JP4859889B2 - Manufacturing method of crawler belt bush - Google Patents

Manufacturing method of crawler belt bush Download PDF

Info

Publication number
JP4859889B2
JP4859889B2 JP2008202265A JP2008202265A JP4859889B2 JP 4859889 B2 JP4859889 B2 JP 4859889B2 JP 2008202265 A JP2008202265 A JP 2008202265A JP 2008202265 A JP2008202265 A JP 2008202265A JP 4859889 B2 JP4859889 B2 JP 4859889B2
Authority
JP
Japan
Prior art keywords
peripheral surface
outer peripheral
crawler belt
hardened
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008202265A
Other languages
Japanese (ja)
Other versions
JP2009007677A (en
Inventor
武盛 高山
真之 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2008202265A priority Critical patent/JP4859889B2/en
Publication of JP2009007677A publication Critical patent/JP2009007677A/en
Application granted granted Critical
Publication of JP4859889B2 publication Critical patent/JP4859889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、建設機械などに使用される履帯ブッシュの製造方法に関するものであり、より詳しくは耐摩耗性、耐衝撃疲労性に優れたオイル封入式履帯ブッシュをより低コストで生産する製造方法に関するものである。   The present invention relates to a method of manufacturing a crawler belt bush used for construction machinery and the like, and more particularly, to a method of manufacturing an oil-filled crawler belt bush excellent in wear resistance and impact fatigue resistance at a lower cost. Is.

従来、建設機械の履帯51は図26に示されるような各部品群で構成されており、とりわけ履帯ブッシュ52は、終減速装置からの回転運動を伝えるスプロケットティースと噛み合い、履帯51を回転させる機能を持つことから、外周面においては耐摩耗性が要求されるとともに、これに加わる負荷に耐えるために、内周面において強度と靭性とが要求される。   Conventionally, the crawler belt 51 of a construction machine is composed of a group of parts as shown in FIG. 26. In particular, the crawler belt bush 52 engages with sprocket teeth that transmit the rotational motion from the final reduction gear, and rotates the crawler belt 51. Therefore, the outer peripheral surface is required to have wear resistance, and the inner peripheral surface is required to have strength and toughness in order to withstand the load applied thereto.

また、ブルドーザのように高速で走る履帯では、履帯ピン53と履帯ブッシュ52との焼付きを防止するために、これらの隙間に潤滑油を介在させたオイル封入履帯が使われており、この場合には、スプロケットと直接接触する外周面の耐摩耗性だけでなく、図27に示されるように、履帯ブッシュの両端部平坦面(シール平坦部)61とダストシール62で潤滑油をシールする必要から、少なくともブッシュ端面のシール平坦部61でのダストシール62当たり位置の範囲(外周面から肉厚の約1/2までが摩耗後の当たり位置)が焼入れによって十分に硬化されていることが必要である。   Also, in a crawler track that runs at a high speed like a bulldozer, an oil-filled crawler belt in which lubricating oil is interposed in these gaps is used in order to prevent seizure between the crawler belt pin 53 and the crawler belt bush 52. In addition to the wear resistance of the outer peripheral surface that is in direct contact with the sprocket, it is necessary to seal the lubricating oil with the flat surfaces (seal flat portion) 61 and the dust seal 62 on both ends of the crawler belt bush as shown in FIG. In addition, it is necessary that at least the range of the contact position with the dust seal 62 in the seal flat portion 61 on the bush end surface (the contact position after wear from the outer peripheral surface to about 1/2 of the wall thickness) is sufficiently hardened by quenching. .

これらの必要特性を満足させるために、従来、この履帯ブッシュの製造に際しては、次に示されるような方法が実施されている。
1)肌焼鋼に浸炭処理を施して、内外周面およびその両端面部に高硬度なマルテンサイトを形成し、耐摩耗性と強度およびオイルシール性を確保するようにしたもの(例えば特許文献1参照)。
2)焼入れ性向上元素を含有する炭素鋼を履帯ブッシュに成形加工し、全体を焼入れした後更にその履帯ブッシュの内周面のみを誘導加熱により焼入れすることによって、その外周面、端面および内周面に焼入れ硬化層を形成させ、それらの焼き入れ硬化層の間に高靭性な焼入れ焼戻し軟化層を形成し、その軟化層が履帯ブッシュ両端面近傍の内周面につながるようにする履帯ブッシュの製造方法が特許文献2に開示されている。また、特許文献3においても、履帯ブッシュの肉厚全体を焼入れ硬化し、その内周面のみから誘導焼入れを施し、肉厚中心部に形成される焼入れ焼戻し軟化層がその両端面の近傍の内周面につながって形成する履帯ブッシュの製造方法を開示している。
3)さらに、履帯ブッシュの内周面用冷却媒体と外周面用冷却媒体を仕切り治具で分離できる焼入れ装置を使って、中炭素鋼のブッシュ素材を一旦焼入れ処理が可能な温度以上に高周波加熱し、内周面を先行冷却した所定時間後に外周面からの冷却を始めるか、もしくは高周波加熱によって外周面を加熱しながら内周面冷却を行い、所定時間後に外周面加熱を止めて、外周面冷却を行うことの一連の焼入れ操作によって、履帯ブッシュの外周面および内周面から肉厚中心部に向かって焼入れ硬化層を形成して、各両焼入れ硬化層間に軟質な未焼入れ層を残すようなU字型のスムーズな硬度分布をもち、さらに、外周面部からの硬化層深さを内周面からの硬化層深さに比べてより深く形成し、かつ、仕切り治具の工夫によって端面部を端面幅の1/2以上に硬化した耐摩耗性に優れたオイル封入式履帯ブッシュとその安価な製造方法が、特許文献4および特許文献5に開示されている。
In order to satisfy these required characteristics, conventionally, the following method has been carried out in manufacturing the crawler belt bush.
1) Carburized steel is carburized to form hard martensite on the inner and outer peripheral surfaces and both end surfaces thereof to ensure wear resistance, strength and oil sealability (for example, Patent Document 1) reference).
2) Forming and processing carbon steel containing hardenability improving elements into crawler belt bushes, and after quenching the whole, only the inner peripheral surface of the crawler belt bushes is quenched by induction heating, so that its outer peripheral surface, end surface and inner peripheral surface A hardened hardened layer is formed on the surface, a toughened hardened and tempered softened layer is formed between the hardened hardened layers, and the softened layer is connected to the inner peripheral surface in the vicinity of both ends of the crawler belt bush. A manufacturing method is disclosed in Patent Document 2. Also, in Patent Document 3, the entire thickness of the crawler belt bush is quenched and hardened, induction hardening is performed only from the inner peripheral surface, and the quenched and tempered softened layer formed at the center of the thickness is within the vicinity of both end surfaces. A method of manufacturing a crawler belt bush formed by connecting to a peripheral surface is disclosed.
3) In addition, using a quenching device that can separate the cooling medium for the inner peripheral surface and the outer peripheral surface of the crawler belt bush with a partitioning jig, the bush material of medium carbon steel is heated at a frequency higher than the temperature at which it can once be quenched. Then, cooling from the outer peripheral surface is started after a predetermined time after the inner peripheral surface is cooled in advance, or cooling of the inner peripheral surface is performed while heating the outer peripheral surface by high frequency heating, and heating of the outer peripheral surface is stopped after a predetermined time. By performing a series of quenching operations of cooling, a hardened hardening layer is formed from the outer peripheral surface and inner peripheral surface of the crawler belt bush toward the center of the thickness, and a soft unquenched layer is left between the two hardened hardening layers. It has a smooth U-shaped hardness distribution, and the hardened layer depth from the outer peripheral surface portion is formed deeper than the hardened layer depth from the inner peripheral surface. The end face width of / 2 or more oil-filled type crawler bush having excellent cured wear resistance and its low-cost production method are disclosed in Patent Documents 4 and 5.

しかしながら、前記1)の浸炭法で作られる履帯ブッシュは、その端面部も均一に浸炭硬化されるのでオイル封入用ブッシュとしての両端面部の耐摩耗性は良いが、外周円筒面での耐摩耗性を高めるために浸炭硬化層を深くする必要があるため、浸炭時間を長くかかるとともに、浸炭ガスの大量使用等によるコスト面での問題がある。例えばブッシュの肉厚が厚くなる大型履帯ブッシュでは、強度、耐摩耗性の観点から必要硬化層深さがより深くなるため、生産性の低下とコストの高騰とが問題になる。さらに、内外周表面においては浸炭加熱時間が長時間に及ぶために粒界酸化層や不完全焼入れ層が数十μm厚さで形成されることになり、疲労強度や耐衝撃特性が劣化しやすくなる問題がある。   However, the crawler belt bush made by the carburizing method of 1) is also carburized and hardened uniformly at the end surface, so the wear resistance at both end surfaces as an oil-filled bush is good, but the wear resistance at the outer cylindrical surface. Since it is necessary to deepen the carburized hardened layer in order to increase the temperature, it takes a long time to carburize and there is a problem in terms of cost due to a large amount of carburizing gas used. For example, in the case of a large crawler belt bush that increases the thickness of the bush, the required hardened layer depth becomes deeper from the viewpoint of strength and wear resistance, which causes problems of a decrease in productivity and an increase in cost. Furthermore, since the carburizing heating time takes a long time on the inner and outer peripheral surfaces, a grain boundary oxide layer and an incompletely hardened layer are formed with a thickness of several tens of μm, and fatigue strength and impact resistance characteristics are likely to deteriorate. There is a problem.

一方、前記2)の高周波焼入れ法では、1)の浸炭法に比べてコスト的な改善がなされているが、一旦全体硬化した履帯ブッシュの内周面を再焼入れする必要があるために、焼割れの発生など十分な品質上の管理に問題があるとともに、小径な履帯ブッシュの内周面を高周波焼戻しすることの困難性や、移動高周波焼入れなど生産性の低さおよび二度以上の熱処理工程を必要とすることからコスト的に安価にできない問題がある。   On the other hand, the induction hardening method of 2) is improved in cost compared with the carburizing method of 1). However, since it is necessary to re-harden the inner peripheral surface of the crawler belt bush that has been once hardened, There are problems with sufficient quality control, such as the occurrence of cracks, the difficulty of induction tempering the inner peripheral surface of a small-diameter track bush, low productivity such as moving induction hardening, and two or more heat treatment processes There is a problem that it is not possible to reduce the cost.

また、前記2)の高周波焼入れ法では、特許文献6、特許文献7に開示されているように、内周面からの誘導加熱によって外周面焼入れ硬化層がより中心部付近で焼き戻され、外周面焼入れ硬化層硬さが中心部に向かって軟化し易く、外周面の耐摩耗性を十分に改善できない問題がある。   In addition, in the induction hardening method of 2), as disclosed in Patent Document 6 and Patent Document 7, the outer peripheral surface hardened layer is tempered near the center by induction heating from the inner peripheral surface, and the outer periphery There is a problem that the hardness of the hardened surface layer is easily softened toward the center, and the wear resistance of the outer peripheral surface cannot be sufficiently improved.

さらに、特許文献8、特許文献9においては、履帯ブッシュの外周面および内周面の両方から、履帯ブッシュを移動させる移動式高周波焼入れを同時に実施し、少なくともスプロケットと噛み合う部位の内周面への高周波焼入れを実施せずに、履帯ブッシュの強度を高めた履帯ブッシュとその製造方法が開示されているが、前記と同様に、小径な履帯ブッシュ内径熱処理が困難であること、生産性の低い移動高周波焼入れであること、二つの高周波加熱用電源を必要として設備投資が高いこと、内周面未焼き入れ層がHRC35未満のフェライトおよびパーライト組織であるために強靭性が十分でない、さらに、全般的に薄肉な履帯ブッシュを内、外周面からの同時冷却を実施することから、スルーハード化されやすく、それを避けるためには外周面焼入れ硬化層深さが浅くなるために、履帯ブッシュの耐摩耗寿命が十分でない等の問題がある。   Further, in Patent Document 8 and Patent Document 9, mobile induction hardening for moving the crawler bush is simultaneously performed from both the outer peripheral surface and the inner peripheral surface of the crawler belt bush, and at least the portion that meshes with the sprocket is applied to the inner peripheral surface. A crawler belt bushing with increased strength of the crawler belt bushing without induction hardening and a method for manufacturing the same are disclosed, but as described above, it is difficult to heat-treat the inner diameter of the crawler belt bush with difficulty, and movement with low productivity. It is induction-hardened, requires two power sources for high-frequency heating, has high capital investment, and the inner peripheral surface unquenched layer is ferrite and pearlite structure less than HRC35, so that the toughness is not sufficient. In order to avoid this, it is easy to make it through-hard because the thin crawler belt bushing is cooled simultaneously from the inner and outer peripheral surfaces. To the outer circumferential surface hardened layer depth becomes shallower, there are problems such as the wear life of the crawler bush is not sufficient.

また、前記3)の高周波焼入れ方法においては、より薄肉で、小型のオイル封入履帯ブッシュ端面部での焼入れ部分のムラや硬化層の抜けが完全に避けられず、最終検査工程が必要になるという問題がある。   In addition, in the induction hardening method of 3), unevenness of the hardened portion at the end surface portion of the thin oil-filled crawler belt bush and uneven removal of the hardened layer cannot be completely avoided, and a final inspection process is required. There's a problem.

特公昭52−34806号公報Japanese Patent Publication No. 52-34806 特公平3−69969号公報Japanese Examined Patent Publication No. 3-69969 特開2001−98326号公報JP 2001-98326 A 特開平11−61264号公報JP 11-61264 A 特開平11−236619号公報JP-A-11-236619 特公昭63−16314号公報Japanese Patent Publication No. 63-16314 特開平5−78745号公報JP-A-5-78745 特開平6−247351号公報JP-A-6-247351 特開平10−68023号公報Japanese Patent Laid-Open No. 10-68023

本発明は、このような問題点に鑑みてなされたもので、安価な高周波焼入れ技術をベースにして、オイル封入履帯としてのオイル封入性の確保、衝撃的な過酷な負荷に対する優れた靭性の確保、耐摩耗性および摩耗寿命の改善を図るとともに、前記1)〜3)の方法に対してより安価な製造方法を提供することを主たる目的とするものである。   The present invention has been made in view of such problems, and based on inexpensive induction hardening technology, ensuring oil sealing performance as an oil-filled crawler track, ensuring excellent toughness against shocking severe loads The main object is to improve wear resistance and wear life, and to provide a cheaper manufacturing method than the methods 1) to 3).

また、本発明では、建機の大型化と高負荷化にともなって問題となる履帯ブッシュと回転、揺動摺動する履帯ピンとの耐焼き付き性および履帯リンクからの抜けを防止する方法についても改善することを目的とするものである。   The present invention also improves the seizure resistance between the crawler belt bushing and the crawler belt pin that rotates and swings and becomes a problem with the increase in the size and load of the construction machine and the method for preventing the crawler belt link from coming off from the crawler belt link. It is intended to do.

例えば、小径な中小型ブルドーザ用のオイル封入式履帯ブッシュにおいては、肉薄で、端面部は履帯リンクへの圧入のための端面加工が施され、内周面側においては履帯ピンとのたわみによる局部当たりを避けるための面取り加工が施されていることから、端面部の平行面は極めて幅狭になっている。このため、端面シール部硬化層を確実に確保するため、および、履帯リンクへ履帯ブッシュを圧入する際のかじりによる圧入不良を防止するに、外周面圧入端面加工部を確実に硬化させることが必要である。またさらに、その履帯ブッシュとしての強度、靭性および耐摩耗性を確保するために、少なくとも、その外周面にはHRC50以上の硬質な焼入れ硬化層が形成され、その肉厚内部においてHRC45以下の軟質層を形成させることにとって、熱処理時の焼き割れを防止できることが必要である。   For example, an oil-filled crawler belt bush for small and medium-sized bulldozers is thin, and the end face is subjected to end face processing for press-fitting into the crawler belt link, and the inner peripheral face is subjected to local contact by bending with the crawler belt pin. Since the chamfering process for avoiding the above is performed, the parallel surface of the end surface portion is extremely narrow. For this reason, it is necessary to reliably cure the outer peripheral surface press-fit end face processed part in order to ensure the end face seal part hardened layer and to prevent press-fitting failure due to galling when press-fitting the crawler belt bush into the crawler belt link. It is. Furthermore, in order to ensure the strength, toughness and wear resistance as the crawler belt bush, at least the outer peripheral surface is formed with a hard quench hardened layer having an HRC of 50 or more, and the soft layer having an HRC of 45 or less in the thickness inside. It is necessary to be able to prevent burning cracks during heat treatment.

そこで、第1発明による履帯ブッシュの製造方法は、
少なくとも炭素を0.35〜1.2重量%の範囲で含有し、その焼入性が、履帯ブッシュをA1もしくはA3温度以上に全体加熱した後、その内周面と外周面から同時に水冷却することによって、その肉厚全体がHRC45以上に焼入れ硬化されるように合金元素が調整されている炭素鋼および/または低合金鋼からなる履帯ブッシュ素材を用いて、
(1)その肉厚全体がHRC45以上の硬さにスルーハード化されるように焼入れ硬化し、
(2)外周面からの高周波加熱中にその熱拡散を利用した内周面部の焼戻しを施すようにその履帯ブッシュの内周面を冷却し、外周面からの焼入れを施すことによって、
外周面硬化層とその硬化層に繋がった端面焼入れ硬化層を形成するとともに、内周面にHRC45以上の焼戻しマルテンサイト硬化層を形成し、さらに、外周面硬化層と内周面焼戻しマルテンサイト硬化層の間に形成されるHRC45未満の軟質層がフェライト、パーライト、ベイナイト、マルテンサイトおよび焼戻しマルテンサイト組織の1種以上からなり、その軟質層が端面部内周面側に繋がるようにしたことを特徴とするものである。
Therefore, a method of manufacturing the crawler belt bush according to the first invention is as follows.
At least carbon is contained in the range of 0.35 to 1.2% by weight, and the hardenability is such that the crawler bushing is heated to the A1 or A3 temperature or more and then water-cooled simultaneously from the inner and outer peripheral surfaces. By using a track bush material made of carbon steel and / or low alloy steel in which the alloy elements are adjusted so that the entire thickness is quenched and hardened to HRC45 or higher,
(1) Quenched and hardened so that the entire thickness is through-hardened to a hardness of HRC45 or higher,
(2) Cooling the inner peripheral surface of the crawler belt bush so as to temper the inner peripheral surface portion using the thermal diffusion during high-frequency heating from the outer peripheral surface, and quenching from the outer peripheral surface,
An outer peripheral surface hardened layer and an end-hardened hardened layer connected to the hardened layer are formed, a tempered martensite hardened layer of HRC45 or higher is formed on the inner peripheral surface, and the outer peripheral surface hardened layer and the inner peripheral surface tempered martensite hardened. The soft layer of less than HRC45 formed between the layers is composed of one or more of ferrite, pearlite, bainite, martensite, and tempered martensite structure, and the soft layer is connected to the inner peripheral surface side of the end face. It is what.

ところで、中大型ブルドーザ用のオイル封入式履帯ブッシュではより肉厚が厚くなり、肉厚全体を焼入れ硬化させるための鋼材はより多くの合金元素を必要とするので、より高価になるとともに、全体硬化のために熱処理費が高くなる。   By the way, the oil-filled crawler belt bush for medium and large bulldozers is thicker, and the steel material for quenching and hardening the entire thickness requires more alloy elements. This increases the heat treatment cost.

このことに鑑み、第2発明による履帯ブッシュの製造方法は、
少なくとも炭素を0.35〜1.2重量%の範囲で含有し、その焼入性が、履帯ブッシュをA1もしくはA3温度以上に全体加熱した後、その内周面と外周面から同時に水冷却することによって、その肉厚全体がHRC45以上に焼入れ硬化されるように合金元素が調整されている炭素鋼および/または低合金鋼からなる履帯ブッシュ素材を用いて、
(1)履帯ブッシュ内周面が焼入れ硬化されるように高周波焼入れし、
(2)外周面からの高周波加熱中にその熱拡散を利用した内周面部の焼戻しを施すようにその履帯ブッシュの内周面を冷却し、外周面と端面からの焼入れを施すことによって、
外周面硬化層とその硬化層に繋がった端面焼入れ硬化層を形成するとともに、内周面にHRC45以上の焼戻しマルテンサイト硬化層を形成し、外周面硬化層と内周面焼戻しマルテンサイト硬化層の間に形成されるHRC45未満の軟質層がフェライト、パーライト、ベイナイト、マルテンサイトおよび焼戻しマルテンサイト組織の1種以上からなり、その軟質層が端面部内周面側に繋がるようにしたことを特徴とするものである。
In view of this, the method of manufacturing the crawler belt bush according to the second invention is as follows.
At least carbon is contained in the range of 0.35 to 1.2% by weight, and the hardenability is such that the crawler bushing is heated to the A1 or A3 temperature or more and then water-cooled simultaneously from the inner and outer peripheral surfaces. By using a track bush material made of carbon steel and / or low alloy steel in which the alloy elements are adjusted so that the entire thickness is quenched and hardened to HRC45 or higher,
(1) Induction quenching so that the inner peripheral surface of the crawler belt bush is quenched and hardened,
(2) By cooling the inner peripheral surface of the crawler belt bush so as to temper the inner peripheral surface portion using the thermal diffusion during high-frequency heating from the outer peripheral surface, and by quenching from the outer peripheral surface and the end surface,
An outer peripheral surface hardened layer and an end face hardened hardened layer connected to the hardened layer are formed, a tempered martensite hardened layer of HRC45 or higher is formed on the inner peripheral surface, and the outer peripheral surface hardened layer and the inner peripheral surface tempered martensite hardened layer are formed. A soft layer of less than HRC45 formed between them is composed of one or more of ferrite, pearlite, bainite, martensite and tempered martensite structure, and the soft layer is connected to the inner peripheral surface side of the end face part. Is.

前記第1,2発明の高周波加熱・焼入れ方法としては、高周波コイルと履帯ブッシュを相対的に移動させる移動式高周波加熱焼入れ方法と履帯ブッシュを軸中心周りに回転させながら鞍型、渦巻き型または円筒状の高周波コイルを使って加熱速度を調整しながら全体加熱焼入れする方法のどちらでも利用することができる。   The high frequency heating and quenching method according to the first and second aspects of the invention includes a mobile high frequency heating and quenching method in which the high frequency coil and the crawler belt bush are moved relative to each other, and a saddle type, a spiral shape or a cylinder while the crawler belt bush is rotated around the axis center. Either of the methods of heating and quenching the whole while adjusting the heating speed using a high frequency coil can be used.

前記各発明において、前記外周面からの高周波加熱中に内周面を冷却することによって、外周面焼入れ硬化層深さを肉厚さの30〜80%まで深くして履帯ブッシュの摩耗寿命を改善するのが好ましい(第3発明)。   In each of the above inventions, by cooling the inner peripheral surface during high-frequency heating from the outer peripheral surface, the depth of the hardened hardened layer on the outer peripheral surface is increased to 30 to 80% of the thickness to improve the wear life of the track bush. It is preferable (third invention).

また、150℃以上の焼戻し処理が施され、外周面焼入れ硬化層表面の硬さがHRC50〜65で、かつ、両端面部の焼入れ硬化深さが0.5mm以上にするのが好ましい(第4発明)。   Moreover, it is preferable that the tempering process of 150 degreeC or more is performed, the hardness of the outer surface hardening hardening layer surface is HRC50-65, and the hardening hardening depth of both end parts is 0.5 mm or more (4th invention). ).

さらに、履帯ブッシュの内周面および外周面に燐酸塩皮膜による化成処理を施すのが好ましい(第5発明)。   Furthermore, it is preferable to subject the inner peripheral surface and outer peripheral surface of the crawler belt bush to a chemical conversion treatment with a phosphate coating (the fifth invention).

第1発明によれば、中小型履帯ブッシュに適用する鋼材としてより安価で済むことおよび小径な内周面のみの高周波焼入れ作業を必要とせず、焼入れ作業が容易な外周面からの高周波焼入れ作業だけで良いことになり、自動化が図りやすいこと、また外周面からの高周波加熱時に内周面硬化層が焼戻されるように内周面冷却を実施することによって、履帯ブッシュの高靭性が確保され、かつ、耐摩耗性を必要とする外周面および両端面硬化層を焼戻し処理せずにより高硬度で使用することになるので、品質的にも、経済的にも好ましいことである。   According to the first invention, the steel material applied to the medium- and small-sized crawler belt bushes can be less expensive, and does not require induction hardening work only on the small-diameter inner peripheral surface, and only induction hardening work from the outer peripheral surface is easy. The toughness of the crawler belt bush is ensured by carrying out the inner peripheral surface cooling so that the inner peripheral surface hardened layer is tempered during high-frequency heating from the outer peripheral surface. In addition, the outer peripheral surface and the hardened layer on both end surfaces that require wear resistance are used with higher hardness without being tempered, which is preferable in terms of quality and economy.

また、第2発明においても、外周面からの高周波加熱時に内周面硬化層が焼戻されるように内周面冷却を実施することによって、高靭性でかつ耐摩耗性を必要とする外周面および両端面硬化層を焼戻し処理せずにより高硬度で使用するのが、品質的にも経済的にも好ましい。また、本発明は、外周面からの高周波焼入れを実施するに際して、外周面側において重ね焼入れとしないことから、焼割れに関する危険性が軽減されるので好ましい方法である。   In the second invention, the outer peripheral surface that requires high toughness and wear resistance can be obtained by cooling the inner peripheral surface so that the hardened inner peripheral surface is tempered during high-frequency heating from the outer peripheral surface. It is preferable in terms of quality and economy to use the hardened layers at both ends without tempering and with higher hardness. In addition, the present invention is a preferable method since the risk of quenching cracks is reduced because the induction hardening from the outer peripheral surface is not repeated quenching on the outer peripheral surface side.

次に、本発明による履帯ブッシュの製造方法の具体的な実施の形態について、図面を参照しつつ説明する。   Next, a specific embodiment of a method for manufacturing a crawler belt bush according to the present invention will be described with reference to the drawings.

図1は、外径60mm、内径40mm、肉厚10mmの履帯ブッシュを、850℃に加熱し、内周面と外周面から同時に強水冷したときの外周表面(A位置)、外周表面から2mm深さ位置(B位置)および肉厚中心(C位置)における温度と冷却時間との関係を示したものである。
また、同図中の太い破線でS45C相当材の連続冷却変態図におけるパーライト析出開始線(Cカーブ)の範囲をα、βの各Cカーブで示したものであるが、それらのカーブは、肉厚10.4mmの履帯ブッシュを850℃から内外周面同時焼入れた場合の外周面焼入れ硬化層深さに基づいて推定したものであり、αCカーブは焼入性の低い鋼(DI=0.515in、0.47C−0.34Mn)の外周面焼入れ硬化層深さが約2.2mmで、肉厚中心硬さがHv=310であったことに基づいて、ほぼB位置での冷却線と交わるように記載され、さらに、βCカーブは、DI=0.72in、0.53C−0.48Mn炭素鋼を用いた場合のもので、その外周面硬化層硬さがHv=760であるが、肉厚中心硬さがHv=510とスルーハード化されていることから、ほぼC位置での冷却線と交わるように記載されるが、肉厚内部に未焼入れ層の形成がわずかなDI値の差で決まることがわかる。
FIG. 1 shows an outer peripheral surface (position A) when a crawler belt bush having an outer diameter of 60 mm, an inner diameter of 40 mm, and a wall thickness of 10 mm is heated to 850 ° C. and simultaneously strongly cooled from the inner peripheral surface and the outer peripheral surface, and 2 mm deep from the outer peripheral surface. It shows the relationship between the temperature at the vertical position (B position) and the thickness center (C position) and the cooling time.
In addition, the thick broken line in the figure shows the range of the pearlite precipitation start line (C curve) in the continuous cooling transformation diagram of the S45C equivalent material with α and β C curves. Estimated based on the depth of the hardened hardened layer on the outer peripheral surface when the 10.4 mm thick crawler bushing was simultaneously quenched from 850 ° C., the αC curve is a steel with a low hardenability (DI = 0.515 in). , 0.47C-0.34Mn), the outer peripheral surface hardened layer depth is about 2.2 mm, and the thickness center hardness is Hv = 310. Furthermore, the βC curve is obtained when DI = 0.72 in and 0.53 C-0.48 Mn carbon steel is used, and the hardness of the outer peripheral surface hardened layer is Hv = 760. Thick center hardness is Hv = 510 and through-ha Since it was de reduction, but is described to intersect the cooling line at approximately position C, forming a thick inside unhardened layer it can be seen that determined by the slight difference in the DI.

図2は、0.4〜0.6重量%炭素を含有した各種炭素鋼のDI値とスルーハード化する履帯ブッシュ肉厚の関係を実験的に求めたものであり、その関係は、ほぼDI(inch)≦1.75×肉厚(inch)(図2中の直線関係)で与えられることがわかった。またさらに、入手性の良いS45C相当材のDI値バラツキ範囲を図2中の破線で示したが、例えばPC60(肉厚8.25mm)で0.56inch、PC200(10.4mm)で0.71inch以下の焼入性を持つように鋼材成分範囲が厳重に狭く管理することが必要とされ、その鋼材の入手性がきわめて難しく、単純な内外周面同時焼入れ方法によって、中小型履帯ブッシュの肉厚内部に軟質な未焼入れ層を形成させる製造方法が極めて難しいことがわかる。   FIG. 2 is an experimental determination of the relationship between the DI value of various carbon steels containing 0.4 to 0.6 wt% carbon and the thickness of the crawler belt bushing to be through-hardened. It was found that (inch) ≦ 1.75 × thickness (inch) (linear relationship in FIG. 2). Furthermore, the DI value variation range of the readily available S45C equivalent material is indicated by a broken line in FIG. 2. For example, 0.56 inch for PC60 (wall thickness 8.25 mm) and 0.71 inch for PC200 (10.4 mm). It is necessary to manage the steel material range strictly and narrowly so that it has the following hardenability, the availability of the steel material is extremely difficult, and the wall thickness of the small and medium crawler belt bushes by the simple inner and outer surface simultaneous quenching method It turns out that the manufacturing method which forms a soft unquenched layer inside is very difficult.

また、図2の破線で示した鋼を使って必ずスルーハード化しない肉厚17mm以上の大型履帯ブッシュを製造する場合には、平均的なDI値(0.96inch)が低いために、外周面焼入れ硬化層深さが3.4mm程度に浅くなり(肉厚の約20%)、その履帯ブッシュの摩耗寿命が十分に改善できない問題が起こることは明らかである。   Moreover, when manufacturing a large crawler belt bush with a wall thickness of 17 mm or more that does not necessarily become through-hard using the steel shown by the broken line in FIG. 2, the average DI value (0.96 inch) is low, so the outer peripheral surface It is clear that the quench hardened layer depth becomes as shallow as about 3.4 mm (about 20% of the wall thickness), and there is a problem that the wear life of the crawler belt bush cannot be improved sufficiently.

前記の観点から、本発明では各種の熱処理方法を駆使して、履帯ブッシュ肉厚内部の冷却速度を遅らせることによって、より高いDI値の鋼材を使った履帯ブッシュ肉厚内部においてもパーライト変態を促進させようとするものである。   In view of the above, in the present invention, various heat treatment methods are used to slow down the cooling rate inside the crawler bush thickness, thereby promoting pearlite transformation even inside the crawler bush thickness using a steel material with a higher DI value. I will try to let you.

図3は、図1と同じ履帯ブッシュを850℃からの2秒間の内外周面同時冷却後に2秒冷却を中止し、さらにその後内外周面を同時に再冷却した場合の前記A,B,C位置での冷却線を示したものであり、A,B位置での温度は内外周面同時冷却を一時停止する間(2秒)に復温し、中心部のC位置では、550〜500℃で2秒間恒温処理されるような冷却挙動を取ることがわかる。   FIG. 3 shows the positions A, B, and C when the same crawler belt bushing as in FIG. 1 is stopped for 2 seconds after simultaneous cooling of the inner and outer peripheral surfaces from 850 ° C. for 2 seconds, and then the inner and outer peripheral surfaces are simultaneously recooled. The temperature at the A and B positions is reheated while the simultaneous cooling of the inner and outer peripheral surfaces is temporarily stopped (2 seconds), and at the C position at the center, the temperature is 550 to 500 ° C. It can be seen that the cooling behavior is such that it is isothermally treated for 2 seconds.

なお、前記CCT線図の最短時間でパーライト変態を起こす温度(ノーズ)が550℃近傍であり、DI値の増大に伴ってその鋼のノーズ位置がより長時間側に移動することはよく知られており、例えば図2の直線関係と各種肉厚の肉厚中心部温度が550℃になるための冷却時間の関係を求め、前記の2秒間の遅れがDI=0.7inchでスルーハード化するものをDI=1.05までスルーハード化しないようにすることができること示していることがわかる。   It is well known that the temperature (nose) at which pearlite transformation occurs in the shortest time in the CCT diagram is around 550 ° C., and that the nose position of the steel moves to the longer side as the DI value increases. For example, the relationship between the linear relationship in FIG. 2 and the cooling time for the wall thickness at various thicknesses to be 550 ° C. is obtained, and the delay of 2 seconds becomes through-hard at DI = 0.7 inch. It can be seen that it is shown that it is possible not to make the through-hardening until DI = 1.05.

また、図3に示した肉厚中心部の冷却曲線が恒温状態に近い状態にある場合にはCCT線図での検討よりTTT線図(恒温変態線図)で議論するほうが適正と考えられるので、図3中に0.5重量%C−0.91重量%Mn炭素鋼のTTT線図(太破線;50%パーライト変態線、太実線;100%パーライト変態線)とマルテンサイト開始温度(Ms)を示したが、通常、パーライト変態のための駆動力が大きい状態で起こるTTT線図はCCT線図よりより短時間側にあることから、肉厚中心部でのパーライト変態が起こりやすくなることは明らかである。   In addition, when the cooling curve at the center of the wall thickness shown in FIG. 3 is in a state close to a constant temperature state, it is considered more appropriate to discuss with a TTT diagram (a constant temperature transformation diagram) rather than a study with a CCT diagram. 3 shows a TTT diagram (bold broken line; 50% pearlite transformation line, thick solid line; 100% pearlite transformation line) and martensite start temperature (Ms) of 0.5 wt% C-0.91 wt% Mn carbon steel. However, since the TTT diagram that normally occurs when the driving force for pearlite transformation is large is on the shorter side than the CCT diagram, pearlite transformation is likely to occur at the center of the wall thickness. Is clear.

さらに、前記各冷却線との関係から、外周表面層近傍では、一旦マルテンサイト化した後に内周部からの熱拡散による焼戻しが起こり、B位置では、復温されるがその期間中に軟質組織形成されることはなく、再冷却によって硬化するが、肉厚中心のC位置ではパーライト変態が進行し軟質な組織が形成されることがわかる。   Further, from the relationship with each cooling line, in the vicinity of the outer peripheral surface layer, tempering by thermal diffusion from the inner peripheral portion occurs once it is martensite, and at the B position, the temperature is reheated, but the soft tissue is in that period. Although it is not formed and it hardens | cures by recooling, it turns out that pearlite transformation advances and a soft structure | tissue is formed in C position of a thickness center.

図4は前記冷却停止時間を4秒としたときの肉厚中心部(C位置)での冷却曲線を比べたものであり、前記冷却途中の停止時間をかなり長くできることは、かなり広範囲な焼入性の炭素鋼を使った履帯ブッシュの肉厚内部に軟質な未焼入れ層を形成させることができることは明らかである。   FIG. 4 is a comparison of the cooling curves at the center of the wall thickness (C position) when the cooling stop time is 4 seconds. The fact that the stop time during the cooling can be made considerably long is a fairly wide range of quenching. It is clear that a soft unquenched layer can be formed inside the wall thickness of the crawler belt bush made of high carbon steel.

なお、前記の方法は履帯ブッシュ肉厚内部の冷却速度を遅らせるための極めて有効な方法であることがわかるが、例えば、内外周面同時冷却を内外同時に停止するだけでなく、例えば、内周面冷却だけを一時停止するかもしくは再冷却しないで完全に停止することなどによっても、その肉厚内部の冷却速度を遅らせることができることは明らかである。   Although the above method is found to be an extremely effective method for delaying the cooling rate inside the crawler belt bush thickness, for example, not only the simultaneous cooling of the inner and outer peripheral surfaces is stopped simultaneously, but also, for example, the inner peripheral surface It is clear that the cooling rate inside the wall thickness can be delayed by temporarily stopping the cooling or completely stopping the cooling without recooling.

図5(a),(b)は、前記内外周面同時冷却開始後に冷却を一時停止させる等の考え方に従った本実施形態の履帯ブッシュの部分断面図を示したものであり、いずれの履帯ブッシュも全周面が焼入れ硬化されたマルテンサイト組織からなり、その肉厚内部にパーライト組織を含んだ未焼入れ硬化層が形成されているが、さらに図5(b)は、前記方法において内外周面同時冷却後、内周面冷却のみを止めて内部面側のマルテンサイトを内部からの熱拡散によってHRC45未満の焼戻しマルテンサイト組織としたものである。   5 (a) and 5 (b) are partial cross-sectional views of the crawler belt bush according to the present embodiment in accordance with the concept of temporarily stopping the cooling after the start of the simultaneous cooling of the inner and outer peripheral surfaces. The bush also has a martensite structure whose entire peripheral surface is quenched and hardened, and an unquenched hardened layer containing a pearlite structure is formed inside the wall thickness. Further, FIG. After the surface simultaneous cooling, only the inner peripheral surface cooling is stopped, and the martensite on the inner surface side is made into a tempered martensite structure less than HRC45 by thermal diffusion from the inside.

またさらに、履帯ブッシュの肉厚内部の冷却速度を遅らせる方法としては、全体加熱した後に外周面もしくは内周面の一方を所定時間先行冷却し、肉厚中心部を遅く冷却することによってパーライト変態を起こさせ、所定時間後に内外周面を両方冷却する方法が有効であることは明らかである。   Furthermore, as a method of delaying the cooling rate inside the wall thickness of the crawler belt bush, after the entire heating, one of the outer peripheral surface or the inner peripheral surface is precooled for a predetermined time, and the pearlite transformation is performed by cooling the central portion of the wall thickness slowly. It is obvious that a method of raising both the inner and outer peripheral surfaces after a predetermined time is effective.

図6は、前記と同じ肉厚の履帯ブッシュを850℃に加熱した後、内周面から4秒間先行冷却し、その後外周面を冷却した場合の各工程における肉厚断面における各温度分布を示したものであり、同図中の内外周面同時冷却時の温度分布と比較して、肉厚中心部の冷却速度が明らかに遅らされており、図1に併記したCカーブを参照することによって、履帯ブッシュ肉厚内部に軟質な未焼入れ層を形成させる有効な手段であることは明らかである。   FIG. 6 shows each temperature distribution in the thickness section in each step when the crawler belt bush having the same thickness as above is heated to 850 ° C., then precooled from the inner peripheral surface for 4 seconds, and then the outer peripheral surface is cooled. Compared to the temperature distribution during simultaneous cooling of the inner and outer peripheral surfaces in the figure, the cooling rate at the center of the wall thickness is clearly delayed. Refer to the C curve shown in FIG. Thus, it is clear that this is an effective means for forming a soft unquenched layer inside the thickness of the crawler belt bush.

また、図6の場合とは逆に、外周面先行冷却後に内周面を冷却する方法であっても、ほぼ図6と同程度の肉厚中心部の冷却速度を有効に遅らせることができることは明らかである。   Also, contrary to the case of FIG. 6, even with the method of cooling the inner peripheral surface after the outer peripheral surface precedent cooling, it is possible to effectively delay the cooling rate of the thickness center portion substantially the same as FIG. it is obvious.

より具体的には、肉厚10.4mmのPC200の履帯ブッシュにおいては内外周面同時冷却によってスルーハード化する鋼のDI値が0.72inchであることを上述したが、内周面のみの冷却によってスルーハード化するDI値が約2倍の1.45inchとなることから、この外周面もしくは内周面の一方を所定時間先行冷却する方法に従うと焼入性幅の広い鋼を使っても容易に肉厚内部にパーライト変態層を形成させることができることがわかる。   More specifically, in the crawler belt bush of PC200 with a wall thickness of 10.4 mm, it has been described above that the DI value of steel that is through-hardened by simultaneous cooling of the inner and outer peripheral surfaces is 0.72 inch, but only the inner peripheral surface is cooled. The DI value of through-hardening is approximately doubled to 1.45 inches, so it is easy to use steel with a wide hardenability by following the method of precooling one of the outer peripheral surface or inner peripheral surface for a predetermined time. It can be seen that a pearlite transformation layer can be formed inside the wall thickness.

図7(a),(b)および(c)は、前記外周面もしくは内周面の一方を先行冷却し、所定時間後に全周を冷却する考え方に従った本実施形態の履帯ブッシュの部分断面図を示したものであり、図7(a)は内周面と外周面の冷却媒体を仕切る治具を端面部内周面側に押し当て、外周面と端面部が同時に外周面冷却媒体で冷却されるようにしたもので、外周面と端面部を先行冷却するかもしくは内周面を先行冷却し、所定時間後に全周面が冷却されるようにして肉厚内部のパーライト組織を含んでなる軟質層が端面部内周面につながるように製造されるものであり、さらに、図7(b)はその熱処理中の内周面冷却を制御して、内周面に形成された焼入れ硬化層を肉厚中心部の熱拡散によってHRC45未満の硬さに焼戻したものである。また、図7(c)は内周面と外周面の冷却媒体を仕切る治具を端面部外周面側に押し当て、内周面と端面部が同時に外周面冷却媒体で冷却されるようにし、外周面と端面部を先行冷却するかもしくは内周面を先行冷却し、所定時間後に全周面が冷却されるようにして肉厚内部のパーライト組織を含んでなる軟質層が端面部外周面につながるように製造されるものである。   7 (a), 7 (b) and 7 (c) are partial cross-sections of the crawler belt bushing of the present embodiment in accordance with the concept of pre-cooling one of the outer peripheral surface or the inner peripheral surface and cooling the entire periphery after a predetermined time. FIG. 7 (a) shows a diagram in which a jig for partitioning the cooling medium between the inner peripheral surface and the outer peripheral surface is pressed against the inner peripheral surface side of the end surface, and the outer peripheral surface and the end surface are simultaneously cooled by the outer peripheral surface cooling medium. The outer peripheral surface and the end surface portion are pre-cooled or the inner peripheral surface is pre-cooled, and the entire peripheral surface is cooled after a predetermined time, thereby including a pearlite structure inside the wall thickness. The soft layer is manufactured so as to be connected to the inner peripheral surface of the end face portion. Further, FIG. 7B controls the cooling of the inner peripheral surface during the heat treatment, and the hardened hardening layer formed on the inner peripheral surface is formed. It is tempered to a hardness of less than HRC45 by thermal diffusion at the thickness center. In addition, FIG. 7 (c) presses a jig that partitions the cooling medium between the inner peripheral surface and the outer peripheral surface against the outer peripheral surface side of the end surface, so that the inner peripheral surface and the end surface are simultaneously cooled by the outer peripheral surface cooling medium, The outer peripheral surface and the end surface portion are precooled or the inner peripheral surface is precooled, and the entire peripheral surface is cooled after a predetermined time so that the soft layer containing the pearlite structure inside the wall is formed on the outer peripheral surface. It is manufactured to be connected.

さらにまた、履帯ブッシュを全体加熱した後に、内周面もしくは外周面の一方から先行冷却する際に、その冷却面の反対面から誘導加熱を施すことによって肉厚に極めて大きな温度勾配を形成させ、かつ、肉厚芯部の冷却速度を最も遅らせることができることは明らかであり、肉厚内部にパーライト変態層が形成される所定時間後に誘導加熱を止めて、その加熱面を冷却するこの方法は、誘導加熱による誘導加熱深さや投入電力および先行冷却時間を適正に選定することによって、前記使用する鋼の焼入性に関する制限を大幅に緩和するとともに肉厚内部におけるパーライト変態層形成位置とその幅を任意に調整できる特徴を有することがわかる。   Furthermore, after the entire crawler belt bushing is heated, when it is pre-cooled from one of the inner peripheral surface or the outer peripheral surface, an extremely large temperature gradient is formed in the wall thickness by applying induction heating from the opposite surface of the cooling surface, And it is clear that the cooling rate of the thick core part can be most delayed, and this method of stopping the induction heating after a predetermined time after the pearlite transformation layer is formed inside the thickness and cooling the heated surface, By appropriately selecting the induction heating depth, the input power, and the preceding cooling time by induction heating, the restriction on the hardenability of the steel used is greatly relaxed, and the pearlite transformation layer formation position and its width inside the wall thickness are reduced. It can be seen that it has features that can be arbitrarily adjusted.

図8は前記の関係を図示したものであり、履帯ブッシュを全体加熱した後に内周面を先行冷却する状態においては図中の線で示すような温度勾配を形成するが、その先行冷却中に外周面からの誘導加熱を施した場合には、図中の矢印で示すような更なる急激な温度勾配が形成され、550℃近傍にある肉厚内部位置で前述のTTT変態図やCCT変態図に記載されるパーライト変態が優先しておこること、さらに、肉厚中心部近傍まで焼入れ可能な温度以上に外周面から加熱し、その誘導加熱を止めて外周面冷却を実施することによって、深い外周面焼入れ硬化層形成することができることは明らかであり、摩耗寿命の改善に適した履帯ブッシュを製造するのに好ましい方法であることがわかる。   FIG. 8 illustrates the above-described relationship. In the state where the inner peripheral surface is precooled after the crawler belt bush is entirely heated, a temperature gradient as shown by the line in the figure is formed. When induction heating is performed from the outer peripheral surface, a further steep temperature gradient as shown by the arrow in the figure is formed, and the above-mentioned TTT transformation diagram and CCT transformation diagram at the internal thickness position near 550 ° C. The pearlite transformation described in (1) takes precedence, and further, by heating from the outer peripheral surface to a temperature that can be quenched to the vicinity of the center of the wall thickness, by stopping the induction heating and cooling the outer peripheral surface, It is clear that a surface-quenched hardened layer can be formed, which proves to be a preferred method for manufacturing a crawler belt bushing suitable for improving wear life.

さらにまた、前記内周面の先行冷却を外周面からの誘導加熱中もしくは誘導加熱を止めて外周面冷却中に一時停止するかもしくはそのまま完全停止することによって外周面側からの熱拡散や外周面からの誘導加熱による熱拡散で内周面のマルテンサイト組織が焼戻されることは明らかである。   Furthermore, the heat diffusion from the outer peripheral surface side or the outer peripheral surface can be performed by temporarily stopping the preceding cooling of the inner peripheral surface during induction heating from the outer peripheral surface or by stopping induction heating and cooling the outer peripheral surface as it is. It is clear that the martensitic structure of the inner peripheral surface is tempered by thermal diffusion due to induction heating from.

前記外周面からの誘導加熱方法とは逆の内周面からの誘導加熱方法をとる場合においても、外周面先行冷却中の内周面誘導加熱が内周面側により集中されるようにすることで、外周面硬化層深さをより深くし、内周面焼入れ硬化層を浅くすることができることも明らかである。   Even when the induction heating method from the inner peripheral surface opposite to the induction heating method from the outer peripheral surface is taken, the inner peripheral surface induction heating during the outer peripheral surface preceding cooling is concentrated on the inner peripheral surface side. Thus, it is also clear that the outer peripheral surface hardened layer can be made deeper and the inner peripheral surface hardened layer can be made shallower.

図9(a),(b)は、上述の外周面もしくは内周面からの誘導加熱を施しながらその反対面から先行冷却する考え方にしたがった本実施形態の履帯ブッシュの部分断面図を示したものであり、履帯ブッシュの摩耗寿命を改善するために、外周面側焼入れ硬化層をより深くするとともに、図9(b)では、内周面焼入れ硬化層を高靭性な焼戻しマルテンサイト組織としたものである。また、肉厚内部のパーライト組織を含む軟質層は、前記の図7に示すように、内周面と外周面の冷却媒体を仕切る治具を押し当てる位置と内周面と外周面のどちらを誘導加熱するのかによって外周面,内周面もしくは端面部につながるように調整されることは明らかである。   9 (a) and 9 (b) show partial cross-sectional views of the crawler belt bushing of the present embodiment in accordance with the concept of performing prior heating from the opposite surface while performing induction heating from the outer peripheral surface or inner peripheral surface described above. In order to improve the wear life of the crawler belt bush, the outer peripheral surface side hardened layer is made deeper, and in FIG. 9B, the inner peripheral surface hardened layer is made tough tempered martensite structure. Is. In addition, as shown in FIG. 7, the soft layer including the pearlite structure inside the wall has either a position where the jig for partitioning the cooling medium between the inner peripheral surface and the outer peripheral surface is pressed, the inner peripheral surface, or the outer peripheral surface. It is obvious that the adjustment is made so as to be connected to the outer peripheral surface, the inner peripheral surface or the end surface portion depending on whether induction heating is performed.

図10は、外径70mm、内径45.2mm、肉厚さ12.4mmの履帯ブッシュを、3kHz、200kWの電源を用いて、多段階に電力調整しながら960℃に全体加熱したときの外周面、肉厚中心部および内周面での誘導加熱状況を示している。   FIG. 10 shows an outer peripheral surface when a crawler belt bush having an outer diameter of 70 mm, an inner diameter of 45.2 mm, and a wall thickness of 12.4 mm is heated to 960 ° C. while adjusting power in multiple steps using a power source of 3 kHz and 200 kW. The induction heating state in the wall thickness center part and the inner peripheral surface is shown.

この図10から明らかなように、内周面温度は加熱開始から約12秒でほぼA1温度(720℃)に達するが、その時の肉厚中心部ではほぼ外周面温度とほぼ同じ930〜940℃に加熱されており、この状態で焼入れた履帯ブッシュは外周面硬化層として肉厚さの1/2以上が得られることは明らかである。また、内周面昇温曲線を参考にすれば、内周面硬さが軟化し過ぎないタイミングでの内周面冷却が可能であり、さらに、あらかじめ内周面を焼入れ硬化ものや、あるいは油焼入れなどによって肉厚全体を硬化させた履帯ブッシュを素材として外周面からの高周波加熱を実施することによって、内周面に焼戻しされた硬化層を残しながら肉厚中心部に軟質層を形成し、かつ、端面硬化層が肉厚さを1/2以上に形成し、且つ肉厚さ中心部の軟化層が端面部近傍の内周面側に繋げることができるのは明らかである。この製造方法は、内径面が小径で、内周面を高周波焼入れしにくい小径な履帯ブッシュの製造方法として極めて有効であり、内周面が高温短時間の焼戻し処理をかね、別工程での焼戻し処理を必要としない低コストな製造方法である。   As apparent from FIG. 10, the inner peripheral surface temperature reaches about A1 temperature (720 ° C.) in about 12 seconds from the start of heating, but at the center of the thickness at that time, it is substantially the same as the outer peripheral surface temperature of 930 to 940 ° C. It is clear that the crawler belt bushing quenched in this state can obtain a thickness of ½ or more of the thickness as a hardened outer peripheral surface. In addition, referring to the inner peripheral surface temperature rise curve, it is possible to cool the inner peripheral surface at a timing at which the inner peripheral surface hardness does not become too soft, and the inner peripheral surface is previously quenched and hardened, or oil By performing high-frequency heating from the outer peripheral surface using a crawler belt bush that has been hardened as a whole by quenching or the like, a soft layer is formed at the center of the thickness while leaving a hardened layer tempered on the inner peripheral surface, In addition, it is obvious that the end face hardened layer can be formed with a thickness of 1/2 or more, and the softened layer at the center of the thickness can be connected to the inner peripheral surface near the end face. This manufacturing method is extremely effective as a manufacturing method for a small-diameter crawler belt bushing with a small inner diameter surface and high-frequency quenching of the inner peripheral surface. The inner peripheral surface also serves as a tempering process at a high temperature for a short time, and is tempered in a separate process. This is a low-cost manufacturing method that does not require processing.

図11(a)〜(c)は、上述の考えに従った本実施形態の履帯ブッシュの部分断面図を示すものであり、図12はそのときの履帯ブッシュ肉厚断面における硬さ分布を示したものである。ここで、図11(a)(b)は、履帯ブッシュ素材を一旦焼入れし、その肉厚全体を焼入れ硬化させた後(図12(a)中(a)、(b)線)に、外周面から高周波焼入れすることによって、肉厚芯部にHRC45未満の軟質な焼戻しマルテンサイト組織の軟質層1(図12(b)中の(a)線)、または、その軟質層1と外周面焼入れ硬化層2との境近傍にパーライトを含む軟質層3(図12(b)中の(b)線)が形成され、それらの軟質層1,3が端面部焼入れ硬化層4を避けて、端面部近傍の内周面に繋がって形成されるオイル封入式履帯ブッシュ5の部分断面図である。また、図11(c)、(b)は履帯ブッシュ素材の少なくとも内周面を焼入れし、パーライト組織を含んだその肉厚芯部に向かって内周面に焼入れ硬化層を形成した(図12(a)中(b)、(c)線)後、前記と同様に外周面からの高周波焼入れを施したオイル封入式履帯ブッシュ5の部分断面図である(図12(b)中の(b)、(c)線)。なお、図11中、符号6は内周面部の焼戻しマルテンサイト硬化層、符号7はHRC45未満のフェライト+パーライト未焼入れ硬化層である。   11 (a) to 11 (c) are partial cross-sectional views of the crawler belt bushing of the present embodiment in accordance with the above-mentioned idea, and FIG. 12 shows the hardness distribution in the crawler belt bush thickness cross section at that time. It is a thing. Here, FIGS. 11 (a) and 11 (b) show the outer circumference after the crawler belt bush material is once quenched and the entire thickness is quenched and hardened (lines (a) and (b) in FIG. 12 (a)). By induction hardening from the surface, the soft core 1 (line (a) in FIG. 12 (b)) having a soft tempered martensite structure of less than HRC45 in the thick core portion, or the soft layer 1 and the outer peripheral surface is quenched. A soft layer 3 containing pearlite (line (b) in FIG. 12B) is formed in the vicinity of the boundary with the hardened layer 2, and the soft layers 1 and 3 avoid the end face hardened hardened layer 4 and 2 is a partial cross-sectional view of an oil-filled crawler belt bush 5 formed to be connected to an inner peripheral surface in the vicinity of a portion. FIG. 11 (c) and 11 (b), at least the inner peripheral surface of the crawler belt bush material is quenched, and a hardened hardened layer is formed on the inner peripheral surface toward the thick core portion including the pearlite structure (FIG. 12). After (b) and (c) lines in (a), it is a partial sectional view of the oil-filled crawler belt bush 5 subjected to induction hardening from the outer peripheral surface in the same manner as described above ((b) in FIG. 12 (b)) ), (C) line). In addition, in FIG. 11, the code | symbol 6 is a tempered martensite hardened layer of an internal peripheral surface part, and the code | symbol 7 is a ferrite + pearlite unhardened hardened layer below HRC45.

前記肉厚全体を焼入れ硬化するための鋼材はより焼入れ性の高い高価なものを使用することになるのに対して、少なくとも内周面が焼入れ硬化される鋼材は焼入れ性を低く抑えることができるので、より安価な鋼材(例えば0.3〜1.5重量%C、〜1.5重量%Mn、〜0.5重量%Cr、Bの2種以上の合金元素を含有する中、高炭素鋼)が利用できる特徴がある。   The steel material for quenching and hardening the entire thickness uses an expensive material with higher hardenability, whereas at least the steel material whose inner peripheral surface is hardened and hardened can keep the hardenability low. Therefore, a cheaper steel material (for example, 0.3 to 1.5% by weight C, ~ 1.5% by weight Mn, ~ 0.5% by weight Cr, medium carbon containing two or more kinds of alloy elements, high carbon Steel) is available.

また、本実施形態では外周面から高周波加熱中に内周面の焼入れ硬化層が、外周面からの熱拡散によって焼戻されるため、履帯ブッシュの靭性回復のために従来から実施されている焼戻し工程を廃止することができ、さらに、その結果としてより耐摩耗を必要とする外周面と端面部の焼入れ硬化層をより高硬度な状態で使用できることは極めて有効である。   Further, in the present embodiment, the hardened hardened layer on the inner peripheral surface is tempered by thermal diffusion from the outer peripheral surface during high-frequency heating from the outer peripheral surface, so that a tempering step that has been conventionally performed to recover the toughness of the crawler belt bushing. Further, it is extremely effective that the hardened hardened layer on the outer peripheral surface and the end surface portion that require more wear resistance can be used in a higher hardness state as a result.

さらに、通常、履帯ブッシュは外周面からの摩耗深さが肉厚の1/2に至る時点で履帯ブッシュ寿命として交換することが実施されているために、履帯ブッシュの外周面硬化層を肉厚の40〜70%まで深くすることが摩耗寿命を延ばす方策としてより有効であり、本実施形態では、外周面からの高周波加熱を施し始める際から、または、途中から内周面を各種の方法で冷却することによって、内周面の焼入れ硬化層が軟質に焼戻しされ過ぎないようにしながら外周面からの深い高周波焼入れができるようにした。   Further, since the crawler belt bushing is usually replaced as the life of the crawler belt bush when the wear depth from the outer peripheral surface reaches 1/2 of the wall thickness, the hardened outer peripheral surface of the crawler belt bush is made thicker. It is more effective as a measure for extending the wear life to deepen up to 40 to 70% of the material. In this embodiment, the inner peripheral surface is started by various methods from the start of high-frequency heating from the outer peripheral surface or from the middle. By cooling, the hardened hardened layer on the inner peripheral surface was not tempered too softly, and deep induction hardening from the outer peripheral surface was made possible.

外周面からの高周波加熱方法としては、図13(a)に示されるように端面部、外周面が効率的に加熱されるような鞍型コイル8を用いて高周波焼入れする方法も有効であるが、図13(c)に示されるように端面部が効率的に加熱されるようにした渦巻きコイル状の誘電子9を用いる方法が加熱大電力の投入の観点から有効である。ここで、図13(b)は図13(a)のA矢視図である。   As a high-frequency heating method from the outer peripheral surface, a method of induction hardening using a saddle coil 8 in which the end surface portion and the outer peripheral surface are efficiently heated as shown in FIG. 13A is also effective. As shown in FIG. 13 (c), the method using the spiral coil-shaped dielectric 9 in which the end face is efficiently heated is effective from the viewpoint of supplying large heating power. Here, FIG.13 (b) is an A arrow view of Fig.13 (a).

使用する高周波加熱用の周波数は履帯ブッシュの肉厚によって最適化されるものであるが、設備の共有性を考慮した場合には、1〜20kHz程度の高周波電源を用いることが好ましく、履帯ブッシュ5を回転させながら、外周面からの高周波加熱が均質化されるように実施し、所定時間後に外周からの高周波加熱を止めて、外周面から水スプレーなどによって冷却して焼入れる操業を行うのが良い。更に内周面焼入れ硬化層の硬さをHRC45以上に確保しながら、より深い外周面硬化層を得る場合には、前述したように内周面からの冷却を実施することが必要であり、内周面温度が500℃以上に過熱されないように制御することが必要である。   The frequency for high-frequency heating to be used is optimized by the thickness of the crawler belt bush. However, when considering the sharing of equipment, it is preferable to use a high frequency power source of about 1 to 20 kHz. The high-frequency heating from the outer peripheral surface is made uniform while rotating, the high-frequency heating from the outer periphery is stopped after a predetermined time, and the quenching operation is performed by cooling from the outer peripheral surface with water spray or the like. good. Further, in order to obtain a deeper outer peripheral surface hardened layer while securing the hardness of the inner peripheral hardened layer at HRC 45 or more, it is necessary to perform cooling from the inner peripheral surface as described above. It is necessary to control the peripheral surface temperature so as not to be overheated to 500 ° C. or higher.

また、この場合においては、内周面温度を内周面冷却によって適切にコントロールすることによって、外周面側からの高周波加熱による内周面焼入れ硬化層の硬さが調整できることが大きな製造方法の特徴となり、例えば、内周面焼入れ硬化層をHRC45未満に制御することによって内周面焼入れ硬化層をセメンタイト粒が分散したマルテンサイト組織に改質することができ、より衝撃的荷重に耐える、高靭性の、オイル封入式履帯ブッシュを製造することができる。   Also, in this case, a significant feature of the manufacturing method is that the hardness of the hardened hardened inner peripheral surface can be adjusted by high-frequency heating from the outer peripheral surface side by appropriately controlling the inner peripheral surface temperature by cooling the inner peripheral surface. For example, by controlling the inner surface hardened layer to be less than HRC45, the inner surface hardened layer can be modified to a martensite structure in which cementite grains are dispersed, and it can withstand shock loads and has high toughness. An oil-filled crawler belt bush can be manufactured.

図14(a)、(b)、(c)、(d)は前述の内周面冷却方法を示したものである。図14(a)は、履帯ブッシュ5両端面部に、内周冷却媒体が外周面側に漏れないようにする仕切り治具10,11を配し、さらに、水、水溶性焼入れ液等の冷却媒体導入管12を履帯ブッシュ5内周面に配して、この冷却媒体導入管12内を流れる冷却媒体の方向を変えて、その冷却媒体導入管12外周面と履帯ブッシュ5内周面で構成される隙間に、履帯ブッシュ5軸方向に冷却媒体を流す層流冷却方法で内周面の冷却を制御する方法を示すものである。この層流冷却方法は1秒以内での冷媒の流れをON−OFFできるために、より正確な内周面冷却が可能であるので好ましい方法である。   14A, 14B, 14C, and 14D show the inner peripheral surface cooling method described above. FIG. 14A shows partition jigs 10 and 11 that prevent the inner peripheral cooling medium from leaking to the outer peripheral surface side at both end portions of the crawler belt bush 5, and further, a cooling medium such as water or a water-soluble quenching liquid. The introduction pipe 12 is arranged on the inner peripheral surface of the crawler belt bush 5, and the direction of the cooling medium flowing in the cooling medium introduction pipe 12 is changed to constitute the outer peripheral surface of the cooling medium introduction pipe 12 and the inner peripheral surface of the crawler belt bush 5. A method of controlling the cooling of the inner peripheral surface by a laminar cooling method in which a cooling medium is flowed in the axial direction of the crawler belt bush 5 in the gap. This laminar cooling method is a preferable method because the refrigerant flow within 1 second can be turned on and off, and more accurate inner peripheral surface cooling is possible.

また、図14(b)は、冷却媒体導入管12として、ノズルタイプのものを使用する例であり、水以外にも空気、噴霧などの冷却媒体を使用するのに好ましいものである。図14(c)は、履帯ブッシュ5端面近傍を避けた内周面を熱伝導性の良い金属材料性の内径コレットチャック13によって保持し、外周面からの高周波加熱による内周面の温度上昇を抑制する方法である。なお、この内径コレットチャック13から空気を吹き付けることや水などを沁みださせる等によってその内径コレットチャック13に冷却機能を持たせるのが好ましい。   FIG. 14B shows an example in which a nozzle type pipe is used as the cooling medium introduction pipe 12, and it is preferable to use a cooling medium such as air or spray in addition to water. FIG. 14 (c) shows that the inner peripheral surface avoiding the vicinity of the end surface of the crawler belt bush 5 is held by an inner diameter collet chuck 13 made of a metal material having good thermal conductivity, and the temperature of the inner peripheral surface is increased by high frequency heating from the outer peripheral surface. It is a method of suppressing. The inner diameter collet chuck 13 is preferably provided with a cooling function by blowing air from the inner diameter collet chuck 13 or squeezing water or the like.

また、この図14中に示した仕切り治具10,11のように、仕切り治具を履帯ブッシュ端面近傍内周面を覆うような形状とすることによって、前述の内周面冷却による履帯ブッシュ端面部の内周面側からの冷却が遅れ、端面部のより安定した焼入れ硬化層が得られるので、図14(a)、(b)、(c)のいずれの方法においても、この仕切り治具を適用することが好ましい。なお、図14(d)は内周面に冷しがね(または水冷された冷しがね)14を配したものであって、最も内周面冷却効果の少ない方法である。   Further, like the partitioning jigs 10 and 11 shown in FIG. 14, the partitioning jig is shaped so as to cover the inner peripheral surface in the vicinity of the crawler belt bushing end surface, whereby the crawler belt bushing end surface by the inner peripheral surface cooling described above. Since cooling from the inner peripheral surface side of the portion is delayed and a more stable hardened and hardened layer of the end surface portion is obtained, this partition jig can be used in any of the methods of FIGS. 14 (a), (b), and (c). Is preferably applied. FIG. 14D shows a method in which a cooling glass (or water-cooled cooling glass) 14 is arranged on the inner peripheral surface, and has the least inner peripheral surface cooling effect.

図15(a)、(b)、(c)は、前述のコレットチャック方式の他の例を示したものである。(b)は履帯ブッシュ端面部近傍の内周面部を断熱するように内径コレットチャック13に断熱材15を配したものである。こうすることで、端面部の焼入れ硬化層がより短時間の外周面からの加熱によって形成され易くなり、熱処理サイクルを短縮させるのに好ましい方法である。また、(c)はコレットチャック13中心部に空気、噴霧等冷却媒体が噴出せる冷却ノズル16を設けたものである。   FIGS. 15A, 15B, and 15C show another example of the above-described collet chuck method. (B) shows that the heat insulating material 15 is arranged on the inner diameter collet chuck 13 so as to insulate the inner peripheral surface near the end surface of the crawler belt bush. By doing so, the hardened hardened layer at the end face portion is easily formed by heating from the outer peripheral surface for a shorter time, which is a preferable method for shortening the heat treatment cycle. (C) shows a cooling nozzle 16 at the center of the collet chuck 13 through which a cooling medium such as air or spray can be ejected.

図16(a)、(b)は、外周面からの移動式高周波焼入れ法による履帯ブッシュの外周面焼入れ硬化層および端面部焼入れ硬化層を形成させる製造方法を示したものである。図16(a)は前述の履帯ブッシュ5を連続的に矢印B方向に押し込みながら高周波加熱コイル9で加熱して、外周面冷却ノズル17から水もしくは水溶性焼入れ液、噴霧等の冷却媒体を吹き付けて焼入れ硬化する方法を示したものである。この際には、端面部近傍での履帯ブッシュ送りの速度V1を中央付近での送り速度V2より遅くすることによって、端面部近傍が十分に加熱され、それに続く冷却によって端面部での焼入れ硬化層が幅広く形成される。また、内周面硬さをHRC45以上に確保しながら、深い外周面焼入れ硬化層を形成するには、図16(b)に示されるように履帯ブッシュ5内周面を内周面冷却ノズル17Aにて前述とほぼ同じ原理で、水、水溶性焼入れ液、空気、噴霧の吹き付け等で適切に冷却しながら、外周面からの深い高周波加熱とそれに続く冷却を実施すると良い。なお、図16において、符号18にて示されるのは、隣接する履帯ブッシュ5,5間の隙間に介挿される隙間治具である。   16 (a) and 16 (b) show a manufacturing method for forming the outer peripheral surface hardened layer and the end surface hardened layer of the crawler belt bush by the mobile induction hardening method from the outer peripheral surface. FIG. 16A shows that the above-mentioned crawler belt bush 5 is continuously pressed in the direction of arrow B and heated by the high-frequency heating coil 9 and sprayed with a cooling medium such as water or a water-soluble quenching liquid or spray from the outer peripheral surface cooling nozzle 17. Shows a method of quenching and hardening. At this time, the crawler belt bushing feed speed V1 in the vicinity of the end face is made slower than the feed speed V2 in the vicinity of the center, so that the vicinity of the end face is sufficiently heated, and the hardened hardened layer in the end face by the subsequent cooling. Is widely formed. Further, in order to form a deep hardened hardened layer while securing the inner peripheral surface hardness to be equal to or higher than HRC45, as shown in FIG. 16B, the inner peripheral surface of the crawler belt bush 5 is changed to the inner peripheral surface cooling nozzle 17A. In the above-mentioned principle, it is preferable to carry out deep high-frequency heating from the outer peripheral surface and subsequent cooling while appropriately cooling with water, water-soluble quenching liquid, air, spraying, etc. on the same principle as described above. In FIG. 16, what is indicated by reference numeral 18 is a gap jig that is inserted into the gap between the adjacent crawler belt bushings 5 and 5.

なお、設備上の便利さからすれば、必ずしも履帯ブッシュ5を移動させることは無く、高周波加熱コイル9と冷却ノズル17,17Aを移動させても良い。また、履帯ブッシュ5を必ずしも連続的に送る必要もない。さらに、図16に示されるような横型でなく、縦型で移動焼入れすることも可能であり、例えば、図17に示されるように、図14,15に示されるような各種内周面冷却方法を併用しながら外周面からの高周波焼入れを実施することもできる。   In terms of facility convenience, the crawler belt bush 5 is not necessarily moved, and the high-frequency heating coil 9 and the cooling nozzles 17 and 17A may be moved. Further, it is not always necessary to send the crawler belt bush 5 continuously. Furthermore, it is also possible to move and quench in the vertical type instead of the horizontal type as shown in FIG. 16, for example, as shown in FIG. 17, various inner peripheral surface cooling methods as shown in FIGS. It is also possible to carry out induction hardening from the outer peripheral surface while using together.

本実施形態において、肉厚全体を焼入れ硬化した履帯ブッシュを外周面から急速加熱しすぎた場合には、いわゆる重ね焼入れによる焼割れが発生する危険があるので、外周面からの高周波加熱初期の昇温速度をやや遅くすることが好ましく、このような加熱速度調整ができる全体高周波加熱方法が移動式高周波加熱法より好ましい。さらに、前述の内周面焼入れ硬化した履帯ブッシュでは外周面からの急速加熱によっても焼割れを発生する危険性が無いので、より好ましい。   In this embodiment, if the crawler belt bush that has been hardened and hardened as a whole is heated too quickly from the outer peripheral surface, there is a risk of causing cracking due to so-called multiple quenching. It is preferable to make the temperature rate slightly slower, and the whole high frequency heating method capable of adjusting the heating rate is more preferable than the mobile high frequency heating method. Furthermore, the above-described inner circumferential surface hardened and hardened crawler belt bushing is more preferable because there is no risk of quenching cracks even by rapid heating from the outer peripheral surface.

さらに、外周面からの全体高周波加熱による履帯ブッシュの昇温曲線(図10)を参考にすると、内周面温度が焼入れ硬化処理が可能になる800℃以上に加熱される状態で、外周面からの高周波加熱を止めるか、または、その加熱を継続しながら、内周面のみを強烈に先行冷却し、先行冷却中に一旦焼入れマルテンサイト層を形成した後に(所定時間後に)内周面冷却を止め、外周面からの熱拡散による内周面焼入れ硬化層をHRC45未満になるように焼戻しながら、外周面からの高周波加熱を止めて外周面からの冷却を実施する方法が強靭な履帯ブッシュの製造方法として適していることが分かる。   Furthermore, referring to the temperature rise curve of the crawler belt bush by overall high-frequency heating from the outer peripheral surface (FIG. 10), the inner peripheral surface temperature is heated to 800 ° C. or higher so that quench hardening can be performed. While stopping the high-frequency heating or continuing the heating, only the inner peripheral surface is strongly pre-cooled, and after quenching martensite layer is formed during the pre-cooling (after a predetermined time), the inner peripheral surface is cooled. The method of stopping the high frequency heating from the outer peripheral surface and cooling from the outer peripheral surface while tempering the hardened hardened inner peripheral surface by thermal diffusion from the outer peripheral surface to be less than HRC45, and manufacturing the tough track belt bush It turns out that it is suitable as a method.

図18(a)、(b)、(c)は、この製造方法によって製造される履帯ブッシュの部分断面図を示したものである。この方法によれば、前述の履帯ブッシュ肉厚全体を焼入れ硬化したり、履帯ブッシュの内周面を焼入れ硬化させておく熱処理を必要としないことから極めて安価な製造方法となることは明らかである。さらに、HRC45未満のセメンタイト粒が分散した焼戻しマルテンサイト組織層19は、Uノッチシャルピー衝撃値が確実に5kg−m/cm以上になるように設定されているが、その焼戻し温度400℃以上の温度で短時間焼き戻されている状態が好ましい。なお、図18(a)(b)において、符号20にて示されるのは、冷却途中で析出するフェライト、パーライト、ベイナイト、マルテンサイトの1種以上が焼戻された組織層である。 FIGS. 18A, 18B, and 18C are partial cross-sectional views of a crawler belt bush manufactured by this manufacturing method. According to this method, it is clear that it is an extremely inexpensive manufacturing method because the entire thickness of the crawler belt bushing is quenched and hardened, and heat treatment for quenching and hardening the inner peripheral surface of the crawler belt bush is not required. . Furthermore, the tempered martensite structure layer 19 in which cementite grains less than HRC45 are dispersed is set so that the U-notch Charpy impact value is surely 5 kg-m / cm 2 or more, but the tempering temperature is 400 ° C. or more. A state of being tempered for a short time at a temperature is preferable. In FIGS. 18 (a) and 18 (b), reference numeral 20 indicates a structure layer in which one or more of ferrite, pearlite, bainite, and martensite that are precipitated during cooling are tempered.

本発明者らは、ほぼ同じ手法で、内周面をHRC45以上の硬さの焼入れマルテンサイト組織の硬化層とする技術を先願として提案したが、この先願においては、より硬質な焼入れマルテンサイト組織を得るために、内周面先行冷却をし続けるために、仕切り治具との履帯ブッシュの接触部が変態途中に変形し、この部位からの内周面冷却媒体が漏れやすくなり、その端面部での焼きむらが発生しやすい問題があった。これに対して、本実施形態では、仕切り治具が接触する履帯ブッシュ両端面部近傍の面取り形状を外周面の面取り形状より大きくすること、および/または、より高靭性のHRC45未満の焼戻しマルテンサイトを形成させるために内周面先行冷却を途中で一旦止めることによって、仕切り治具からの冷却媒体の漏れによる焼きむらに対する防止を図ったものであり、一連の焼入れ操作で内、外周面の熱処理が完了する経済効果は大きい。さらに、その履帯ブッシュ肉厚中心部では再加熱再焼入れによる顕著な結晶粒の微細化(ASTM粒度番号で9〜13番)が図られ、履帯ブッシュの強度向上に寄与することは明らかである(図18参照)。   The inventors of the present application have proposed as a prior application a technique in which the inner peripheral surface is a hardened layer of a hardened martensite structure having a hardness of HRC45 or higher by substantially the same method, but in this prior application, a harder hardened martensite is proposed. In order to continue cooling the inner peripheral surface in order to obtain a structure, the contact portion of the crawler belt bush with the partitioning jig is deformed during transformation, and the inner peripheral surface cooling medium from this part is likely to leak, and its end surface There was a problem that uneven burning was likely to occur in the part. On the other hand, in the present embodiment, the chamfered shape in the vicinity of both ends of the crawler belt bush with which the partition jig comes into contact is made larger than the chamfered shape of the outer peripheral surface, and / or the tempered martensite having a higher toughness than HRC45 is provided. In order to form, the inner peripheral surface precedent cooling is temporarily stopped halfway to prevent unevenness due to leakage of the cooling medium from the partition jig, and the heat treatment of the inner and outer peripheral surfaces is performed by a series of quenching operations. The economic effect to complete is great. Furthermore, it is clear that remarkably refinement of crystal grains (ASTM grain size number 9 to 13) is achieved by reheating and re-quenching at the center portion of the crawler belt bush thickness, which contributes to improvement of the strength of the crawler belt bush ( (See FIG. 18).

なお、外周面の焼入れ硬化層と繋がって端面部が焼入れ硬化される外周面高周波焼入れ方法については前述の通りである。本実施形態では、この外周面高周波焼入れ方法を適用し、その焼入れ硬化層2,4を除く部位がHRC45未満の高靭性の軟質層21からなるオイル封入式履帯ブッシュを得たものである。図19(a)〜(e)には、このオイル封入式履帯ブッシュの組織構成図が示されている。なお、HRC45未満の軟質層21を形成する方法としては、外周面高周波焼入れ前に、素材調質(焼入れ焼戻し)等によって硬さ、組織を調整しておく方法もあるが、前述の製造方法によって調整するのがコスト的より好ましい方法である。   In addition, it is as above-mentioned about the outer peripheral surface induction hardening method which is connected with the hardening hardening layer of an outer peripheral surface, and an end surface part is quench-hardened. In the present embodiment, this outer peripheral surface induction hardening method is applied to obtain an oil-filled crawler belt bush including a high-toughness soft layer 21 whose portion excluding the hardening hardening layers 2 and 4 is less than HRC45. FIGS. 19A to 19E show the structure of the oil-filled crawler belt bush. In addition, as a method of forming the soft layer 21 of less than HRC45, there is a method of adjusting hardness and structure by material tempering (quenching and tempering) or the like before induction hardening on the outer peripheral surface. Adjustment is a more preferable method than the cost.

さらに、履帯ブッシュ内周面に嵌る履帯ピンとの摺動によって焼付き現象が発生したり、耐摩耗性を必要とする場合や砂地などを長距離、高速走行するために、より確実な履帯ブッシュの疲労強度を高める必要がある場合には、図19に示した履帯ブッシュの内周面に図20(a)〜(e)に示されるように、肉厚の5〜15%に相当する薄い高周波焼入れ硬化層22を形成し、内周面に30kg/mm以上の圧縮残留応力を形成することが好ましい。 Furthermore, seizure occurs due to sliding with the crawler belt pin fitted on the inner surface of the crawler belt bush, and when the wear resistance is required or when traveling on sandy land for a long distance at a high speed, When it is necessary to increase the fatigue strength, a thin high frequency corresponding to 5 to 15% of the wall thickness is formed on the inner circumferential surface of the crawler belt bush shown in FIG. 19 as shown in FIGS. It is preferable to form the hardened hardening layer 22 and to form a compressive residual stress of 30 kg / mm 2 or more on the inner peripheral surface.

また、内周面の高周波加熱による熱拡散によって外周面硬化層の硬さが減少し、焼入れ硬化深さが浅くなることは避けねばならないので、好ましくは20kHz以上の高周波電源を使うとともに、外周面を冷却しながら内周面高周波焼入れを実施することが好ましい。   Further, since it is unavoidable that the hardness of the outer peripheral surface hardened layer decreases due to thermal diffusion by high frequency heating of the inner peripheral surface and the quench hardening depth becomes shallow, it is preferable to use a high frequency power source of 20 kHz or more and to use the outer peripheral surface. It is preferable to carry out induction hardening of the inner peripheral surface while cooling.

図21(a)〜(e)には、油圧ショベルなどに使用されているオイル封入性を必要としない乾式履帯の履帯ブッシュが示されている。図示のように、この乾式履帯ブッシュにおいては、外周面硬化層23と内周面硬化層24との間に形成された肉厚中心部の軟質層25が両端面に繋がっている。なお、図21において、記号Pは外周面圧入開始点を示し、記号Qは内周面面取り開始点を示している。   21 (a) to 21 (e) show a crawler belt bush for a dry crawler belt that does not require the oil sealing property used in a hydraulic excavator or the like. As shown in the figure, in this dry crawler belt bush, a soft layer 25 at the center of the thickness formed between the outer peripheral surface hardened layer 23 and the inner peripheral hardened layer 24 is connected to both end surfaces. In FIG. 21, symbol P indicates the outer peripheral surface press-fitting start point, and symbol Q indicates the inner peripheral surface chamfering start point.

ところで、前記履帯ブッシュの製造方法としては各種の方法が提案されているが、図22に示されているように、本発明者らが先願(特開2001−240914号公報)において提案した層流焼入れ方法により、複数個の履帯ブッシュ5の内外周面に同時に硬化層を形成させ、両硬化層間に軟質層を設けた履帯ブッシュを製造する方法を用いることができる。なお、図22において、1個以上の履帯ブッシュ端面部に未焼入れ層を形成させる場合においては、全体加熱する際に、端面部の加熱が遅れるように高周波加熱コイル(渦巻きコイル)9の間隔を調整するのが好ましい。   By the way, various methods have been proposed as a method of manufacturing the crawler belt bush, but as shown in FIG. 22, the layers proposed by the present inventors in the prior application (Japanese Patent Laid-Open No. 2001-240914). A method of manufacturing a crawler belt bush in which a hardened layer is simultaneously formed on the inner and outer peripheral surfaces of a plurality of crawler belt bushes 5 by a flow quenching method and a soft layer is provided between both hardened layers can be used. In addition, in FIG. 22, in the case where an unquenched layer is formed on one or more crawler belt bushing end surfaces, the interval between the high-frequency heating coils (spiral coils) 9 is set so that the heating of the end surface is delayed when the whole is heated. It is preferable to adjust.

図23(a)〜(f)には、履帯ブッシュ端面を別途硬化させることによる、生産性の良い端面を硬化したオイル封入式履帯ブッシュの製造方法が示されている。   FIGS. 23A to 23F show a method of manufacturing an oil-filled crawler belt bush having a hardened end surface by separately curing the end surface of the crawler belt bush.

図23(a)〜(f)において、端面部に符号26にて示される部位は追加的に高周波焼入れした硬化層である。通常、この硬化層26はオイルシールが摺動し、外系からの土砂進入を防止する機能をも果たすために、より高い硬度が要求され、少なくとも0.5mm以上の硬化深さが要求されているが、より長時間の使用を考慮した場合には、1mm以上の硬化深さが必要である。とりわけ、図23(a)、(b)、(c)に示される履帯ブッシュにおいては、端面硬化層26と外周面硬化層23、内周面硬化層24が重なって焼入れされるために、その重なり部分には軟質な粒状セメンタイトが分散した焼戻しマルテンサイト層27が形成され、焼入れ硬化層26との境部においてはHRC40未満の一部フェライト、パーライト組織が形成される。このHRC40未満の軟質部位が、履帯ブッシュが履帯リンクに圧入される時の外周部の圧入開始点Pに存在する場合には、かじりによる圧入不具合を発生するために、圧入開始点Pの硬さをHRC40以上、好ましくはHRC45以上にするように、端面部焼入れ硬化深さをより浅くするか、または図23(b)、(c)、(e)に示されるように圧入開始点Pよりもより深く焼入れることが好ましい。なお、前記端面部焼入れ層26を浅くしたり、またその熱影響部を浅くする場合には、高周波加熱電源は40kHz以上に高くしたり、加熱焼入れ部以外を冷却しながら高周波焼入れすることが好ましい。   In FIGS. 23A to 23F, a portion indicated by reference numeral 26 in the end face portion is a hardened layer additionally induction hardened. Usually, the hardened layer 26 is required to have a higher hardness and a hardening depth of at least 0.5 mm or more in order that the oil seal slides and also functions to prevent the entry of soil from the outside system. However, when considering use for a longer time, a curing depth of 1 mm or more is required. In particular, in the crawler belt bush shown in FIGS. 23 (a), (b), and (c), the end face hardened layer 26, the outer peripheral face hardened layer 23, and the inner peripheral face hardened layer 24 are overlapped and quenched. A tempered martensite layer 27 in which soft granular cementite is dispersed is formed in the overlapping portion, and a partial ferrite and pearlite structure less than the HRC 40 is formed at the boundary with the quench hardened layer 26. When this soft part less than HRC40 exists at the press-fitting start point P of the outer peripheral portion when the crawler belt bush is press-fitted into the crawler belt link, in order to cause a press-fitting problem due to galling, the hardness of the press-fitting start point P The edge hardening quenching depth is made shallower so that the HRC is HRC 40 or more, preferably HRC 45 or more than the press-fitting start point P as shown in FIGS. 23 (b), (c) and (e). It is preferable to quench deeper. In the case where the end face quenching layer 26 is shallow or the heat affected zone is shallow, the high frequency heating power source is preferably set to 40 kHz or higher, or induction quenching is performed while cooling other than the heating quenching portion. .

また、端面部の高周波焼入れによる焼割れが起こりやすい低合金鋼(SMn、SCr、SCrB、SCM、SNCM系鋼材)や、より高炭素の鋼(0.55重量%以上)からなる履帯ブッシュでは、この端面部の焼割れを防止するために、端面部から高周波加熱する場合には、端面部高周波加熱初期における急速加熱を避け、十分な高周波により余熱を実施しながら、本加熱で急速加熱焼入れを実施することや、端面部の内周面、外周面が焼入れ硬化されていない履帯ブッシュを図23(d)、(e)、(f)のように端面焼き入硬化させることが好ましい。   Further, in a crawler belt bush made of a low alloy steel (SMn, SCr, SCrB, SCM, SNCM steel) or a higher carbon steel (0.55% by weight or more) that is susceptible to quench cracking due to induction hardening of the end face part, In order to prevent this end face part from cracking, high-frequency heating from the end face part avoids rapid heating at the beginning of the end face part high-frequency heating. It is preferable that the crawler belt bushes whose inner peripheral surface and outer peripheral surface of the end surface portion are not quenched and hardened are hardened and hardened as shown in FIGS. 23 (d), (e), and (f).

図24(a)(b)(c)は、三段に積み重ねて、全体高周波加熱後に内周面先行冷却、外周面冷却によって製造した履帯ブッシュ(S45C炭素鋼)の両端面部を150kW、40kHz、3,4,5秒の各条件で高周波焼入れしたもののマクロ組織を示したものである。また、図25は、図24に示される矢印R方向および位置での外周面の硬度測定結果を示したものである。端面硬化層のシール面硬さはHRC60(ビッカース硬さHv=700)と、浸炭焼入れ履帯ブッシュと同程度の硬さが得られていることがわかる。   24 (a) (b) (c) are stacked in three stages, and both end portions of a crawler belt bush (S45C carbon steel) manufactured by inner peripheral surface preceding cooling and outer peripheral surface cooling after the entire high frequency heating are 150 kW, 40 kHz, The macrostructure of what was induction-hardened on each condition of 3,4,5 second is shown. Moreover, FIG. 25 shows the hardness measurement result of the outer peripheral surface in the arrow R direction and position shown in FIG. It can be seen that the end surface hardened layer has a seal surface hardness of HRC60 (Vickers hardness Hv = 700) and a hardness comparable to that of the carburized hardened crawler belt bush.

また、図25の硬さ分布図から明らかなように、焼入れ硬化層から履帯ブッシュ中央方向に高周波加熱による軟化層が広がっている。この熱影響部を幅狭くするためには、例えば焼入れ硬化層以外の熱影響部を冷却することが好ましく、例えば履帯ブッシュを端面部を残して水浸する焼入れ方法や、水中で端面部を高周波焼入れする方法等を用いることが好ましい。   Further, as is apparent from the hardness distribution diagram of FIG. 25, a softened layer by high-frequency heating spreads from the hardened hardened layer toward the center of the crawler belt bush. In order to narrow the heat-affected zone, it is preferable to cool the heat-affected zone other than the quench hardened layer, for example, a quenching method in which the crawler belt bush is immersed in the end surface portion or the end surface portion is submerged in water. It is preferable to use a quenching method or the like.

なお、これらの履帯ブッシュは図24に示されるように端面部近傍の内周面、外周面に軟化層が繋がるために、この繋ぎ部位に引張残留応力が発生しやすいことが危惧されたので、図24(c)に示される5秒の高周波焼入れ品の圧入開始点から履帯ブッシュの中央側へ1mm,3mm入った位置での残留応力をX線法によって調査した。この結果、1mm位置では軸方向応力=−53kgf/mm、円周方向応力=39kgf/mmの残留応力が観察され、最も危惧される焼入れ硬化層に沿った円周状の割れの危険性がないことが明らかになった。さらに、焼入れ処理により残留応力が150℃以上の焼戻し処理を施すことによって減少することから、履帯ブッシュの端面高周波焼入れによる焼割れなどの危険が完全に回避されることが明らかである。 Since these crawler belt bushes are connected with the softened layer on the inner peripheral surface and the outer peripheral surface in the vicinity of the end face portion as shown in FIG. 24, there is a concern that tensile residual stress is likely to occur at the connecting portion. Residual stress at a position of 1 mm and 3 mm from the press-fitting start point of the 5-second induction-hardened product shown in FIG. 24 (c) to the center side of the crawler belt bush was examined by the X-ray method. As a result, a residual stress of axial stress = −53 kgf / mm 2 and circumferential stress = 39 kgf / mm 2 is observed at the 1 mm position, and there is a risk of circumferential cracking along the most hardened hardened layer. It became clear that there was no. Further, since the residual stress is reduced by tempering at 150 ° C. or higher by quenching, it is clear that the danger of quench cracking due to induction hardening of the end face of the crawler bush is completely avoided.

また、履帯に係る偏荷重を受けて履帯ピンが撓む時には履帯ブッシュ端面部近傍に偏荷重が作用してもその軟質層に曲げ荷重がかかりやすいため、本実施形態では端面の内周側面取り終点が少なくとも外周面の圧入開始点よりも深い位置にくるようにして、曲げ応力を軽減できる形状とし、さらに、最終熱処理工程の焼戻し処理を廃止して使用する場合には、前記円周方向の残留応力を圧縮残留応力に変える目的から、その端面熱処理部近傍にショットピーニングなどの機械的加工処理を施すようにした。   In addition, in this embodiment, when the crawler pin is bent by receiving an offset load related to the crawler belt, even if the offset load acts near the end face of the crawler belt bush, a bending load is easily applied to the soft layer. When the end point is at least deeper than the press-fitting start point on the outer peripheral surface, the shape can reduce the bending stress, and when the tempering process of the final heat treatment step is abolished and used, For the purpose of changing the residual stress to compressive residual stress, mechanical processing such as shot peening is performed in the vicinity of the heat treatment part of the end face.

なお、履帯ブッシュの内周、外周、端面部の一箇所以上の焼入れ硬化層硬さが少なくともHRC50以上であることが好ましいことから、履帯ブッシュに供する鋼材の炭素量は0.30〜1.5重量%であることが好ましい。また、その焼入れ性(DI値)は特に特定するもので無いが、DI値=2.0以下の焼入れ性の低い炭素鋼、炭素ボロン鋼で多く対応できるため、大きな経済効果が期待できる。   In addition, since it is preferable that the hardening hardened layer hardness of one place or more of the inner circumference, outer circumference, and end face of the crawler belt bush is at least HRC50 or more, the carbon amount of the steel material used for the crawler belt bush is 0.30 to 1.5. It is preferable that it is weight%. In addition, the hardenability (DI value) is not particularly specified, but a large economic effect can be expected because it can be dealt with in many cases with a low hardenability of DI value = 2.0 or less and carbon boron steel.

さらに、端面部の耐摩耗性をより強化するためには、前記端面部を追加高周波焼入れした焼入れ硬化層は150℃未満の焼戻しまたは未焼戻しの状態で使用することが好ましいので、この追加焼入れに供する履帯ブッシュにおいて焼戻し処理などを完了させておくことも好ましい。   Furthermore, in order to further enhance the wear resistance of the end face part, it is preferable to use the hardened hardened layer obtained by additionally induction hardening the end face part in a tempered or untempered state of less than 150 ° C. It is also preferable to complete the tempering treatment in the crawler belt bush to be provided.

850℃に全体加熱した後、外周面と内周面を同時に急冷した時の履帯ブッシュの冷却状況と連続冷却変態線を示すグラフA graph showing the cooling condition and continuous cooling transformation line of the crawler belt bush when the outer peripheral surface and the inner peripheral surface are rapidly cooled simultaneously after heating to 850 ° C. 履帯ブッシュが外周面と内周面を同時に急冷された時にスルーハード化するその肉厚とDI値の関係を実験的に求めたものExperimentally obtained the relationship between the thickness of the crawler belt bushing and the DI value, which becomes through-hard when the outer peripheral surface and inner peripheral surface are quenched at the same time. 850℃に全体加熱した後、外周面と内周面を同時に2秒間急冷した後、2秒間その冷却を一時停止した後に再冷却した履帯ブッシュの冷却状況とS50C炭素鋼の恒温変態線を示すグラフA graph showing the cooling condition of the track bush and the constant temperature transformation line of the S50C carbon steel after the entire surface was heated to 850 ° C., the outer peripheral surface and the inner peripheral surface were quenched at the same time for 2 seconds, and then the cooling was temporarily stopped for 2 seconds. 850℃に全体加熱した後、外周面と内周面を同時に2秒間急冷した後、4秒間その冷却を一時停止した後に再冷却した履帯ブッシュの冷却状況とS50C炭素鋼の恒温変態線を示すグラフA graph showing the cooling condition of the track bush and the constant temperature transformation line of the S50C carbon steel after the entire heating to 850 ° C., the outer peripheral surface and the inner peripheral surface are rapidly cooled simultaneously for 2 seconds, and then the cooling is temporarily stopped for 4 seconds. 履帯ブッシュの外周面と内周面を同時冷却後に、その冷却を一時停止させることによって得られる履帯ブッシュの部分断面図であり、(b)は肉厚内部の熱拡散によって高靭性な焼戻しマルテンサイト組織層としたものIt is a partial sectional view of a crawler belt bush obtained by temporarily stopping the cooling after the outer peripheral surface and the inner peripheral surface of the crawler belt bush are simultaneously cooled. (B) is a tempered martensite having high toughness due to thermal diffusion inside the wall thickness. Organizational layer 850℃に全体加熱した後、内周面のみを4秒間先行して急冷した後、外周面も冷却した履帯ブッシュの冷却状況を示すグラフThe graph which shows the cooling condition of the crawler belt bush which cooled the outer peripheral surface after quenching only the inner peripheral surface for 4 seconds after the whole was heated to 850 ° C. 内周面もしくは外周面を先行冷却して行う熱処理によって得られる履帯ブッシュの部分断面図であり、(a)は冷却媒体の仕切り治具を端面内周部に押し当て、肉厚内部の軟質なパーライト組織層を端面内周面に繋げたもの、(b)はその内周面を肉厚内部からの熱拡散によって焼戻しマルテンサイト組織層としたもの、(c)は冷却媒体の仕切り治具を端面外周部に押し当て、肉厚内部の軟質なパーライト組織層を端面外周面に繋げたものIt is a fragmentary sectional view of a crawler belt bush obtained by heat treatment performed by pre-cooling the inner peripheral surface or the outer peripheral surface, (a) pressing the cooling medium partition jig against the inner peripheral portion of the end surface, The pearlite structure layer is connected to the inner peripheral surface of the end surface, (b) is the inner peripheral surface of the tempered martensite structure layer by thermal diffusion from the thick inside, (c) is the cooling medium partitioning jig Pressed against the outer peripheral surface of the end face, and connected the soft pearlite structure layer inside the wall to the outer peripheral face of the end face 履帯ブッシュ全体加熱後に、外周面からの高周波加熱実施しながら、内周面を先行冷却した時の肉厚内部における温度分布を示したものThis shows the temperature distribution inside the wall thickness when the inner peripheral surface is pre-cooled while performing high frequency heating from the outer peripheral surface after heating the entire track bush. 外周面もしくは内周面を高周波加熱しながらその判定面を先行冷却して行う熱処理によって得られる履帯ブッシュの部分断面図であり、(b)は外周面からの高周波加熱熱の拡散によって内周面を高靭性な焼戻しマルテンサイト組織層としたものIt is a fragmentary sectional view of a crawler belt bush obtained by heat treatment performed by subjecting the outer peripheral surface or the inner peripheral surface to high-frequency heating and preliminarily cooling the judgment surface, and (b) shows the inner peripheral surface by diffusion of high-frequency heating heat from the outer peripheral surface. Made into a tough tempered martensite structure layer 外周面からの高周波加熱による履帯ブッシュの昇温状況を示すグラフGraph showing temperature rise of crawler belt bush by high frequency heating from outer peripheral surface オイル封入式履帯ブッシュの部分断面図であって、(a)(b)は肉厚全体を焼入れ硬化した後、外周面からの高周波焼入れを行ったもの、(b)(c)は内周面を焼入れ硬化した後、外周面からの高周波焼入れを行ったものIt is a fragmentary sectional view of an oil enclosure type crawler belt bush, (a) and (b) which hardened and hardened the whole thickness, and induction-hardened from the outer peripheral surface, (b) and (c) are inner peripheral surfaces Induction hardening from the outer peripheral surface after quenching and hardening 図12は、肉厚全体を焼入れ硬化および内周面部のみを焼入れ硬化した履帯ブッシュの硬さ分布(a)および、更に外周面からの高周波焼入れした履帯ブッシュの肉厚断面における硬さ分布(b)FIG. 12 shows the hardness distribution (a) of the crawler belt bushing in which the entire thickness is quenched and hardened only in the inner peripheral surface portion, and the hardness distribution in the thick section of the crawler belt bush subjected to induction hardening from the outer peripheral surface (b) ) 外周面からの全体高周波加熱方法説明図Explanation of whole high frequency heating method from outer peripheral surface 各種内周面冷却方法説明図Explanation of various inner surface cooling methods 内径コレットチャックを示す図Diagram showing inner diameter collet chuck 外周面からの移動式高周波焼入れ方法説明図Illustration of mobile induction hardening method from outer peripheral surface 内周面冷却にコレットチャック冷却を用いた外周面移動高周波焼入れ方法説明図Outer surface moving induction hardening method using collet chuck cooling for inner surface cooling 内周面にHRC45未満で、高靭性の粒状セメンタイトが分散した焼戻しマルテンサイト組織層を形成した履帯ブッシュの部分断面図Partial cross-sectional view of a crawler belt bush formed with a tempered martensite structure layer having an inner peripheral surface of less than HRC45 and high-toughness granular cementite dispersed therein 外周面硬化層と連続的に繋がる端面部硬化層を持ち、残部位がHRC45未満の軟質層からなる履帯ブッシュの部分断面図Partial cross-sectional view of a crawler belt bushing having a hardened end face layer that is continuously connected to the hardened outer peripheral surface, and the remaining portion being a soft layer of less than HRC45 内周のHRC45未満の軟質層に焼入れ硬化層を設けた履帯ブッシュの部分断面図Partial cross-sectional view of a crawler belt bushing with a hardened hardened layer on a soft layer of less than HRC45 on the inner circumference 乾式履帯ブッシュの部分断面図Partial cross section of dry crawler belt bush 多段積み全体高周波加熱焼入れ方法説明図Multi-stack whole induction heating quenching method explanatory diagram 端面を高周波焼入れした履帯ブッシュの部分断面図Partial cross section of crawler belt bush with induction hardening 履帯ブッシュの端面焼入れ硬化のマクロ組織Macrostructure of end hardening of crawler belt bushing 端面焼入れ硬化した履帯ブッシュの外周面の硬度測定結果を示すグラフGraph showing the hardness measurement results of the outer peripheral surface of the endlessly hardened crawler belt bush 履帯の分解斜視図An exploded perspective view of the crawler belt 履帯ブッシュ端面のシール平坦部におけるシール当たり位置を説明する図The figure explaining the seal contact position in the seal flat part of a crawler belt bush end surface

符号の説明Explanation of symbols

1 焼戻しマルテンサイト組織の軟質層
2 外周面焼入れ硬化層
2A 内周面焼入れ硬化層
2B、4 端面部焼入れ硬化層
2C 内周面部HRC45未満の焼戻しマルテンサイト層
3 パーライトを含む軟質層
5 履帯ブッシュ
6 焼戻しマルテンサイト硬化層
7 HRC45未満のフェライト+パーライト未焼入れ硬化層
8 鞍型コイル
9 渦巻きコイル状の誘電子(高周波加熱コイル)
10,11 仕切り治具
12 冷却媒体導入管
13 内径コレットチャック
14 冷しがね
15 断熱材
16,17,17A 冷却ノズル
18 隙間治具
19 粒状セメンタイトが分散した焼戻しマルテンサイト組織層
20 フェライト、パーライト、ベイナイト、マルテンサイトの1種以上が焼戻された組織層
22 HRC45以上の焼入れ硬化層
26 端面部高周波焼入れ硬化層
27 端面焼入れによる焼戻し層
P 外周面圧入開始点
Q 内周面面取り開始点
DESCRIPTION OF SYMBOLS 1 Soft layer of tempered martensite structure 2 Outer peripheral surface hardened layer 2A Inner peripheral surface hardened layer 2B, 4 End surface hardened layer 2C Tempered martensite layer of inner peripheral surface less than HRC45 3 Soft layer 5 containing pearlite 5 Crawler belt bush 6 Tempered martensite hardened layer 7 Ferrite less than HRC45 + pearlite unquenched hardened layer 8 Saddle coil 9 Spiral coiled dielectric (high frequency heating coil)
10, 11 Partition jig 12 Cooling medium introduction pipe 13 Inner diameter collet chuck 14 Cooling glass 15 Heat insulating material 16, 17, 17A Cooling nozzle 18 Gap jig 19 Tempered martensite structure layer 20 in which granular cementite is dispersed Ferrite, pearlite, Structure layer 22 in which one or more of bainite and martensite are tempered 22 Quenched and hardened layer 26 having HRC45 or more End-face induction-hardened and hardened layer 27 Tempered layer P by end-surface quenching Peripheral surface press-fitting start point Q Inner surface chamfering start point

Claims (5)

少なくとも炭素を0.35〜1.2重量%の範囲で含有し、その焼入性が、履帯ブッシュをA1もしくはA3温度以上に全体加熱した後、その内周面と外周面から同時に水冷却することによって、その肉厚全体がHRC45以上に焼入れ硬化されるように合金元素が調整されている炭素鋼および/または低合金鋼からなる履帯ブッシュ素材を用いて、
(1)その肉厚全体がHRC45以上の硬さにスルーハード化されるように焼入れ硬化し、
(2)外周面からの高周波加熱中にその熱拡散を利用した内周面部の焼戻しを施すようにその履帯ブッシュの内周面を冷却し、外周面からの焼入れを施すことによって、
外周面硬化層とその硬化層に繋がった端面焼入れ硬化層を形成するとともに、内周面にHRC45以上の焼戻しマルテンサイト硬化層を形成し、さらに、外周面硬化層と内周面焼戻しマルテンサイト硬化層の間に形成されるHRC45未満の軟質層がフェライト、パーライト、ベイナイト、マルテンサイトおよび焼戻しマルテンサイト組織の1種以上からなり、その軟質層が端面部内周面側に繋がるようにしたことを特徴とする履帯ブッシュの製造方法。
At least carbon is contained in the range of 0.35 to 1.2% by weight, and the hardenability is such that the crawler bushing is heated to the A1 or A3 temperature or more and then water-cooled simultaneously from the inner and outer peripheral surfaces. By using a track bush material made of carbon steel and / or low alloy steel in which the alloy elements are adjusted so that the entire thickness is quenched and hardened to HRC45 or higher,
(1) Quenched and hardened so that the entire thickness is through-hardened to a hardness of HRC45 or higher,
(2) Cooling the inner peripheral surface of the crawler belt bush so as to temper the inner peripheral surface portion using the thermal diffusion during high-frequency heating from the outer peripheral surface, and quenching from the outer peripheral surface,
An outer peripheral surface hardened layer and an end-hardened hardened layer connected to the hardened layer are formed, a tempered martensite hardened layer of HRC45 or higher is formed on the inner peripheral surface, and the outer peripheral surface hardened layer and the inner peripheral surface tempered martensite hardened. The soft layer of less than HRC45 formed between the layers is composed of one or more of ferrite, pearlite, bainite, martensite, and tempered martensite structure, and the soft layer is connected to the inner peripheral surface side of the end face. The manufacturing method of crawler belt bush.
少なくとも炭素を0.35〜1.2重量%の範囲で含有し、その焼入性が、履帯ブッシュをA1もしくはA3温度以上に全体加熱した後、その内周面と外周面から同時に水冷却することによって、その肉厚全体がHRC45以上に焼入れ硬化されるように合金元素が調整されている炭素鋼および/または低合金鋼からなる履帯ブッシュ素材を用いて、
(1)履帯ブッシュ内周面が焼入れ硬化されるように高周波焼入れし、
(2)外周面からの高周波加熱中にその熱拡散を利用した内周面部の焼戻しを施すようにその履帯ブッシュの内周面を冷却し、外周面と端面からの焼入れを施すことによって、
外周面硬化層とその硬化層に繋がった端面焼入れ硬化層を形成するとともに、内周面にHRC45以上の焼戻しマルテンサイト硬化層を形成し、外周面硬化層と内周面焼戻しマルテンサイト硬化層の間に形成されるHRC45未満の軟質層がフェライト、パーライト、ベイナイト、マルテンサイトおよび焼戻しマルテンサイト組織の1種以上からなり、その軟質層が端面部内周面側に繋がるようにしたことを特徴とする履帯ブッシュの製造方法。
At least carbon is contained in the range of 0.35 to 1.2% by weight, and the hardenability is such that the crawler bushing is heated to the A1 or A3 temperature or more and then water-cooled simultaneously from the inner and outer peripheral surfaces. By using a track bush material made of carbon steel and / or low alloy steel in which the alloy elements are adjusted so that the entire thickness is quenched and hardened to HRC45 or higher,
(1) Induction quenching so that the inner peripheral surface of the crawler belt bush is quenched and hardened,
(2) By cooling the inner peripheral surface of the crawler belt bush so as to temper the inner peripheral surface portion using the thermal diffusion during high-frequency heating from the outer peripheral surface, and by quenching from the outer peripheral surface and the end surface,
An outer peripheral surface hardened layer and an end face hardened hardened layer connected to the hardened layer are formed, a tempered martensite hardened layer of HRC45 or higher is formed on the inner peripheral surface, and the outer peripheral surface hardened layer and the inner peripheral surface tempered martensite hardened layer are formed. A soft layer of less than HRC45 formed between them is composed of one or more of ferrite, pearlite, bainite, martensite and tempered martensite structure, and the soft layer is connected to the inner peripheral surface side of the end face part. Manufacturing method of crawler belt bush.
前記外周面からの高周波加熱中に内周面を冷却することによって、外周面焼入れ硬化層深さを肉厚さの30〜80%まで深くして履帯ブッシュの摩耗寿命を改善することを特徴とする請求項1または2に記載の履帯ブッシュの製造方法。   By cooling the inner peripheral surface during high-frequency heating from the outer peripheral surface, the outer peripheral surface hardened and hardened layer depth is increased to 30 to 80% of the thickness to improve the wear life of the crawler belt bush. A method for manufacturing a crawler belt bush according to claim 1 or 2. 150℃以上の焼戻し処理が施され、外周面焼入れ硬化層表面の硬さがHRC50〜65で、かつ、両端面部の焼入れ硬化深さが0.5mm以上にすることを特徴とする請求項1〜3のいずれかに記載の履帯ブッシュの製造方法。   A tempering treatment at 150 ° C. or higher is performed, the hardness of the outer peripheral surface hardened layer is HRC 50 to 65, and the hardening depth of both end portions is 0.5 mm or more. 4. A method for producing a crawler belt bush according to any one of 3 above. 履帯ブッシュの内周面および外周面に燐酸塩皮膜による化成処理を施すことを特徴とする請求項1〜4のいずれかに記載の履帯ブッシュの製造方法。   The method for producing a crawler belt bush according to any one of claims 1 to 4, wherein a chemical conversion treatment with a phosphate film is performed on an inner peripheral surface and an outer peripheral surface of the crawler belt bush.
JP2008202265A 2008-08-05 2008-08-05 Manufacturing method of crawler belt bush Expired - Fee Related JP4859889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202265A JP4859889B2 (en) 2008-08-05 2008-08-05 Manufacturing method of crawler belt bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202265A JP4859889B2 (en) 2008-08-05 2008-08-05 Manufacturing method of crawler belt bush

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002150469A Division JP4311912B2 (en) 2002-05-24 2002-05-24 Manufacturing method of crawler belt bush

Publications (2)

Publication Number Publication Date
JP2009007677A JP2009007677A (en) 2009-01-15
JP4859889B2 true JP4859889B2 (en) 2012-01-25

Family

ID=40323038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202265A Expired - Fee Related JP4859889B2 (en) 2008-08-05 2008-08-05 Manufacturing method of crawler belt bush

Country Status (1)

Country Link
JP (1) JP4859889B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096387B2 (en) * 2009-02-20 2012-12-12 電気興業株式会社 Induction hardening method
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
CN103582709B (en) * 2011-07-13 2015-04-01 都美工业株式会社 Heat processing system and heat processing method
US11618516B2 (en) 2019-09-26 2023-04-04 Caterpillar Inc. High carbon steel track bushing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702667A (en) * 1996-08-16 1997-12-30 Caterpillar Inc. Method and apparatus for heat treating a bushing
JP3897434B2 (en) * 1998-02-25 2007-03-22 株式会社小松製作所 Crawler belt bushing and manufacturing method thereof
JP3841566B2 (en) * 1998-08-26 2006-11-01 株式会社小松製作所 Quenching method and apparatus for crawler belt bushing
DE19929961A1 (en) * 1999-06-29 2001-01-04 Intertractor Gmbh Track chain for tracked vehicles
JP2001098326A (en) * 1999-09-27 2001-04-10 Topy Ind Ltd Bushing for crawler belt and its producing method
JP4674932B2 (en) * 2000-03-01 2011-04-20 株式会社小松製作所 Crawler belt bush, manufacturing method and manufacturing apparatus thereof

Also Published As

Publication number Publication date
JP2009007677A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
KR101006138B1 (en) Bushing for crawler and method for manufacturing same
WO2009045146A1 (en) Heat-treatment process for a steel
JP4859889B2 (en) Manufacturing method of crawler belt bush
KR100684590B1 (en) Heat treatment manufacturing apparatus and its method
JP4916365B2 (en) Crawler bush
JP3897434B2 (en) Crawler belt bushing and manufacturing method thereof
CN103443299A (en) Complex steel component and production method therefor
KR102391538B1 (en) A manufacturing method of a cage and the cage manufactured by the method
EP2660340A1 (en) Method of thermal treatment for steel elements
JP4916364B2 (en) Crawler bush
US20050039830A1 (en) Induction heat treatment method and coil and article treated thereby
JP2001098326A (en) Bushing for crawler belt and its producing method
US10287648B2 (en) Track bushing
JP2009138261A (en) Heat-treatment method for columnar component
JP3856536B2 (en) Crawler belt bushing and manufacturing method thereof
KR20090126391A (en) Manufacturing method of cam for low-speed marine engines
JPH03285020A (en) Manufacture of bushing for crawler
JP3856545B2 (en) Heat treatment method for crawler belt bush
JP2010084227A (en) Heat-treatment method for columnar component
US20140216613A1 (en) Method for heat treatment of columnar work
CN117901968A (en) Pin bush and manufacturing method of pin bush
JP2005226753A (en) Disc for stepless speed change device and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees