명은 상기와 같은 문제점을 비롯한 여러 문제점을 해결하기 위한 것으로서, 스테이지의 기판과 만나는 면에 정전기 발생을 최소화 시킴과 동시에, 그 제조 비용이 저감되고, 적절히 면저항을 조절할 수 있으며, 마찰계수가 낮고 내마모성이 향상된 작업 스테이지를 제공하는 것을 목적으로 한다.The present invention is to solve various problems including the above problems, while minimizing the generation of static electricity on the surface meeting the substrate of the stage, the manufacturing cost is reduced, the sheet resistance can be properly adjusted, the friction coefficient is low It is an object to provide a work stage with improved wear resistance.

본 발명의 다른 목적은 상기 대전 방지된 스테이지의 수선이 간단하고, 수선 시간을 단축시킬 수 있는 대전 방지 처리된 작업 스테이지의 수선 방법을 제공하는 것이다.Another object of the present invention is to provide a method for repairing an antistatic work stage, wherein the repair of the antistatic stage is simple and the repair time can be shortened.

따라서, 본 발명의 바람직한 실시예에 따른 CNT대전 방지 처리된 작업 스테이지의 수선 방법은, 세척 단계와, 예열 단계와, 코팅 단계와, 열경화 단계를 포함한다. 이 경우, CNT 대전 방지 처리된 작업 스테이지는, 전자부품을 포함하는 작업물이 안착되며, 적어도 상기 작업물이 안착되는 면이 도전성 물질로 이루어진 작업 스테이지와, 상기 작업 스테이지의 적어도 상기 기판이 안착되는 일면에 상기 작업물과 작업 스테이지 사이에 대전을 방지하도록 코팅된 것으로, 탄소노나튜브 코팅막을 포함하는 대전방지 물질이 코팅된 것을 의미한다. Therefore, the repairing method of the CNT antistatic treatment stage according to the preferred embodiment of the present invention includes a washing step, a preheating step, a coating step, and a thermosetting step. In this case, the CNT antistatic work stage includes a work stage on which an electronic component is mounted, at least a surface on which the work is seated is made of a conductive material, and at least the substrate of the work stage is seated. One surface is coated to prevent the charge between the workpiece and the work stage, it means that the antistatic material including a carbon non-tube coating film is coated.

세척 단계는 상기 특정 부위를 세척한다. 예열 단계는 상기 특정 부위를 예열한다. 코팅 단계는 상기 특정 부위에 탄소나노튜브가 함유된 리페어 용액을 코팅한다. 열경화 단계는 상기 리페어 용액이 코팅된 특정 부위를 열경화시킨다. The washing step washes the specific site. The preheating step preheats the specific site. The coating step coats the repair solution containing carbon nanotubes on the specific portion. The thermal curing step thermally cures the specific site coated with the repair solution.

이 경우, 상기 리페어 용액에서, 상기 탄소나노튜브가 10w% 이내이다. 또한, 상기 리페어 용액은 아크릴계, 우레탄계, 폴리에스테르계, 에폭시계, 폴리이미드계, 멜라민계, 전도성고분자계, 세라믹계, 및 유무기 하이브리드계 바인더 중 선택된 적어도 어느 하나로서 10wt% 이하의 질량 퍼센트를 가지는 바인더를 가지는 것이 바람직하다. In this case, in the repair solution, the carbon nanotubes are within 10w%. In addition, the repair solution may contain a mass percentage of 10 wt% or less as at least one selected from acrylic, urethane, polyester, epoxy, polyimide, melamine, conductive polymer, ceramic, and organic / inorganic hybrid binders. It is preferable to have a binder which has.

이 경우, 상기 리페어 용액은 수용성 분산제를 포함하는 것이 바람직하다. 또한, 상기 리페어 용액내의 파티클 사이즈는 길이가 10㎛ 이하이고, 직경이 1㎛이하이며, 상기 리페어 용액의 점도는 1cp 내지 2cp 이하인 것이 바람직하다. In this case, the repair solution preferably contains a water-soluble dispersant. In addition, the particle size in the repair solution is preferably 10 μm or less in length, 1 μm or less in diameter, and the viscosity of the repair solution is preferably 1 cps to 2 cps or less.

한편, 상기 리페어 용액을 코팅하여 이루어진 코팅막의 면저항은 105 ~ 1010 Ω/□인 것이 바람직하다. On the other hand, the sheet resistance of the coating film formed by coating the repair solution is preferably 10 5 ~ 10 10 Ω / □.

한편, 상기 예열 단계는, 상기 특정 부위를 80℃ 내지 100℃로 예열하고, 상기 열경화 단계는, 상기 특정 부위를 120℃ 내지 200℃의 온도에서 30분간 유지함으로써 이루어질 수 있다. On the other hand, the preheating step, preheating the specific site to 80 ℃ to 100 ℃, the thermosetting step, it can be made by maintaining the specific site at a temperature of 120 ℃ to 200 30 minutes.

상기 열경화 단계 이후에, 아세톤, 톨루엔, 에탄올, 디메틸포름아미드(N-N-Dimethyl Formamide, DMF), 이소프로필알콜 (Isopropyl Alcohol, IPA), 메틸에틸케톤(Methyl Ethyl Ketone, MEK)로 이루어진 군 중에서 선택된 적어도 어느 하나를, 상기 특정 부위에 뿌린 후에 문질러서 오염물질을 제거하는 단계를 더 포함할 수 있다. After the thermosetting step, acetone, toluene, ethanol, dimethylformamide (NN-Dimethyl Formamide, DMF), isopropyl alcohol (Isopropyl Alcohol, IPA), methyl ethyl ketone (Methyl Ethyl Ketone, MEK) selected from the group consisting of It may further comprise the step of removing contaminants by rubbing at least any one, after sprinkling the specific site.

이 경우, 상기 리페어 용액은 수용성 분산제를 포함하고, 상기 오염물질 제거 단계는, 상기 아세톤을 뿌린 후에 2kg/cm2 내지 7kg/cm2의 압력으로 수회 문질러서 이루어질 수 있다.In this case, the repair solution includes a water-soluble dispersant, and the contaminant removing step may include 2 kg / cm 2 after spraying the acetone. To At a pressure of 7kg / cm 2 It can be done by rubbing several times.

본 발명에 따르면, CNT를 포함한 대전 방지 물질을 코팅함으로써 작업 스테이지의 마찰계수가 낮고 내마모성이 우수하여 진다.According to the present invention, by coating an antistatic material including CNTs, the friction coefficient of the work stage is low and the wear resistance is excellent.

또한, 수선이 필요한 작업스테이지를 현장에서 간단하게 리페어 할 수 있음과 동시에 수선 작업이 간단함으로써, 비용이 저감되고, 수선 시간이 단축된다. In addition, the work stage requiring repair can be easily repaired in the field, and the repair work is simplified, thereby reducing the cost and reducing the repair time.

도 1은 본 발명의 바람직한 실시예에 따른 CNT 대전 방지 처리된 작업 스테이지의 일 예를 도시한 사시도이다.
도 2는 도 1에서 작업스테이지의 상측의 단면을 도시한 단면도이다.
도 3은 도 2의 A부를 확대 도시한 단면도이다.
도 4는 도 3의 변형예이다.
도 5는 본 발명의 바람직한 실시예에 따른 CNT대전 방지 처리된 작업 스테이지의 수선 방법의 각 단계를 도시한 흐름도이다.
1 is a perspective view showing an example of a CNT antistatic work stage according to a preferred embodiment of the present invention.
2 is a cross-sectional view showing a cross section of the upper side of the work stage in FIG.
3 is an enlarged cross-sectional view of part A of FIG. 2.
4 is a modification of FIG. 3.
5 is a flowchart showing each step of the method for repairing a CNT antistatic treatment work stage according to a preferred embodiment of the present invention.

이하 첨부된 도면을 참조하여, 바람직한 실시예에 의한 본 발명을 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 CNT 대전 방지 처리되며, 특정 부위에 수선이 필요한 작업 스테이지를 포함하는 장치를 도시한 사시도이다. 1 is a perspective view showing an apparatus including a work stage which is anti-static treatment of CNTs of the present invention and which requires repair at a specific site.

상기 장치는 작업 스테이지(20)및 상기 작업 스테이지를 지지하는 베이스 프레임(10)을 포함한다. The apparatus includes a work stage 20 and a base frame 10 supporting the work stage.

작업 스테이지(20)는 상기 베이스 프레임(10)의 상측에 장착된다. 상기 작업 스테이지(20)와 베이스 프레임(10)은 일체로 형성될 수도 있고, 별도의 부품으로 서로 결합될 수 있다. 상기 작업 스테이지(20) 상에는 전자부품을 포함하는 작업물(4)이 안착된다. The work stage 20 is mounted above the base frame 10. The work stage 20 and the base frame 10 may be integrally formed or may be combined with each other as separate components. On the work stage 20 a work 4 comprising electronic components is seated.

상기 작업물의 일 예로 웨이퍼 기판이거나, 디스플레이 기판일 수 있다. 이 경우, 작업 스테이지(20)가 적용되는 장치로는, 상기 웨이퍼 기판이 안착되는 반도체 제조 장치이거나, 디스플레이 기판이 안착되는 디스펜서일 수 있다. 본 발명은 이에 한정되는 것이 아니라, 대전방지가 필요한 작업 스테이지에는 모두 적용되는 것은 명확하다. 한편, 미 설명된 부호(30)은 작업을 위한 헤드를 이동시킬 수 있는 레일이다.An example of the workpiece may be a wafer substrate or a display substrate. In this case, the apparatus to which the work stage 20 is applied may be a semiconductor manufacturing apparatus on which the wafer substrate is seated or a dispenser on which the display substrate is seated. The present invention is not limited to this, but it is obvious that the present invention is applied to all work stages that require antistatic. On the other hand, the reference numeral 30 is a rail that can move the head for the operation.

상기 작업 스테이지의 특정 부위(D) 상에는 손상이 되어 있다. 이 경우, 손상이란 면저항이 1010 Ω/□ 를 초과하거나, 대전방지코팅이 벗겨진 경우에 해당된다. It is damaged on the specific site D of the work stage. In this case, damage is a case where the sheet resistance exceeds 10 10 Ω / □ or the antistatic coating is peeled off.

도 2는 도 1의 Ⅱ-Ⅱ부를 잘라서 도시한 단면도이다. 도 2에 도시된 바와 같이, 작업 스테이지(20) 일면에는 탄소나노튜브 코팅막(25)이 코팅되어 있다. FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1. As shown in FIG. 2, one surface of the work stage 20 is coated with a carbon nanotube coating layer 25.

상기 작업 스테이지(20)는 통상 알루미늄 등의 금속 소재로 이루어진다. 이 경우, 상기 작업 스테이지(20) 상면에는 아노다이징(Anodizing) 처리가 되어 있을 수 있다. 아노다이징은 전기-화학반응을 이용하여 표면처리되지 않은 알루미늄의 표면에 인위적인 산화물 도장을 입히는 것이다. 상기 아노다이징 처리에 의하여 표면 마모가 방지되고, 부식방지의 효과가 있다. 이 경우, 작업 스테이지(20)가 작업물이 직접 닫는 제1 스테이지부(22)와, 상기 제1 스테이지부를 지지하는 제2 스테이지부(21)로 구분할 수도 있다. The work stage 20 is usually made of a metal material such as aluminum. In this case, an anodizing process may be performed on the upper surface of the work stage 20. Anodizing is the use of an electrochemical reaction to apply an artificial oxide coating to the surface of unsurfaced aluminum. Surface abrasion is prevented by the anodizing treatment, and there is an effect of preventing corrosion. In this case, the work stage 20 may be divided into a first stage portion 22 in which the work is directly closed, and a second stage portion 21 supporting the first stage portion.

탄소나노튜브 코팅막(25)은 상기 작업 스테이지(20)의 상기 기판이 안착되는 면에 형성되는 것으로, 탄소나노튜브(CNT, Carbon Nano Tube)를 포함한다. CNT는 하나의 탄소가 다른 탄소원자와 육각형 벌집무늬로 결합되어 튜브형태를 이루고 있고, 튜브의 직경이 나노미터 수준으로 극히 작아서 특유의 전기 화학적 특성을 나타낸다. The carbon nanotube coating layer 25 is formed on a surface on which the substrate of the work stage 20 is seated, and includes carbon nanotubes (CNTs). CNTs form a tube in which one carbon is combined with another carbon atom in a hexagonal honeycomb pattern, and the diameter of the tube is extremely small, at the nanometer level, and thus exhibits unique electrochemical characteristics.

CNT는 우수한 기계적 특성, 전기적 선택성, 뛰어난 전계방출 특성을 가진다. 이러한 CNT를 스테이지에 얇은 도전막으로 형성하면 높은 전도성을 가지므로 정전기 방지효과가 있다. 또한, 상기 CNT들은 구형 형상이 아닌 튜브 형상으로 서로 네트웍을 구성하고 있기 때문에 분진 가능성이 적으며, 내습성이 우수하다.CNTs have excellent mechanical properties, electrical selectivity, and excellent field emission characteristics. If such a CNT is formed as a thin conductive film on the stage, it has high conductivity and thus has an antistatic effect. In addition, since the CNTs constitute networks with each other in a tube shape instead of a spherical shape, there is little possibility of dust and excellent moisture resistance.

상기 CNT로는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 다발형 탄소나노튜브 및 이들의 조합으로부터 선택될 수 있다.The CNTs may be selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes and bundled carbon nanotubes, and combinations thereof.

또한 산처리 등에 의해 탄소나노튜브 표면이 개질된 탄소나노튜브나, 금속성 및 반도체성 등 서로 다른 속성이 분리된 탄소나노튜브가 선택될 수 있다.In addition, carbon nanotubes on which the surface of carbon nanotubes is modified by acid treatment, or carbon nanotubes having different properties such as metallicity and semiconductivity, may be selected.

상기 탄소나노튜브를 포함하는 코팅액은 적절한 분산제를 포함할 수 있는데, 상기 분산제의구체적인 예로서, 소듐 도데실 설페이트(SDS), 트리톤 X(Triton X)(Sigma사), Tween20(Polyoxyethyelene Sorbitan Monooleate), CTAB(Cetyl Trimethyl Ammonium Bromide)를 들 수 있다. The coating solution including the carbon nanotubes may include a suitable dispersant. Specific examples of the dispersant include sodium dodecyl sulfate (SDS), triton X (Sigma), Tween20 (polyoxyethyelene Sorbitan Monooleate), CTAB (Cetyl Trimethyl Ammonium Bromide) is mentioned.

상기 탄소나노튜브 코팅막(25)은 그 면저항을 105 ~ 1010 Ω/□가 되도록 조절할 수 있다. 상기 면저항이 스테이지에서 정전기 발생을 방지하기 위한 적절한 수준이다. 만약 그 면저항이 1010Ω/□를 초과하면, 전기 전도도가 우수하지 못하여 상기 스테이지 상의 정전기를 외부로 방출하는 효과가 작으며, 그 면저항이 105 Ω/□ 이하이라면 그 자체의 전기 전도성이 너무 커서 인접하는 전자부품에 영향을 미칠 수 있다. The carbon nanotube coating film 25 can be adjusted so that the sheet resistance is 10 5 ~ 10 10 Ω / □. The sheet resistance is at an appropriate level to prevent the generation of static electricity at the stage. If the sheet resistance exceeds 10 10 Ω / □, the electrical conductivity is not good and the effect of dissipating static electricity on the stage to the outside is small. If the sheet resistance is 10 5 Ω / □ or less, its electrical conductivity is too high. Cursors may affect adjacent electronic components.

상기 탄소나노튜브 코팅막(25)은 바인더(binder)를 포함하여 이루어질 수 있다. 상기 바인더는아크릴계, 우레탄계, 폴리에스테르계, 에폭시계, 폴리이미드계, 멜라민계, 전도성고분자계 또는 유무기 하이브리드계 바인더일 수 있다. 상기 바인더는 열경화형수지 혹은 광경화형 수지 일 수 있다. The carbon nanotube coating layer 25 may include a binder. The binder may be an acrylic, urethane, polyester, epoxy, polyimide, melamine, conductive polymer or organic / inorganic hybrid binder. The binder may be a thermosetting resin or a photocurable resin.

이 경우, 상기 탄소나노튜브 코팅막(25)에 포함된 탄소나노튜브는 단일벽, 이중벽 또는 다중벽 탄소나노튜브일 수 있다.In this case, the carbon nanotubes included in the carbon nanotube coating layer 25 may be single-walled, double-walled or multi-walled carbon nanotubes.

상기 탄소나노튜브 코팅막(25)의 두께는 0.1μm 내지 100μm일 수 있다. The carbon nanotube coating layer 25 may have a thickness of 0.1 μm to 100 μm.

한편, 도 3에 도시된 바와 같이, 상기 탄소나노튜브 코팅막(25)과 작업 스테이지(20) 사이에는 접착 촉진층(23)이 형성될 수 있다. 상기 접착 촉진층(23)은 상기 탄소나노튜브 코팅막(25)과 작업 스테이지(20) 사이의 접착력을 향상시키는 기능을 한다. 이 경우, 접착 촉진층(23)은 산화 알루미늄 표면과 화학흡착을 할 수 있는 carboxylic acid group, anhydride group 또는 phosphonic acid group을 가지는 단분자, 올리고머, 폴리머 소재로서 이루어질 수 있다. 상기 접착 촉진층(23)의 두께는 1nm 내지 1μm일 수 있다. Meanwhile, as shown in FIG. 3, an adhesion promoting layer 23 may be formed between the carbon nanotube coating layer 25 and the work stage 20. The adhesion promotion layer 23 functions to improve adhesion between the carbon nanotube coating layer 25 and the work stage 20. In this case, the adhesion promotion layer 23 may be made of a single molecule, oligomer, or polymer material having a carboxylic acid group, anhydride group, or phosphonic acid group capable of chemisorption with the aluminum oxide surface. The adhesion promotion layer 23 may have a thickness of about 1 nm to about 1 μm.

이 경우, 상기 탄소나노튜브 코팅막(25)에 포함된 바인더는 상기 접착 촉진층(23)과 접합력을 가지는 단분자 또는 고분자일수 있다. In this case, the binder included in the carbon nanotube coating layer 25 may be a single molecule or a polymer having a bonding force with the adhesion promotion layer 23.

따라서, 도 3에 도시된 바와 같이, 상기 작업 스테이지(20) 상면이 아노다이징 처리(22a)된 후에, 접착 촉진층(23)과, 바인더가 혼합된 탄소나노튜브 코팅막(25)층이 차례대로 적층될 수 있다. Therefore, as shown in FIG. 3, after the upper surface of the work stage 20 is anodized 22a, the adhesion promotion layer 23 and the carbon nanotube coating layer 25 mixed with the binder are sequentially stacked. Can be.

상기 탄소나노튜브 코팅막(25) 외측면에는 보호층(26)이 형성될 수 있다. 상기 보호층(26)은 정전기 방지성능을 유지하면서도 탄소나노튜브 코팅막(25) 표면을 외부로부터 보호하면서 탄소나노튜브 코팅막(25)의 내구성과내마모성을 더욱더 향상시킨다. 이 경우, 보호층(26)은 무기물, 유기 단분자 및 고분자 화합물, 혹은 유, 무기 하이브리드 재료를 사용할 수 있으며, 그 두께는 0.1μm 내지 100μm일 수 있다. A protective layer 26 may be formed on the outer surface of the carbon nanotube coating layer 25. The protective layer 26 further improves the durability and wear resistance of the carbon nanotube coating layer 25 while protecting the surface of the carbon nanotube coating layer 25 from the outside while maintaining antistatic performance. In this case, the protective layer 26 may use an inorganic material, an organic single molecule and a high molecular compound, or an organic or inorganic hybrid material, and the thickness thereof may be 0.1 μm to 100 μm.

종래의 불소 소재의 대전방지용 코팅의 경우, 불소의 경도가 약하기 때문에 상기 보호층의 두께가 두꺼워질 수 밖에 없다. 상기 두께로 인하여 대전방지 효과가 떨어지게 된다. 그러나, 본 발명의 경우에는 탄소나노튜브 코팅막의 내마모성이 우수하고, 보호층과의 결합력이 우수하므로, 그 두께를 최소한으로 얇게 할 수 있다.In the conventional antistatic coating of fluorine material, since the hardness of the fluorine is weak, the thickness of the protective layer is inevitably thickened. Due to the thickness, the antistatic effect is reduced. However, in the case of the present invention, since the carbon nanotube coating film has excellent abrasion resistance and excellent bonding strength with the protective layer, the thickness thereof can be minimized.

이 경우, 상기 보호층은 세라믹 계열로 이루어질 수 있는데, 이는 상기 세라믹 계열의 보호층이 높은 내화학성을 가져서, 아세톤, 알콜류 등에 강한 내구성을 가지기 때문이다.In this case, the protective layer may be formed of a ceramic-based, because the ceramic-based protective layer has a high chemical resistance, and has a strong durability in acetone, alcohols and the like.

한편, 도 4에 도시된 바와 같이, 상기 탄소나노튜브 코팅막(25)과 작업 스테이지(20) 사이에 내측 바인더층(24)이 개재될 수 있다. 즉, 아노다이징 처리(22a)된 작업 스테이지(20) 상면에 먼저 내측 바인더층(24)을 코팅시킨 후에, 탄소나노튜브 코팅막(25)을 상기 내측 바인더층(24) 상면에 코팅되도록 할 수 있다. 이 경우, 상기 내측 바인더층(24)과 작업 스테이지(20) 사이에는 접착 촉진층(23)이 개재될 수 있다. Meanwhile, as shown in FIG. 4, an inner binder layer 24 may be interposed between the carbon nanotube coating layer 25 and the work stage 20. That is, after the inner binder layer 24 is first coated on the upper surface of the work stage 20 subjected to the anodizing 22a, the carbon nanotube coating layer 25 may be coated on the upper surface of the inner binder layer 24. In this case, an adhesion promoting layer 23 may be interposed between the inner binder layer 24 and the work stage 20.

상기 내측 바인더층(24)는 상기 작업 스테이지(20) 위에 바코팅, 슬릿다이코팅, 딥코팅, 스핀코팅, 스프레이코팅, 스크린코팅, 잉크젯코팅법 등을 사용하여 도포할 수 있다. 또한, 상기 탄소나노튜브 코팅막(25)을 상기 내측 바인더층(24) 상에, 바코팅, 슬릿다이코팅, 딥코팅, 스핀코팅, 스프레이코팅, 스크린코팅, 잉크젯코팅법 등을 사용하여 도포할 수 있다. The inner binder layer 24 may be coated on the work stage 20 using bar coating, slit die coating, dip coating, spin coating, spray coating, screen coating, ink jet coating, or the like. In addition, the carbon nanotube coating layer 25 may be coated on the inner binder layer 24 by using bar coating, slit die coating, dip coating, spin coating, spray coating, screen coating, ink jet coating, or the like. have.

또한, 상기 접착 촉진층(23)은 작업 스테이지(20) 위에 바코팅, 슬릿다이코팅, 딥코팅, 스핀코팅, 스프레이코팅, 스크린코팅, 잉크젯코팅법 등을 사용하여 도포할 수 있다. In addition, the adhesion promotion layer 23 may be applied on the work stage 20 using bar coating, slit die coating, dip coating, spin coating, spray coating, screen coating, ink jet coating, or the like.

이 경우, 내측 바인더층(24)의 주소재는 아크릴계, 우레탄계, 폴리에스테르계, 에폭시계, 폴리이미드계, 멜라민계, 전도성고분자계, 유무기 하이브리드계 바인더일계열로 이루어지는 것이 바람직하다. 일예로 우레탄 계열의 주소재는 상기 작업 스테이지에 높은 접착력으로 코팅되는 동시에 탄소나노튜브 코팅막(25)을 높은 접착력으로 코팅되게 한다. 따라서, 상기 주소재는 상기 작업 스테이지와 탄소나노튜브 코팅막 간의 접착력을 크게 향상시키게 된다. 도 4의 경우에도 상기 탄소나노튜브 코팅막 외측면에 보호층(26)이 형성될 수 있다. In this case, it is preferable that the addressing material of the inner binder layer 24 is made of acrylic, urethane, polyester, epoxy, polyimide, melamine, conductive polymer, and organic / inorganic hybrid binders. For example, the urethane-based address material is coated on the work stage with a high adhesive force and at the same time the carbon nanotube coating film 25 is coated with a high adhesive force. Therefore, the address material greatly improves the adhesive force between the work stage and the carbon nanotube coating film. 4, a protective layer 26 may be formed on the outer surface of the carbon nanotube coating layer.

도 5는 본 발명의 실시예에 따른 CNT대전 방지 처리된 작업 스테이지의 수선 방법의 각 단계를 도시한 흐름도이다. 5 is a flowchart illustrating each step of the method for repairing a CNT antistatic treatment work stage according to an embodiment of the present invention.

도 5에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 수선 방법은, 세척 단계(S10)와, 예열 단계(S20)와, 코팅 단계(S30)와, 열경화 단계(S40)를 포함한다. 또한, 상기 열경화 단계 이후에 오염물질 제거 단계(S50)를 더 거칠 수 있다. As shown in FIG. 5, the repairing method according to a preferred embodiment of the present invention includes a washing step S10, a preheating step S20, a coating step S30, and a thermosetting step S40. . In addition, the contaminant removing step (S50) may be further roughened after the thermosetting step.

각 단계를 도 5및 도 2를 참조하여 설명하면, 세척 단계(S10)는 상기 수선 필요한 특정 부위(D)를, 리페어 전에 세척시키는 단계이다. 예열 단계(S20)는 상기 특정 부위를 예열하는 단계이다. 코팅 단계(S30)는 상기 특정 부위에 CNT가 함유된 리페어 용액을 코팅하는 단계이다. 열경화 단계(S40)는 상기 리페어 용액이 코팅된 특정 부위를 열경화시키는 단계이다. 오염물질제거 단계는 열경화 단계 이후에 잔존해 있는 불필요한 물질을 제거하는 단계이다.Referring to each step with reference to Figs. 5 and 2, the washing step (S10) is a step of washing the specific area (D) required for repair, before repair. Preheating step (S20) is a step of preheating the specific site. Coating step (S30) is a step of coating the repair solution containing the CNT to the specific site. The thermosetting step (S40) is a step of thermosetting a specific portion coated with the repair solution. The contaminant removing step is to remove unnecessary substances remaining after the thermosetting step.

각 단계를 상세히 설명하면, 먼저 세척 단계(S10)는 수선할 특정 부위(D)를 세척한다. 상기 세척 단계는, 작업 스테이지(20)의 특정 부위(D)에 잔존하는 탄소나노튜브 코팅막 등의 오염물을 제거하기 위함이다. 오염물을 제거하기 위하여 증류수를 이용하는 세척, 산을 이용한 세척, 및 분산제를 변화시키는 시약을 투입하는 방법 등의 다양한 방법을 사용할 수 있다. 그 중, 산을 이용한 세척은 표면 세척과, 내부 잔류 분산제 제거할 수 있고, 분산제를 변화시키는 시약을 투입하는 방법은 표면 세척 및 분산제를 단위분자로 쪼개어져 물에 더 잘 씻기게 할 수 있다.When describing each step in detail, the first washing step (S10) is to wash the specific site (D) to be repaired. The washing step is to remove contaminants such as carbon nanotube coating film remaining in a specific portion (D) of the work stage 20. In order to remove contaminants, various methods such as washing with distilled water, washing with acid, and adding a reagent for changing a dispersant may be used. Among them, washing with an acid can wash the surface and remove the internal residual dispersant, and a method of adding a reagent for changing the dispersant can break the surface wash and the dispersant into unit molecules to wash the water better.

본 발명에서는, 상기 세척 단계(S10)가 순수 세척, 아세톤 세척 및 건조의 순서대로 행하는 것이 더욱 바람직하다. 순수란 일반 물속에 이온성분(주로 알칼리, 메탈이온)을 제거한 물을 의미한다. 순수는 이온화되지 않는 다른 불순물(Organic 등)들까지 제거한 초순수인 것이 보다 바람직하다. In the present invention, the washing step (S10) is more preferably performed in the order of pure water washing, acetone washing and drying. Pure water refers to water in which ions (mainly alkalis and metal ions) are removed from ordinary water. Pure water is more preferably ultrapure water that has removed other impurities (such as organic) that are not ionized.

아세톤 세척은 작업 스테이지로부터 습기를 신속하게 제거한다. 이 것은, 탄소나노튜브 코팅막(25)을 이루는 CNT가 수용성 분산제에 의하여 분산되어 있는 경우에 보다 필요하다. 상기 수용성 분산제로는 SDS (Sodium Dodecyl Sulfate), Triton X-100(TX-100), NaDDBS(Sodium Dodecylbenzene Sulfonate), Gum Arabic 등이 있다. 상기 수용성 분산제는 가장 안정된 용액과 최대 용해도 등의 장점을 가지고 있으며, 따라서 탄소나노튜브의 분산을 효과적으로 행할 수 있다는 장점을 가진다. 즉, 분산율이 우수한 탄소나노튜브 도전막을 형성하기 위해 일정농도이상의 분산용액이 필요한데 이를 위해서는 수용성 분산제의 사용이 유리하다. Acetone cleaning quickly removes moisture from the work stage. This is more necessary when the CNTs forming the carbon nanotube coating film 25 are dispersed with a water-soluble dispersant. Examples of the water-soluble dispersant include sodium dodecyl sulfate (SDS), triton x-100 (tx-100), sodium dodecylbenzene sulfonate (NaDDBS), and gum arabic. The water-soluble dispersant has advantages such as the most stable solution and maximum solubility, and thus has the advantage of effectively dispersing carbon nanotubes. That is, a dispersion solution of more than a certain concentration is required to form a carbon nanotube conductive film having excellent dispersion rate. For this purpose, it is advantageous to use a water-soluble dispersant.

한편, 상기 세척단계에서, 상기 손상에 의하여 파인 부위에 불소 코팅할 수 있다. 즉, 특정부위에 손상이 발생하게 되면, 가운데 부분은 파이게 되는 동시에, 가장자리는 외부로 돌출된다. 이 경우, 가운데 부분은 아노다이징 처리한 층보다 깊게 파여서 금속부분까지 파이게 될 수 있다. 상기 금속 부분에 바로 리페어 작업을 하는 것이 아니라, 상기 외부로 돌출된 가장자리 부분을 연마하여서, 전체적으로 작업 스테이지의 상면을 편평하게 되도록 한다. 이 경우, 코팅 예정 부위를 초순수로 세척 후에 아세톤으로 추가 세척할 수 있다.On the other hand, in the washing step, it may be a fluorine coating on the fine portion by the damage. In other words, when damage occurs to a specific part, the center part is dug while the edge protrudes outward. In this case, the center portion may be dug deeper than the anodized layer to pierce the metal portion. Rather than repairing the metal part directly, the outer protruding edge portion is polished so that the upper surface of the work stage is flat. In this case, the area to be coated may be further washed with acetone after washing with ultrapure water.

그 후에 예열 단계(S20)를 거친다. 상기 예열 단계는 후술하는 리페어 용액의 코팅력을 증가시키기 위함이다. 즉, 작업 스테이지가 80℃ 내지 100℃ 인 상태에서, 탄소나노튜브가 포함된 리페어 용액을 코팅시키는 경우가 보다 코팅력이 향상되기 때문이다. Thereafter, a preheating step S20 is performed. The preheating step is to increase the coating power of the repair solution to be described later. That is, when the working stage is in the state of 80 ℃ to 100 ℃, coating the carbon nanotube-containing repair solution is because the coating power is improved.

그 후에 코팅 단계(S30)를 거친다. 상기 코팅 단계는 바코팅, 슬릿다이코팅, 딥코팅, 스핀코팅, 스프레이코팅, 스크린코팅, 잉크젯코팅법, 브러쉬 코팅 등을 사용하여 이루어질 수 있다.Thereafter, the coating step (S30) is passed. The coating step may be performed using bar coating, slit die coating, dip coating, spin coating, spray coating, screen coating, inkjet coating, brush coating, and the like.

이 경우, 에어 브러쉬를 이용한 스프레이 코팅을 하거나, 브러쉬를 이용하여 직접 코팅하는 방법이 보다 바람직한데, 이는 현장에서 간편하게 행할 수 있는 코팅 방법이기 때문이다.In this case, spray coating using an air brush or direct coating using a brush is more preferable, since this is a coating method that can be easily performed in the field.

상기 스프레이 코팅의 경우에는 일정 유량(8cc/min 내지 16cc/min) 및 일정 공기압(2bar 내지 4bar)으로, 작업 스테이지 표면으로부터 일정 거리(100mm 내지 200mm) 떨어진 거리에서 일정시간(2 내지 8초간 )스프레이 후 건조시킨다. 예를 들어 12cc/min의 유량으로 3bar의 공기압으로 에어 브러쉬를 셋팅한 뒤에, 작업 스테이지 표면으로부터 150mm 떨어진 거리에서 5초간 스프레이한 후 건조시킨다. 상기 스프레이 후 건조시키는 단계를 수회 반복한다.In the case of the spray coating spray at a constant flow rate (8 to 16 cc / min) and a constant air pressure (2 to 4 bar), a predetermined time (2 to 8 seconds) at a distance (100 mm to 200 mm) away from the work stage surface After drying. For example, after setting the airbrush to air pressure of 3 bar at a flow rate of 12 cc / min, it is sprayed for 5 seconds at a distance of 150 mm from the surface of the work stage and dried. The drying after spraying is repeated several times.

브러쉬 코팅인 경우, 용액이 뭉치지 않도록 적절한 양을 브러쉬에 묻힌 다음, 특정 부위에 칠한 다음 건조시킨다. 이러한 공정을 수회 반복한다. For brush coating, apply the appropriate amount to the brush so that the solution does not clump, then apply it to a specific area and then dry. This process is repeated several times.

상기 리페어 용액은 CNT 및 바인더를 포함한다. CNT는 10w% 이하의 질량 퍼센트를 가지며, 단일벽, 이중벽 또는 다중벽 탄소나노튜브일 수 있다.The repair solution includes a CNT and a binder. CNTs have a mass percent of up to 10 w% and can be single-walled, double-walled or multi-walled carbon nanotubes.

바인더는 아크릴계, 우레탄계, 폴리에스테르계, 에폭시계, 폴리이미드계, 멜라민계, 전도성고분자계, 불소계, 세라믹계, 및 유무기 하이브리드계 바인더 중 선택된 적어도 어느 하나일 수 있다. The binder may be at least one selected from acrylic, urethane, polyester, epoxy, polyimide, melamine, conductive polymer, fluorine, ceramic, and organic / inorganic hybrid binders.

한편, 리페어 용액은 분산제를 더 포함한다. 상기 분산제는 CNT의 분산을 효율적으로 하도록 도와주는 기능을 한다. 상세히 설명하면, 상기 CNT는 합성단계에서 나노튜브 간의 μm수준의 물리적 응집과 수십 nm 수준의 화학적 응집 현상이 발생한다. 이와 같은 응집현상은 전도도 구현에서 3차원 네트워크 구조형성을 방해하고 입자 대비 전도효율을 감소시킨다. 예를 들어 물리적 응집현상을 극복하지 못하면 극단적으로 나노튜브가 아닌 μm 수준의 구형입자를 사용하는 것과 유사하며, 더 나아가 화학적 응집현상을 극복하지 못하면 이론적인 퍼콜레이션 농도를 달성할 수 없다. 따라서 CNT의 분산을 효율적으로 할 수 있게 분산제가 포함된다. On the other hand, the repair solution further comprises a dispersant. The dispersant functions to help the dispersion of the CNTs efficiently. In detail, in the synthesis step, the CNTs generate a physical aggregation of μm and chemical aggregation of several tens of nm between nanotubes. Such agglomeration phenomena prevent the formation of three-dimensional network structure in the conductivity implementation and reduce the conductivity efficiency compared to the particles. For example, failure to overcome physical cohesion is very similar to the use of spherical particles at the μm level rather than nanotubes, and further, theoretical percolation concentrations cannot be achieved without chemical coagulation. Therefore, a dispersant is included so that CNT can be efficiently dispersed.

CNT 분산 방법 중 하나로는 탄소나노튜브를 아미드 계열의 DMF(NN-dimethylformamide), NMP (1,2-dichlorobenzene, N-methylpyrrolidone)등의 유기 용매에 넣어 초음파로 분산시킬 수 있다. 이러한 분산 방법은 단순한 용해에 의한 분산이기 때문에 안정성이 떨어지는 문제가 있으며 또한 탄소나노튜브의 용해도가 매우 낮은 문제가 있다. As one of the CNT dispersion methods, the carbon nanotubes may be dispersed in ultrasonic waves in an organic solvent such as amide-based DMF (NN-dimethylformamide) or NMP (1,2-dichlorobenzene, N-methylpyrrolidone). This dispersion method has a problem of poor stability because it is dispersion by simple dissolution, and also has a very low solubility of carbon nanotubes.

CNT 분산 방법 중 다른 하나로는 수용성 분산제를 적용할 수 있다. 상기 수용성 분산제로는 SDS (Sodium Dodecyl Sulfate), Triton X-100(TX-100), NaDDBS(Sodium Dodecylbenzene Sulfonate), Gum Arabic 등이 있다. 상기 수용성 분산제는 가장 안정된 용액과 최대 용해도 등의 장점을 가지고 있으며, 따라서 탄소나노튜브의 분산을 효과적으로 행할 수 있다는 장점을 가진다. 즉, 분산율이 우수한 탄소나노튜브 도전막을 형성하기 위해 일정농도 이상의 분산용액이 필요한데 이를 위해서는 수용성 분산제의 사용이 유리하다. 이 경우, 상기 분산제는 10wt% 이하의 질량 퍼센트를 갖는 것이 바람직하다. As another method of CNT dispersion, a water-soluble dispersant may be applied. Examples of the water-soluble dispersant include sodium dodecyl sulfate (SDS), triton x-100 (tx-100), sodium dodecylbenzene sulfonate (NaDDBS), and gum arabic. The water-soluble dispersant has advantages such as the most stable solution and maximum solubility, and thus has the advantage of effectively dispersing carbon nanotubes. That is, in order to form a carbon nanotube conductive film having excellent dispersion rate, a dispersion solution of a certain concentration or more is required. For this purpose, it is advantageous to use a water-soluble dispersant. In this case, the dispersant preferably has a mass percentage of 10 wt% or less.

상기 코팅 단계에서는 종래에 평탄도보도 약간 높게 충분히 코팅할 수 있고, 후에 사포, 연마제를 이용하여서 약간 높게 올라온 부분을 연마함으로써, 그 높이를 맞출 수 있다. In the coating step, it is possible to coat a sufficient degree of flatness even in the prior art, and after that, by polishing the slightly raised portion using sandpaper and abrasive, its height can be adjusted.

그 후에 열경화 단계(S40)를 거친다. 상기 열경화 단계는 상기 리페어 용액이 코팅되어서 생긴 리페어 코팅막이 작업 스테이지 상에 단단히 접착될 수 있도록 하는 것이다. After that, the heat curing step (S40). The thermosetting step is such that the repair coating film formed by coating the repair solution can be firmly adhered to the work stage.

상기 리페어 용액내의 파티클 사이즈는 길이가 10㎛ 이하이고, 직경이 1㎛이하인 것이 바람직하다. It is preferable that the particle size in the said repair solution is 10 micrometers or less in length, and 1 micrometer or less in diameter.

또한, 상기 리페어 용액의 점도는 1cp 내지 2cp 이하인 것이 바람직하다.In addition, the viscosity of the repair solution is preferably 1cp to 2cp or less.

상기 열경화 단계는 자외선 히터(IR heater) 혹은 드라이 히터(Dry heater)로 코팅 부위를 100℃ 내지 200℃가 되도록 가열하고, 이를 일정시간(예를 들어, 30분)동안 유지한다. 작업 스테이지를 200℃ 이상 가열하는 경우에는 작업 스테이지에 열 변형이 발생할 가능성이 있다. 예를 들어 디스펜서인 경우에는 작업 스테이지가 10㎛ 이상의 변형이 발생할 경우에는 작업에 문제가 발생하는데, 200℃ 이상 가열할 경우에 열 변형으로 인하여 10㎛ 이상의 스테이지의 변형이 발생하기 때문이다. In the thermosetting step, the coating site is heated to 100 ° C. to 200 ° C. with an IR heater or a dry heater, and is maintained for a predetermined time (eg, 30 minutes). When the work stage is heated to 200 ° C. or more, there is a possibility that heat deformation occurs in the work stage. For example, in the case of the dispenser, when the work stage is deformed at 10 μm or more, a problem occurs in the work.

상기 열경화 단계 이후에는 오염물질 제거 단계(S50)를 더 거칠 수 있다. After the thermosetting step, the contaminant removing step S50 may be further performed.

상기 오염물질 제거 단계는, 아세톤, 톨루엔, 에탄올, 디메틸포름아미드(N-N-Dimethyl Formamide, DMF), 이소프로필알콜 (Isopropyl Alcohol, IPA), 메틸에틸케톤(Methyl Ethyl Ketone, MEK)로 이루어진 군 중에서 선택된 적어도 어느 하나를, 상기 특정 부위에 뿌린 후에 문질러서 세척함으로써 이루어진다. The pollutant removal step is selected from the group consisting of acetone, toluene, ethanol, dimethyl formamide (NN-Dimethyl Formamide, DMF), isopropyl alcohol (IPA), methyl ethyl ketone (MEK) It is achieved by sprinkling at least one of the above and then rubbing.

대부분의 분산제는 리페어 코팅막 형성 후 불순물로 작용한다. 이에 따라서 정확한 범위의 면저항을 갖도록 하기 위해서는 코팅 후 분산제를 제거하는 것이 바람직하다. 상기 분산제가 CNT와 함께 용매에 혼합되어서 혼합용액으로 기질 상에 코팅될 수 있는데, 통상 용매는 증발에 의하여 제거된다. 그러나 분산제는 증발에 의하여 완전히 제거되지 않고 CNT와 함께 잔존하게 된다.Most dispersants act as impurities after the repair coating film is formed. Accordingly, in order to have a sheet resistance in the correct range, it is preferable to remove the dispersant after coating. The dispersant may be mixed with the CNT in a solvent and coated on the substrate with a mixed solution, usually the solvent is removed by evaporation. The dispersant, however, is not completely removed by evaporation and remains with the CNTs.

상기 분산제가 수용성이라면, 아세톤을 사용하여 분산제를 제거하는 것이 바람직하다. 이 경우, 코팅 부분에 아세톤을 적절하게 뿌린 뒤에, 클린 와이퍼를 이용하여 적절한 압력(예를 들어 2kg/cm2 내지 7kg/cm2)으로 누르면서 일정한 속도로 문질러 준다. 예를 들어, 아세톤을 뿌린 후에 5kg/cm2 의 압력으로 누르면서, 2Hz의 속도로 500회 정도 문질러준다. If the dispersant is water-soluble, it is preferable to remove the dispersant using acetone. In this case, after properly spraying acetone on the coating part, use a clean wiper to apply a suitable pressure (for example, 2 kg / cm 2). To 7kg / cm 2 ) while rubbing at a constant speed. For example, after sprinkling acetone, rub it at a rate of 5 kg / cm 2 and rub it about 500 times at a speed of 2 Hz.

본 발명에 따르면, 현장에서 간단하게 CNT대전 방지 처리된 작업 스테이지를 수선할 수 있다. According to the present invention, it is possible to easily repair a work stage that has been treated with CNT antistatic treatment in the field.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although described with reference to the preferred embodiment of the present invention, those skilled in the art various modifications and variations of the present invention without departing from the spirit and scope of the invention described in the claims below I can understand that you can.

10: 베이스 프레임 20: 작업 스테이지
23: 접착 코팅층 24: 내측 바인더층
25: 탄소나노튜브 코팅막 26: 보호층
D: 특정 부위 S10: 세척 단계
S20: 예열 단계 S30: 코팅 단계
S40: 열경화 단계 S50: 오염물질 제거 단계
10: base frame 20: work stage
23: adhesive coating layer 24: inner binder layer
25: carbon nanotube coating film 26: protective layer
D: specific area S10: washing step
S20: preheating step S30: coating step
S40: thermal curing step S50: contaminant removal step

Claims (8)

전자부품을 포함하는 작업물이 안착되며, 적어도 상기 작업물이 안착되는 면이 도전성 물질로 이루어진 작업 스테이지와, 상기 작업 스테이지의 적어도 기판이 안착되는 일면에 상기 작업물과 작업 스테이지 사이에 대전을 방지하도록 코팅된 것으로, 탄소노나튜브 코팅막을 포함하는 대전방지 물질이 코팅된 대전 방지 처리된 작업 스테이지의 특정 부위에 손상이 발생할 경우에 수선하는 방법으로서,
상기 특정 부위를 세척하는 단계와;
상기 특정 부위를 예열하는 단계와;
상기 특정 부위에 탄소나노튜브가 함유된 리페어 용액을 코팅하는 단계와;
상기 리페어 용액이 코팅된 특정 부위를 열경화시키는 단계;
를 포함하는 CNT대전 방지 처리된 작업 스테이지의 수선 방법.
A workpiece including an electronic component is seated, and at least a surface on which the workpiece is seated is prevented from being charged between the workpiece and the work stage on a work stage made of a conductive material and at least one surface of the substrate on which the work stage is seated. Coated with an antistatic material comprising a carbon nontube coating film, and repaired when damage occurs to a specific part of the antistatic treated work stage coated with
Washing the specific site;
Preheating the specific site;
Coating a repair solution containing carbon nanotubes on the specific portion;
Thermally curing a specific portion coated with the repair solution;
Repair method of the CNT antistatic treatment stage comprising a.
제1항에 있어서,
상기 리페어 용액에서, 상기 탄소나노튜브가 10w% 이내이고,
상기 리페어 용액은:
아크릴계, 우레탄계, 폴리에스테르계, 불소계, 에폭시계, 폴리이미드계, 멜라민계, 전도성고분자계, 세라믹계, 및 유무기 하이브리드계 바인더 중 선택된 적어도 어느 하나로서 10wt% 이하의 질량 퍼센트를 가지는 바인더를 가지는 것을 특징으로 하는 CNT대전 방지 처리된 작업 스테이지의 수선 방법.
The method of claim 1,
In the repair solution, the carbon nanotubes are within 10w%,
The repair solution is:
At least one selected from acrylic, urethane, polyester, fluorine, epoxy, polyimide, melamine, conductive polymer, ceramic, and organic-inorganic hybrid binders having a binder having a mass percentage of 10 wt% or less. The repair method of the CNT antistatic treatment work stage characterized by the above-mentioned.
제2 항에 있어서,
상기 리페어 용액은 수용성 분산제를 포함하는 것을 특징으로 하는 CNT대전 방지 처리된 작업 스테이지의 수선 방법.
The method of claim 2,
Wherein said repair solution comprises a water soluble dispersant.
제2항에 있어서,
상기 리페어 용액내의 파티클 사이즈는 길이가 10㎛ 이하이고, 직경이 1㎛이하이며,
상기 리페어 용액의 점도는 1cp 내지 2cp 이하인 것을 특징으로 하는 CNT대전 방지 처리된 작업 스테이지의 수선 방법.
The method of claim 2,
The particle size in the repair solution is 10 µm or less in length and 1 µm or less in diameter,
The repair solution of CNT antistatic treatment stage, characterized in that the viscosity of the repair solution is 1cp to 2cp or less.
제1항에 있어서,
상기 리페어 용액을 코팅하여 이루어진 리페어 코팅막의 면저항은 105 ~ 1010 Ω/□인 것을 특징으로 하는 CNT대전 방지 처리된 작업 스테이지의 수선 방법.
The method of claim 1,
The sheet resistance of the repair coating film formed by coating the repair solution is 10 5 ~ 10 10 Ω / □ Repair method of the CNT anti-static treatment stage, characterized in that.
제1항에 있어서,
상기 예열 단계는, 상기 특정 부위를 80℃ 내지 100℃로 예열하고,
상기 열경화 단계는, 상기 특정 부위를 120℃ 내지 200℃의 온도에서 30분간 유지함으로써 이루어지는 것을 특징으로 하는CNT대전 방지 처리된 작업 스테이지의 수선 방법.
The method of claim 1,
The preheating step, preheating the specific site at 80 ℃ to 100 ℃,
The thermosetting step, characterized in that for maintaining the specific site for 30 minutes at a temperature of 120 ℃ to 200 ℃ CNT anti-static treatment process repair method.
제1항 내지 제6항 중 어느 하나의 항에 있어서,
상기 열경화 단계 이후에,
아세톤, 톨루엔, 에탄올, 디메틸포름아미드(N-N-Dimethyl Formamide, DMF), 이소프로필알콜 (Isopropyl Alcohol, IPA), 메틸에틸케톤(Methyl Ethyl Ketone, MEK)로 이루어진 군 중에서 선택된 적어도 어느 하나를, 상기 특정 부위에 뿌린 후에 문질러서 오염물질을 제거하는 단계를 더 포함하는 것을 특징으로 하는 CNT대전 방지 처리된 작업 스테이지의 수선 방법.
7. The method according to any one of claims 1 to 6,
After the thermosetting step,
At least one selected from the group consisting of acetone, toluene, ethanol, dimethylformamide (NN-Dimethyl Formamide, DMF), isopropyl alcohol (IPA) and methyl ethyl ketone (MEK), the specific The method for repairing a CNT antistatic treatment stage, further comprising the step of removing contaminants by sprinkling after spraying on the site.
제7항에 있어서,
상기 리페어 용액은 수용성 분산제를 포함하고,
상기 오염물질 제거 단계는, 상기 아세톤을 뿌린 후에 2kg/cm2 내지 7kg/cm2의 압력으로 수회 문질러서 이루어지는 것을 특징으로 하는 CNT대전 방지 처리된 작업 스테이지의 수선 방법.
The method of claim 7, wherein
The repair solution comprises a water-soluble dispersant,
The pollutant removal step, 2kg / cm 2 after spraying the acetone To At a pressure of 7kg / cm 2 A method for repairing a CNT antistatic treatment stage, comprising rubbing several times.
KR1020100031220A 2010-04-06 2010-04-06 Method for repairing working stage with CNT antistatic treatment KR101171316B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100031220A KR101171316B1 (en) 2010-04-06 2010-04-06 Method for repairing working stage with CNT antistatic treatment
PCT/KR2011/002397 WO2011126292A2 (en) 2010-04-06 2011-04-06 Method for repairing cnt-antistatic-processed working stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100031220A KR101171316B1 (en) 2010-04-06 2010-04-06 Method for repairing working stage with CNT antistatic treatment

Publications (2)

Publication Number Publication Date
KR20110111904A KR20110111904A (en) 2011-10-12
KR101171316B1 true KR101171316B1 (en) 2012-08-10

Family

ID=44763397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100031220A KR101171316B1 (en) 2010-04-06 2010-04-06 Method for repairing working stage with CNT antistatic treatment

Country Status (2)

Country Link
KR (1) KR101171316B1 (en)
WO (1) WO2011126292A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076827A (en) 2018-12-19 2020-06-30 (주)탑나노시스 Composition of repairing solution for working stage, method of repairing the working stage
KR20210035991A (en) 2019-09-25 2021-04-02 (주)탑나노시스 Method for repairing working stage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381864B1 (en) * 2012-06-11 2014-04-24 (주)탑나노시스 Cnt coating film and cnt soluttion forming the cnt coating film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083783A (en) 2001-09-10 2003-03-19 Advance Denki Kogyo Kk Flow monitor
KR100834479B1 (en) 2005-10-11 2008-06-05 미쓰비시덴키 가부시키가이샤 Method for manufacturing element substrate and supporting apparatus for the substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440500B1 (en) * 2001-12-07 2004-07-15 주식회사 코미코 Ceramic parts production and repair for semiconductor fabrication by plasma spray process
US7208325B2 (en) * 2005-01-18 2007-04-24 Applied Materials, Inc. Refreshing wafers having low-k dielectric materials
JP4294661B2 (en) * 2006-07-26 2009-07-15 国立大学法人東北大学 Substrate stage, heat treatment apparatus, and substrate stage manufacturing method
US9202736B2 (en) * 2007-07-31 2015-12-01 Applied Materials, Inc. Method for refurbishing an electrostatic chuck with reduced plasma penetration and arcing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083783A (en) 2001-09-10 2003-03-19 Advance Denki Kogyo Kk Flow monitor
KR100834479B1 (en) 2005-10-11 2008-06-05 미쓰비시덴키 가부시키가이샤 Method for manufacturing element substrate and supporting apparatus for the substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076827A (en) 2018-12-19 2020-06-30 (주)탑나노시스 Composition of repairing solution for working stage, method of repairing the working stage
KR102231786B1 (en) * 2018-12-19 2021-03-25 (주)탑나노시스 Composition of repairing solution for working stage, method of repairing the working stage
KR20210035991A (en) 2019-09-25 2021-04-02 (주)탑나노시스 Method for repairing working stage

Also Published As

Publication number Publication date
WO2011126292A2 (en) 2011-10-13
WO2011126292A3 (en) 2012-03-08
KR20110111904A (en) 2011-10-12

Similar Documents

Publication Publication Date Title
KR101044554B1 (en) Working stage with antistatic treatment
US8062697B2 (en) Ink jet application for carbon nanotubes
CN101501823B (en) Cleaning member, delivery member with cleaning function, and method of cleaning substrate processing apparatus
KR101381864B1 (en) Cnt coating film and cnt soluttion forming the cnt coating film
JP4937910B2 (en) Activation of carbon nanotubes for field emission applications
JP5431960B2 (en) Method for producing carbon nanotube-containing conductor
WO2016015658A1 (en) Carbon nanotube-macromolecule composite layered transparent flexible electrode and preparation method therefor
CN101427357B (en) Nanoparticle implantation
KR101171316B1 (en) Method for repairing working stage with CNT antistatic treatment
KR20140085563A (en) Selective etching of a matrix comprising silver nano wires
JP2007534588A (en) Temporary viscosity and stability modifier for carbon nanotube compositions
KR20070079279A (en) Basic solution washable antistatic composition and polymer products manufactured by using the same
JP2013527612A (en) Selective etching of carbon nanotube (CNT) polymer matrix onto plastic substructure
KR20200076827A (en) Composition of repairing solution for working stage, method of repairing the working stage
CN103171215A (en) Antistatic plate and work platform assembly including the antistatic plate
CN101500718A (en) Cleaning member, delivery member with cleaning function, and method of cleaning substrate processing apparatus
JP4877544B2 (en) Antistatic film for ceramic green sheet
JP2007516580A (en) Activation of carbon nanotube cathode bead blasting
CN111356252A (en) Electrothermal film, conductive silver paste and preparation method of electrothermal film
CN112885504B (en) Lunar dust protection conductive film with micro-nano structure and preparation method thereof
KR20170069780A (en) Method for making liquid for antistatic treatment, Liquid for antistatic treatment. Method for antistatic treatment, and Working stage with antistatic treatment
KR102261935B1 (en) Method for repairing working stage
KR101986168B1 (en) Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof
KR101131638B1 (en) Coating method of carbon nano material using ceramic matrix composites containg carbon nano materials
KR101171317B1 (en) Ceramic substrate with antistatic treatment and antistatic coating method on the ceramic substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160523

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 7