KR101170834B1 - Method of manufacturing concrete slurry transporting pipe for concrete pump-car - Google Patents

Method of manufacturing concrete slurry transporting pipe for concrete pump-car Download PDF

Info

Publication number
KR101170834B1
KR101170834B1 KR1020090109643A KR20090109643A KR101170834B1 KR 101170834 B1 KR101170834 B1 KR 101170834B1 KR 1020090109643 A KR1020090109643 A KR 1020090109643A KR 20090109643 A KR20090109643 A KR 20090109643A KR 101170834 B1 KR101170834 B1 KR 101170834B1
Authority
KR
South Korea
Prior art keywords
pipe
induction heating
concrete slurry
heat treatment
concrete
Prior art date
Application number
KR1020090109643A
Other languages
Korean (ko)
Other versions
KR20100056385A (en
Inventor
정진현
Original Assignee
정진현
주식회사 티엠시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정진현, 주식회사 티엠시 filed Critical 정진현
Priority to KR1020090109643A priority Critical patent/KR101170834B1/en
Publication of KR20100056385A publication Critical patent/KR20100056385A/en
Application granted granted Critical
Publication of KR101170834B1 publication Critical patent/KR101170834B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

본 발명은 콘크리트 펌프카에서 콘크리트 슬러리를 이송함에 따라 발생하는 자갈 및 모래와의 마찰과 그리고 부식에 강한 내마모특성을 갖도록 하며, 또한 내충격성도 우수한 콘크리트 펌프카용 콘크리트 슬러리 이송 파이프를 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a concrete slurry transport pipe for a concrete pump car having a high wear resistance against friction and gravel and sand generated by transporting the concrete slurry in the concrete pump car, and also excellent in impact resistance. .

본 발명에 따른 콘크리트 펌프카용 콘크리트 슬러리 이송 파이프 제조 방법은 (a) 탄소강으로 이루어진 강재 파이프의 외측 또는 내측의 일정 영역에 유도가열 장치를 설치하고, 파이프 내측 또는 외측 중 하나 이상의 대응 영역에 수냉각장치를 설치하는 단계; (b) 상기 파이프의 외측 또는 내측 일부에서 상기 유도가열 장치를 이용하여 상기 파이프를 유도 가열하는 단계; 및 (c) 상기 파이프의 내,외측에서 대응 영역에 설치된 수냉각장치를 이용하여 상기 파이프의 가열된 부분을 냉각시켜 경화부를 형성하는 단계;를 포함하고, 상기 (b) 단계의 유도 가열은 상기 파이프를 회전시킴과 동시에 길이방향으로 이동시키면서 진행되어, 상기 (c) 단계 결과 상기 경화부와 상기 경화부에 인접한 비경화부가 상기 파이프 길이를 따라서 연속되는 나선형 띠의 형태로 형성되는 것을 특징으로 한다. In the method of manufacturing a concrete slurry transport pipe for a concrete pump car according to the present invention, (a) an induction heating device is installed in a predetermined area outside or inside of a steel pipe made of carbon steel, and a water cooling device is installed in at least one corresponding area of the inside or outside of the pipe. Installing it; (b) induction heating the pipe using the induction heating device at an outer or inner portion of the pipe; And (c) cooling the heated portion of the pipe to form a hardened portion by using a water cooling device installed in a corresponding region at the inside and the outside of the pipe, wherein the induction heating of the step (b) is While rotating the pipe and moving in the longitudinal direction, the step (c) is characterized in that the hardened portion and the non-hardened portion adjacent to the hardened portion are formed in the form of a continuous spiral band along the pipe length. .

Description

콘크리트 펌프카용 콘크리트 슬러리 이송 파이프 제조방법 {Method of manufacturing concrete slurry transporting pipe for concrete pump-car}Method for manufacturing concrete slurry transport pipe for concrete pump car {Method of manufacturing concrete slurry transporting pipe for concrete pump-car}

본 발명은 콘크리트 펌프카용 콘크리트 슬러리 이송 파이프 제조 방법에 관한 것으로, 보다 상세하게는, 콘크리트 슬러리가 이송되면서 극심한 마모가 일어나는 파이프의 내주면의 내마모 특성을 향상시키도록 열처리부와 비열처리부가 나선형 띠 형태로 연속되는 형태의 이송 파이프를 제조하는 방법에 관한 것이다. The present invention relates to a method for manufacturing a concrete slurry transfer pipe for a concrete pump car, and more particularly, a heat treatment portion and a non-heat treatment portion are formed in a spiral band shape to improve abrasion resistance characteristics of an inner circumferential surface of a pipe in which extreme wear occurs while the concrete slurry is transferred. The present invention relates to a method of manufacturing a conveying pipe of a continuous form.

일반적으로, 콘크리트 펌프카(펌프 트럭)은 건설 현장에서 레미콘 차량으로부터 레미콘 형태로 공급되는 콘크리트 슬러리(또는 시멘트 모르타르 슬러리, 이하 ‘콘크리트 슬러리’로 총칭함)를 호퍼로 받아서 유압 실린더로 가압하면서 펌핑하여 건축 중인 고층 건물과 같은 높은 위치로 콘크리트 슬러리를 강제 이송하는 장비이다. In general, a concrete pump car (pump truck) is a concrete slurry (or cement mortar slurry, collectively referred to as 'concrete slurry') supplied from a ready-mixed vehicle at a construction site as a hopper and pumped while being pressurized by a hydraulic cylinder. It is the equipment to force the concrete slurry to high position like high-rise building under construction.

이러한 콘크리트 펌프카는 콘크리트 슬러리를 압력을 인가하여 밀어주는 실린더부와, 그리고 가압된 슬러리 상태의 콘크리트를 타설 위치로 이송하는 경로를 제공하는 이송 파이프(이송관)으로 구성된다. This concrete pump car is composed of a cylinder portion for applying pressure to push the concrete slurry, and a transfer pipe (transport pipe) that provides a path for transferring the concrete in the pressurized slurry state to the pouring position.

이들 부품들은 모래와 자갈 등과 같은 고경도 재질이 혼합된 콘크리트 슬러리를 이송함으로써 콘크리트 슬러리와 접촉하는 표면에서는 일정 수준의 마모가 계속적으로 진행되며, 또한 고압으로 이송되는 콘크리트 슬러리의 압력(약 140 bar)을 받으며, 경우에 따라 외부에서 충격력이 작용하기도 작용한다. These parts transport concrete slurry mixed with hard materials such as sand and gravel, and thus, a certain level of wear continues on the surface in contact with the concrete slurry, and the pressure of the concrete slurry transferred at high pressure (about 140 bar) In some cases, the impact force acts from the outside.

이와 같은 이송 파이프는 마모가 계속 진행되면서 내부적으로 고압 상태로 이송되는 콘크리트 슬러리에 의한 상당 수준의 압력을 받는 상태에서 외부의 충격을 받게 되면 갑자기 파손되는 경우가 발생할 수 있는데, 이러한 파손 사고는 인명 사고로도 귀결될 수 있다 따라서, 상기와 같은 이송 파이프의 파손을 방지할 수 있도록, 이송 파이프에 내마모성과 내충격성을 제공하는 것이 중요하다.Such a transfer pipe may suddenly break when it is subjected to external shock while being subjected to a considerable level of pressure by a concrete slurry that is internally transported at a high pressure as the wear continues, and such a breakdown accident may result in human injury. Therefore, it is important to provide wear and impact resistance to the conveying pipe so as to prevent such breakage of the conveying pipe.

이러한 콘크리트 슬러리 이송 파이프로서 종래부터 사용되어 오던 이송 파이프는 연성이 높고 열처리되지 않은 저탄소 강관을 사용하였다.The transfer pipes that have been conventionally used as such concrete slurry transfer pipes use low carbon steel pipes having high ductility and not being heat treated.

하지만, 연성이 높고 열처리되지 않은 저탄소 강관을 이용한 이송 파이프는심한 충격력을 받을 뿐만 아니라 염기성의 시멘트와 고경도의 모래, 자갈, 쇄석 등이 물과 섞여 있는 콘크리트 슬러리 혼합물이 고압 고속으로 내측으로 통과됨에 따라 강재 파이프의 내측면과 부딪히면서 강재 파이프를 손상시키게 된다.However, transfer pipes using ductile, unannealed low-carbon steel pipes are not only severely impacted, but also the concrete slurry mixture, which contains basic cement and hard sand, gravel and crushed water, is passed inside at high pressure and high speed. As a result, the steel pipes may be damaged by colliding with the inner surface of the steel pipes.

이러한 손상의 형태로는 통상 모래 및 자갈과 파이프 내측면 사이의 마찰에 의한 내측면의 긁힘 또는 마모 손상(abrasive wear)과, 모래와 자갈이 파이프에 부딪침에 따라 발생하는 충격 손상(impact wear)과, 그리고 물, 염기성 시멘트에 의한 부식 손상(corrosion wear)이 혼합되어 나타나게 된다.This type of damage usually includes scratching or abrasive wear of the inner surface by friction between sand and gravel and the inner surface of the pipe, and impact wear caused by sand and gravel striking the pipe. Corrosion wear caused by water and basic cements may be mixed.

이러한 상황에서 앞서 설명한 저탄소강 파이프의 경우에는 열처리가 되지 않은 상태로 경도가 HV 150~250 수준으로 매우 낮아서, 콘크리트 슬러리 내의 고경도의 모래 등에 의하여 연삭 마모(abrasive wear)가 발생되는데, 이러한 연삭 마모에 저항할 수 있는 내마모성을 향상시키는 있는 별도의 방안이 강구되어 있지 않아서 일정 사용 기간이 경과하면 마모 한계치에 도달한다.In such a situation, the low-carbon steel pipe described above has very low hardness, such as HV 150 to 250, without heat treatment. Thus, abrasive wear occurs due to high hardness sand in the concrete slurry. No other measures have been taken to improve the wear resistance that can withstand this condition.

또한 고압으로 이송되는 콘크리트 슬러리 내의 자갈 등에 의하여 충격 마모(impact wear)가 이송관의 내측에서 발생되어 연삭 마모와 더불어서 이송 파이프의의 수명을 감소시킴으로써 사용 기간 경과에 따라 파이프 또는 파이프 부품을 자주 교환하여야 하는 단점이 있는데, 이와 같은 파이프나 부품의 잦은 교환에 따른 비용 부담과 함께 교환 작업을 위하여 추가로 소요되는 작업 시간의 부담이 큰 문제점이 되었다.In addition, the impact wear is generated inside the transfer pipe due to the gravel in the concrete slurry transferred at high pressure, which reduces the service life of the transfer pipe along with the grinding wear. There is a disadvantage, such as the burden of the cost of the frequent replacement of such pipes or parts, the burden of additional time required for the replacement work has become a big problem.

이에 대한 또 다른 해결 방안으로 제시된 대한민국 등록실용신안공보 제 20-332518호 및 대한민국 공개특허 공보 제 10-2005-0074677호에 따르면, 열처리된 파이프가 내마모성을 제공하는 내측관을 형성하고, 그리고 충격에 견디는 내충격성을 가지도록 열처리가 되지 않은 파이프가 외측관을 이루는 이중 이송관에 관한 기술이 제안되었다.According to the Republic of Korea Utility Model Publication No. 20-332518 and the Republic of Korea Patent Publication No. 10-2005-0074677 proposed as another solution to this problem, the heat-treated pipe forms an inner tube that provides abrasion resistance, and In order to withstand impact resistance, a technique has been proposed for a double feed pipe in which an outer pipe is not heat treated to form an outer pipe.

그러나, 이러한 이중 이송관은 2개의 파이프를 밀착하기 위하여 열처리 접합(등록실용신안공보 제 20-332518호 참조) 또는 기계적인 압입방법(공개특허 공보 제10-2005-0074677호)에 의하여 제작되고 있으나, 내측 강관을 별도로 제작하여 열처리한 후에 외측 강관에 조립되는 방법을 통하여 제작되고 있기에, 내측 강관의 경우에 열처리 변형에 의한 치수 관리가 어렵고, 나아가 큰 치수 오차가 발생하는 경우에는 내측 파이프와 외측 파이프를 조립하기 어려운 문제점이 있다. However, such a double feed pipe is manufactured by heat treatment bonding (see Korean Utility Model Publication No. 20-332518) or a mechanical indentation method (Patent Publication No. 10-2005-0074677) to closely adhere the two pipes. Since the inner steel pipe is manufactured separately and heat-treated and then assembled to the outer steel pipe, the inner steel pipe is difficult to manage by dimensional deformation due to heat treatment deformation, and furthermore, when a large dimensional error occurs, the inner pipe and the outer pipe There is a problem that is difficult to assemble.

특히, 내측 강관의 길이가 길어서 내측 강관의 열처리시 열처리에 따른 변형이 발생되어 외측 강관에 압입 조립할 때 두 강관의 압입 공차를 설정하기 곤란한 문제점이 발생하는데, 즉 내측 강관과 외측 강관이 조립된 상태에서 이탈이 발생하지 않아야 하기에 (압입 후의 이탈력이 임계값 이상을 유지해야 하기에) 적정 수준이상의 압입 공차를 둘 수는 없음을 고려할 때, 결국 내측 강관을 외측 강관의 내부에 강제 압입할 때 큰 압입 하중이 소요되는 경우가 빈발하며, 따라서 압입 장비의 대형화가 필수적이어서 경제성의 한계점을 나타내고 있다.In particular, since the length of the inner steel pipe is long, deformation occurs due to heat treatment during the heat treatment of the inner steel pipe, so that it is difficult to set the indentation tolerance of the two steel pipes when press-fitting the outer steel pipe, that is, the inner steel pipe and the outer steel pipe are assembled. Considering that there should not be a deviation from the proper level (because the release force after the indentation should be kept above the threshold value) because no deviation should occur at, it is necessary to force the inner steel pipe into the inside of the outer steel pipe. Large indentation loads are frequently required, and therefore, the increase in size of the indentation equipment is essential, thereby indicating an economic limitation.

한편, 내측 강관과 외측 강관을 열처리에 의하여 접합시키는 기술에서는 고가의 열처리 장비가 필요하고, 파이프의 길이가 긴 경우 열처리에 의하여 파이프의 모든 면이 균일하게 접합시킬 수 없는 문제점이 있다.On the other hand, in the technology of joining the inner steel pipe and the outer steel pipe by heat treatment, expensive heat treatment equipment is required, and if the length of the pipe is long, there is a problem that all surfaces of the pipe cannot be uniformly joined by heat treatment.

또한, 이러한 이중 이송관의 경우에는 단일 이송관에 비하여 중량이 증가하여서 이를 지탱하는 붐에 과다한 하중이 미치는 문제점도 가지고 있다.In addition, in the case of such a double feed pipe has a problem that the weight is increased compared to a single feed pipe, the excessive load on the boom supporting it.

본 발명의 목적은 종래의 이중관으로 제조하는 방법과 달리 전체 파이프의 중량이 증가하지 않으면서도, 콘크리트 펌프카에서 콘크리트 슬러리를 이송함에 따라 발생하는 자갈 및 모래와의 마찰과 그리고 부식에 강한 내마모 특성을 갖도록 하며, 또한 내충격성도 우수한 콘크리트 펌프카용 콘크리트 슬러리 이송 파이프를 제조하는 방법을 제공하는 것이다.It is an object of the present invention, unlike the conventional double pipe manufacturing method, without increasing the weight of the entire pipe, the friction between the gravel and sand generated by the transfer of the concrete slurry in the concrete pump car and wear resistance characteristics that are resistant to corrosion It is to provide a method for producing a concrete slurry transport pipe for a concrete pump car having a high impact resistance.

보다 구체적으로, 본 발명은 고압의 콘크리트 슬러리가 파이프의 내측을 통과할 때, 내마모성을 제공하는 역할을 담당하는 열처리부와, 그리고 내외부에서 발생되는 충격을 흡수하는 내충격성을 제공하도록 열처리가 되지 않는 비열처리부를 모두 포함하도록 함으로써, 연삭 마모에 강한 내마모성을 제공할 뿐만 아니라 내충격성도 우수하여 사용 수명을 충분히 연장할 수 있도록 하며, 내관과 외관을 조립하여 열처리하는 공정이나 별도의 압입 공정을 거치지 않아도 완성된 제품을 제공할 수 있게 되어서 작업성을 향상시키며 결과적으로 제작 단계에서 불량품이 발생할 가능성을 획기적으로 줄일 수 있도록 하는 콘크리트 슬러리 이송 파이프 제조 방법을 제공하는 것을 그 목적으로 한다. More specifically, the present invention is a heat treatment that serves to provide abrasion resistance when the high-pressure concrete slurry passes through the inside of the pipe, and the heat treatment is not heat-treated to provide impact resistance to absorb the shock generated from inside and outside By including all the non-heat treatment parts, not only provide abrasion resistance against grinding wear, but also excellent impact resistance to extend the service life sufficiently, complete the process without assembling the inner tube and the exterior and heat treatment or separate indentation process It is an object of the present invention to provide a method for producing a concrete slurry conveying pipe, which enables to provide a finished product, which improves workability and, consequently, greatly reduces the possibility of defective products in the manufacturing stage.

이와 같은 본 발명의 기술적 과제는, (a) 열처리가 가능한 탄소량 0.30 ~ 2.5 wt%의 탄소강으로 이루어진 강재 파이프의 외측 또는 내측의 일정 영역에 유도 가열 장치를 설치하고, 파이프 내측 또는 외측 중 하나 이상의 대응 영역에 수냉각장치를 설치하는 단계; (b) 상기 파이프의 외측 또는 내측 일부에서 상기 유도가열 장치를 이용하여 상기 파이프를 유도 가열하는 단계; 및 (c) 상기 파이프의 내,외측에서 대응 영역에 설치된 수냉각장치를 이용하여 상기 파이프의 가열된 부분을 냉각시켜 경화부를 형성하는 단계;를 포함하고, 상기 (b) 단계의 유도 가열은 상기 파이프를 회전시킴과 동시에 길이방향으로 이동시키면서 진행되어, 상기 (c) 단계 결과 상기 경화부와 상기 경화부에 인접한 비경화부가 상기 파이프 길이를 따라서 연속되는 나선형 띠의 형태로 형성되는 것을 특징으로 하는 콘크리트 슬러리 이송 파이프 제조 방법을 제공함으로써 달성될 수 있다.The technical problem of the present invention is that (a) an induction heating apparatus is installed in a predetermined region on the outside or inside of the steel pipe made of carbon steel of 0.30 to 2.5 wt% of carbon which can be heat treated, and at least one of the inside or the outside of the pipe. Installing a water cooling device in a corresponding region; (b) induction heating the pipe using the induction heating device at an outer or inner portion of the pipe; And (c) cooling the heated portion of the pipe to form a hardened portion by using a water cooling device installed in a corresponding region at the inside and the outside of the pipe, wherein the induction heating of the step (b) is While rotating the pipe and moving in the longitudinal direction, as a result of the step (c), the hardened portion and the non-hardened portion adjacent to the hardened portion are formed in the form of a continuous spiral band along the pipe length. By providing a method for producing a concrete slurry conveying pipe.

본 발명에 따르면 고압 고속으로 이송되는 콘크리트 슬러리를 이송하기 위한 이송관으로서 단일관을 사용할 수 있어서 전체 파이프의 중량이 증가하지 않으면서도, 콘크리트 슬러리의 이송에 따라 발생하는 자갈 및 모래와의 마찰과 그리고 부식에 강한 내마모특성을 갖도록 하며, 또한 내충격성도 우수한 콘크리트 펌프카용 이송관 및 그 제조 방법을 제공하게 된다.According to the present invention, it is possible to use a single pipe as a transport pipe for transporting the concrete slurry transported at high pressure and high speed, so that the friction with the gravel and sand generated by the transport of the concrete slurry without increasing the weight of the entire pipe, and The present invention provides a transfer pipe for a concrete pump car and a method of manufacturing the same, which have corrosion resistance and corrosion resistance.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명이 적용될 수 있는 콘크리트 슬러리 이송 파이프로는 다양한 종류가 있을 수 있는데, 형상에 따라 그 종류가 곡선일 경우에는 이송 엘보우(delivery elbow), 직선일 경우 이송 파이프(delivery pipe)로 구분되고, 그리고 그 작용에 따라 스윙 파이프, 리듀싱 파이프로 나뉘게 되는데, 일반적으로 중탄소강 강재의 원형 단면 파이프로 형성하게 된다.Concrete slurry conveying pipe to which the present invention can be applied may be various types, depending on the shape is divided into a delivery elbow (delivery elbow), a straight pipe (delivery pipe) if the type is curved, and According to its action, it is divided into swing pipe and reducing pipe, which is generally formed as a circular cross-section pipe of medium carbon steel.

한편, 본 발명이 적용되는 콘크리트 슬러리 이송관을 형성하는 강재 파이프 소재에 함유되는 탄소량은 파이프를 제조하는 방식에 따라 달라진다. 판재를 원형으로 성형하여 용접하는 방식의 제조 방법에 따르는 경우에는 용접을 위하여 탄소량이 0.45wt% 이하의 범위가 되고, 환봉을 인발 또는 압출하여 파이프를 제조하는 방식의 경우에는 인발압출을 위한 환봉 소재강도와 연성문제로 탄소량이 0.8wt% 이하로 제한을 받으며, 그리고 철강의 용융상태에서 원심주조 또는 연속주조로 제조하는 방식의 경우에는 주물의 영역인 2.5wt% 이하까지의 탄소량을 가지게 되는 바, 본 발명이 적용되는 파이프 소재의 탄소량의 최대 함량 범위는 2.5wt%가 된다. On the other hand, the amount of carbon contained in the steel pipe material forming the concrete slurry conveying pipe to which the present invention is applied depends on the method of manufacturing the pipe. According to the manufacturing method of the method of forming a plate by welding in a circular shape, the carbon content is in the range of 0.45 wt% or less for welding, and in the case of manufacturing a pipe by drawing or extruding the round bar, the round bar material for drawing extrusion Carbon content is limited to 0.8wt% or less due to strength and ductility, and in the case of manufacturing by centrifugal casting or continuous casting in the molten state of steel, it has carbon amount of 2.5wt% or less. , The maximum content range of the carbon amount of the pipe material to which the present invention is applied is 2.5wt%.

다만, 후술되는 본 발명의 바람직한 일 실시예에 따라 유도 전류를 이용하여 유도 가열에 의한 가열에 의한 열처리 경화가 되어 경도가 Hv 450이상을 만족하기 위해서는 탄소량이 0.30wt% 이상인 탄소강 소재를 사용하는 것이 바람직한데, 이는 탄소량이 0.30wt% 미만이 되면 국부적인 열처리시에 경화가 잘 되지 않아서 충분한 내마모성을 확보할 수 없게 되기 때문이다.However, in order to be heat treated and cured by heating by induction heating using an induction current according to a preferred embodiment of the present invention described below, in order to satisfy the hardness of Hv 450 or more, a carbon steel material having a carbon content of 0.30 wt% or more is used. This is preferable because when the amount of carbon is less than 0.30 wt%, it is hardly hardened at the time of local heat treatment, and thus sufficient abrasion resistance cannot be obtained.

도 1은 본 발명에 따라 제작된 영역 분할 열처리된 콘크리트 슬러리 이송 파이프의 경화 패턴의 일 실시예를 도시한 도면이고, 도 2는 본 발명에 따라 제조된 영역 분할 열처리된 콘크리트 슬러리 이송 파이프의 경화 패턴을 또 다른 실시예를 나타내고 있다. 1 is a view showing an embodiment of the hardening pattern of the zoned segment heat treated concrete slurry transfer pipe manufactured according to the present invention, Figure 2 is a hardening pattern of the zoned segment heat treated concrete slurry transfer pipe manufactured according to the present invention Another embodiment is shown.

이때 상기 영역 분할 열처리된 파이프(10)는 도 1 내지 도 3에서와 같이 열처리되어 경화된 열처리부(a)와, 열처리가 되지 않은 비열처리부(b)가 파이프의 길이 방향으로 구간 반복되는 형상으로 배치되도록 형성됨으로써, 열처리부(a)는 내마모 특성을 발휘하고, 열처리가 되지 않은 비열처리부(b)는 파이프의 깨짐을 방지하는 충격흡수 역할을 수행하게 된다.In this case, the region 10 heat-treated pipe 10 has a shape in which the heat-treated portion (a) and the non-heat-treated portion (b), which are not heat-treated, are sectioned in the longitudinal direction of the pipe as shown in FIGS. 1 to 3. By being formed to be arranged, the heat treatment part (a) exhibits abrasion resistance characteristics, and the non-heat treatment part (b), which is not heat treated, serves to absorb a shock to prevent cracking of the pipe.

여기에서, 도 1에 도시된 본 발명에 따른 콘크리트 슬러리 이송용 파이프(10)의 경우에는 열처리부(a) 및 비열처리부(b)가 파이프 중심선(C.L.)에 직각되게 독립적인 원형 띠의 형태로 형성되는 구조인데, 이러한 도 1의 실시예는 도 6에 도시된 본 발명의 바람직한 장치 발명의 실시예에서 나타낸 바와 같이 파이프(10)의 외측(10a)에 유도 가열 장치의 유도코일(110)을 파이프(10)의 중심선(C.L.)에 대하여 수직되게 설치하고, 파이프(10)의 내측(10b)에는 상기 유도코일(110)에 대응하는 위치에 수냉각장치(120), 바람직하게는 분사노즐을 구비한 수분사 냉각장치를 설치한 후에, 상기 유도코일(110)에 유도전류를 흘러 보내서 파이프(10)를 유도 가열시키고 그리고는 상기 수냉각장치(120)에 냉각수(w)를 주입하여 파이프(10)의 내측(10b)으로 분사하여 냉각시킴으로써 담금질을 하는 열처리 과정을 수행한 결과로 얻어질 수 있다. Here, in the case of the concrete slurry transport pipe 10 according to the present invention shown in FIG. 1, the heat treatment part a and the non-heat treatment part b are in the form of an independent circular band perpendicular to the pipe center line CL. 1, the preferred apparatus of the present invention shown in FIG. 6 shows the induction coil 110 of the induction heating apparatus on the outer side 10a of the pipe 10 as shown in the preferred embodiment of the invention. It is installed perpendicular to the center line CL of the pipe 10, and the water cooling device 120, preferably the injection nozzle in the position corresponding to the induction coil 110 on the inner side (10b) of the pipe (10). After installing the water spray cooling device provided, the induction current flows to the induction coil 110 to induction heating the pipe 10, and then the cooling water (w) is injected into the water cooling device 120 to pipe ( Quenching by cooling to the inner side 10b of 10) It can be obtained as a result of performing a heat treatment process.

또한, 이와 같은 유도 가열 및 수냉각 단계는 회전수단(도시 생략)을 이용하여 파이프(10)를 회전시키면서 진행하는 경우에 보다 균일한 열처리 효과를 얻을 수 있으며, 일단의 열처리 공정을 통하여 하나의 열처리부(a) 형성이 완료되면 일정 구간 만큼 파이프(10)를 이동시켜서 다음의 열처리부(a)를 형성하게 되는데, 이 때 파이프(10)가 이동되는 이격 거리만큼 비열처리부(b)가 형성되게 된다.In addition, such an induction heating and water cooling step can obtain a more uniform heat treatment effect when proceeding while rotating the pipe 10 by using a rotating means (not shown), one heat treatment through a single heat treatment process When the formation of the part (a) is completed, the pipe 10 is moved by a predetermined period to form the next heat treatment part a. At this time, the non-heat treatment part b is formed by the separation distance at which the pipe 10 is moved. do.

한편, 앞서 설명된 도 6의 실시예와 반대로 도 7에 도시된 바와 같이, 파이프(10)의 내측(10b)에 유도코일(110)이 설치되고, 그리고 파이프(10)의 외측(10a)의 대응하는 위치에 수냉각장치(120)가 설치되도록 장치를 구성할 수도 있다.On the other hand, as shown in FIG. 7 as opposed to the embodiment of FIG. 6 described above, the induction coil 110 is installed on the inner side (10b) of the pipe 10, and the outer side (10a) of the pipe (10) The apparatus may be configured such that the water cooling apparatus 120 is installed at a corresponding position.

한편, 상기 열처리부(a)의 폭(L1, 예컨대 4mm)이 상기 비열처리부(b)의 폭(L2, 예컨대 2mm) 보다 크게 형성하는 것이 내마모성의 유지 측면에서 보다 바람직하다.On the other hand, it is more preferable to form the width L1 of the heat treatment part a, for example, 4 mm larger than the width L2 of the non-heat treatment part b, for example, 2 mm.

그리고, 도 2에 도시된 본 발명에 따른 콘크리트 슬러리 이송용 파이프의 실시예의 경우에는 각각의 열처리부(a) 및 비열처리부(b)가 파이프(10)의 중심선(C.L.)에 대하여 경사진 독립적인 원형 띠 형태로 형성된 구조로서, 이는 도 8에 도시된 바와 같이 파이프의 외측(10a, 내측의 경우는 도시 생략)에 설치되는 유도 가열 장치의 유도코일(110)이 파이프(10)의 중심선(C.L.)에 대하여 경사지게 설치된 상태인 점을 제외하고는, 앞서 도 1과 그리고 도 6 및 도 7을 예시하며 설명한 열처리 과정과 동일한 과정을 거쳐서 얻어질 수 있다.And, in the embodiment of the concrete slurry transport pipe according to the present invention shown in Figure 2, each of the heat treatment (a) and the non-heat treatment (b) is independent of the inclination with respect to the center line (CL) of the pipe 10 As shown in FIG. 8, the induction coil 110 of the induction heating apparatus installed at the outer side of the pipe (not shown in the case of the inner side) as shown in FIG. 8 has a center line CL of the pipe 10. Except that it is installed inclined with respect to the), it can be obtained through the same process as the heat treatment process described above with reference to Figures 1 and 6 and 7.

또한, 도 3에 도시된 본 발명에 따른 콘크리트 슬러리 이송용 파이프의 실시예의 경우에는 열처리부(a)가 파이프 길이 방향을 따라서 나선형 띠 형태로 형성된 구조로서 비열처리부(b) 역시 상기 열처리부(a)와 함께 나선형 띠 형태로 형성된다. 이러한 실시예는 도 6 및 도 7에 도시된 바와 같이 파이프의 외측(10a, 도 6 참조) 또는 내측(10b, 도 7 참조)에 설치되는 유도 가열 장치의 유도코일(110)이 파이프(10)의 중심선(C.L.)에 대하여 수직되게 설치된 상태에서, 파이프(10)의 저속 회전과 파이프(10)의 길이 방향의 이동을 동시에 계속적으로 진행시키면서, 상기 유도코일(110)에 유도전류를 흘러 보내서 파이프를 유도 가열시키고 그리고는 상기 수냉각장치(120)에 냉각수(w)를 주입하여 파이프의 내측(10b, 도 6 참조), 외측(10a, 도 7 참조), 또는 내,외측 동시(도시 생략)에 분사하여 냉각시킴으로써 담금질을 하는 열처리 과정을 계속적으로 수행한 결과로 연속적인 나선형의 띠 형태의 열처리부(a)가 얻어지게 된다.In addition, in the embodiment of the concrete slurry transport pipe according to the present invention shown in Figure 3, the heat treatment portion (a) is formed in a spiral band form along the pipe length direction, the non-heat treatment portion (b) also the heat treatment portion (a ) Is formed in the form of a spiral band. 6 and 7, the induction coil 110 of the induction heating apparatus installed on the outer side (10a, 6) or the inner side (10b, 7) of the pipe as shown in Figs. In a state vertically installed with respect to the center line CL of the pipe 10 while continuing the low-speed rotation of the pipe 10 and the longitudinal movement of the pipe 10 at the same time, the induction current flows to the induction coil 110 to pipe Induction heating and then injecting the cooling water (w) to the water cooling device 120 to the inner (10b, Figure 6), the outer (10a, Figure 7), or both inside and outside of the pipe (not shown) As a result of continuously performing the heat treatment process of quenching by spraying on and cooling, a continuous spiral band heat treatment unit a is obtained.

여기에서, 유도가열 방식으로 가열부(즉, 열처리부)와 비가열부(즉, 비열처리부)를 반복적으로 형성시키기 위해서는, 유도코일 및 전원장치의 성능에 따른 가열능력(즉, 단위면적당 전력밀도: W/㎠)과, 가열부 소재의 두께 등의 다양한 변수에 따라 파이프의 이동속도 및 회전속도를 조절함으로써 가열부와 비가열부의 폭이 결정되도록 할 수 있을 것이다. Here, in order to repeatedly form the heating part (ie, the heat treatment part) and the non-heating part (ie, the non-heat treatment part) by the induction heating method, the heating capacity according to the performance of the induction coil and the power supply (that is, the power density per unit area: W / cm 2) and the width of the heating part and the non-heating part may be determined by adjusting the moving speed and the rotating speed of the pipe according to various variables such as the thickness of the heating part material.

예컨대, 유도발생장치의 가열능력이 크면 동일한 폭의 가열부를 형성하기 위하여 파이프의 이동속도와 회전속도를 빠르게 설정하는 것이 가능하며, 이와 반대인 경우는 파이프의 이동속도와 회전속도를 느리게 설정하는 것이 바람직하다.For example, if the heating capacity of the induction generating device is large, it is possible to set the moving speed and the rotational speed of the pipe fast in order to form the heating part of the same width, and in the opposite case, the slow setting of the moving speed and the rotational speed of the pipe is slow. desirable.

또한, 도 9에 도시된 본 발명에 따라 영역 분할 열처리된 콘크리트 슬러리 이송용 파이프를 제작하기 위하여 사용되는 유도 가열 장치의 바람직한 다른 실시 예에서는 전원장치(도시 생략)에 병렬 연결된 2개 이상의 유도코일(110a, 110b)을 파이프의 외측(10a)에서 일정 거리(△) 이격 배치하여 사용하고 또한 파이프의 내측(10b)에는 이에 대응하는 위치에 수냉각장치(120)의 분사노즐을 각각 배치함으로써, 구간 반복되는 2개의 열처리부(a)와, 그 사이의 열처리가 되지 않은 비열처리부(b)를 파이프의 길이 방향으로 동시에 형성할 수 있다. In addition, in another preferred embodiment of the induction heating apparatus used to produce a pipe for transporting concrete slurry heat-divided according to the present invention shown in FIG. 9, at least two induction coils connected in parallel to a power supply (not shown) By using the 110a, 110b spaced apart from the outside (10a) of the pipe by a predetermined distance (△), and the injection nozzle of the water cooling device 120 in the corresponding position on the inside (10b) of the pipe, respectively, Two repeated heat treatment portions a and a non-heat treatment portion b not subjected to heat treatment therebetween can be simultaneously formed in the longitudinal direction of the pipe.

한편, 도 9의 도면에는 2개의 유도코일(110a, 110b)이 도시되어 있으나 3개 이상도 가능하며, 그리고 상기 유도코일(110a, 110b)이 도면에 도시된 바와 달리, 파이프의 내측(10b)에 설치될 수 있으며, 또한 상기 수냉각장치(120)의 분사노즐은 파이프의 내측(10b) 뿐만 아니라 외측(10a)을 포함하여 일측 이상에 설치될 수 있음은 당업자라면 당연히 이해할 수 있을 것이다.Meanwhile, although two induction coils 110a and 110b are illustrated in the drawing of FIG. 9, three or more induction coils 110a and 110b are possible, and the induction coils 110a and 110b are shown in the drawing. It will be appreciated by those skilled in the art that the injection nozzle of the water cooling apparatus 120 may be installed at one or more sides including the outer side 10a as well as the inner side 10b of the pipe.

한편, 도 4 및 도 5에 도시된 바와 같은 독립적인 원형 또는 타원형의 열처리부(a)와 그 주변의 비열처리부(b)를 형성하기 위해서는 파이프의 원주 또는 직경 보다 작은 규모의 유도코일을 병렬 연결하여 파이프의 일정 영역을 가열하도록 배치하는 것으로 달성될 수 있을 것이다.On the other hand, in order to form an independent circular or elliptical heat treatment portion (a) and the non-heat treatment portion (b) around it as shown in Figures 4 and 5 connected induction coil of smaller than the circumference or diameter of the pipe in parallel By arranging to heat certain areas of the pipe.

앞서 설명된 콘크리트 슬러리 이송 파이프 중에서 도 1과 도 2에 도시된 바와 같이 독립적인 띠 형상의 열처리부를 포함한 콘크리트 슬러리 이송 파이프 및 도 4와 도 5에 도시된 바와 같이 독립적인 원형 또는 타원형의 열처리부를 포함한 콘크리트 슬러리 이송 파이프를 제조하기 위한 방법의 실시예로서, 첨부 도면 도 10에 도시된 일 실시예에 따르면, 파이프 준비 단계(S100)를 거친 후에, 열처리가 가능한 탄소량 0.30 ~ 2.5 wt%의 탄소강으로 이루어진 강재 파이프를 파이프 길이 에 따라서 부분적으로 영역을 분할하여 열처리하도록, 파이프 외측 또는 내측의 일정 영역에서 파이프를 유도 가열하고 그리고 가열부를 냉각하여 경화시키기 위하여, 파이프 외측 또는 내측의 일정 영역에 유도가열 장치를 설치하고 파이프 내측 및 외측 중 하나 이상의 대응 영역에 수냉각장치를 설치하는 장치 설치 단계(S200); 상기 유도가열 장치의 유도코일에 유도전류를 흘러 보내는 유도 가열 단계(S300); 및 파이프의 내/외측의 대응 영역에 설치된 상기 수냉각장치로 파이프의 가열된 부분을 냉각시키는 수냉각 단계(S400)를 진행하게 된다. Among the above-described concrete slurry conveying pipes, including concrete slurry conveying pipes including independent strip-shaped heat treating parts as shown in FIGS. 1 and 2 and independent circular or elliptical heat treating parts as shown in FIGS. 4 and 5. As an embodiment of the method for producing a concrete slurry conveying pipe, according to one embodiment shown in Figure 10, after the pipe preparation step (S100), the carbon steel of 0.30 ~ 2.5 wt% carbon that can be heat-treated after Induction heating apparatus in a certain area outside or inside the pipe for induction heating of the pipe in a certain area outside or inside the pipe and cooling and hardening the heating portion to partially heat-treat the formed steel pipe according to the pipe length. Install and install one or more corresponding ones of the inner and outer pipe Device installation step of installing a water cooling device in the station (S200); An induction heating step of sending an induction current to the induction coil of the induction heating apparatus (S300); And a water cooling step (S400) of cooling the heated portion of the pipe with the water cooling device installed in a corresponding area inside / outside the pipe.

그리고, 전구간 열처리가 완료될 때까지, 파이프를 이동시켜 다음 열처리부 영역에 유도코일과 수냉각장치가 위치되도록 하는 파이프 이동 단계(S500)를 거친 후에, 상기 유도 가열 단계(S300)와 상기 수냉각 단계(S400)를 반복적으로 수행하게 된다.Then, the pipe is moved through the pipe moving step (S500) to move the pipe until the entire heat treatment is completed, so that the induction coil and the water cooling device are located in the next heat treatment area, the induction heating step (S300) and the water cooling. Step S400 is repeatedly performed.

또한, 앞서 설명된 콘크리트 슬러리 이송 파이프 중에서 도 3에 도시된 바와 같이 나선형 띠 형상의 열처리부를 포함한 콘크리트 슬러리 이송 파이프를 제조하기 위한 방법의 실시예로서 첨부 도면 도 11에 도시된 일 실시예에 따르면, 파이프 준비 단계(S100)와 장치 설치 단계(S200)를 거친 후에, 파이프를 회전시키고 동시에 길이방향으로 이동시키면서, 유도가열 장치의 유도코일에 유도전류를 흘러보내는 유도가열 단계(S300a); 및 파이프의 내/외측에서 대응 영역에 설치된 수냉각장치로 파이프의 가열된 부분을 냉각시키는 수냉각 단계(S400a)를 수행하게 된다.In addition, according to the embodiment shown in Figure 11 of the accompanying drawings as an embodiment of a method for manufacturing a concrete slurry transport pipe including a spiral band heat treatment as shown in Figure 3 of the above-described concrete slurry transport pipe, After the pipe preparation step (S100) and the device installation step (S200), while rotating the pipe and at the same time moving in the longitudinal direction, induction heating step (S300a) for flowing an induction current to the induction coil of the induction heating apparatus; And a water cooling step (S400a) of cooling the heated portion of the pipe with a water cooling device installed in a corresponding region at the inside / outside of the pipe.

첨부 도면 도 12는 본 발명의 바람직한 일 실시예에 따라 영역을 분할하여 열처리된 콘크리트 슬러리 이송용 파이프의 표면 경도를 파이프의 길이에 따라 나 타낸 도면으로서, 열처리부의 경도는 HV600이상으로 고경도의 경화층을 이루고 있어서 파이프 내측에서 콘크리트 슬러리가 이동시 내마모성을 향상시키며, 비열처리부의 경도는 모재(파이프 원재료)의 경도 보다 약간 상승한 HV250이상을 유지하고 있어서 내측에서 발생되는 고압(140bar)에서 견디고 그리고 외부의 충격을 흡수하는 역할을 담당하여 충격에 의한 파손을 방지할 수 있는 구조를 가진다.12 is a view showing the surface hardness of the concrete slurry conveying pipe heat-treated by dividing the region according to the preferred embodiment of the present invention according to the length of the pipe, the hardness of the heat treatment portion is higher than HV600 hardening It is layered to improve the wear resistance when concrete slurry moves inside the pipe, and the hardness of the non-heat treatment part maintains more than HV250 which is slightly higher than the hardness of the base material (pipe raw material), so it withstands high pressure (140 bar) generated inside and outside. It plays a role of absorbing shock and has a structure that can prevent breakage by impact.

첨부 도면 도 13은 본 발명의 바람직한 일 실시예에 따라 영역을 분할하여 열처리된 구간의 파이프 단면의 경도 프로파일로서, 도 13에서 확인되는 바와 같이 열처리된 구간에서는 파이프 내측에서 외측으로 파이프 전 두께에 걸쳐서 경화가 진행되었으며, 이러한 경화는 도 6 및 도 8에 도시된 바와 같이 파이프의 일정 구간에서의 외측에서 유도코일을 설치하여 유도가열을 실시하고 그리고 그에 대응하는 파이프 내측 구간에서 수냉각(수분사 냉각)을 실시함으로써 가열된 구간이 내측으로부터 담금질되면서 경화된 결과이다. 13 is a hardness profile of a pipe cross section of a section heat-treated by dividing an area according to a preferred embodiment of the present invention. As shown in FIG. 6, 8, and 8, the induction heating is installed by installing an induction coil on the outside in a certain section of the pipe and the water cooling (water spray cooling) in the corresponding section of the pipe. Is a result of hardening while the heated section is quenched from the inside.

여기에서, 유도코일이 설치된 파이프의 외측으로부터 파이프의 내측까지 이르는 충분한 유도가열이 진행되어야 충분한 경화 깊이(파이프 외측에서 내측으로의 거리)를 얻을 수 있는데, 이를 위하여 대상이 되는 파이프의 두께에 따라서 유도가열 전력의 적정한 주파수를 선택하는 것이 바람직한데, 일반적으로 코일에 고주파 전류를 인가하면 도체(파이프)의 표면에 전류(가열전류)가 집중되는 표피효과가 발생하게 되는데, 유도전류의 주파수가 높을수록 이러한 표피효과가 증가하는 경향(침투 깊이의 감소 경향)이 있으며 침투 깊이와 주파수의 관계는 다음의 식 1과 같다.In this case, sufficient induction heating from the outside of the pipe where the induction coil is installed to the inside of the pipe should be performed to obtain a sufficient curing depth (distance from the outside of the pipe to the inside). It is desirable to select an appropriate frequency of heating power. In general, applying a high frequency current to the coil produces a skin effect in which current (heating current) is concentrated on the surface of the conductor (pipe). This skin effect tends to increase (the penetration depth decreases) and the relationship between penetration depth and frequency is shown in Equation 1 below.

δ = k (ρ/(μ?f))0.5 , δ = k (ρ / (μ? f)) 0.5 ,

여기에서 δ: 침투깊이(m), Where δ: penetration depth (m),

ρ: 도체(파이프)의 고유저항,ρ is the resistivity of the conductor (pipe),

μ: 도체(파이프)의 비유전율μ: dielectric constant of the conductor (pipe)

*f: 유도전류의 주파수f: frequency of induced current

예컨대, 본 발명이 적용되는 파이프의 두께가 3mm이하인 경우는 50kHz ~ 500kHz 영역의 높은 주파수 영역의 유도전류를 이용에서 유도가열하여 파이프의 외측에서부터 얕은 깊이에서 충분한 가열이 이루어지도록 하는 것이 바람직하며, 그리고 파이프의 두께가 3mm~5mm이상인 경우는 10kHz ~ 50kHz의 영역의 중간 주파수,그리고 5mm이상인 경우는 100hz ~ 10kHz 영역의 낮은 주파수 영역의 유도전류를 이용에서 유도가열하여 파이프의 외측에서부터 보다 깊은 깊이에서 충분한 가열이 이루어지도록 하는 것이 바람직하다.For example, when the thickness of the pipe to which the present invention is applied is 3 mm or less, it is preferable that induction heating is performed by using induction current in a high frequency region of 50 kHz to 500 kHz so that sufficient heating is performed at a shallow depth from the outside of the pipe, and If the thickness of the pipe is more than 3mm ~ 5mm, the medium frequency in the range of 10kHz to 50kHz, and if the thickness of the pipe is more than 5mm, the induction heating in the low frequency region of 100hz to 10kHz is sufficient to induce deep heating from the outside of the pipe. It is desirable to allow heating.

앞서 설명한 바와 같이, 본 발명의 바람직한 실시예에 따르면 파이프의 내측에서 수분사(Water-zet) 냉각을 실시하기에, 내측에서는 담금질 효과로 인하여 그 경도가 외측 보다 상대적으로 높은 반면에 외측의 경도는 약간 감소하는 현상을 나타내지만, 바람직하기로 내측 및 외측 모두 경도가 hv450이상을 유지하도록 하여 파이프 전단면의 경도를 유지함으로써 내마모성을 향상시키는 효과를 유지할 수 있다.As described above, according to the preferred embodiment of the present invention, since water-zet cooling is performed inside the pipe, the hardness of the outside is relatively higher than that of the outside due to the quenching effect. Although slightly decreased, the inner and outer surfaces of the pipe may have a hardness of hv450 or more to maintain the hardness of the pipe shear surface, thereby maintaining the effect of improving wear resistance.

이와 같이 영역 분할 방식으로 열처리된 콘크리트 슬러리 이송 파이프 제품에서 다수개의 열처리부와 비열처리부를 포함한 시편을 채취하여, 도 14에 도시된 토사 마모 시험기를 이용하여 마모 시험을 수행하였는데, 도 14에 도시된 바와 같이, 호퍼(20)안에 수용된 모래(22)를 일정한 속도로 뿌려주며 200rpm의 회전속도로 휠(24)을 돌리고, 시편(50)을 15kgf의 힘으로 눌러 상기 휠(24)이 20,000회의 회전을 할 때까지의 마모량을 측정하는 마모시험을 실시하였다.As described above, specimens including a plurality of heat treatment parts and a non-heat treatment part were taken from the concrete slurry transfer pipe product heat-treated in the region division method, and the wear test was performed using the soil wear tester shown in FIG. 14. As shown, the sand 22 contained in the hopper 20 is sprinkled at a constant speed and the wheel 24 is rotated at a rotational speed of 200 rpm, and the wheel 24 is rotated 20,000 times by pressing the specimen 50 with a force of 15 kgf. Abrasion test was conducted to measure the amount of wear until

이때 1/1000g 정밀도의 전자저울을 사용하여 시험 전후 무게 감소량을 측정하고, 그것을 재료의 이론밀도로 나누어 시편의 마모량으로 표시하였는데, 그 결과는 표 1로 정리되어 있다.At this time, the weight loss amount was measured before and after the test using 1 / 1000g precision electronic scale, and it was divided by the theoretical density of the material and expressed as the wear amount of the specimen. The results are summarized in Table 1.

*표 1은 원소재 파이프, 완전 열처리된 파이프, 본 발명에 따라 영역 분할 방식으로 열처리된 파이프의 표면 경도와 토사 마모 시험후 마모량을 비교하여 나타내고 있는데, 시험에 이용된 각각의 파이프는 3개 시편을 제작하여 동일 조건에서 토사 마모 시험을 실시하였으며, 각 시편의 재질은 동일하게 탄소량이 0.45wt%인 S45C강의 원소재 파이프를 이용하였으며, 비교예 1로 시험된 것은 원소재 파이프를 그대로 이용하였으며, 비교예 2로 시험된 것은 원소재 파이프를 전 구간에 걸쳐서 가열 경화시킨 것을 대상으로 하였다. Table 1 shows the surface hardness of raw material pipes, fully heat-treated pipes, and pipes heat-treated according to the present invention according to the present invention, and the amount of wear after soil wear test. Each pipe used in the test was tested for three specimens. Soil wear test was carried out under the same conditions, and the material of each specimen was made of the same raw material pipe of S45C steel having a carbon content of 0.45 wt%, and the raw material pipe was used as it was in Comparative Example 1. What was tested by the comparative example 2 was made to heat-harden the raw material pipe over the whole section.

본 발명에 따른 바람직한 실시예로 시험된 것은 4mm 길이 구간의 열처리부 (경화부)와 2mm 길이 구간의 비열처리부(비경화부)가 반복적으로 연장되도록 처리한 것을 대상으로 하였으며, 결과치는 각각 3개 시편의 평균값으로 나타내었다.Tested as a preferred embodiment according to the present invention was subjected to the treatment to repeatedly extend the heat treatment section (hardening section) of 4mm length section and the non-heat treatment section (non-curing section) of 2mm length section, the result is three specimens each The average value of is shown.

시 편Psalm 재질 material 표면경도 Surface hardness 마모량(g)Abrasion Amount (g) 영역 분할 열처리
(실시예)
Zone Division Heat Treatment
(Example)
경화부 (4mm)Hardened part (4mm) S45CS45C HV 650HV 650 0.4510.451
비경화부(2mm)Non-hardened part (2mm) S45CS45C HV 250HV 250 원소재 파이프 (비교예 1)Raw material pipe (comparative example 1) S45CS45C HV 250HV 250 1.8901.890 전구간 완전 열처리 (비교예 2)Full heat treatment of all the sections (Comparative Example 2) S45CS45C HV 660HV 660 0.4230.423

상기 표 1과 같이 얻어진 토사 마모 시험 결과에 따르면, 유도가열 경화되지 않는 원소재 파이프(비교예 1)의 마모량은 1.890g이 되었으나, 전구간 열처리에 의해 전구간이 경화된 시편(비교예 2)의 경우는 내마모성이 약 4.5 배 향상되어서 마모량이 0.423g이 되었다. According to the soil wear test results obtained as shown in Table 1, the wear amount of the raw material pipe (Comparative Example 1) that was not induced heat-hardened was 1.890 g, but in the case of the specimen (Comparative Example 2) cured in the whole zone by global heat treatment The abrasion resistance improved about 4.5 times, resulting in 0.423 g of wear.

이에 대하여, 열처리부(4mm)와 비열처리부(2mm)가 반복적으로 연장되도록 영역 분할 방식으로 본 발명의 일 실시예에 따라 열처리한 콘크리트 슬러리 이송 파이프의 경우는 비록 비열처리부(b)를 포함하고 있다고 하더라도 그 마모량(0.451g)이 전구간이 완전 열처리되어 경화된 시편과 거의 유사한 마모결과를 나타내고 있어서 내마모성 측면의 내구성에서 우수한 효과를 제공할 뿐만 아니라, 나아가 이와 같이 영역 분할 방식으로 열처리된 파이프의 경우에는 비열처리부가 충격력을 완충할 수 있는 구간으로 작용하기 때문에 파이프에 충격력이 작용하는 경우에도 잘 파손되지 않고 파이프의 수명이 다할 때까지 사용이 가능하여 내충격성 측면의 내구성에서도 우수한 효과를 제공한다. On the other hand, in the case of the concrete slurry conveying pipe heat-treated according to an embodiment of the present invention in such a manner that the heat treatment part (4mm) and the non-heat treatment part (2mm) is extended repeatedly, the non-heat treatment part (b) is included. Even though the wear amount (0.451g) shows almost the same wear result as the specimen hardened by the entire heat treatment period, not only does it provide an excellent effect in terms of wear resistance, but also in the case of pipes heat-treated in the area-dividing manner. Since the non-heat treatment unit acts as a section that can cushion the impact force, it is not damaged even when the impact force acts on the pipe and can be used until the end of the pipe life, thereby providing excellent effects in terms of impact resistance durability.

한편, 이와 달리 전구간이 열처리된 비교예 2의 파이프의 경우에는 사용후 마모 진행에 따라 두께가 일정 수준 감소한 상태에서 인가되는 내,외부의 충격을 완충할 별도의 수단이 없어서 충격에 의한 파손 가능성이 높게 나타난다. On the other hand, in the case of the pipe of Comparative Example 2 in which the whole section was heat-treated, there is no possibility of breakage due to impact because there is no separate means for buffering the internal and external shocks applied in a state where the thickness decreases as the wear progresses after use. Appears high.

또한, 이와 같은 마모 시험을 수행한 파이프 시편을 절개하여 내측의 마찰면에 나타난 마모의 양상을 살펴보면 도 15에 도시된 바와 같이 나타나게 되는데, 이는 콘크리트 슬러리 유체가 이동하면서 발생하는 마찰에 의하여 열처리부(a)와 달리 비열처리부(b)에서는 일정 수준의 마모가 진행되는 상황을 보여준다. In addition, when cutting the pipe specimens subjected to such abrasion test and looking at the wear pattern shown on the inner friction surface, it is shown in FIG. 15, which is a heat treatment part due to friction generated while the concrete slurry fluid moves. Unlike a), the non-thermal treatment part (b) shows a situation where a certain level of wear is in progress.

한편, 일정 시간이 경과하여 일정 수준 만큼의 마모가 진행된 비열처리부(b)에서는 마모에 의해 오목하게 형성된 부분에서 콘크리트 슬러리 유체의 와류가 발생되고, 그에 따라 비열처리부(b)에 미치는 마찰 압력이 감소하는 효과가 발생하여 결국 마모 진행 속도를 현저히 감속시켜서 더 이상의 마모가 진전되지 않는 양상을 나타내는데, 앞서 살펴본 바와 같이 전구간이 열처리된 비교예 2의 파이프와 비교할 때 마모량에서는 큰 차이를 보이지 않게 된 점도 이와 같이 진행되는 마모 양상으로부터 쉽게 설명될 수 있다. On the other hand, in the non-heat treatment unit (b), which has undergone a certain level of wear after a certain time has elapsed, vortices of the concrete slurry fluid are generated in the concave portion formed by wear, thereby reducing the frictional pressure on the non-heat treatment unit (b). As a result, the wear progress was remarkably slowed down, and thus no further wear was developed. As described above, the wear amount did not show a big difference in the amount of wear as compared with the pipe of Comparative Example 2, which was heat-treated in the whole section. It can be easily explained from the wear aspect that proceeds together.

나아가, 이러한 마모 양상은 표면 구조(surface texturing)의한 마모 거동으로서 그 변화 정도는 유체의 속도와 압력 그리고 유체의 점도에 의하여 영향을 받게 된다.Furthermore, this wear pattern is the wear behavior of surface texturing, the extent of which is affected by the speed and pressure of the fluid and the viscosity of the fluid.

도 15에서와 같이 나타나는 마모 양상은 열처리부(a)와 같이 경화된 부분이 내마모성을 담당하는 한편, 열처리되지 않은 비열처리부(b)는 충격을 담당하는 복합재료와 같은 역할을 수행함으로써, 본 발명에 따른 구간 반복 열처리된 콘크리트 슬러리 이송 파이프의 경우에 사용 기간 동안 마모량이 감소할 뿐만 아니라 충격에 의한 파손도 방지할 수 있는 장점을 가진다.The wear pattern shown in FIG. 15 shows that the hardened portion, such as the heat treatment portion (a), is responsible for wear resistance, while the non-heat treatment portion (b), which has not been heat treated, plays a role as a composite material that is responsible for impact. In the case of the concrete slurry transfer pipe subjected to repeated section heat treatment according to the present invention, not only the amount of wear decreases during the service period but also the damage caused by impact can be prevented.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

도 1은 본 발명에 따른 영역 분할 열처리된 콘크리트 슬러리 이송 파이프의 열처리 패턴 실시예를 도시한 도면.1 is a view showing an embodiment of a heat treatment pattern of a concrete slurry transfer pipe heat-divided zone according to the present invention.

도 2는 본 발명에 따른 영역 분할 열처리된 콘크리트 슬러리 이송 파이프의 열처리 패턴 다른 실시예를 도시한 도면. 2 is a view showing another embodiment of a heat treatment pattern of a concrete slurry transfer pipe heat-divided in accordance with the present invention.

도 3은 본 발명에 따른 영역 분할 열처리된 콘크리트 슬러리 이송 파이프의 열처리 패턴 또 다른 실시예를 도시한 도면.3 is a view showing another embodiment of a heat treatment pattern of a concrete slurry transfer pipe heat-divided in accordance with the present invention.

도 4 및 도 5는 본 발명에 따른 영역 분할 열처리된 콘크리트 슬러리 이송 파이프의 열처리 패턴 또 다른 추가적인 실시예를 도시한 도면.4 and 5 show yet another further embodiment of a heat treatment pattern of a zoned heat treated concrete slurry conveying pipe according to the present invention.

도 6은 본 발명에 따른 유도가열 열처리 가공 장치의 설치 상태에 대한 일 실시예를 도시한 도면.Figure 6 is a view showing an embodiment of the installation state of the induction heating processing apparatus according to the present invention.

도 7 및 도 8은 본 발명에 따른 유도가열 열처리 가공 장치의 설치 상태에 대한 다른 실시예를 도시한 도면.7 and 8 are views showing another embodiment of the installation state of the induction heating processing apparatus according to the present invention.

도 9는 본 발명에 따른 유도가열 열처리 가공 장치에서 유도 코일의 병렬 설치 상태에 대한 실시예를 도시한 도면.9 is a view showing an embodiment of a parallel installation state of the induction coil in the induction heating heat treatment apparatus according to the present invention.

도 10은 본 발명에 따른 콘크리트 슬러리 이송 파이프의 제조 방법의 일 실시예의 순서도.10 is a flow chart of one embodiment of a method for producing a concrete slurry conveying pipe according to the present invention.

도 11은 본 발명에 따른 콘크리트 슬러리 이송 파이프의 제조 방법의 다른 실시예의 순서도.11 is a flow chart of another embodiment of a method for producing a concrete slurry conveying pipe according to the present invention.

도 12는 본 발명에 따른 콘크리트 슬러리 이송 파이프의 표면경도 프로파일 을 도시한 도면.12 is a view showing a surface hardness profile of the concrete slurry transport pipe according to the present invention.

도 13은 본 발명에 따른 콘크리트 슬러리 이송 파이프의 열처리부의 경도 프로파일을 도시한 도면.13 is a view showing the hardness profile of the heat treatment of the concrete slurry conveying pipe according to the present invention.

도 14는 토사마모 시험기를 도시한 개략도.14 is a schematic diagram showing a tosama wear tester.

도 15는 토사 마모 시험후 본 발명에 따른 콘크리트 슬러리 이송 파이프의 마모 양상을 도시한 도면.15 is a view showing the wear aspect of the concrete slurry transport pipe according to the present invention after the soil wear test.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10: 파이프 C.L.: 파이프 중심선10: Pipe C.L .: Pipe Centerline

10a: 파이프 외측 10b: 파이프 내측10a: outside pipe 10b: inside pipe

a: 열처리부 b: 비열처리부a: heat treatment portion b: non-heat treatment portion

110, 110a, 110b: 유도코일 120: 수냉각장치110, 110a, 110b: induction coil 120: water cooling device

Claims (9)

(a) 탄소강으로 이루어진 강재 파이프의 외측 또는 내측의 일정 영역에 유도가열 장치를 설치하고, 파이프 내측 또는 외측 중 하나 이상의 대응 영역에 수냉각장치를 설치하는 단계;(a) installing an induction heating device in a predetermined area outside or inside of the steel pipe made of carbon steel, and installing a water cooling device in at least one corresponding area of the inside or outside of the pipe; (b) 상기 파이프의 외측 또는 내측 일부에서 상기 유도가열 장치를 이용하여 상기 파이프를 유도 가열하는 단계; 및(b) induction heating the pipe using the induction heating device at an outer or inner portion of the pipe; And (c) 상기 파이프의 내,외측에서 대응 영역에 설치된 수냉각장치를 이용하여 상기 파이프의 가열된 부분을 냉각시켜 hv450 이상의 경도를 갖는 경화부를 형성하는 단계;를 포함하고,(c) cooling the heated portion of the pipe by using a water cooling device installed in a corresponding region at the inside and the outside of the pipe to form a hardened part having a hardness of hv450 or more; 상기 (b) 단계의 유도 가열은 상기 파이프의 두께가 3mm 이하인 경우에 50kHz ~ 500kHz 주파수 영역의 유도전류를 사용하고, 상기 파이프의 두께가 3~5mm인 경우에 10kHz ~ 50kHz의 주파수 영역의 유도전류를 사용하며, 상기 파이프의 두께가 5mm 이상인 경우에 100hz ~ 10kHz 주파수 영역의 유도전류를 사용하며, Induction heating in step (b) uses an induction current in a frequency range of 50 kHz to 500 kHz when the thickness of the pipe is 3 mm or less, and an induction current in a frequency region of 10 kHz to 50 kHz when the thickness of the pipe is 3 to 5 mm. In the case where the thickness of the pipe is 5mm or more, using an induction current in the frequency range of 100hz ~ 10kHz, 상기 (b) 단계의 유도 가열은 상기 파이프를 회전시킴과 동시에 길이방향으로 이동시키면서 진행되어, 상기 (c) 단계 이후 상기 경화부와 상기 경화부에 인접한 비경화부가 상기 파이프 길이를 따라서 연속되는 나선형 띠의 형태로 형성되되, The induction heating of step (b) proceeds while rotating the pipe and moving in the longitudinal direction, and after step (c), the helical part and the non-curing part adjacent to the hard part are continuous along the pipe length. Formed in the form of a band, 상기 (b) 단계에서, 상기 파이프의 회전속도 및 이동속도를 조절하여 상기 (c) 단계 이후, 상기 경화부의 폭이 상기 비경화부의 폭보다 더 크도록 하는 것을 특징으로 하는 콘크리트 펌프카용 콘크리트 슬러리 이송 파이프 제조 방법. In the step (b), after the step (c) by adjusting the rotational speed and the moving speed of the pipe, the concrete slurry transfer for the concrete pump car, characterized in that the width of the hardened portion is larger than the width of the non-hardened portion Pipe manufacturing method. 제1항에 있어서, The method of claim 1, 상기 탄소강은 0.30 ~ 2.5 wt%의 탄소를 포함하는 것을 특징으로 하는 콘크리트 펌프카용 콘크리트 슬러리 이송 파이프 제조 방법.The carbon steel is a concrete slurry transport pipe manufacturing method for a concrete pump car, characterized in that containing 0.30 ~ 2.5 wt% of carbon. 제1항에 있어서, The method of claim 1, 상기 유도가열 장치는 상기 파이프의 외측 또는 내측에서 일정 거리 이격 배치되고, 전원장치에 병렬 연결된 2개 이상의 유도코일을 포함하는 것을 특징으로 하는 콘크리트 펌프카용 콘크리트 슬러리 이송 파이프 제조 방법. The induction heating apparatus is a concrete slurry transport pipe manufacturing method for a concrete pump car, characterized in that the spaced apart at a predetermined distance from the outside or inside of the pipe, and comprises two or more induction coils connected in parallel to the power supply. 제1항에 있어서, The method of claim 1, 상기 수냉각장치는 파이프 내측과 외측 중 일측 이상에 설치되어 상기 파이프의 가열된 부분을 냉각시키기 위하여 각각 배치되는 분사노즐을 포함하는 것을 특징으로 하는 콘크리트 펌프카용 콘크리트 슬러리 이송 파이프 제조 방법.The water cooling device is a concrete slurry transport pipe manufacturing method for a concrete pump car, characterized in that it comprises a spray nozzle which is installed on at least one side of the inside and the outside of the pipe is arranged to cool the heated portion of the pipe. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090109643A 2009-11-13 2009-11-13 Method of manufacturing concrete slurry transporting pipe for concrete pump-car KR101170834B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090109643A KR101170834B1 (en) 2009-11-13 2009-11-13 Method of manufacturing concrete slurry transporting pipe for concrete pump-car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090109643A KR101170834B1 (en) 2009-11-13 2009-11-13 Method of manufacturing concrete slurry transporting pipe for concrete pump-car

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020080115225A Division KR100930733B1 (en) 2008-11-19 2008-11-19 A concrete slurry transporting pipe for concrete pump-car

Publications (2)

Publication Number Publication Date
KR20100056385A KR20100056385A (en) 2010-05-27
KR101170834B1 true KR101170834B1 (en) 2012-08-02

Family

ID=42280533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090109643A KR101170834B1 (en) 2009-11-13 2009-11-13 Method of manufacturing concrete slurry transporting pipe for concrete pump-car

Country Status (1)

Country Link
KR (1) KR101170834B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419115B1 (en) * 2012-06-21 2014-07-11 현대하이스코 주식회사 High strength pipe for construction equipment and method of manufacturing the same
KR101463313B1 (en) * 2012-12-21 2014-11-18 주식회사 포스코 stainless steel pipe with excellent abrasion resistance and manufacturing method thereof
KR101953002B1 (en) * 2016-11-30 2019-02-28 주식회사 티엠시 Method for heat treating pumping pipe of concrete pumping truck and a device for it
KR102139433B1 (en) * 2019-04-10 2020-07-29 (주)두인티앤피 A Method for Manufacture of ERW Stainless pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660355B1 (en) 1999-11-18 2006-12-21 다이이치 고슈하 고교 가부시키가이샤 Method and apparatus for heat-treating metallic cylindrical body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660355B1 (en) 1999-11-18 2006-12-21 다이이치 고슈하 고교 가부시키가이샤 Method and apparatus for heat-treating metallic cylindrical body

Also Published As

Publication number Publication date
KR20100056385A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
KR100930733B1 (en) A concrete slurry transporting pipe for concrete pump-car
KR101006138B1 (en) Bushing for crawler and method for manufacturing same
RU2485187C2 (en) Cooling method of rail welding zone, cooling device for rail welding zone, and weld joint of rail
KR101170834B1 (en) Method of manufacturing concrete slurry transporting pipe for concrete pump-car
CA2836260C (en) Method of reheating rail weld zone
JP5531845B2 (en) Post-heat treatment method near the flash butt weld
Ding et al. Investigation on the rolling wear and damage properties of laser discrete quenched rail material with different quenching shapes and patterns
CN205868388U (en) Extrusion roller shell
CN106040347A (en) Squeezing roller sleeve and manufacturing method thereof
JP2010133558A (en) Hardened spring steel, spring element, and method for manufacturing the spring element
JP4859889B2 (en) Manufacturing method of crawler belt bush
US6030471A (en) Method for producing a hardened wheel
JP4916365B2 (en) Crawler bush
US6296721B1 (en) Hardened wheel
RU2632507C1 (en) Method of heat treatment of whole-rolled railway wheels
CN103591390A (en) Concrete slurry conveying device and concrete pump trolley with the same
JP3856536B2 (en) Crawler belt bushing and manufacturing method thereof
KR200181942Y1 (en) A flame hardening device
RU2755713C1 (en) Apparatus and method for heat treatment of a long-length product with an l-shaped profile with a sole, neck, head
JP4408170B2 (en) Rail with excellent wear resistance and method for manufacturing the same
KR101093232B1 (en) Heat treating method of materials to reduce brittleness
JP4916364B2 (en) Crawler bush
KR101093231B1 (en) Apparatus for quenching
KR20070051127A (en) Manufacture method of twin elbow for concreat pump truck superior to wear resistance and toughness
KR20030076396A (en) Hollow steel hexagonal rod and induction hardening method thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160722

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170802

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee